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ABSTRACT

Our environment is an asset to be managed careéulty is not an expendable
resource to be taken for granted. The main origooatribution of this thesis is in
formulating intelligent techniques and simulatingse studies to demonstrate the
significance of the present approach for achieamgw carbon economy.

Energy boosts crop production, drives industry amcteases employment. Wise
energy use is the first step to ensuring sustanalergy for present and future
generations. Energy services are essential for ingeeinternationally agreed
development goals. Energy management system lige dteart of all infrastructures
from communications, economy, and society’s trartgpion to the society. This has
made the system more complex and more interdepentea increasing number of
disturbances occurring in the system has raisedotioeity of energy management
system infrastructure which has been improved wite aid of technology and
investment; suitable methods have been presentemptimize the system in this
thesis.

Since the current system is facing various probléoms increasing disturbances, the
system is operating on the limit, aging equipmefdad change etc, therefore an
improvement is essential to minimize these probléfasenhance the current system
and resolve the issues that it is facing, smad bas been proposed as a solution to
resolve power problems and to prevent future faguiThis thesis argues that smart
grid consists of computational intelligence and gmeeters to improve the reliability,
stability and security of power. In comparison witie current system, it is more
intelligent, reliable, stable and secure, and vatluce the number of blackouts and
other failures that occur on the power grid systéiso, the thesis has reported that

smart metering is technically feasible to improvergy efficiency.

XVII



In the thesis, a new technique using wavelet toanss, floating point genetic
algorithm and artificial neural network based hgbmodel for gaining accurate
prediction of short-term load forecast has beerelbped. Adopting the new model is
more accuracy than radial basis function networtual data has been used to test
the proposed new method and it has been demomstratethis integrated intelligent
technique is very effective for the load forecast.

Choosing the appropriate algorithm is importantiplement the optimization during
the daily task in the power systerithe potential for application of swarm
intelligence toOptimal Reactive Power Dispatch (ORPD) has beawshin this
thesis. After making the comparison of the resdé#ésved from swarm intelligence,
improved genetic algorithm and a conventional gratibased optimization method,
it was concluded that swam intelligence is betterterms of performance and

precision in solving optimal reactive power dispapcoblems.
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Intelligent Energy Management System - Technigodsviethods

Chapter 1

INTRODUCTION

Deregulation of the power utility industry, beingreality today, has resulted in
competition in every aspect of power systems; bé ipower generation, or in
transmission or in energy consumption, professiamatagement of electric energy is
of utmost importance [1-10].

Sensing and communication technologies, smart siéerexample, are essential to
support the development, integration and deploynoértexible, safe, reliable and
efficient power distribution management systemsa®mnetering is a subject that is
attracting much more attention. Smart meteringeisvdring many benefits in a lot of
respects. Many smart metering projects are goingnany countries, such as the UK,
Italy, the USA and elsewhere. The design, contr@dnagement and optimization of
these new distributed energy resources and teahiesloand their integration into
existing energy distribution networks, pose siguifit technological challenges to
ensure their reliability and safety, and to improaed maximize their cost
competitiveness.

Accurate prediction of load consumption patternbecoming a very important
function of a utility company, as it is needed tpgort wiser management decisions.
A forecast that exceeds the actual load may leakti@ power being generated and
therefore may result in excessive investment iowagp plant that is not fully utilized.
On the other hand, a forecast that is too low reay to some revenue loss due to loss
of opportunity of selling power to neighboring iitds. Hence, accurate electricity
load forecasting (LF), including very short-terrhpg-term, mid-term, and long-term,

plays a vital role in ensuring adequate electrigéneration to meet the customer’s
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demands in the future. LF also helps to build ugt effective risk management plans
for companies in the electricity market. Conseglyegbod operational, planning and
intelligent management decision making, such asn@wmic scheduling of generation
capacity, scheduling of fuel purchase, ability teoid unnecessary start-ups of
generating units, planning the scheduling of pegkpower, buying or selling
electricity at best price, and scheduling of aacyll services can all be carried out
based on accurate LF, which forecasts the loadfefvaminutes, hours, days, weeks,
months ahead. The aim of LF is to predict futurecticity demand based on
historical load data, and currently available data.

In recent years, many solutions to intelligent Weatforecast have been proposed,
especially on temperature and rainfall; however,sitdifficult to simulate the
meteorological phenomena and the correspondingacteas of weather when some
complex differential equations and computationgbathms are already piled up.

As known, Radial Basis Function (RBF) network isngidered as an effective
methodology to make prediction in spatial spaceh wpatial information fusion at
different layers of RBF; the hidden layers fusisrable to give a better result.

To implement daily optimization task in the powgstem operation, choosing the
appropriate algorithms are also important for thielligent energy management in

terms of performance and precision to get the tesstits.

1.1 Organization of the Thesis

Chapter 2 reports a framework as to how computaltiorelligence may be applied
in developing smart grid to improve reliability amsécurity of the power system.

Some examples are used to demonstrate the fegsibili
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Chapter 3 gives a comprehensive review as to thefite of smart metering in power
networks, such as energy efficiency improvement @aatliction in greenhouse gas
emissions. The benefit of having smart meters toapce assets management has
been highlighted. Numerous case studies worldwidwehbeen referred to.
International engineering practices and policy haeen discussed.

Chapter 4 demonstrates the use of wavelet techsigoe its integration with neural
networks for power quality analysis and assessmttioad forecasting. This chapter
demonstrates some of the techniques that havehapbigntial to be used in the near
future for real-life applications.

Chapter 5 sets out a methodology in respect oftgbon temperature and rainfall
forecasting over the east coast of China basechemeécessary data preprocessing
technique and the Dynamic Weighted Time-Delay NleMetworks (DWTDNN), in
which each neuron in the input layer is aedalby a weighting function that
captures the temporal dynamics of the biologics.ta

Chapter 6 proposes an extending version of Grablisar Interface in Neural
Network Toolbox of MATLAB 7.1, which can releasesthmit of setting more layers
in the feedforward network creating. Users caruped feedforward network with any
architecture.

Chapter 7 describes swarm intelligence to solve @mimal Reactive Power
Dispatch (ORPD) problem. Results derived from swantelligence, improved
genetic algorithm and a conventional gradient-basptimization method were
compared.

Chapter 8 introduces an adaptive RBF network coastm method which combines

the traditional incremental algorithm and real-timmsponsivity analysis.
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Chapter 9 outlines an application of Particle Swadptimization (PSO) to solve
economic dispatch (ED) of units with non-smooth unputput characteristic
functions.

Chapter 10 summarizes the work done in this rebestiady. Areas for future work

and developments are suggested.

1.2 Original Contributions

A summary of the original contributions made irsttiiesis are given below:

1. Proposal of a solution using computational ligehce on developing Smart Grid
to ensure power distribution management systeniglbrkty and safety, and to
improve and maximize their cost competitivenedsaftier 2).

2. Improvement of energy efficiency by adopting 8nMetering. Listing case studies
in this thesis has shown that smart metering isrtieally feasible (Chapter 3).

3. Development of the proposed hybrid model throtigh integration of Wavelet
transform, Floating Point Genetic Algorithm (FPGa#)d Artificial Neural Networks
(ANN) for the prediction of short-term load foretaslore accurate predictions are
obtained when the proposed model is tested witlehdata provided by an electricity
market (Chapter 4).

4. Proposal of the solution using data preprocgssathnique and the Dynamic
Weighted Time-Delay Neural Networks (DWTDNN) to teemature and rainfall
estimation. The results confirm that the proposetlit®on has the potential for
successful application (Chapter 5).

5. Development of a new extending version of GreghUser Interface by applying

two simple applications which are voting systemigieand 3—phase generator output
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detector design. The contribution is in developaglatform for neural network
modelling applied to various problem domains (Chaag).

6. Determination of thapplication of Swarm Intelligence ©ptimal Reactive Power
Dispatch (ORPD). Comparing the results has shovat 8warm Intelligence gets
better results than the conventional methods (@napt

7. Proposal of an Adaptive Radial Basis Functionwdek (RBFN) method which

combines the traditional incremental algorithm asal-time responsivity analysis for
2D spatial interpolation. Testing the proposed meétlvith the practical data has
shown that this intelligent technique is very efifex for real-time metrological

information processing. The developed algorithm bagn implemented in the
Shanghai Meteorology Center and is used as onbéeotdols for weather forecast
(Chapter 8).

8. Adoption of Particle Swarm Optimization (PSO)vswy economic dispatch of

units with non-smooth input—output characteristicdtions. The IEEE 30-bus system
with 6 generating units has been used as the diomlasystem to show the
effectiveness of the algorithm. Results are conp&wethose details by Evolutionary
Programming (EP). It shows that PSO could be a deolnique to solve real life

power system problems (Chapter 9).
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Chapter 2

AN INITIAL STUDY ON COMPUTATIONAL INTELLIGENCE FOR SMART
GRID

2.1 Introduction

The electricity network is facing many problemsnfr deregulation and load increase
to plant problems; which is caused by the fact thatsystem was not designed to
operate at that level. Such problems lead to majents and paralyse the electricity
system as has been witnessed in the past. Theasmege demand and aging
infrastructure made it difficult to keep the system to date and has this made the
system complex; to overcome such complexity it esassary to come up with a
major solution to such problems; in other wordsghd has to be made more modern
and smarter-that is, generating the electricity mmdsmitting and distributing in a
smarter way [1-10].

The increasing complexity of Electricity Infrasttuce is the driving force for smart
grid, such complexities arise from various directiosuch as non-linearity of the
system, dynamic behaviour, uncertainties etc. Balefactors also increase the
complexity even further with the increasing devetemt of new technology which
requires electricity, such as electric cars, amddévelopment of renewable energy is
increasing the electricity challenges particulairty its complexity. Computational
Intelligence (CIl) holds the key to the developmehtsmart grid to overcome the
challenges of managing data and communicationanpig and optimization, control
and protection of power plants.

Intelligence is required at all levels of the systét should start from the component

level such as plants and substations to grid manage By making each component
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computationally intelligent it will make it easyrféhe grid to be smarter and more
alert to any kind of disturbances that might affdet power flow. Improvement is
inevitable if the system is to be smart. This carabhieved by upgrading the current
system especially in the areas of modeling andropétion, as the current process is
slow and not very accurate. To alleviate such mnois, there must be some sort of
intelligence in the system that is handling thesegsses.

Smart grid will not only involve power systems balso affect other aspects of
technology since a lot of technological developreemte taking place towards the
electric side and reduce the need for other sowferergy, like oil and gas; as these
technologies include electric cars, they will irage the demand and the complexity
of the power system, therefore reliable powernsust.

Since the electricity infrastructure is a dynamystem, computational intelligence
(CI) must help to adopt changes in all levels, usimbe dynamic and fault-tolerant.
Furthermore, it must be able to learn from thesengks that the system experiences

from all directions.

2.2 Smart Grid

The electricity industry was conceived over 50 geago when the load and
generation was less; now in the information ag#h widigital society where demand
is very high, the electricity infrastructure hasbdorced to its limits which had not
been anticipated; in addition, the electricity dach@ontinues to grow. So the focus
of the question has become what needs to be donedrtechnology prospective to
meet that growing demand for electricity, and toidmm a way whereby a greater
carbon footprint is not created. Smart grid is text generation of the electricity

infrastructure based on the optimization of theenirsystem at all levels.
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Firstly smart grid is equipped with a self-healialility to response to the threats,
material failure and other unexpected problems.|-B®& monitoring and reaction
can be achieved by using phasor measurement UPidJ) and other sensors to
monitor the parameters such as voltage and cuafeatparticular area. Secondly it
monitors the performance of generation and seartreany problems that could
trigger a disturbance; this will increase systerarafor awareness.

A self-healing ability involves an intelligent connimcation and monitoring system.
Such technology will enable the system to be alssdling one. It has the capability
of fault-tolerance that will enable the system fei@te properly when faced with a
fault i.e. it resists attacks. It accommodates gdheration and storage options
including plug-in vehicles [7]. It will provide alyg-and-play interconnection to any
source of power including renewable energy sousce$ as wind and solar sources
and storages. This will increase integration aedglifflility in the power resource mix.
Electricity infrastructures are highly interconrettwhich makes them suitable for
intelligent and self-healing technology applicasofhis can be achieved by using
intelligent agents which involve computer scien@alohg with the simulation of
imitating intelligent human beings to sense and suea the parameters for each
generator and communication with the central netwsuch agents need to be
adaptable to the environment in order to improwrtherformance. Different agents
are used in different levels of system; some aeal disr self-healing and control and
others are for the operation and management cfytsiem.

It is essential to understand what the drivers plah smart grids are. Until recently
the industry was considering smart grids mainlyaasoncept. This has changed
significantly recently. The physical transition thfe power system to smart grids is

already underway in some countries.
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Players tend to adopt state-of-the-art systemsthare is also a risk of insufficient
investment at the production level in some coustrdich will force regulators to
consider new incentives to support grid operatiorminimum reserve scenarios as
too high a risk of blackout is reached.

Without the corresponding development of technicadarket and regulatory
frameworks in the next few years, the current deekped system will become
unstable and unable to accept further deploymedistrfibuted generation.

The amount of “regulating energy” provision is iaasing in value with the increase
in stress on the system while the governments mwoatito strive for distributed
resource penetration and launch new energy eftigiateas.

System management costs are increasing, and that tto system security is an
increasing concern as installed distributed gemgyatapacity in some areas exceeds
local demand.

Environmental issues such as conservation, “zergssgom buildings”, and grid
complexity due to distributed generation, renewalsteduction penetration, back up
generation, interconnection, demand side managenmattvork congestions and
ancillary services will make future grid operatifferent from the current one.

The majority of the large transmission and distiidru utilities have decided to launch
new smart grid prototyping initiatives which, onseabilized, will be scaled to
millions of connection points. Most of this initiabll-out is expected to happen by
2012.

From a functional stand-point, the majority of thesarly adoptions of smart grids
concepts are in the domain of system intelligemzkthe associated challenges which
are related to IT system scalability; consistingapplying existing algorithms and

processes but in a larger and more distributed Brarinis worth noting that the
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majority of the main software building blocks tleadist today are used at scales quite
different from the future distribution of sensorsdrids. Besides, the software and
modeling technologies are improving a lot becausetleer technological trends in

other industries like airplanes, mobile phone, amid¢ary applications.

2.3 Technologies of the Smart Grid

Smart Gridis a form of electricity network usinigithl technology. A smart grid
delivers electricity from suppliers to consumersings two-way digital
communications to control appliances at consumwergies; this could save energy,
reduce costs and increase reliability and transparé the risks inherent in executing
massive information technology projects are avaided

In order to complete the transition that has alyestdrted the following new system
intelligence functions will in the future be reqedr to approach the Smart Grid
infrastructure targets. However, it should be redogd that these are only some
system-level functions and a full implementation Syhart Grids will also require
smart equipment such as Fault-Current Limiters, pestection schemes/algorithms
to facilitate increased distributed generation @mion, some of which are discussed
in this chapter, and a massive growth in the uspowfer electronics; for example,
Flexible AC Transmission System (FACTS) etc. andedded energy storage, even
at lower voltage/power levels than those for whach used today.

General technological development for Smart Gridigment and solutions are now
widely shared; for example at the European levebugh the Smart Grid
technological platform for the electricity of thetdire or in the US through Gridwise.

Several research and development programmes hawnefdr@ned in recent years with

10
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the goal of improving the intelligence of the etextpower infrastructure. Several

major programmes can be identified for example:

— GROW-DERS: Grid reliability and operability with sdfibuted generation
using transportable storage.
— INTEGRAL: achievement of an integrated ICT-platfob@ased on distributed

control of decentralised energy resources.

These programmes, along with other established R&fanizations, are addressing
the technical, economic, and policy barriers t@ting a smarter grid. This abundance
of research has bolstered the confidence of ingdgsaikeholders, who now recognize
that transformation of the grid indeed can be agimmed within the next few years.
There are strong drivers to smart grid progress @mpoloyment. Many political
bodies, in the US and in Europe, at different Is\a#lgovernment regard Smart Grids
as a tool that can be leveraged to promote sewea@r policies and tackle several
major issues related to the environmental impathefelectricity industry, security of
energy supply and economic efficiency of this marke Europe there is now
incredible pressure towards renewable use withenetiergy mix; there is a target of
20% by 2020. Moreover, as long as countries daaotbine energy savings and very
strong heat promotion into buildings, all the prtesswill be put on electricity.
Technologies that have been developed for smattage mainly concentrated in the
following three areas.

