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Abstract

Traditional models of analyzing the general insurance market often focus on

the behavior of a single insurer in a competitive market. They assume that

the major players in this market are homogeneous and have a common goal

to achieve a same long-term business objective, such as solving profit (or

utility) maximization. Therefore these individual players in the traditional

models can be implemented as a single representative economic agent with

full rationality to solve the utility optimization. To investigate insurance

pricing (or underwriting) cycles, the existing literature attempts to model

various isolated aspects of the market, keeping other factors exogenous.

We find that a multi-agent system describing an insurance market affords

a helpful understanding of the dynamic interactions of individual agents

that is a complementary to the traditional models. Such agent-based mod-

els (ABM) try to capture the complexity of the real world. Thus, economic

agents are heterogeneous and follow different behavioral rules depending

on their current unique competitive situations or comparative advantages

relating to, for example, their existing market shares, distribution chan-

nels, information processes and product differentiations. The real-world

continually-evolving environment leads agents to follow common rules of

thumb to implement their business strategies, rather than completely be

utility-maximizer with perfect foresight in an idealized world. The agents

are adaptively learning from their local competition over time. In fact, the

insurance cycles are the results of these dynamic interactions of agents in

such complex system.

xiii



CHAPTER 0. ABSTRACT

xiv



Chapter 1

Introduction

At the 2008 UK Actuarial Profession Risk and Investment Conference, the

agent-based modeling (ABM) working party (consisting of Jon Palin, Nick

Silver, Andrew Slater and Andrew Smith) presented a paper on “Complex-

ity Economics: Application and relevance to actuarial work”. The paper

introduced the concepts of ABM to actuaries and outlined how they might

be developed further in the future. The paper was well received and the

general consensus was that this would be a promising area for future de-

velopment.

Lloyd’s Franchise Performance Director, Rolf Tolle, recently stated that

“mitigating the insurance cycle is the ‘biggest challenge’ facing managing

agents in the next few years.” All industries experience cycles of growth

and decline, ‘boom and bust’. These cycles are particularly important

in the insurance and re-insurance industry as they are especially unpre-

dictable, due to a combination of uncertain market competition and insur-

ers’ pricing behavior.
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CHAPTER 1. INTRODUCTION

The purpose of this PhD research is to use ABM to model and hence

understand cyclicality in the insurance industry from a newly developed

bottom-up approach. This behavioral simulation could be a powerful com-

plementary tool to traditional top-down analyses. It aims to analyze the

macro-dynamics of a competitive market via a simulation of the individual

interactive micro-behavior of heterogeneous agents. In the case of insur-

ance cycle, we explain that the market cycle is a result of heterogeneous

insurers’ responses to the dynamic changes of market uncertainty.

The so-called “insurance cycle” or “underwriting cycle” has the follow-

ing process: A ‘soft’ period in the cycle is a period in which premiums are

low, capital base is high and competition is high. Premiums continue to

fall as insurers offer cover at low rates. Established businesses are forced

to compete for risk