The first one is integrated communications. Thisasessary for Smart Grid since it
is required for all levels of the system to make tystem smarter and more
intelligent. It connects components of the systegether; this is to make the

components aware of the others’ performance.
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The second one is sensing and measurements. Huts®logies support the system
to be faster with more accurate responses, suchreamte monitoring, data
management etc.

The third one is advanced control. It monitors eBBaEcomponents and system areas
and enables a rapid diagnosis, in the event ofidiahces, and provides an accurate
solution for each event. The components are madsupérconductor. Improved
interfaces and decision support amplify human daeimmaking and promote grid
operators and managers into knowledge workers.

To develop such a Smart Grid system that can peowddvanced control and
optimization, prediction, monitoring etc. requirsst and dynamic algorithms that

can learn the system'’s behavior; this is where agatnal intelligence comes in.

2.4 Computational Intelligence (Cl) for Smart Grid

To achieve these intelligent technologies for Sn@nitd which will operate in an
extremely complex and dynamic system, it is necgssa use Computational
Intelligence as it provides various solutions andoathms for such problems.
Computational Intelligence is the study of adaptivechanism to enable or facilitate
intelligent behaviour in a complex system. It issdésh on algorithms and intelligent
systems such as neural network, fuzzy systemsugwoary computation, swarm
intelligence, bacteria foraging, ant colony optiatian and immune systems.

The challenges that are facing Computational ligitice include neural network
architecture, learning procedure, range of traiing long convergence time etc.

To achieve fully a Smart Grid system it is necegsarovercome these very complex
and nonlinear systems and in doing so, it will leaa disturbance free system, and a

smarter system that can maximize the utilizatiothefsystem.
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Since intelligence in a power grid is required linevels, it would be useful for each
substation and power plant to have a processomibattors and communicates with
other processors via smart sensors. These senslopsovide the necessary real-time
data from wide area monitoring and provide contmkthe system controller; such
information is vital because it allows the operdtobe aware of the systems situation
that can be the asset conditions, the operatirgnpeters of the system and it will also
help them to make the right decisions. Furthermiores much faster and more
accurate than the traditional SCADA/EM control syss. These sensors also provide
the dynamic rating of the lines, and help monika line performance, particularly at
times of outages and disturbances.

Another challenging issue for the Smart Grid is #wdraction of the required
information from the large amount of data receiyesm sensors; using advanced
control methods, the required features can be arplausing Computational
Intelligence and can then be classified accordinglyis is important in power
systems because lots of information is redundéuet;controller does not require all
this data, so only the important information neexdbe extracted. On the other hand,
if a sensor is missing or faulty it will provide n@tiable result, such a problem will
lead to the failure of the power controller and imiglso lead to disturbance in the
power system.

To reduce contingencies, a sensor evaluation arsbifig sensor) restoration scheme
(SERS) using auto-associative neural networks {antmders) and particle swarm
optimization was developed for controlling a staychronous series compensator
(SSSC) connected to a power network. This MSFTCravgd the reliability,
maintainability and survivability of the SSSC artee tpower network. Such fault-

tolerant technologies will be needed in a Smard@oi improve its reliability and
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security.

Computational Intelligence has increased in thkl fof advanced control, especially
in adaptive control design (ACD) and optimizati@j; this is to achieve an intelligent

system that has the ability to learn how to coatéinall parts of the system for
optimal performance.

Advanced control methods provide real-time preditivia the use of Computational
Intelligence methods. It provides applications sashmonitoring and collecting data
from sensors and analysis of data both online dfithedto diagnose and provide

solutions.

Advanced components are used in Smart Grid. Theskide: next generation

FACTS, power quality PQ devices, advanced disteugeneration and energy
storage, fault current limiters, superconductingnsmission cable and rotating
machines, power electronic advanced switches andumbors. These components
will help the system at different levels to ease tbmplex power system and make it

more efficient.

2.5 Conclusion

Streamlining and simplification of existing perms procedures and standardisation
of the grid codes for the connection of distributgdneration are required to
encourage greater distributed resources integratidre standardization in the
connection requirements of distributed generatiparticularly of the protection
equipment and settings criteria, will be very pwsitfor the development of the
distributed generation, especially in highly internected networks to avoid nuisance
tripping and obtain more generation availabilitydametwork stability. Also, more

intelligent protection is required to overcome soaiehe protection co-ordination
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and sensitivity problems with lower fault curremtdasystem stability and network
capacity concerns with higher integration of dsited generation, especially if
controlled islands are allowed and for full coneentvind turbine generators which
only provide a small contribution to the fault lev&tandardised communications
infrastructure will be important to encourage soohdéhese intelligent adaptive and
wide area protection schemes.

Sensing and communication technologies, smart siéerexample, are essential to
support the development, integration and deploynoértexible, safe, reliable and
efficient power distribution management systemse @esign, control, management
and optimization of these new distributed energpueces and technologies, and their
integration into existing energy distribution netk® pose significant technological
challenges to ensure their reliability and safatyd to improve and maximize their

cost competitiveness.
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Chapter 3
IMPACT OF SMART METERING ON ENERGY EFFICIENCY

3.1 Introduction

As a part of Smart Grid technology, smart meterintipe innovating of electricity and
gas meters. Instead of the meter readings anédiilhation, data from the amount of
electricity and gas could be collected real-timemnsure accuracy for customers and
source suppliers. Customers will benefit from tgplication by learning how much
energy they use and can then choose the optimagyrmnsumption. In the
application, a communication system will be ingdliso that the suppliers and the
customers could both have the real-time informafitt]. A simple relationship in

smart metering is shown in Figure 3.1.

Energy

Energy Customers
Supplier

Smart Metering

Figure 3.1 Structure of smart metering

The most important application of a smart metesggtem is smart meter. A Smart

meter is fundamentally different from ordinary nrstdt can provide a real-time and
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accurate record of the gas and electricity custeraeg using at different times and
different costs.

Smart meters, which have a visual display, allowpbe to see clearly how much
electricity and gas they are using and send tha ttaenergy firms automatically.
Smart metering has a huge potential benefits. é Uk, there is no longer self-
sufficient energy, and North Sea oil and gas aptetieg.

Smart meters need to play a very important roleeducing the energy consumption
[12].

3.2 Standard of Smart Metering

Smart metering is the combination of power systel@communication and several
technologies. System becomes complicated and tfextigEness are generated.
Facing these problems, standards and limitatioosldibe applied.

The smart metering system should be capable ofwayw-communication. Also, it
should be able to contain flexible tariff structsir@nd display consumption details.
Other than these minimum requirements, differestesys can be flexible based on
applications.

In 2007, the Ministerial Council on Energy’s (MCH) Europe agreed to establish a
minimum functionality for Smart Meters so that dutd set up a platform for smart
meter deployment for future government. Based arost-benefit analysis of each
function, and considering views from subsequentsuatiation, an initial set of

functions are included in the national minimum fumaality [13].

This list includes:
* Remotely read interval metering, with the meteratdg of daily reads;

* Quality of supply and outage detection to improgastimer supply services;
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» Ability to control connection and disconnection ely and apply supply
capacity limits to manage emergency situations;
» Ability to manage load through a dedicated circtot,support existing off-
peak arrangements;
* Supporting management functions such as data sgctamper detections,
remote configuration, remote upgrade and plug-day ipstallation [13].
Other than the MCE standard, ZigBee Alliance has developed an open standard
with IEEE 802.15.4 for implementing secure and @ment home wireless area
networks. The profile establishes standards for ufeanturers to produce
interoperable products, as well as allowing utiltgmpanies to set up energy

management networks [14].

3.3 Smart Metering Impact on Energy Efficiency

Nowadays, more and more people are encouragedat &knewable Energy in
order to reduce in greenhouse gas emission, aatstoaddress the very important
issue of climate change. Smart Meters provide kadgg, increase awareness and
change customers’ behaviour and attitudes in usngwable energy. In the future,
renewable energy is the means to reduce carborsiemssand gas emissions during
power generation. Although it may not be cheapgeims of the generation cost at the
moment, customers can at least reduce the impaciiroate change. Hence, if every
household can use electricity and gas efficienligre is a resulting need to minimize

power generation as well [15].

3.4 Smart Metering Case Study Worldwide

Most countries of the world are paying more and enaitention to smart metering
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projects. This section gives a survey of many aoesitplans for smart metering and
smart grid. Some implementation examples are gsueh as in the UK, China, Italy,

the USA and so on.

3.4.1 Imminent Implementation of Smart MeterindJK

Recently, UK energy smart metering has been rotatl The government has
announced every household will install a smart mieye2020. The first provider of
business and consumer smart meters in the UK adathwas First Utility.

“Smart meters will put the power in people's harefsgbling us all to control how
much energy we use, cut emissions and cut bilEd Energy and Climate Change
Minister Lord Hunt.

Energy supplier will be in charge of the roll-out smart meters rather than
distribution networks. It will cost £340 per hous&h However, the money will be
recouped through lower bills.

This plan shows that smart meters enable custotoeesach a clear understanding of
how much electricity and gas they use. This teldgywwill help people to reduce
waste, and pay more attention on usage to cut #rargy bills. And it can help
people realize how to reuse wasted resources.llliashieve maximum savings and
rational utilization of human resources, and insecstihe use of renewable energy.
Currently, the average annual bill in UK is morarthE800 for gas and £445 for
electricity. It will cost £8bn for the plan to bmplemented, and it will help people
save at least £28 per year. The Department forgyrand Climate Change hopes that
47 million meters in 26 million properties will lrestalled by 2020.

“This will be the single biggest revolution in eggruse since British Gas converted

all the nation's homes to natural gas in the 197€md Mark Daeche, of energy
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company First Utility.

Energy providers will be responsible for fittingetimeters and there will be a huge
amount of the work for that as British Gas changepliances in 17 million homes to
natural gas back in the 1970s.

Industry sources in the UK show that the £7bn @mbunts to around £15 per
household per year between 2010 and 2020. Howgeerpf that will be accounted
for in cost savings by the suppliers. For the ayereonsumer it will be possible to
save 2% to 3% of energy use per year, and wilE26tto £35 off their bills.

In total, customers could save more than £20 a. yida government says that they
could save around 2% of the total energy use, wivicahld cut £100m from bills by
2020. That means it could reduce £fnissions by 2.6m tones.

In the future the smart meter will need to procgssriety of emergency situations,

recycling of various resources and effective reafsesources [16].
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Figure 3.2 Overview of a typical smart meter [17]

3.4.2 China Smart Meter and Smart Grid Project
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China has started many projects related to Smad, @hich will change how the
whole country generates and uses energy. All tbgegis will improve the efficiency
and security of the whole power grid.

“A Smart Grid is an inevitable choice for Chinaatddress issues in its power industry
and develop a lower-carbon economy,” said Jiao, saranalyst at SYWG Research
and Consulting. SYWG is the research arm of then€de brokerage Shenyin &
Wanguo Securities.

All the proposals for the Smart Grid will increaSlinese investment in the power
industry. For years the sector has suffered frackllestre funding that was resulting
in blackouts and the infamous infrastructure caégduring the snow storms in 2008
[17].

There are 1.18 million kilometres of old transnossilines that carry 3 million
gigawatts of electricity in the entire Chinese poged. Around 7% of the 3 million
gigawatts is lost through power transmission. Buisiexpected that demand for
power will double by 2020.

Nowadays, most of China’s power is generated byeamccoal plants. They generate
around 70% of China’s energy. The Chinese govertrnas begun to clean up the
energy resources. They want to achieve 15% of aked power supply by using
renewable power generation by 2020.

Most of the proposals for the smart grid need ttiegration of the renewable power
resources such as wind and solar. And GE will boltate with State Grid on their
smart grid development.

China uses UHV (ultra-high voltage) lines which cafford efficient power flow
without big losses. This kind of transmission sgsie very useful in such big country

where resources are rich but unevenly distribu@dna has started operating 640-
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kilometre UHV lines across the central part of Ghin January 2009. State Grid is
satisfied with the line performance and now theg mstalling two further lines,
which will carry power across 2000 kilometres. 8t@trid expected investment in the
UHYV lines can be effective and will therefore sp&@d billion Yuan ($43.94 billion)

on the effort by 2012 [17].

3.4.3 Smart Metering Projects in ltaly

Italy has the largest number of Smart Metering goty in the world, undertaken by
ENEL SpA. As a result, the Italian has become ohthe first beneficiaries of the
new technologies on energy economy.

Before this project started to deploy in 2001, yitauffered from a variety factors
bringing about high energy cost. The prices of telgty were averagely higher in
Italy than in other European countries, partly lmseaaround 70% of electricity was
generated from hydrocarbons, while a similar pelagg was generated from nuclear
power and other sources elsewhere in Europe. Thwustnof fraud and bad debt is
another reason worth considering. Also, improviatado achieve better management
generation and prevention blackouts is an importauginess need driving this
deployment as well [18].

In 2001, ENEL drew up a 5-year plan on Smart Matgfor its entire customer base,
which covers nearly 40 million homes and businesdesv meters are own designed
with multi abilities integrated such as advancedg@omeasurement and management
capabilities and software-controllable disconnedgtches. These meters are based on
standards-based power line technology from EcheBmrporation, which will
automatically reveal the time-of-day pricing to umsers and send readings to a

central office [19].
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Table 3.1 Abilities integrated in Smart Metering

Abilitiesintegrated in New Meters

Bi-directional communications

Advanced power measurement and management
capabilities

Software-controllable disconnect switch

An all solid-state design

By 2006 ENEL had invested $3 billion in the wholmast metering deployment,
comparing to its ‘harvest’ of cost savings up t&&million from new technology
annually. These savings include automatically ctithg customer data and managing
its energy network remotely, instead of paying &icostly technician. To Italian
users, electricity pricing of the new meter cowdhi logical energy consuming habits
and concretely reduce the family cost of energysaoption.

Smart metering in Italy has been a good experirfarthe world. The ENEL’s Gallo
recommended that corporations need to deploy ttemihnology as quickly as
possible. A whirlwind program will help achieve asf return on investment. It also
suggested that corporations make sure their corrsunmelerstand the whole system

and the advantages of the programs [19].

3.4.4 Smart Metering Implementation in United State

The main driver for introducing a Smart Meteringtgyn in the USA, especially in
California, is to improve power quality and electy supply. California has a
summer peak demand for power covering about 50RbQ@s per year. Hence, more

and more air conditioners are used. The main engugplier company of California
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has seen an increasing demand but expects thecteatse. All three main California
utility companies developed their own projects noplement the smart metering
system or automatic metering infrastructure (AMWstems for all customers.
Deployment plans envisage installing all smart msetand communications
infrastructure by 2012 or 2013 [20].

On July 20, 2006, California’'s energy agency apptbwa project to roll out
conventional meters with communications co-processtectronics, i.e. Smart
Metering, to 9 million household customers of Racbas and Electric Company
(PG&E) in Northern California. Those meters canordcand report electricity and
gas consumption on an hourly basis. This actionhedp PG&E to set pricing, which
changes by season and time of the day. And the gaeralso shift energy use to off-
peak time. The peak pricing program will fully rollit over the next five years [21].
PG&E’s $1.7 billion Smart Meter proposal receivedanimous approval by the
California Public Utilities Commission, which allewhe utility to move forward with
a major investment in new Smart Meters designqatdoide a wide range of benefits
to household customers while increasing operatieffaiencies and energy saving at
the utility [22].

PG&E'’s installation of 9.3 million Smart Meter dees for its 5.1 million electricity
and 4.2 million gas customers began in Bakersiiel2009 and will be completed in
2011 [22].

“PG&E's Smart Meter program is one of the cornerssoof a sweeping effort to take
a dramatic leap forward in the way we deliver sgvio our customers,” said Tom
King, president and CEO of the Pacific Gas and tEe€ompany. Customers can
obtain more and better information from the Smadté and make cost-savings in

using energy. The PG&E also can receive message fineir customers and give
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rapid responses to restoring services, otherwistomers would have to phone the
company call centers. When the Smart Metering systeinstalled, customers will
not need to make a special appointment with meigiders to have their meters read.
Customer can also check for daily information alengrgy use online and then they
can make better decisions. Because the smart ro@&terecord energy usage every
hour, customers can voluntarily adjust their usdgpending on differing energy
prices that vary by season and the time of the biayshifting their energy use from
peak hours to off-peak hours [22].

A key feature of Smart Meter technology is theigbtb reduce peak load on the very
hottest days by providing financial incentives testomers who voluntarily shift
electricity usage away from critical peaks, whinlthe case of California will reduce
PG&Es need to purchase power to meet demand atakecritical times, help avoid
strain on the power grid, and help reduce reliaonefossil-fuel generation. To
achieve those benefits, the CPUC (California Publiities Commission) approved
PG&E’s proposal to provide customers with a Critileaak Pricing choice. The Smart
Meter device is almost identical in size and appeeeg to the existing electric meter.
The gas smart meter module is a tiny part whichlmamstalled in the existing gas
meter. Many companies in the USA are ready to eynploart meters. However,
PG&E’s program is the largest one in the Unitedt€3taPG&E’s investment to
develop the new smart meter technology is estim&tetle $1.74 billion. PG&E
projects that these investments will be offset tigtothe energy saving achieved by
using the new smart meters [22].

The largest municipal utility in the USA, the Losi@eles Department of Water and
Power (LADWP), has chosen to develop its AMI segvitheir own customers.

LADWP has bought 9000 already. All the customerauiiiities can then gain as
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awareness of their daily energy use from the smaters, thus creating potential for
decreasing their energy use, and contributing tdajl energy conservation. Austin
Energy is the USA’s ninth largest community-ownégteic utility. There are around
400,000 electricity customers in Austin, Texas, mha two-way radio frequency
(RF) mesh network and around 260,000 residentialismeters in 2008 have begun
to be deployed. More than 165,000 smart metersblegah installed by spring 2009

[11].

3.4.5 Smart Metering Implementation in Other Coiestr

Including the countries referred to above, smartenmgg is still fascinating other
countries by its pre-eminent role in energy affairs Victoria State, Australia, a
program named Advanced Metering Infrastructureeisidp deployed to help Victoria
to manage their energy consumption and reduce gatssions. Nearly 2.2 million
homes and 300,000 businesses have benefitted fignatgest energy infrastructure
reformation in the state’s history. Features amduihed in AMI, such as a two-way
communication between power corporations and tleetrdity meter at home;
permission on accessing accurate electricity pyicgads every 30 minutes, and so
on. The decision of the Victoria Government oningllout smart metering followed
an extensive cost-benefit study and a National Gestefit Analysis. These studies
reveal that the rolling out of smart metering irctdria could generate net benefits of
up to $700 million over the coming two decades.oAlby replacing the existing
electro-mechanical accumulation meters, Victorglsctricity users are able to use
less than 160 MWh every year [23].

In addition, the Department of Primary Industriess theld a series of forums to

collect a wide range of ideas and views on AMI. [€&h2 is part of these forums.
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Table 3.2 Part of schedule ofeseof forums [23]

Time Description
Stakeholder May Outlined the Victoria
Forum 1: 2006 Government's decision to

commence the AMI project
and approach

Stakeholder Aug Updated stakeholders on
Forum 2: 2006 progress, and initial broad-
based consultation on draft of
AMI functionality

Stakeholder Apr Provided a progress update

Forum 3: 2007 and overview of proposed
legislative and regulatory
framework

Stakeholder Dec Marked the end of the

Forum 4. 2007 establishment phase and

hand-over to industry for the
implementation phase

As the largest neighbour of Australia in Oceani@wNZealand started its smart
metering program in late 2006. Companies are plint their smart metering plan to
their customers one after another. But in June 20@9New Zealand parliament was
presented with a report, criticizing the deficiennysmartness of the 150,000 smart
meters installed. Commentators said that the questie meters were insufficient for
basic real-time monitoring functions. Also, the erstlacked a microchip at the initial
installation stage, which helps meters to commueigath other devices. Other than
the problems above, as there are no standard rubey, differently between
companies. It seems that additional resources ghmutised for retrofitting.

Back to Europe, Electricité Réseau Distributionniée (ERDF) has announced a
replacement program for smart meters covering 3bomielectricity consumers in

France, starting with a pilot trial of 300,000 mstéAtos Origin has been chosen as a
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consortium manager and the architect for the in&diom system named Automated

Meter Management (AMM) [24].

3.5 Conclusion

In the view of the current state of Smart Meteriaghnology, new meters are only
developed in providing real-time information withogiving any constructive

suggestion to consumers. Considering this situattomew concept, the so-called
“smarter meter”, is being introduced. The smartetennot only provides on real-
time information services, but also helps in essainhg an optimal energy-consuming
plan for a specific user by the Al technologiesegrated into the meter. The
introduction of Al technology offers opportunitiés recognise energy consuming

patterns automatically and accurately other thandmsumers themselves.
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Chapter 4

WAVELET-GA-ANN BASED HYBRID MODEL FOR ACCURATE
PREDICTION OF SHORT-TERM LOAD FORECAST

4.1 Introduction

Many power systems are not only being pushed tar thmits to meet their
customers’ demands, but also use a lot of resownetheir operation scheduling.
Furthermore, power systems need to operate at an &igher efficiency in a
deregulated electricity market whereby the genegattompanies (Gencos) and
distribution companies (Discos) have to competerder to maximize their profits.

To facilitate accurate load-forecasting analysissohust noise filtering and trend
analysis algorithm must be used to enable effectiventual automation of the
analysis of large volumes of data generated byntbeitoring and recording of load
consumption readings in any particular system. €hily, several forecasting schemes
utilize Artificial Intelligence (Al) methods like AN and GA to perform load-
forecasting tasks. The common problem with suchethad is that an Al scheme is
only as intelligent as the program that traindftis in turns depends heavily on the
reliability of the training data collected. If suttaining data were in the first place
corrupted by noise, it would mean that pre-processof such data would be
necessary. All these add to the implementation aast set-up time. A good trend
analysis scheme should be able to de-noise thérieldmoise inherent in the data,
and disregard portions of data where monitoringiaesy might have failed, giving
lower resolution readings as a result, and be tablake a macro view of the trend
while preserving temporal information. The analysfsnon stationary signals like

load consumption data often involves a compromistvéen how well important
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transients can be located and how finely evolutiprizehaviors can be detected.
Extremely noisy data poses a problem to the opematoto how to ascertain the
amount of noise in the retained high frequencysiet data [25].

Interest in applying neural networks to electriadoforecasting began more than a
decade ago. Artificial neural networks based methiod forecasting have been able
to give better approach in dealing with the nordnity and other difficulties in
modeling of the time series data. ANNs have beg@hegprecently in the area of time-
series forecasting due to their flexibilities intalanodelling [26-27]. Most of the
approaches reported since are based on the usen d¥il# network as an
approximator of an unknown nonlinear relation. Ehaave been some pioneering
works on applying wavelet techniques together WNN to time series forecasting,
[28-32]. Among ANN based forecasting methods, Radlasis Function (RBF)
networks have been widely used primarily becausthef simple construction and
easier training as compared to Multi-layer Peraapr(MLPs) in addition to their
capability in inferring the hidden relationship Wween input and desired target
patterns. This capability is attributed to its d@bilto approximate any continuous
function to any degree of accuracy by constructowglized radial basis functions.
From the standpoint of preserving characteristi€sdifferent classes, this local
approximation approach has the advantage overldf@lgapproximation approach of
multi-layer perception networks.

As large amounts of historical load patterns areded in a typical load-forecasting
algorithm, even low sampling rates of 1 samplerpigute generate a huge amount of
data. Hence, the effective compression of larga @aid faithful reconstruction of
original signals from compressed data are majolieringes for time series data. Also,

when an ANN, especially RBF network, is trainedhahuge data (with noise), it may
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result in not only a big network model, and vemdiconsuming training, but also the
network may fail to capture the true features ia tfata. With the development of
wavelet transforms, the difficulty of effective datompression and faithful retrieval
of original data can be well tackled. This pilosearch was intended to test RBF
networks model combine with wavelet transformedadé&br capturing useful

information on various time scales. These strategigproximate a time-series at
different levels of resolution using multi-resotutidecomposition. Recent works [33]
stress the use of shift invariant wavelet transg&rwhich is an auto correlation shell
representation technique for making the analysidioé series data easier. This
technique is employed to reconstruct singles aftavelet decomposition. With the
help of this technique, a time series can be egpreas an additive combination of
the wavelet coefficients at different resolutiondks. RBF networks are optimized by
FPGA. These data are then applied to build Neural®ét based forecasting models
to predict electricity demand as from the dataiole@ from a real electricity market.

In view of the above, the main objectives of thesent work are: to develop a
wavelet based RBF network model for accurate ptiediof short-term load forecast
(STLF). The use of neural network will enable oaliprediction of STLF in an

effective and efficient way.

4.2 Wavelet Transformsin L oad Forecast

Wavelet transforms, [34, 35] though known previguslave gained much attention
only recently. It has been exploited in many fieldse seismic studies, image
compression, signal processing processes and meahatbrations. The flexible
time-scale representations of wavelet transform fasd its place in many

applications that traditionally used modified formwifsFourier Transforms (FT) like
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Short Time FT (STFT) and the Gabor Transformsiritpressive temporal content
and frequency isolation features have tempted relses to use them in the area of
power systems analysis.

Wavelet transforms provide a useful decompositiba signal, or time series, so that
faint temporal structures can be revealed and lednay nonparametric models. They
have been used effectively for image compressioisenremoval, object detection,

and large-scale structure analysis, among othdrcagpns.

4.2.1 Time Series and Wavelet Decomposition in Libakcasting

A Trous Wavelet Decomposition

The continuous wavelet transform of a continuousfion produces a continuum of
scales as output. On the other hand, input datsuslly discretely sampled, and
furthermore a dyadic or two-fold relationship beéweresolution scales is both
practical and adequate. The latter two issuestieéioe discrete transform. Figure 4.1

shows the wavelet decomposition.
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Figure 4.1 Wavelet decosipon process

Wavelet decomposition provides a way of analyzingignal in both time and
frequency domains. For a suitably chosen motherelgayunctiony a function f can
be expanded as:

f(t)= ZZ w, 2”2¢(2 t-k) .

=&

where the functions(2't — k) are all orthogonal to each other. The cofits Wk
give information about the behaviour of the funeticconcentrating on the effects of
scale around 2-j near timg2-j. This wavelet decomposition of a function issgly
related to a similar decomposition (the discreteelet transform, DWT) of a signal
observed in discrete time.
It is well known that DWT has many advantages impgessing a wide range of

signals observed in the real world. However, inetiseries analysis, DWT often
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suffers from a lack of translation invariance. Thieans that DWT based statistical
estimators are sensitive to the choice of origin.

The output of a discrete wavelet transform can tet@us forms [36]. Traditionally,
a triangle (or pyramid in the case of 2-dimensianages) is often used to represent
all that is worth considering in the sequence &ohation scales. Such a triangle
comes about as a result of decimation or the retaiof one sample out of every two.
The major advantage of decimation is that just ghounformation is retained to
allow exact reconstruction of the input data. Thees decimation is ideal for
effective compression. However, it can be easilpwghthat the storage required for
the wavelet-transformed data is exactly the sams sexjuired by the input data. The
computation time for many wavelet transform methisdslso linear in the size of the

input data, i.eO(n) or n-length input time series. Also, with the decimatedn of

output it is less easy to visually or graphicaliyate information at a given time point
at different scales. More problematic is their la€lshift invariance. This means that,
if the last few values of the input time series aeleted, then the wavelet
transformed, decimated output data will be quiféedent from heretofore. One way
to solve this problem, at the expense of greateage requirements, is by means of a
redundant or non-decimated wavelet transform.

A non-decimated wavelet transform based om-#angth input time series, then, has
an n-length resolution scale for each of the resoluterels of interest. Therefore,
information at each resolution scale is directlhated to each time point. This results
in shift invariance. The extra storage requirem®ibly no means excessive.

An & trousalgorithm is used to realize the shift-invariantveiet transforms. Such
transforms are based on auto-correlation shellesgmtation [33] by dilations and

translations of the auto-correlation functions ofmpactly supported wavelets.
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By definition, the auto-correlation functions of @mpactly supported scaling

function ¢x) and the corresponding wavelkgfx) are as follows:

o(x) = [@(y)9(y - x)dy
(4.2)

w(x) = (@) (y-x)dy

The set of functiongy |, (%)} ..z, oscens @A (5 (x)} o.\.n . IS Called an auto

correlation shell, where:

¢, (=2""w2" (x-K))
@, (=2 g™ (x-K))

(4.3)

A set of filters P={p}_ L1« and Q={q,}_ .4 Can be defined as:

ol S
Lof2)- S

k=—L+1

(4.4)

Using the filters P and Q, the pyramid algorithnr #xpanding into the auto-

correlation shell can be shown as:

L1 g
c;(k) = |:;+P|Cj-1(k+21 ) (4.5)
I=L-1 .
w; (k) = |:;+?|Cj-1(k+21 1) (4.6)

35



Intelligent Energy Management System - Technigodsviethods

These shell coefficients obtained from Equation @6l Equation 4.6 can then be
used to directly reconstruct the signals. Given afmed signal at two consecutive

resolution levels, the detailed signal can be @efias:

w; (k) =v/2¢,, (k) — ¢, (K) @

The process of generating wavelet coefficient seigefurther illustrated with the

block diagram as shown in Figure 4.2.

Figure 4.2A Trous Wavelet transform of a time-series signal

Then the original signalc, k( )can be reconstructed from the coefficients

{Wi (k)}]sjsno ,0<ks<N-1 and reSidua{Cr‘o (k)}OSkSN—l :

Co(k) =27"%c (k) +> 272w, (k) (4.8)

=1
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for k=0,..., N-1, wherec, (k) is the final smoothed signal.

To make more precise predictions the most recetd dhall be used. In case of
adaptive learning, the previous data is penalizétl ¥rgetting factors. The time-
based atrous filters similar to that are used tal a#agth the boundary condition.

Figure 4.3 shows the wavelet recombination process.

Final Predicted
Chatput

Figure 4.3 Wavelstombination process

4.3 Radial Basis Networks

An RBF is a function has in-built distance criteriith respect to a center [37]. A
typical RBF neural network consists of three layérgput, hidden, output). The
activation of a hidden neuron is determined in steps: the first is to compute the

distance (usually the Euclidean norm) between tipeiti vector and a center that

represents its hidden neuron; second, a functiat,i$ usually bell shaped, is applied,
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using the obtained distance to get the final attbwaof the hidden neuron. In the

present case the well known Gaussian function G(x¥ed.

Ix - e’

G(x) =exp| - 52

(4.9)

The parameteo is called unit width (spread factor) and is deieed using the GA.
All the widths in the network are fixed to the sawadue and the result in a simpler
training strategy. The activation of a neuron ie thutput layer is determined by a

linear combination of the fixed nonlinear basisdiions, i.e.

M
F(X) =w, + D> wg(x)
i=1 (4.10)

where @ (X) =GQ‘X—Ci H) and w, are the adjustable weights that link the output

nodes with the appropriate hidden neuronsvanis the bias weight. These weights in
the output layer can then be learnt using the {eqsares method.

The present work adopts a systematic approachet@tbblem of centre selection.

Because a fixed centre corresponds to a givenseeggein a linear regression model,
the selection of RBF centres can be regarded askdem of subset selection. The
orthogonal least squares (OLS) method [38] canrbel@yed as a forward selection
procedure that constructs RBF networks in a ratiovey. The algorithm chooses

appropriate RBF centres one by one from traininta geints until a satisfactory

network is obtained. Each selected centre minimikesincrement to the explained
variance of the desired output, and so ill-condiid problems occurring frequently in

the random selection of centres can automaticadlyaboided. In contrast to most
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learning algorithms, which can only work if a fixeétwork structure has first been
specified, the OLS algorithm is a structural idicdition technique, where the centers
and estimates of the corresponding weights canirbaltaneously determined in a
very efficient manner during learning. OLS learnprgcedure generally produces an
RBF network smaller than a randomly selected RBEvokk. Due to its linear
computational procedure at the output layer, the=R8 shorter in training time
compared to its back propagation counterpart.

A major drawback of this method is associated i input space dimensionality.
For large numbers of inputs units, the number dfalabasis functions required can
become excessive. If too many centres are usedlathe number of parameters
available in the regression procedure will caugenstwork to be over sensitive to the
details of the particular training set and resultpoor generalization performance
(overfit).

The present work uses a floating point GA basedralgn for optimizing the centres

and spread factors.

4.3.1 A Hybrid Neural-Wavelet Model for Short-Tetroad Prediction

The proposed hybrid neural-wavelet model for skemta load prediction is shown in
Figure 4.4. Given the time series f(n), n=1,..., e &im is to predict the I-th sample
ahead, f(N+I), of the series. As a special cask,stands for single step prediction.
For each value of | separate prediction architectsitrained accordingly. The hybrid
scheme basically involves three stages [28]. At fibt stage, the time series is
decomposed into different scales by auto correlasbell decomposition; at the

second stage, each scale is predicted by a sedaBdtenetwork; and at the third
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stage, the next sample of the original time sasiggedicted by another RBF network
using the different scale’s prediction.

For time series prediction, correctly handling teporal aspect of data is one of the
primary concerns. The time-basédrous transform as described above provides a

simple but robust approach. Here we introducé arous wavelet transform based on
the auto correlation shell representation for trezligtion model usage. This approach
is realized by applying Equation 4.7 and Equatightd successive values of t. As an

example, given an electricity demand series of IN¥l8es, it is hoped to extrapolate

into the future with 1 or more than 1 subsequefte/aBy the time-base@ trous
transform, it is simply necessary to carry out aelet transform on values-*Xipos
The last values of the wavelet coefficients at tpoat t=1008 are kept because they

are the most critical values for prediction.
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Figure 4.4 Overview of the neural-wavelet multiakesion forecasting system (w

..., Wy are wavelet coefficients, c is the residual coedfit series)
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Then the same procedure can be repeated, at timetp®009, 1010, and so on. It
empirically determines the number of resolutionelev], mainly depending on the
inspection of smoothness of the residual seriesafgiven J. Many of the high-
resolution coefficients are noisy. Prior to fordoag an over complete, transformed
dataset.

Figure 4.5 shows the behaviour of the four-wavetesfficients over 1008 points for a
load series. Note that the data have been norrdalipe wavelet analysis.
Normalization of data is an important stage, fairing the neural network. The
normalization of data not only facilitates the miag process but also helps in shaping
the activation function. It should be done in sacWay that the higher values should
not suppress the influence of lower values andyinemetry of the activation function
is retained. The input load data is normalized betwthe minimum value, -1 and

the maximum value, +1 by using the formula.

Actualvalue — Minimum
Maximum — Minimum

) ¥ (Maximum — Minimum) + Minimum

(4.11)

The load data should be normalized to the sameerafyalues. The original time
series and residual are plotted at the top andtmoih the same figure, respectively.
As the wavelet level increases, the correspondagfficients become smoother. The
ability of the network to capture dynamical behawvigaries with the resolution level;

this will be discussed in the next section.
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Figure 4.5 lllustrations of tha trous wavelet decomposition of a series of eleityri
demand

At the second stage, a predictor is allocated facheresolution level and the
following wavelet's coefficientsw/ (t); j=0,..., J; i=1,..., N are used to train the

predictor. All networks used to predict the wavelebefficients of each scale are of
similar feed forward RBF perceptrons with D inpuits, one hidden layer with radial
basis function as an activation function, and amedr output neuron. Each unit in the
networks has an adjustable bias. The D inputs ¢oj-th network are the previous
samples of the wavelets’ coefficients of the j-ttals. In the proposed model
implementation, each network is trained by the agtnal least squares (OLS)
method, which can be employed as a forward selegtiocedure that constructs RBF
networks in a rational way. The procedure for deisig neural network structure

essentially involves selecting the input, hidded antput layers. At the third stage,

the predicted results of all the different scags t , {=0,..., J are appropriately
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combined. Three methods of combination have bestudsed and compared here. In
the first method, was simply applied the linearitdel reconstruction property of the
a trous, see Equation 4.8. The fact that the reawmi®n is additive allows the
predictions to be combined in an additive manner. domparison purposes, a plain
RBF was also trained and tested for original timees, denoted as RBF, without any
wavelet preprocessing involved.

The target selection is an important issue in dpglyeural networks to time series
forecasting. A neural network, whose output neurares reduced from two to one,
will have half the number of network weights reegir It also carries important
consequences for the generalization capabilithefrtetwork. A single output neuron
is the ideal case, because the network is focusexhe task and there is no danger of
conflicting outputs causing credit assignment peoid in the output layer.
Accordingly, it is preferred to have a forecaststtategy, which proceeds separately

for each horizon in the second stage.

4.4 Simulation Results

The proposed model is tested with two sets of hegibdata containing the electricity
load for the month of July 2005 and the month dy 2006, on a half-hourly basis;
both are sets of electricity load data from Quesml The sets of electricity load data
are downloaded from the NEMMCO website [39].

The simulation results are obtained through theafigeur different programs. These
programs were written in MATLAB command line in asgtion with MATLAB
toolboxes on wavelet, and neural network. Prograresrun on a PC of Pentium IV,

256 MB RAM, 3.2 GHz.
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Before the wavelet decomposition techniq@et(ous) is applied, the sets of historical
load data are first normalized.

The model is evaluated based on it prediction srrarsuccessful model would yield
an accurate time-series forecast. The performahdeeomodel is hence measured
using the absolute percentage error (APE), whidefsed as

‘Xi - Yi‘
X.

APE = ( j x 100 (4.12)

wherex; is the actual values awydis the predicted values at time instance i. Thisre
measure is more meaningfully represented as anageeand standard deviation
(S.D.) over the forecasting range of interests. ifaltal measure of the error is
defined from the cumulative distribution functiors @he 90% of the absolute
percentage error, which provides an indication e behaviour of the tail of the
distribution of errors and indicates that only 16#the errors exceed this value.

The forecasting results from the different foretasschemes are presented in Table
4.1. The RBF network is optimized using FPGA imtgrof number of inputs, centres,

and spread factor. The number of neurons in thdemdayer is auto-configured by

the OLS algorithm. Table 4.1 shows that fherous wavelet transform system with
adaptive combination coefficients for summing upe thvavelet coefficients
forecasting is the best in seven step ahead fdregder the testing data, with regards
to the mean, variance and percentile over the atespkercentage error (APE).

Parameters for FPGA algorithm:

Population Size =40
Maximum lIterations = 30
Operators for FPGA:

1. Heuristic crossover
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2. Uniform mutation

3. Normalized geometric select function

Table 4.1 Load forecast performance on testing dataAPE measure for FPGA

optimized spread factor and input

Scheme| 1 2 3 4 5 6 7
Number

HR 5.00 | 5.11 566| 6.14| 6.73 7.20 7.8b
0%r 0.7 1.1 1.6 2.3 2.9 3.6 3.4

nRr 0.086| 0.093 | 0.107 0.123 0.138 0.150 0.156
Hw 143 | 1.13 1.19| 1.53| 2.22 155 1.14
0% 0.057| 0.0662] 0.052 0.065 0.083 0.183 0.175
Nw 0.024| 0.0216 0.022 0.025 0.083 0.036 0.034

Hr. Hware mark-up coefficients|g, nw are learning ratesy’sx 1073 o%,x 10~ are
the spread factors and subscript R refers to thateewith only RBF networks while

subscript W refers to the results with hybrid watéRBF model.

4.5 Conclusion

This chapter describes a hybrid model developeslitiir wiser integration of wavelet
transforms, floating point GA and artificial neuratworks for prediction of short-
term load. The use of wavelet transforms has addedapability of capturing both
global trend and hidden templates in loads, whihotherwise very difficult to
incorporate into the prediction model of ANN. Auwtonfiguring RBF networks are
used for predicting the wavelet coefficients of foéure loads. Floating point GA
(FPGA) is used for optimizing the RBF networks. Tiee of GA optimized RBF

networks has added to the model the online prexiatapability of short-term loads
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accurately. The results demonstrate that the peaposodel is more accurate when

compared to the RBF only model.
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Chapter 5
INTELLIGENT WEATHER FORECAST

5.1 Introduction

Nowadays, weather forecasting has become one ofmts challenging problems
around the world, due to not only its practicalwalin meteorology, but also
because it is a typically unbiased time-series daséng problem in scientific
research. Every sign points to the facts that tieeie recognized need for accurate
estimates of temperature and rainfall on a varadtyemporal and spatial scales.
Applications include climate monitoring, droughtelgion, severe weather and flash
flood warnings, river monitoring and control as Wa$ use in numerical weather
prediction model initialization and verification.|$® many areas of agriculture
including crop growth and production, are extremmalyant the weather conditions,
especially under some exceptionally high or low gematures and in particular
rainfall [40, 41].

In addition, because of the strong relationshipwbeh outside temperature and
electric power demand (load), most short term l&@é@casting techniques use, at
least in part, hourly temperature forecasts in gy a load forecast. Often the
performance of short term load forecasters as tegan the literature is evaluated
using actual temperatures. However, when the sbort load forecasting is actually
used at a utility, these future temperatures ateknown and forecasts must be used
instead [42, 43].

In recent years, more and more intelligent weathezcasting based on artificial
neural networks (ANNs) have been developed and pegformance evaluated. Due

to their potential to represent complex nonlineahdvior, such as the relationship
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between future temperatures and available data d¢batribute to certain weather
conditions, ANNs are becoming increasingly prominenmany areas of weather
forecasting. Also, the considerable success of ANNshort term load forecasting
and agriculture risk management encourages thecapph of these methods to other
forecasting problems.

As reported in the literature [44], the existing lthayer neural networks are not
ideally suited to functional approximation of bigloal activities as they do not
capture the time-related dynamics of biological rese This thesis describes the
methodology of short-term temperature and rainfallecasting using dynamic
weighted time-delay neural networks (DWTDNN), whiegre more suited for
computations on temporal patterns from biologicedregs. The methodology adapted
in this work extends previous studies relying oseyational data from a single point
station to multiple point stations with time-serieather records on the east coast
of China. The corresponding data preprocessingepies were important for this
kind of neural network modeling which was based the back propagation
architecture. This involved variable transformatiand classification algorithm for

input selection.

5.2 Modeling structure of DWTDNN

Traditionally, neurahetworks can be broadly classified into static akumetworks
and dynamic neural network&tatic neuralnetworks like multi-layer perception
(MLP) and (radial basis function) RBF are addithetworks in which the activations
are a function of a set of learned weights. A dyicaneural network, on the other
hand, can be thought of as an extension to statiwarks with a short-term memory

mechanism. These networks are also referred toewmmpdral pattern processors
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because they effectively capture patterns in tifibe popular dynamic neural
networks are the time-delay neural networks (TDNN)the  concentration-in-time

neural networks and the gamma networks [44].

5.2.1 Structure of TDNN

TDNN, sometimes also called Finite Impulse Respofld&) networks, are feed-
forward networks which are used for a translatiomariant recognition of pattern
sequences (e.g. time series forecasting, speedes®iaog or wear monitoring).

In a specific application, a set of possible inpgfésitures) and a set of outputs of the
network are given, as well as any tasks performgdiimans involving decision
making and behavioral responses to spatiotempdraiulation. Therefore, the
recognition and processing time-varying signals are fundamental to a wide eaofy
cognitive processes. The central problem in pracgssemporal signals is
consideration of representation of past inputs @exiding how the past inputs affect
the current activations of the network. The past fgears have witnessed an
explosion of research on neural networks for temlpprocessing, most of which is
centered on the TDNN, which utilizes an extensibrback-propagation algorithm.
The short-term memory in the case of TDNN generadiysists of delay elements. A

sample structure [45] of TDNN is shown in Figuré.5.
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Delayed Input

Figure 5.1 A time-delay feed-forward network twibne hidden layer, where the

input is a sequence of recent values of the timese

5.2.2 Neuron of DWTDNN

V. Venk and J.C. Raj [44] presented a dynamic weighime-delay neural network
(DWTDNN) in which each neuron in the input layestaled by a weighting function
that captures the temporal dynamics of the biokigiask. This network is a
simplified version of the focused gamma network andextension of TDNN as it
incorporates priori knowledge available about the task into the ndtvamchitecture
[44]. In addition to learning the static weightse thetwork attempts to identify the
parameters of the weighting function that are lsestied for the application. Proper
choice of this weighting function and its parametenproves the convergence of the
network in addition to providing a better approxiroa.

According to the literature, the architecture & @WTDNN is shown in Figure 5.2

and the corresponding output of the DWTDNN is gibgn
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T
Wt) = f(Z (£ — D :(8))
i==T (51)

y(t)
A

x(t+T)®(8)  x(t+2)P(6) x(t)®o(8) x(t-2)®2(6)  x(t-T)P+(6)

Figure 5.2 Architecture of a dynamic gided time-delay neuron

wherex(t) denotes the time-delayed input signa¥, denotes the static weights
connecting thath input node to the output neuron a&d8) denotes the dynamic
weighting that scales the input to tiie node.

In order to choose an appropriate weighting fumgtibve prior knowledge available

about the task will be used, whilst the parametess 61, 6, On} will be learnt

.........

during the procedure of training. Generally, thewoek attempts to minimize the

given mean square error E: (assume that the inppiopair is Xp,d,))

1 .
E=2 ) (d,—»)"
EZ (5.2)

wherey, is the output of the network according to the inguand the weights are

adapted using gradient descent as:
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Aw, = —*r;r—= —T;Z[d — ¥y

Usey, given by Equation 5.1 and Equation 5.3 can benelee to Equation 5.4:

(5.3)

Aw, = '.r;rZ[fi -y ]x (t— )& (8)f' [Zx (t—i)w.?.(8))
i=—T (5.4)

And there is also:

AG, = TFZ(dp _}’pj(i x,(t — Dw; 'y (Hj) ff(zr: 2, (T —w;#,(6))

o i=—T i=-T (5.5)

Where 2 ;,(8) denotes the derivative &,(8) with respect ta9, which is adapted
according to Equation 5.5. If sigmoid functions arged, a non-linear mapping is
obtained. It should be noted that for learninggheameters of the weighting function,
the function has to be continuous and differenéd4].

The dynamic weighted time-delay neural network (CDWN) is a multi-layer feed
forward network that consists of a set of dynamaighted time-delay neurons that
constitute the input layer, a set of one or modeén layers and an output layer both

consisting of computation nodes.
5.3 Intelligent Weather Forecast Based on DWTDNN
5.3.1 Original Data Description

Meteorological data during the period between 1899 2001 were collected from 14

regional weather stations over the east coast ofaCis shown in Figure 5.3, and the
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corresponding geographical details, such as lodgijtlatitude, and altitude are listed
in Table 5.1. As shown, a finite number of statiovi8 be used in proximity to an

area for forecasting, which is a traditional methlody adopted by

A0 Z
Bl

7 50 258 # 9,

Figure 5.3 Geography information image of @dional weather forecast stations

the Bureau of Meteorology. After some extensiveadatining and analysis the
following 8 meteorological variables (as shown iable 5.2) have been found to be
suitable and reliable in terms of application, dedasistency and validation. All the
units of the data had been adjusted to interndtistendard units to keep the
consistency of the training data and eliminate tdwenplicated and non-linear
relationships between individual variables. Abot06 data were collected and

interval time was 15 minutes.
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Table 5.1 Weather forecast stations information

SNO City (longitude, latitude) Altitude (m)
58-150 Sheyang (120.25E, 33.77N) 6.7
58-144 Huaiyin (119.03E, 32.60N) 19.0
58-251 Yancheng (120.32E, 32.87N) 5.0
58-259 Nantong (120.85E, 32.01N) 5.8
58-221 Benbu (117.37E, 32.95N) 22.0
58-203 Fuyang (115.83E, 32.93N) 38.6
58-238 Nanjing (118.80E, 32.00N) 12.5
58-362 Shanghai (121.46E, 31.41N) 8.2
58-457 Hangzhou (120.17E, 30.23N) 43.2
58-424 Anging (117.05E, 30.53N) 19.6
58-562 Yinxian (121.56E, 29.86N) 5.2
58-549 Jinhua (119.65E, 29.11N) 64.7
58-633 Quzhou (118.87E, 28.97N) 67.1
58-665 Hongjia (122.25E, 28.63N) 2.2

All the values above are from SHaidveteorology Center

Table 5.2 Meteorology variable

Meteorological Variable Unit Range
Total quantity of cloud 1 0-10
Wind direction ° 0-360
Wind speed m/s 0-30

Air pressure at sea level or at the statiop hpa] 0®-3

Quantity of 6 hour rainfall mm 0-50
Dew point °C 0-50
Discernable distance 0.1km  0-50
Temperature °C 0-50

All the values above fimem Shanghai Meteorology Center.
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The weather forecast data can be obtained throengra approaches; most portable
solutions are flat plain ASCII files and XML, datacords from databases such as
Oracle, DB2, Sybase, or SQL-Server, as well as ostauction by the aid of web
services for sharing data in XML across the interriehe data format of the flat
plain ASCIl file is a-station serial nuerb (long integer), b-longitude, c-
latitude, d-altitude (floating point number), e-dtvof station (integer), f-total
guantity of cloud, g-wind direction, h-wind spee@jr pressure over sea level (or air
pressure of self-station), m-quantity of 6 houmfall, g-dew point, r-discernable
degree, t-temperature. Note that the default vafuie missing record is 9999. A
rainstorm exists when there is a period of contirsuinfall, spanning 24 hours, that
amounts to at least 50mm over each of the fouhsix- periods of that total period.
For the air pressure over sea level, if the vatukess than 70 hpa, e.g. 23, the real

value is 1002.3, while if the value is greater ti@ne.g. 96, the value is 999.6.
5.3.2 Data Preprocessing

In order to maintain the integrity of the trainidgta, some incomplete data should be
approximated using some linear function interpafgtivith the nearby values of the
same element within the region. If too many dateords are missing, e.g. 5 in a
block, neural networks or other statistical methslisuld be used for interpolation of
several missing data records. In fact, some obvimising data outliners can be

identified by plotting directly as shown in Big 5.4, where the exceptional value

of the air pressure over sea level at the Shangkaiher forecast station at thele
observation point or so can be recognized autoaibticon the basis of the

probability logic and broken off in time.
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Air pressure over sea level at the weather forecast station of Shanghai
1999/05/01 02:00 - 1999/06/01 23:00

1200
1000
aan
B0
400
200

o e

112 23 3 45 56 67 78 83 100 111 122 133 144 155 166 177 109 199 210 221 237 M43 24

Air pressure (hpa)

Sample number

Figure 5.4 Air pressure over sea leveéhatweather forecast station of Shanghai

For the training architecture of back-propagati@unal networks, the procedure of
reducing the chaotic behaviors is an important meckssary step, especially for the
meteorological variables which change tempestupusigh as wind speed, wind
direction, discernable distance and cloud quantitiie filtered curve is much

smoother than the unfiltered curve but the genteradlency is still contained within

the data. That is what the neural networks shoalietstand and learn. Of course it
would be better if the neural networks can leara tutliners too. In the end it

depends on the filter curve. If the filter curvevigaker in the high frequencies,
more details will remain after filtering. Figurebsand Figure 5.6 show the filtering of
wind speed on temporal domain and frequency donesipectively.

Low-pass has been adjusted so that general tendernmgsented in data. If low

pass is too strong (low high frequency) importaatads may be removed. If, on

the other hand, the filter is too weak (more higdgfiencies) too many outliners may

reduce network training success.
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Filtering of wind apeed at the weather farecast statien of Shanghai
1993M05/01 0200 - 1999/0801 23:00
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Wind speed (mis)
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Figure 5.5 Filtering results of wind speed at treather forecast station of Shanghai

Low-pass Filtering of wind speed at the weather forecast station of
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Shanghai 1999/05/01 02:00 - 1999/06/01 23:00
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Low-pass filtering procedure of wisdeed at the weather forecast

station of Shanghai
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After the generation of training patterns withdriéd data to fit data models has been
undertaken to determine two different training @attstructures, they need to be
normalized depending on the chosen neuron activafimction. One weather
station can make time series forecasting usin@ws historical data; or it can use
multiple stations’ data to predict the one statsoweather forecast. If the activation
function has a range of [-1, +1], the normalizatadnnput and output will be in the
range of [-1, +1]. If the activation function hasaamge of [0, 1], normalization should
be in the range of [0, 1]. It is not absolutely @ggary to normalize the input vectors
but it is common practice if pattern based nornadilin is applied.

There are two ways for the normalization of patermector and column based.
Vector based normalization is generally chosematadcolumns have a similar range
and units. Column based normalization is generdilysen if data for each column is

unrelated in terms of units and range as it iscse with weather data.

(x——mmﬂ -{high—lo w}) + low

max — mi (5.6)
log(x) — log(min) (hioh— low ) o
(log(max} — log(min) (high—low) |+1 b

Equation 5.6 is for linear normalization and Eqoiati5.7 is for logarithmic

normalization. Equation 5.6 could be optimized boit,direct comparison with linear
equation, log has been added. Any formula or matitieal procedure that is
reversible can be used for normalization. In additinormalization is dependent on
neuron activation function especially for outputurem where error difference is

calculated.
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Nomalized filtered rainfall data at the weather forecast station of Shanghai
1999/05/01 02:00 - 1999/06/01 23:00
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Figure 5.7 Normalized filtered results of rainfailthe weather forecast station of

Shanghai using linear and logarithmic functionpeesively

Outliners can be kept if logarithmic normalizatisrused. Outliners can be important
e.qg. for electricity demand forecasting where thare peaks at certain times during
the days and months. Lower values are amplifiedeslag (1000) =3 and log (100)
=2, a data range between 100 and 1000 can bedrarest into the range of [2, 3].
Furthermore, logarithmic functions are availablestendard in almost any maths
package and has been optimized in the mathematigabcessor that is part of the
main processor. Figure 5.7 shows the resultohalization for rainfall data after

the procedure of filtering.

5.4 Results

There were 14 stations nearby, including the Shaingleather forecast station
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(58362), whilst different distances of surroundistations will have impact on
forecasting accuracy. In this thesis, results forta 8 stations will be given. Figure
5.8, Figure 5.9 and Figure 5.10 show the resultssoig 2, 4, and 8 stations during
the construction of the input neuron of DWTDNN. ifirag results will be unrelated
if network sizes differ significantly; the same wetk configuration will be used to

have means of comparison. The equation of the gkra&tion error is:

| &
SSER= ||Z[TE—D,_-]3
N et (5.8)

WhereTc, Oc denote the target value and output valuesasply The target

value is historical data.
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Figure 5.8 Temperature forecasting using 2 statigia8362-58457) with

generalisation error: 0.7092
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Figure 5.9 Temperature forecasting using 4 siati(b8362-58457-58259-58562)
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Figure 5.10 Temperature forecasting using 8 stati@8362-58457-58259-58562-

58251-58150-58238-58665) with generalization el@d3223

5.5 Conclusion

Results have shown that neural networks with asdgwa single hidden layer and an

arbitrary bounded and non-constant activation foncican approximate weather
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forecast prediction for rainfall and temperatureehext step aims to show that it can

also predict wind direction.
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Chapter 6

EXTENDING VERSION OF GRAPHICAL USER INTERFACE IN NEURAL
NETWORK TOOLBOX OF MATLAB AND ENGINEERING
APPLICATIONS

6.1 Introduction

Artificial neural network is a model abstractednfrdiological neural networks. In
biological neural network, when a neuron receive®xcitatory input which is large
enough compared with its inhibitory input, it wiénds a spike of electrical activity
down its axon. Learning occurs by changing thectiffeness of the synapses so that
the influence of one neuron on another changes [46]

Compared with other models, the main advantagertdical neural network is its
ability to extract patterns and detect trends #rat too complex to be noticed by
either humans or other computer techniques. Algdicél neural network has the
ability of self-organization, meaning that the gystis intelligent.

Due to the capabilities of artificial neural netkothe famous calculating software,
MATLAB, made a toolbox especially for artificial meal network. This toolbox
gathers lots of functions for basic artificial naunetworks. Also MATLAB has a
Graphical User Interface of neural network for theoduction of neural network,
which can set at most 2 layers for feed-forwaravoet.

In the light of the above, the main objective oistbhapter is to introduce a new
Graphical User Interface for feed-forward networkielh can set as many layers as
the user wants. Based on this program, 2 applicaioe applied to introduce the way

for designing artificial neural network.
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6.2 Extending Graphical User Interface

The graphical user interface is designed to belsimpd user friendly. Users can type
the data in the relative boxes with easy-to-undecttitles instead of a series of
codes. In the Neural Network Toolbox of MATLAB 7.there is a graphical user
interface, ‘nntool’. But this interface can onlysign a feedforward network with 2

layers at most. Here a new interface, ‘platform’introduced in Figure 6.1

n main_platforrm - - =] =

m retwark P L

Data_ creat J

W Nawnrk_crea‘t ]

ﬂu "i sl it | 1
- | T r - |

Celete I
— Metwwork _operation
Initialize ‘ Train and =simulate I
Impart clata J Export cata J

Figure 6.1 The main mehplatform

On this main platform, the user can operate byctelkgthe buttons:
» ‘Data_creat’ or ‘Network creat: Create data or maunetwork in this
platform. The created data or network will appeaithie corresponding list

box.

64



Intelligent Energy Management System - Technigodsviethods

» ‘Initialize’: Button only for neural network. Inilize the weight and bias of
neural network randomly.
* ‘Train and simulate’: Button only for neural netwoiExcite the submenu of
network training and simulation.
When pressing ‘Network creat’ for setting up a maéuretwork, the submenu is

shown in Figure 6.2:

|m Metwork_creat m = . H

— Metweark_name
] nE.'tWDrk3|
—— NEtWDrk_T'ﬁ-'pE!II Feedforward
InpLut Fange © | [-1 2,0 5]
Layer of neurans: | [Z 1]
Activation Function Training method
e = = ] traingd ' T
trainrp = |
trainscg
1 purelin T traincgb
traincgf
traincgp
trainoss
traingdd=
traingdm
traingda
trairngdd 2
Creat | Cancel |

Figure 6.2 Submenu fammek building

On this submenu in Figure 6.2, each edit box Isagvitn function:
» ‘Layer of neurons’: Accepts a 1-by-m matrix in whitn’ is the number of
layers. Each of the elements in this matrix stadodshe number of neurons
in the corresponding column.

» ‘Activation function’: listbox for selecting actiti@n function in neurons.
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From the submenu of network building, it can bensimat this platform can set up a

feedforward network with as many layers as a usertsy

6.2.1Application 1: Simple Voting System Design

This is a pattern recognition example. The votiygtesm is for making a decision by a
group of people on a majority-decision basis.

This system accepts the votes from people wherepbesents not agree and 1
represents agree. So the input is a vector whosebers are all 0 and 1. The number
of element is the number of people taking parhaoting. The output of this system
is a number, 1 for pass and 0 for failure; as showiigure 6.3. The winning law is
decided by users. A voting system for 5 peoplediegithe law: a majority win is

selected in this example.

T, Majority | >

Figure 6.3 Introductiom fmting system

In this example feedforward network is chosen. Fe@dard neural network is one of

the basic neural network models. Usually this kirichetworks is combined by one

input layer, one output layer and several hiddegerks which are all constructed by
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neurons. Layers are linked by weights which candwised. Including input, each

neuron also has a bias. Each neuron works as@gial neuron.

Input Layer 1 Layer 2 Layer 3
Y4 AV AW A\
— al — — &
N WG LWM-\ N —)|S:“ LW: N m
fl sy ) f2 s P
sl §41 shit
'l
F 531 T Ry F
J\ J\ Y,
at = fL(IWup+hy) = LW aithe) # =f7 (LW 4hy)

2 =f3 (LW:2 f2 (LW!,lf].(IWl,llj +ht)+bzjebs = y

Figure 6.4.Mathematic model of féedvard network [47]

For training the network, the training input shoddd a matrix containing all the

possible situations, which is shown in Figure 6.5

lnput= p1000011110000001111110000111101;
00100010001110001110001110111011;
00010001001001101001101101110111;
00001000100101010101011011101111;

0000012000100101100102101121011111

Target= 00000000000000C0001111111111111111;

Figure 6.5 Input and target foirtnag voting system
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This input matrix is a 5-by—32 matrix where eacluem stands for a kind of voting
situation. The corresponding target is the resiulhe system.

For training this network, the first step is to s@ta simple network (3 —1), which
means there are 2 layers in this network and 3amsuin the first layer and 1 in the
second layer, to select the best training functihthe training functions should be
trial and parameters should be changed for eachirtgafunction so that they all

perform best with the network (3 - 1). Table 6.bwh the result.

Table 6.1 Traigifunction selection

3-1 ; ‘tansig’ for hidden layer and ‘purelin’ farutput layer, 30(

epochs, goal: 0.0001

traingda Best Learning rate: 0.3 Average Performance: MSE)S95
Momentum: 0.9

traincgp Best Learning rate: 2 Average PerformaM®E = goal met: 46
Momentum: 0.9 epochs

traincgb Best Learning rate: 0.2 Average PerforrmaMSE = goal met: 66
Momentum: 0.9 epochs

trainim Best Learning rate: 0.15 Average PerfornreaMdSE = goal met: 18
Momentum: 0.9 epochs

From Table 6.1, it is obvious that ‘trainlm’ is thest training method as the learning

rate is the smallest.

After training function selection, the complexity architecture should be increased

So it can obtain a more accurate level. In thisvela there has been selected a new
network (3 — 10 - 1) for training and the goal sis® 1 e-006. The training

convergence result is shown in Table 6.2.
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Performance is 6.47049e-007, Goal is 1e-006

E
@
3
E?
g
10’77 | | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
Stop Training 104 Epochs
Figure 6.6 Training procesg3f0-1) network
Table 6.2 Result compategween the two networks
Training Goal 0.0001 1 e-006
Network (3-1) (3-10-1)
MSE 9.5278 e-005 6.4705 e-007
Largest error 0.0217 0.0024
CPU time 0.0156 0.0156
Epochs for train 18 104

After training, the network should be tested. listhxample the ability of noise

resistance is being tested. Select an input + nasehown in Table 6.3.
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Table 6.3 Code foogcing input + noise

ip % input for training
u = rand(size(ip));
ul = rand(size(ip));

y=ip + n*(u-ul); %y isthe input+ noise

In the code above, n is a variable for adjustirgamplitude of noise. As n increases,

the noise increases and the system begins to hakeand more errors.

Table 6.4 Performance of 2uoeks when supplying noise

Network(3-10-1) trained in goal: 1 e-
Network(3-1) trained in goal:0.0001
006
Largest Rate of Largest Rate of
n MSE Mse
error mistake error mistake
0.1 0.0539 0.6863 9.38% 0.0018 0.0626 0%
0.2 0.23 1.5357 15.63% 0.0174 0.3995 0%
0.3 0.3571 1.6780 25% 0.440 0.8963 3.12%
0.4 0.3320 1.4832 31.25% 0.0663 0.9821 6.25%
0.5 0.2864 1.2057 34.38% 0.0915 0.9984 12.5%

Result from Table 6.4 reveals that the networkngdiwith a better performance has a

better ability of noise resistance.

6.2.2 Application 2: 3—phase generator output detec
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A 3-phase generator is a source of electricity.oligput is supposed to be 3 sine
waves that the phase difference between each 2vsives is 120 In this example a

generator is provided without knowing its outputhe detector receives the output
and it should then be able to tell the users whidtie generator is working properly

or not.
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Figure 6.7 The input for thengeator detector

Received the signal shown in Figure 6.7, detedtoulsl determine:

® \What the working point of peak value is and whetlieg peak values are
reasonable

® \What the working point of frequency is and whettrer frequency is reasonable
now

® \What the working point of phase difference is areéther the phase difference is
reasonable now

® Calculate the RMS of the signal.
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Considering the structure of data, each elemew,deak value, frequency and so on,
has its own value and varying law. So if feedfodvaeural network is used, each
element should be set up with a network of theinofo it increases the complexity
of system structure. Due to the disadvantage meati@bove, Radial Basis Network
(RBF) is used.

A neuron of RBF network used in this example isvaih@n Figure 6.8.

Input
Weight ) )
Sigmoid
N_/. FunCtIE){'I
|| dist || [— = // E

7

R

bias

Figure 6.8 A neoniaf RBF network

As shown in Figure 6.8, the || dist || box accempsit vector and the single row
weight matrix, and then the output of this box he ot product of the two. The
weight is the target that needs to be trained.

If input vector is p, weight vector is w, bias isabd output of this neuron is a, the

following equation could reveal the relation betwéieese variables.

a=sigmoid]|| w pl[x b (6.1)

Based on the data structure, this RBF Network gshbalve a path for peak value, a
path for frequency, and a path for phase different@ée main structure is shown in

Figure 6.9.
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Training data |—)| Target training

Phase 1 Output
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Phase 2 Phase .
. difference 1-2
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difference 1-3
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Phase 3 RMS
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Figure 6.9 Main structuretloé generator detector

The output of this detector has 5 elements. E#&chemn is a vector with 3 elements

representing the corresponding phase signal whalse vanges are between -1 to 1,
the degree of suitability, with 0 standing for niffetence between target and input
while 1 stands for much larger than target valdemeans much smaller than target.
Phase difference 1 — 2 means the recognized sigrmdase 1 is the standard signal
and the phase difference between signal in phasec@lculated. A similar reason is

applied for phase difference 1 — 3.

When a detector first receives a signal from a geog the operating point of the

generator is unknown. So the first task is to fnd the operating point and target of
the generator.

The detector collects data from 3 — phase sighah,tfrom these data, the detector

learns the target by Kohonem Learning Rule.

IW(q) = IW(g-D+a(p(9- W 1) (6.2)

73



Intelligent Energy Management System - Technigodsviethods

Equation 6.2 is the basic theory of Kohonem Leayrfrule. In this equation, p is
input, a is learning rate, IW is the weight or target.

Suppose the data collected from previous inpus im &able 6.5.

Table 6.5 Data caléetfrom previous input

Peak value Frequency Phase Phase
V) (Hz) difference 1-2 difference 1-3
1 309.0718 49.3306 119.4143 239.5816
2 314.4448 51.1216 120.9814 240.7010
3 312.9698 50.6299 120.5512 240.3937
4 420.0000 50.5044 120.4414 240.3153
5 306.7898 48.5699 118.7487 239.1062
6 308.9417 49.2872 119.3763 239.5545
7 313.9540 50.9580 120.8383 240.5988
8 316.4704 51.7968 121.5722 241.1230
9 308.6132 49.1777 119.2805 239.4861
10 313.7737 50.8979 120.7857 240.5612

Figure 6.10 is the training process of peak valith frequency shown in Figure 6.11;

Phase differences 1 — 3 in Figure 6.12.

74




Intelligent Energy Management System - Technigodsviethods

10
10

5

Figure 6.10 Trainingpess of peak value
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Figure 6.12 Trainingpess of phase difference 1-3
75



Intelligent Energy Management System - Technigodsviethods

In the peak value training as in Figure 6.10, therating point should be near 310V.
But one data at 4 is up to 420V which cause thgetaraise to 396V. Due to the
intelligence of the network, the system decrealeddrget by learning more data so
the target falls back to near 310V. From this exampg can be seen that RBF

network has intelligent capability. The trainingué is shown in Table 6.6.

Table 6.6 Trainirggult of detector

Learning rate] Peak value | Frequency Phase Phase

0.8 V) (Hz) difference 1-2 | difference 1-3
Temporary 313.03 50.65 120.57 240.41
target

After target selection to avoid saturation, datausth be normalized. Suppose the
usual varying range for peak value is -450V~+450¥quency -1000Hz~+1000Hz,

phase difference 0~360. The normalizing value @s\shin Table 6.7.

Table 6.7 Normalizing valwe fletector

Name Normalizing value
Peak value 500V

Frequency 1000Hz

Phase difference 1 — 2 380

Phase difference 1 — 3 380

Until now the detector design is nearly finishethe@emaining work is to test and fix

the measurement. The signal in Table 6.8 is chosen
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Table 6.8 Codetesting signal

Code ipl = A*cos(2*pi*f*t);
ip2 = A*cos(2*pi*f *t + col*pi/180);

ip3 = A*cos(2*pi*f *t + co2*pi/180);

In Table 6.8, ‘A’ is the magnitude of signal; ‘8 ithe frequency; ‘col’ and ‘co2’ are
the phase differences.

Because the detector output is the degree of diffars between target and input, the
results are shown based on difference. Table 6tBeidesting result of peak value,

while Table 6.10 is for frequency, Table 6.11 isgbase difference.

Table 6.9 Testing et peak value

Diff | Output | Output |Output | RMS

V) on on on V)
Phase 1 | Phase 2 | Phase 3

0.01 | 1.0e-004{ 1.0e-004| 1.0e-004| 221.5021
*0.2000 | *0.1697 | *0.1679

0.1 1.0e-003| 1.0e-003| 1.0e-003| 221.5658
*0.2000 | *0.1630 | *0.1632

500 | 0.7616 0.7616 0.7616 574.9378V

1000 | 0.9640 0.9640 0.9640 928.0789V
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Table 6.10 Testregult for frequency

Diff Output on Output on Output on Phase
(Hz) Phase 1 Phase 2 3

0.01 1.0e-003* -0.1449 1.0e-003*0.1114 1.0e-003104
0.1 1.0e-003 *0.1114 1.0e-003*0.1114 1.0e-0031104
1000 0.7858 0.7858 0.7858

1500 0.9051 0.9051 0.9051

Table 6.11 Testing resultpbase differences

Diff Output of Diff Output of
phase 1 and 2 phase 1 and 3

0.01 0.0026 0.01 0.0026

100 0.2597 100 0.2596

180 0.4432 180 0.4391

Because -0.95~+0.95 is the usual operating ranggifiction ‘tansig’, it can be seen

from Table 6.9 that the largest difference of peakie between target and input can
accurately be tested to near 1000V. Suppose thagrttallest value can be shown to
users is 1.0 e-003, from Table 6.9 the smalle$tmdihce of peak value which can be
detected is 0.1V. After deciding the limit on peadue, the measurement fixing is
waiting to be done. It can be seen that the sstalléference can be detected but it
depends on how small the system it is in termsivihg value to users. The largest

difference not only depends on how large the systamshow but also the limit of
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0.95 in this case. Designers should fix the linmttbeir own, as well as on frequency

and phase differences.

6.3 Conclusion

The new graphical user interface extends the glafithe interface from Matlab and
decreases the difficulties of setting up neuralvoeks. Based on this interface, 2
applications are used. Simple voting system is dasefeedforward network and the
3—phase generator output detector is designed dralR2asis Network (RBF). These
ones have demonstrated how to design the neunabriein applications. Thus, the
platform for neural network modelling applied torieais problem domains has been

developed.
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Chapter 7

SWARM INTELLIGENCE FOR OPTIMAL REACTIVE POWER
DISPATCH

7.1 Introduction

The purpose of optimal reactive power dispatch (DRB to minimize the network
real power loss and improve voltage profiles byutating generator bus voltage,
switching on/off static var compensators and chagd@iansformer tap-settings. The
reactive power dispatch has complex problems argelscale power system. Many
methods based on linear programming and non-lipgagramming have been
proposed to solve this problem [48-52]. These aggtes are based on successive
linearizations and the first and second differditres of an objective function and its
constraint equations. Such approaches quite oftad 1o a local minimum point and
sometimes result in divergence. Some new methosgedban artificial intelligence
have recently been used in ORPD planning to sadeal Iminimum problems and
uncertainties [53-55]. An improved genetic alganth(GA) method has been
proposed [56] to solve ORPD problem. This thesisppses an application of
Swarm Intelligence (SI) [57-62] to solve ORPD. Arsfard IEEE 30-bus system has

been employed to carry out the simulation study.
7.2 Problem Formulation

List of symbols
NE = set of branch numbers
N i = set of numbers of buses adjacent tolbnsluding bus

NPQ= set of PQ- bus numbers
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Ng = set of generator bus numbers

N = set of numbers of tap-setting transformer brasche

NB = set of numbers of total buses

NB-1= set of numbers of total buses, excluding slackgress
Ploss= network real power loss

gk = conductance of branch k

Vi = voltage magnitude at bus

il 6 = voltage angle difference between basd bus |

Qi = reactive power injected into network at bus

Gij,Bij = mutual conductance and susceptance betweenalmalsbus |
Gii,Bii = self conductance and susceptance ofi bus

Qqgi = reactivepowergeneration at bus

Tk = tap-setting of transformer branch k

NV lim= set of numbers of buses of voltages outsideinti¢s|

NQg lim= set of numbers of buses of reactive power geloasabutside the limits.

The objective function of ORPD can therefore beregped as follows:

minP,,. = ) G(V:+V? -2V, cos6,)
KENE
k= (i)

s.t. 0=P,— V‘Z Vi(G;cos8; +B;sinb;) i€Ng,
JFEN;
s.t. 0=Q,. — V‘Z V(G sinb,; + B;; cosb,;) 1 € Np,

JEN;

T max .
QE‘[ = QS[ = QS[ FeN
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TF" =T =TE™ k€ Nz (7.1)
A S i i€ Ng

where power flow equations are used as equalitystcaimts; reactive power
generation restrictions, transformer tap-settirggrietions and bus voltage restrictions
are used as inequality constraints. The transfotiaygsettingT and generator bus

voltagesvg arecontrol variables so they are self-restricted. Tded bus voltage

Vioad @nd reactive power generatio@s are state variables, which are restricted by
adding them to the objective function as the quadpenalty term to form a penalty
function. Equation 7.1 is therefore changed to fillowing generalized objective

function:

minfq = P!oss + Z ‘lﬂ-’l (Vz - I’fi“mjz + Z ‘1@5[(@95 - slifiim ?

IENYlim iENgglim

s.t. 0=P,—V, Z I‘G‘(sz COS '9;'}' + BE-}- sin 5'2-}-] L€ Ng_y
JEN;

0=0Q;, -V, Z Vi(G,;sinb,; + B;;cosd,;) i€ Npg
JEN; (72)

Wherely; andiqgi are the penalty factors which can be increasabdaroptimization

procedureﬂ'lm andggf‘, are defined in the following equations:

plim {anm if V< Ve
i if V< Vi

o = {@:‘J“ if Q< Qg
S (v if Q<@ (7.3)
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It can be seen that the generalized objective foimdt, is a non-linear and non-
continuous function. Gradient-based conventionalhows are not good enough to

solve this problem.
7.3 Swarm Intelligence

Swarm Intelligence (SI) was introduced in 1995 @- The method has been
developed through a simulation of simplified socradels. The method is based on
researches on swarms such as fish schooling addldking.

According to the research results for bird flockibgds are finding food by flocking
(as opposed to individually). Flocking prompted @msumption that information is
owned jointly.

The SI algorithm can start with a population oftjgdes with random positions. In
swarm intelligence, a single particle is a solutiorthe search space. All particles
have fithess values, which are evaluated by tmeg$g function to be optimized, and
velocities, which direct the flying of the partisle

Each individual knows its best value so far (pbest) its position. Moreover, each
individual knows the best value so far in the gro(gbest) among pbests.
Modification of an individual position is carriedubby the position and velocity
information.

Consider a swarm of p particles; with eggéarticle’s position representing a

possible solution point in the design problgrace. For each particta, Kennedy

and Eberhart proposed that its positiéh be updated in the following manner:

Xy = X F U (7.4)

With a velocity+". , calculated as follows:

83



Intelligent Energy Management System - Technigodsviethods

v, =won +on(pl—xi) + o,y [pf — x,";“) (7.5)

Here, subscripk indicates a time incremers}’ represents the best ever position of
particlem at timek, andpi represents the global best position in the swartime k.

r; andr, represent uniform random numbers between 0 afa hllow the product
Cir1 Or Corz to have a mean of 1;,@; are constant values typically in the range of 2 to
4. Kennedy and Eberhart proposed that the cogratiMesocial scaling parametess
andc; be selected such thet = ¢, =2. These two rates control the relative influence
of the memory of the neighbourhood the individddle factorw is the inertia weight.

If the inertia weight is large, the search becomese global, while for smaller inertia
the search becomes more local. The coefficiengad ¢ are learning factors, which
help particles to accelerate towards better areseasolution space.

The best ever fitness value of a particle at desigiordinatesp?* is denoted by
Frese and the best ever fithess value of the overallrswat co-ordinates;:i by
Fhest. The algorithm flow can be described as follows:

(a) Set constantg, c2, and k

(b) Initialize dynamic maximum velocitﬁmand weight.

(c) Randomly initialize particle positions.

(d) Randomly initialize particle velocities.

(e) Evaluate fitness valueﬁn using design space co-ordina¥@sfor m=1,..., p.

(f) Setfbes: = fo, P™ =x formed,...,p.

(9) Update particle velocity vectei,

(h) Update particle position vectsi+1
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(i) Update maximum velocit§x  and weightw.

() Evaluate fitness value"grl

(k) If stopping condition is satisfied then termima

() Incrementm, incrementime, go to (g)

The steps used within the proposed algorithm folPORpplication are as follows:

Step 1 Input data for network configuration, loadie and range of variables. Control
variables include generator voltage, transformeratad shunt capacitor. Load-
bus voltage and reactive power generation are digmevariable.

Step 2 Initialize randomly the speed ansitpmn of each particle.

Step 3 Calculate the load flow and systess.|

Step 4 Calculate particle’s coordinate®eatiog to the values of its objective function.

Step 5 Calculate the speed and its newipnsitf each particle using Equations 7.4
and Equation 7.5.

Weight is computed according to the following edurat

W — W

T

w=w,  — e TR jter
et .. (7.6)

Wonaye aNdw,.;... Maximum and minimum values of weights respectivel
iteTmay: Maximum iteration.

iter: Current iteration number.

7.4 Comparison Methods

Two comparison methods have been considered.
7.4.1 Improved Genetic Algorithm (IGA)

GAs are search algorithms based on the mechanicsitafal genetics and natural
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selection. The GA used here is the binary-coded Baeh control variable is encoded
into a series of binary bits. Each bit simulategeae. The series of binary bits of all
control variables compose a string, which simulateschromosome. GA is a
population search method. A population of stringkept in each generation. The
next generation is produced by the simulation ¢firzh process of reproduction, gene
crossover and mutation. To make GA practicablénereal-life large- scale systems,
an improved GA (IGA) is needed.

In general, GAs mutation probability is fixed thghout the whole search
processing. However, in practical applicationsiralé fixed mutation probability can
only result in premature, while the search withasgé fixed mutation probability
will not converge. An adaptive mutation probalilias been proposed [56].
Regarding crossover, each control variable is caded short fixed bit-length sub
string. A dynamical hierarchy coding system wasetigyed to code the large number
of control variables in a real-life system with @asonable length string without
losing the resolution of the result. The searcicess will be divided into several

stages with different change-steps for controlal@as.

7.4.2 Broyden’s Method

Turning to Broyden’s method, it is popularly applien practice [63]. The only
disadvantage of Broyden’s method is that the ireveffsfull Hessian matrix has to be
computed. However, in modem computer, this is ndiffecult problem. In solving
reactive power optimization problems, more precisgthods have to be used than
those used in real power dispatch problems. Bragdaethod is briefly described in

the following iterative equations to minimize theconstrained functior(x):

Hps1 = % — B Vf(xz)
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(}’;f — Bysi)si
By =Bp+———k=10,1,..

Sks;c

a
Vi(x,) = S_J:Ik

Y = V(e — V()
Sp = Xp+1 — Xk (7.7)

whereBg is a unit matrix.
7.5 Numerical Results

In this section, IEEE 30-bus system has been useshaw the effectiveness of the
algorithm. The network parameters of the systemgiven in [64]. The network
consists of 6 generator-buses, 21 load-buses arftatthes, of which 4 branches,
(6, 9), (6, 10), (4, 12) and (28, 27), are undeadtap-setting transformer branches.
Two cases have been studied. Case 1 is of lighisle#hose loads and the active
power generations of P-V buses are the same a&4in Case 2 is of heavy loads
whose load and the active power generations ofli8és are twice as those of Case
1. The reactive power generation limits are lisbkedTable 7.1. Voltage end tap-
setting limits are listed in Table 7.2. All powendavoltage quantities are per-unit

values.
Initial Condition

All initial generator voltages and transformer tape set to 1.0rheloads are given
as:
Case 1Pipa=2.834,Qpa=1.262

Case 2P0a=5.668,Q)0a4=2.524
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The initial generations and power losses are obthas in Table 7.3. The variables
outside their limits are listed in Tables 7.4 anbl. Tn Case 2, because of heavy loads,

almost all bus voltages and all reactive power gaiens are outside their limits.

Table 7.1 Reactive power gatien limits

Bus 1 2 5 8 11 13
Case 1 0.596 0.48 0.6 0.53 0.15 0.155

Case 2 1.192 0.96 1.2 1.06 0.30 0.31
-0.298 -0.24 -0.3 24&b 0.075 0.078

Unit: per unit
Table 7.2 Voltage and tap-setting limits
eyt yme ymn pmes e
1.1 0.9 1.05 0.95 1.05 0.95
Unit: per unit

Table 7.3 Generations and power losses

PQ Q Ff?)ss Qoss
Casel 2.89388 0.98020 0.05988 -0.28180

Case?2 5.94588 3.26368 0.27788 0.73968

Unit: per unit
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Table 7.4 Voltages outside limits

Case 1l
Bus 26 29 30
0.93 0.94 .93
Case 2
Bus 9 10 12 14 1516 17

094 091 094 090 0.8991 0.90

Bus 18 19 20 21 22 23 24
0.87 0.86 0.873 0.8788 0.87 0.85

Bus 25 26 27 29 30
086 081 0.88 3.80.80

Unit: per unit
Table 7.5 Reactive power gatiens outside limits
Bus 1 8 13
Casel 0.596
Case2 -0.402 1.497 0.439
Unit: per unit

7.6 Optimal Resultsand Comparison

The number of individuals is set to 50. 100 treals performed for other simulations
using different random numbers. At each trial, thest-evaluated value is stored

within 100 searching iteration. w is set to 1.0 andind @ are 2.
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The optimal generator bus voltage, transformersktfings, generations and power
losses are obtained as in Tables 7.6, 7.7 andAll.&he state variables are regulated

back into their limits.

Table 7.6  Generates boltages
Bus 1 2 5 8 11 13

Casel IGA 1.07 1.06 1.04 1.04 1.08 1.06
Brydn 1.07 1.06 1.04 1.02 1.09 1.07
PSO 1.07 1.06 1.04 1.04 1.08 1.06
Case2 IGA 110 1.09 1.05 1.05 1.10 1.09
Brydn 1.07 1.06 1.04 1.02 1.09 1.07
PSO 1.10 1.09 1.06 1.06 1.10 1.10

Unit: per unit
Table 7.7 Transformer Tap-settings
Branch (6.9) (6.10) (4.12) (28,27)
Casel IGA 0.98 1.03 021 1.04
Brydn  0.96 1.00 1.00 1.02
PSO 0.98 1.03 1.03 1.04
Case 2 IGA 1.00 1.10 .041 1.10
Brydn  1.07 1.02 1.07 1.10
PSO 1.00 1.10 1.05 1.10
Unit: per unit

Table 7.8 Generations and power losses

Pg Q E?)ss Qoss

Case1 IGA 2.88357  0.87389 .04057 -0.38811
Brydn 2.88798  0.92305 0.05398 0.33895
PSO 2.88408  0.87588 0.05001 0.38618
Case2 IGA 5.87926  2.86863 .21026  0.34463
Brydn 5.89406  2.93719 0.22607  0.41320
PSO 5.87514  2.85933 0.20945  0.34424

Unit: per unit

The power savings are given as follows:
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Case 1l
IGA:
, 0% — pt';;'; — P:”f;g « 100 = 0.05988 — 0.04957 % 100 = 17.220¢
save %0 pirit 0.05988 .
Broyden:
b o 0.05988 — 0.05398 < 100 = 9.55%
save /0 0.05988 I
PSO:
. 0.05985 — 0.050013{ 100 = 16.480¢
save 70 = 0.05988 T
Case 2
IGA:
. 0.277858 — 0.21126 X 100 = 23.97%
save 70 = 027788 T
Broyden:
b o 0.27788 — 0.22607 100 — 18.640¢
i = b4 - ¥

save 70 0.27788 ’
PSO:
p o, L 027788-020945
save /0 = 0.27788 T o

7.7 Conclusion

The potential for application of Swarm Intelligent,eORPD has been shown in this
paper. It can be seen that in the three cases,nSwdelligence produced similar

results to those from IGA and the results from Bieys method were the worst. It
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seems that Sl could be a good technique to sobielife power system problems in

the near future.
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Chapter 8
ADAPTIVE RBFN MODEL FOR 2D SPATIAL INTERPOLATION

8.1 Introduction

The GIS (geographic information system) is a sydt@mecapturing, storing, analyzing
and managing data and associated attributes whiehsgatially referenced to the
Earth. According to research on applications anebtles of intelligent weather
forecast, generally, large volumes of complicatedl grecise computation are
required in many related applications, e.g. metegical data training for neural
networks, tracking process of typhoon eye, nephogdecomposition and details
fusion, etc [65-67]. Geographical information syssecould be improved by adding
procedures for geography statistical spatial amatgsexisting facilities.

Spatial interpolation is a major component in m&lg-based analyses. Often data
are obtained in one form and need to conduct aesilysth surfaces or other point
data sets. Creating surfaces from points is a weryplex process-both from a
concept point-of-view (knowing which method is magtpropriate) and from a
process point-of-view (the mathematics can be cer)plAs such, spending some
time learning about the intricacies of spatial iptdation will prove beneficial to all
GIS analysts. Most traditional methods of interfiolaare based on mathematical as
distinct from stochastic models of spatial variati@patially distributed data behave
more like random variables; fortunately regionalizeriable theory provides a set of
stochastic methods for analyzing them.

Some efforts in this direction already exist, sasfVoronoi Diagram - sometimes also
known as a dirichlet tessellation [68, 69]; TINi@gulated Irregular Network) which

is a form of the tessellation model based on ttemd70]; IDW (inverse distance
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weighted) which is one of the most commonly useshnejues for interpolation of

scatter points [71]; Kriging which is a group of oggtatistical techniques to
interpolate the value of a random field at an ueolesd location from observations of
its value at nearby locations [72, 73]; Topogriddd&RST (Regularized Splines with
Tension), generally, these two applications areil@va for interpolating areas:

change of the resolution of raster data (re-samgpkamd filling up of incomplete data
(interpolation). Splines-Interpolation (RST) is ajor interpolation module for the
second mentioned application [74, 75]. Proposedatetiogies will start from radial

basis function network, which has high performaadeantages, for real-time 2D
spatial interpolation and similar 2D informationadysis; it helps to increase the

processing efficiency to a certain extent.
8.2 Radial Basis Function Networks
8.2.1 Radial Basis Function

A radial basis function (RBF) is a real-valued ftime whose value depends only on

the distance from the origin, so tgat) = ¢(|¥)) ; or alternatively on the distance from
some other point c, called a center, so ghat) =g x- d). Any function ¢ that
satisfies the property(x)=¢(|¥)) is a radial function. The norm is usually Euclidea

distance. Radial basis functions are typically uselouild up function approximations

of the form
N

y(¥) =Y W (| ) (8.1)
i=1

where the approximating functioy(x) is represented as a sum Nfradial basis

functions, each associated with a different cegteand weighted by an appropriate
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coefficient w;. Approximation schemes of this kind have been ysadicularly in
time series prediction and control of nonlineartsys exhibiting sufficiently simple
chaotic behavior.

The sum can also be interpreted as a rather sisimige-layer type of artificial neural
network called a radial basis function network,hatihe radial basis functions taking
on the role of the activation functions of the netiv It can be shown that any
continuous function on a compact interval can im@ple be interpolated with
arbitrary accuracy by a sum of this form, if a suéntly large numberN) of radial
basis functions are used.

The approximant/(x) is differentiable with respect to the weights The weights
could thus be learned using any of the standardtite methods for neural networks.
But such iterative schemes are not in fact necgsdmcause the approximating
function is linear in the weights;, thew; can simply be estimated directly, using the
matrix methods of linear least squares.

Construction of radial basis function neural nekgo(RBFN) involves selection of
radial basis function centroid, radius (width omlsy, and number of radial basis
function (RBF) units in the hidden layer. The K-megaclustering algorithm is
frequently used for selection of centroids and iradowever, with the K-means
clustering algorithm, the number of RBF units isially arbitrarily selected, which
may lead to suboptimal performance of the neur&voikx model. Besides, class

membership and the related probability distributioa@ not considered.
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8.2.2 RBFN Kernel Construction

Radial basis function (RBF) networks have a st&haussian function as the
nonlinearity for the hidden layer processing eletserThe Gaussian function
responds only to a small region of the input spalcere the Gaussian is centered. The
key to a successful implementation of these netsvixko find suitable centers for the
Gaussian functions. This can be done with supeivisarning, but an unsupervised
approach usually produces better results [76, 77].

The simulation starts with the training of an ureswgsed layer. Its function is to
derive the Gaussian centers and the widths fromirthet data. These centers are
encoded within the weights of the unsupervisedrlay@ng competitive learning,
which is a form of unsupervised learning in artdlmeural networks, in which nodes
compete for the right to respond to a subset ofrtpet data. During the unsupervised
learning, the widths of the Gaussians are compbeskd on the centers of their
neighbors. The output of this layer is derived fréime input data weighted by a
Gaussian mixture.

Once the unsupervised layer has completed itsingithe supervised segment then
sets the centers of Gaussian functions (based e@mw#ights of the unsupervised
layer) and determines the width (standard deviatioh each Gaussian. Any
supervised topology (such as a MLP) may be usedtHer classification of the
weighted input.

The advantage of the radial basis function netwsrtkat it finds the input to output
map using local approximators. Usually the supediisegment is simply a linear
combination of the approximators. Since linear corats have few weights, these

networks train extremely fast and require feweintrey samples.
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8.3 Adaptive RBFN Design
8.3.1 Factorized RBFN (F-RBFN)

The specific network architecture that will be istigated in this thesis is a hybrid
between the Factorized Radial Basis Function Netsvoand the fuzzy/neural
networks for implementing fuzzy controllers capatiéearning from a reinforcement
signal [78-83]. The activation function used in B¥RBFN with n input units is
defined as the product of n one-dimensional rafdiattions, each one associated to
one of the input features. Therefore an F-RBFN lmarmescribed as a network with
two hidden layers. The neurons in the first hidderer are feature detectors; each
associated to a single one-dimensional activatimetfon and connected to a single
input only. If using Gaussian functions, the neurgiithe i-th component of thgth
activation area) computes the output:

_(ﬂ)Z

i

Hy =€ (82)
The neurons in the second hidden layer simply caenpuproduct and construct

multi-dimensional radial functions:
r, = |_| H; 8.3)
|

Finally, the output neuron contributes to the cosifgofunctions computed in the
second hidden layer. In our architecture, a chaiceng two different activation
functions is possible for the output neuron. Thigpoufunction, normally adopted for

RBFNs, is a weighted sum
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Y=2 W @
J

The usual methods for learning from examples Rd8iadis Function Networks are
based on a two step learning procedure. Firsthatsscal clustering algorithm, such
as K-Means is used to determine the centers andarti@itude of the activation
functions. Then the weights on the links to thepattneuron are determined by
computing the coefficients of the pseudo-inversérimalrhe method is usually faster
than gradient descent. On the other hand, the ddasqoreferable, because it is more
simple to implement and suitable for real-time ihaag.

As the adopted activation functions are continugusch are derivable in the whole
domain, it is to apply the classical error gradigescent technique in order to finely
tune the weights and the parameters in the aativdtinctions. More specifically, let

E be the quadratic error evaluated on the learngtgisd let, moreover), indicate a

generic parameter in the network, such as, a wewbh a link, the widthy or the
centerc of a Gauss activation function, or the threshdidhe sigmoid in the output
neuron. Then all the necessary derivatives carobguated and the learning rule can

be described as:

oE
AN =-n——

Dynamic competitive learning algorithm is used $sist network construction, which
consists of a combination of the gradient descégdrithm and improved growing
cell structure algorithm. The main algorithm inahsdtwo parts: one for generating
adaptive network parameters and another one fatingerules to add new neurons.

To improve the adaptability of center locating atdicture setting up, it is necessary to

build up a neighborhood topology. In the most knoapproaches, it is required to
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choose both the dimensions and the structure tgpadvance. However, as data
distribute with a high-dimension, to find out a ébggical structure closely that can
reflect the data topology is not a trivial task. éifiective way to learn such a structure
is by using competitive Hebbian learning [84, 83he locating of the multi-
dimensional Gaussian centers can be executed of ardalgorithm similar to the self-
organizing feature mapping networks.

Generally, there are two completely different cases the learning point of view. In
first cases, all errors have the same sign and tta@mng the rule will decrease the
error to a certain extent where the error is eigeo or the conditions fall in the second
case. In second cases the errors have differemtasid training does not help because
changing the variances has just a very limiteclgrice on that problem and changing
the output weight decreases the error of one byppencreases the other one and vice
versa. In order to have a direct measurement oétrer difference, for each rule, two
variables, the accumulated errBg and the accumulated absolute erE&fS are
maintained. Once an input data is received, theaneges of the best matching rule are

updated according to:

AEg=(X-2) (8.6)

abs_|v _
AEg® =X -7 67

Notice that the best matching rule is the mostvated one instead of the nearest one;
what is more important is that for each activafiactor of the network, the variabl&s

andE2"  associated to all rules are decreased with thetijes:
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AEc=-aEg (8.8)

abs_ abs
AR "=—ake (8.9)

In this way errors which occur far in the past getting less weighted than errors that
occurred recently in the past. This kind of avenggian also be seen as a filter so that
noisy inputs are getting averaged and could bedadoto create new rules directly

because of disturbances. Now the accumulated earancesE, at any time for any

rule is computed in the following way.

(8.10)

oF, =|E|-[E™

It is an indirect measurement for the variancehef arror. If the errors share the same

sign, i.e. cE, becomes zero and can also get larger with inergasirors. Once a

stable and robust insertion criterion is obtaifedus could be directed to inserting a
new rule. That presents a problem: how to set titerion of stopping the growing
process, which is fairly easy in supervised leayniasks; however, for incremental
real-time learning tasks, without precise errorrtgtiec information is really a problem.
This dynamic competitive learning method uses a kihincremental clustering logic,
which is similar to that used in Knhonen’s mapsoider to distribute the hidden unit
over the domain of the target function. The adagetof it is that it does not need to
remember the history; additionally, the incremertghistering algorithm is able to
provide good coverage since the hidden units cavenewerywhere in the input space

following the data.
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8.3.2 Construction of RBF Networks with Respongivinalysis

As known, an RBF classifier is a three-layer nemetivork model, in which an N-
dimensional input vectok =(x,x,,....x, ) iS broadcast to each &f neurons in the

hidden layer. Each hidden neuron produces an &ctveaunction, typically a

Gaussian kernel:

2
heexg P20k

207 (8.11)

wherec ando, are the center and width of the Gaussian basistium of thei-th

hidden unit, respectively. The units in the outlawer have interconnections with all

the hidden units. Theth output neuron has the form:

e (o)
fj(X):th:ZV\(j ex _?‘_2 ) i=12,.K (8.12)
i=1 i

whereh=(n,h,,....h ) is the input vector from the hidden layer, andvihis the
interconnection weight between thth output neuron and theh hidden neuron.

In this section, an RBF classifier's responsivity defined as the mathematical
expectation of the square of output deviations edusy the oscillation of RBF centers.
An algorithm as described below will be used tesekernel vectors. The symbols
¢ andg, are used to denote the values of the center adith wf thei-th hidden neuron

with an oscillation. Then the deviation resultimgrh this oscillation is:
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S ex{ [x- qIIJ ZW eX;E IIXZUEIIJ @)

=1

Here, ¢ = ¢ +Ag are the centers deviated from the centers undevdtidations, and the
interconnection weights under the oscillations varew +Aw, where w,can be

calculated using a pseudo matrix inversion.

Although there are various ways to specify RBF hsdi86], the most common method
for selecting RBF widths is to make all of them &lgio a constant value depending on
the prior knowledge of the given application. Wtte-defined RBF widths, the focus is
on just the oscillations on the centers and th@rconnection weights. The oscillation

on thei-th RBF center and the weights connected tg-theoutputAc and aw,, can be

generated following a Gaussian distribution witeams 0 and variances o, :

_ 1 ACTAq
0(AG) = —===_¢x
(Ag) (\/ﬁ) pE aq )

1 ox (_Aw Aw ) (8.14)
(2o, 20,

whereN is the dimension of the inpuwt, K is the number of RBF centers. The RBF

o(Aw,) =

centers will be selected recursively in the neXissetion. To make the responsivity
analysis a pre-requisite for the construction ofFREtworks, a recursive definition of
responsivity is given below. At the-th time point, suppose there are a numierl]
of RBF centers fixed already, the newcomeris observed. Hence, theh output
neuron’s responsivity to the current numbérof RBF centers is defined as the

mathematical expectation @y )> (square of output deviations caused by the
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oscillations of RBF centers) with respect toaall and the training example set
D={x} -

Similar to the comparison between support-vect@edaand clustering-based RBF
networks [87], the difference between the respatysbhased and the conventional RBF
networks can be described as: for data points ofdlasses responsivity-based RBF,
centers are the vectors reactive to the classdicaand located relatively close to the
newly-introduced input items; while for conventib®BF, centers are usually located

at the cluster centroids.

8.4 Experimental Results

As shown in Figure 8.1, a finite number of statiovil be used in proximity to an
area for forecasting, which is a traditional metblody adopted by the Bureau of
Meteorology. After extensive data mining and analy8 meteorological variables
have been chosen as being suitable and reliableerins of application, data
consistency and validation. All the units of thetadehave been adjusted to
international standard units, to maintain the cstesicy of the training data, and

eliminate the complication and non-linear relatlups between individual variables.
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Lo

1%

Figure 8.1 Map of stations that will be taken iRBFN training and results verification

Here is a section of filtered meteorological datdnich were recorded from the
Shanghai station (Site No.: 58-362); the samplimg tduration was from 2:00 AM on
01/05/1999 until 14:00 PM on 02/05/1999; [65] timad gap is 3 hours, which is a
general sampling frequency for meteorological @detalysis. Incremental RBFN were
used to evaluate the ratio of TCQ (total cloud dgi@nto DP (dew point) at 10
separate stations.

With responsivity real-time evaluation based camdton method, the classification
centers are very sensitive to newly-introduced darppints (ratio of TCQ vs DP in
this case), which is different from other generBHRI. As the weather forecast data is
with time-delay attributes, the factorized RBFpedafically effective to this case, and
the incremental RBFN is able to behave efficietdlyhe newly-added points, with a
3-hour time delay. Based on the constructed raB6R TCQ levels can be estimated

with input DP degrees, to evaluate the effectivenése error rate will be verified
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using the average deviation. Figure 8.2 shows tatkedi centers of the recorded ratios
of 2 stations for 256 sampling points, which metly@srecord duration is 1 month.
Figure 8.3 shows the results comparison betweeRBRN (incremental responsivity
based RBFN), V-Diag, IDW, and Topogrid. The sizdrafning data is increased by
64 per each 192 hours. It should be noted thanitial data size is 64 and practically
this represents a continuous meteorological datal3% hours. Along with the
increasing of the size of data set, IR-RBFN behdwetter than others, since its
responsivity is good at making decision on newlgext! testing data items, and the
incremental attributes help decrease the trainimg tcost a lot, compared to with

traditional RBFN.

Ratia of TCR w= DF (Station: 585-3B2 »= S5-BES) Katio Classifier Centers of TCQ ws OF (Statiom:
12 256 sample points 58-362 vs S0-B85) 256 sample points
oo 12
10 —
g i ERERT s
5' g5 Lo oa
L oo .
o - * * ™
25 8 e n
o A -2 B
=~ o 8 s
4 ia) 4 +H_ * n
SE 5 s + *
e E g‘ 2 - * L |
a L . L 0 ) ) ) ) )
i} 5 10 15 20 25 30 i 5 10 15 20 25 30
DF (Dew Point) Unit: Celsius Degres DF (Dew Point) Unit: Celsius Degree
4 53-362 m 55-EBES + L3-362 ® 53-EES

Figure 8.2(a)(b) Ratio centers demonstration ofaB@ 256 sample points’ cases, the

classification centers of ratio are shown as well

According to the training performance comparisotwieen algorithms, shown in
Figure 8.3 (a), the incremental properties of IRARBbrings benefits in terms of
time-shift data input set; although initially thasea relatively small training data set,
the performance of the proposed method is not #st; lhhowever, with a small
increase in the size of training data, it perfobatier than other methods. Regarding

the CPU time usage, it is shown in Figure 8.3 fiaX the increase in CPU time is
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much faster as training data size increase foiother three conventional methods;
however, the new proposed method has the benefithis CPU time is converged

much more quickly.

Awerage Deviation of Ratio of TOQ w= DP
(IE-FEFN) (Station: 58 665)
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Figure 8.3 (a) Average deviation comparison betwéeslgorithms, to evaluate the
precision of estimated ratio of TCQ vs DP; (b) Tgexformance comparison results

between 4 algorithms, to evaluate the precisiogstimated ratio of TCQ vs DP

8.5 Conclusion

To improve the applicability of traditional RBFN,specially in 2D spatial

interpolation, such as the time-delay meteoroldgitzia described in this chapter,
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optimization in terms of incremental attributes RBFN and a responsivity based
construction method has been proposed. The beosfdiitilizing factorized RBFN is
its high performance when introducing new traindega set, and the responsitivity
accelerates the center close to the latest addedtdm. Practical data has been used
to test the proposed new method and it has denavedtrthat this integrated
intelligent technique is very effective for reak® metrological information
processing. The developed algorithm has been inmgiéed in the Shanghai

Meteorology Center and used as one of the toole/éather forecasting.
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Chapter 9

PARTICLE SWARM OPTIMIZATION FOR ECONOMIC DISPATCH OF
UNITS WITH NON-SMOOTH INPUT-OUTPUT CHARACTERISTIC
FUNCTIONS

9.1 Introduction

Economic dispatckED) is an important daily optimization task in thewer system
operation. Various mathematical programming methenut$ optimization techniques
have been applied to ED. Most of them are calchhsed optimization algorithms,
which are based on successive linearizations arel the first and second
differentiations of objective function and its ctmamt equations as the search
directions. They usually require the heat inputiie power output characteristics of
generators to be of monotonically increasing natareof piece-wise linearity.
However, large modem generating units with multirgasteam turbines exhibit a
large variation in the input-output characteridtinctions. The valve-point effects,
due to wire drawing when each steam admission vavstarting to open, will
typically produce a ripple-like heat rate curve.eTleonventional optimization
methods are not suitable to solve such a probleynaiic programming had been
proposed to solve the ED problem with non-smootst corves of generators [88].
However, the dimensions of the problemil become extremely large with the
increase of the variables. Simulated annealing ([88), genetic algorithms (GAs)
[90] and EP [91] based on Atrtificial Intelligencave been proposed to solve such
non-smooth ED problems.

This thesis proposes an application of Particle rBw@ptimization (PSO) to solve

ED of units with non-smooth input-output characeci functions. The IEEE 30-bus
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system has been used as the simulation systemotw #ie effectiveness of the
algorithm. The network consists of 6 generatoraunithe input-output curves of the
generating units are represented by second ordgngrial functions, superimposed
with the valve-point effects. The curves are themefnon-monotonically increasing

curves with multiple local minimum points.

9.2 Problem For mulation

9.2.1 Valve Point Effect

Large steam turbine generators usually have a nuoflsteam admission valves that
are opened in sequence to obtain ever-increasitgubérom the unit. Figure 9.1
shows both input-output and incremental heat rhtgacteristic for a unit with four
valves. As the unit loading increases, the inpuh&unit increases. However, when a
valve is just opened, the throttling losses inceeespidly so that the input heat
increases rapidly and the incremental heat raés siddenly. This gives rise to the
non-smooth type of heat input and discontinuouse tgh incremental heat rate
characteristics. This type of characteristic shobéd used in order to accurately
schedule steam units, but it cannot be used initivadl optimization methods

because it does not meet the convex condition.
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Figure 9.1(a)(b) Characteristics of a steam turbgenerator with four steam
admission valves

9.2.2 Objective Function
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To model the effects of valve-points, a recurrirgtified sinusoid contribution is
added to the second-order polynomial functionepresent the input-output equation

as follows [90]:

fp = Z(ai +b Py; + ¢ Pg +|g sin(f; (R -R™™))) 9.1)
N

The objective function of ED is to minimize the &bonon-smooth function by

regulating active power outputs of generators, exttbjo all operational and secure

constraints. The objective function of ED is therefexpressed as follows:

i[|Ng

st0= F:i _Vi ZVJ (GU COSHij + B” sinHij ) i NB—l
JON;

0=Q -V ZVJ' (Gjj cosgj +Bjsing;) i ONpg
JON;

(9.2)

min max .
< L < d
Where power flow equations are used as equalitystcaimts, which represent the
network power losses but are more accurate Biaratrix representation that is used
in most ED programs, active power generation m@gins are used as inequality
constraints. The active power generatigga® slack bus, the subscript s represents the

slack bus, is the state variable, which is regtddiy a quadratic penalty term added to
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the objective function to form a penalty functig@guation 9.2 is therefore changed to

the following generalized objective function:

min fp = Y (a +B Py +G PG +|& sin(fi (R ~R™"))
iDNg
iZs

limy2
)+ pgs( Pgs - Pglén

st0=R -V, ZVJ (G” COSQij + B'J Slné’u) N Ng_1
JON;

0=Q -V, ZV] (GU COS&lj + B” sinél,j ) | O NPQ
JON;

min max i
Pgi < Pgi < Pgi 1L Ng 1 #S (9.3)

where A, is the penalty factor which can be increased éngjtimization procedure.
gs

The inequality constraints control variable constsaso they are self-restricted; is

defined in the following equation:

Pmin if P._< Pmin

Pllm — gs gs gs
gs . )
Pégax if Pgs > Pégax 9.4)

9.3 Numerical Examples

The number of individuals is set to 40. 40 triale performed for other simulations
using different random numbers. At each trial, thest-evaluated value is stored

within 100 searching iteration. w is set to 0.8 andnd g are 2.
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In this section, IEEE 30-bus system has been useshaw the effectiveness of the
algorithm. The one-line diagram is shown in Figlr2. The network parameters are
given in [92, 93]. Six generators are used in ddpaThe parameters of the
characteristics of the steam turbine generatorgiaen in Table 9.1. The powers in

the table are in per unit on a power base of

Ss=100MVA
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Figure 9.2 Oimee diagram of IEEE 30-bus system
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Table 9.1(a)(b) Parameters of charadiesief steam turbine generators

Generator Unit 1 Unit 2 Unit 3
Bus 1 2 5
Pmax{(pu) 2.5 1.6 1
Prmin(pu) 0.5 0.2 0.15
a(Mbtu) 0 0 0
b(Mbtu/puw) 200 175 100
c(Mbtu/puW) 37.5 175 625
e(Mbtu) 15 10 10
f(rad/puw) 6.283 8.976 14.784
(a)
Generator Unit 4 Unit 5 Unit 6
Bus 8 11 13
Pmax(pu) 0.7 0.6 0.8
Prin(PU) 0.1 0.1 0.12
a(Mbtu) 0 0 0
b(Mbtu/puw) 325 300 300
c(Mbtu/puW) 83.4 250 250
e(Mbtu) 5 5 5
f(rad/puw) 20.944| 25.133 18.48
(b)

The load periods are simply divided between théeydbad duration and the peak
load duration. The valley loads and the initial gi@tions are the same as in [93]. The
peak loads are twice the valley loads. The res;arésgiven in Table 9.2. The heat

saved is 9.6% in the valley load duration and 14i8%e peak load duration.
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Table 9.2 Optimization results

Population Size 40
Valley Loads
Initial Results
Generator Unit 1 Unit 2 Unit 3
Py(pu) 1.00 0.8 0.5
Generator Unit 4 Unit 5 Unit 6
Py(pu) 0.2 0.2 0.2
Heat Consumed (MBtu) 902.40
Generator Unit 1 Unit 2 Unit 3
P(pu) EP | PSO EP PSO EP PSO
199 | 1.98 0.51 0.52| 0.15 0.15
Generator Unit 4 Unit 5 Unit 6
P(pU) EP PSO EP PSO EP PSO
0.1 0.1 0.1 0.1 0.12 0.12
Heat Consumed (MBtu) EP PSO
815.27 816.11
Peak Loads
Initial Results
Generator Unit 1 Unit 2 Unit 3
Py(pu) 2.15 1.6 1
Generator Unit 4 Unit 5 Unit 6
Py(pu) 0.4 0.4 0.4
Heat Consumed (MBtu) 2518.20
Generator Unit 1 Unit 2 Unit 3
P(puy EP PSO EP PSO EP PSO
250 | 2.51 1.25 1.26 0.36 0.36
Generator Unit 4 Unit 5 Unit 6
P(pu) EP PSO EP PSO EP PSO
0.7 0.7 0.6 0.59 0.58 0.59
Heat consumed (Mbtu) EP PSO
2144.45 2143.87
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9.4 Conclusion

The potential for application of PSO to ED has bskawn in this chapter. Results
from EP and simple PSO method are very similazatt be foreseen that with parallel
hybrid adaptive particle swarm optimization algomit, the use of larger population
sizes may result in improved convergence ratefi¢ogtobal solution. An adaptive
PSO algorithm that increases population size inergally may also improve
algorithm convergence characteristics. It seemisRB&® could be a good technique to

solve real life power system problems in the nature.

116



Intelligent Energy Management System - Technigodsviethods

Chapter 10

CONCLUSIONS AND FUTURE WORK

10.1 Accomplishments of the Thesis

This thesis has explored the feasibility of smasdtens which are essential to the
power distribution management systems and how tagplication can impact on
energy efficiency.

A wavelet-GA-ANN based hybrid model is developed #&xcurate prediction of
short-term load forecasting in power systems. Tihectire of the auto-configuring
RBF network is optimized using floating point GAhd short-term load data are
transformed into wavelet coefficients using a trowsselet transform before using
them for training the RBF network. Use of waveletnsform ensures extraction of
more hidden features (both in time and frequenay)ai compressed form. The
compression of data enables the RBF network to @ refficient. In the thesis, the
results from different practical load data demaatstrthat the proposed model is
capable of accurately predicting the STLF for sesteps ahead.

It has been shown that Dynamic Weighted Time-Dé&layral Network (DWTDNN)

is a simplified version of the focused gamma neknard an extension of TDNN as it
incorporates priori knowledge available about the task into the netvemchitecture.
As an example, the estimations produced by the odelbgy were applied on 8
different weather forecasting data provided by $fanghai Meteorology Centre to
make the result more practical. The results confinat the proposed solutions have
the potential for successful application to thehtem of temperature and rainfall
estimation, and the relationships between the fadt@t contribute to certain weather

conditions can be estimated to a certain extensoAtwo applications based on
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extending version of Graphical User Interface hbgen introduced; one is a simple
voting system, which is designed on feedforwardvoet; and the other is a 3-phase
generator output detector, which is designed byida&hsis Network (RBF). These

examples present how to design the neural netwoalpplications.

In this thesis, the comparison of swarm intelligenmproved genetic algorithm and
a conventional gradient-based optimization methbdws that Swarm Intelligence

would produce similar results on the IEEE 30-busteay as those from improved
genetic algorithm while the conventional method wasas good as the other two in
solving ORPD problem; therefore, Swarm Intelligen¢®l) could be a good

technique to solve real life power system probléemthe near future.

10.2 Trends

The future of power transmission and distributiordg are expected to involve an
increasing level of intelligence and integrationnefv information in every aspect of
the electricity system, from demand-side devicewitte-scale distributed generation
to a variety of energy markets. Price awareness samsitivity are possible, and
shared between energy suppliers and customergjngyea sophisticated real-time
energy market.

The future smart metering system will rely on piesc and governmental fiscal
stimuli. However the cyber security requirement aio be an issue.

A smart meter that deals with different energy-svipg forms will be required in the
future. Al technology to find out an optimal plaor fcomplex usage from different
types of energy resources is necessary. This smeter will form an instrumented
part of a micro-grid which further aggregates tbgetto develop a smart grid. It is

foreseen that the cost of smart meters could beceztisignificantly; therefore it will
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be widely used by many countries.

Recently, smart grid has attracted a great deattention all over the world; here are
some references from PES annual meeting in 201@filamation purpose [94-135].
As to Adaptive RBFN model for 2D spatial interpadat, future works should focus
on how to improve the stability of calculation, athé regulation of how to choose
more effective initial kernel and deviation. Moreoythe performance of parameters
calculation may limit the number of selected kesnel

Further research works also will be conducted tdifgadhe proposed algorithms for

optimising economic dispatch with demand side mearrant.
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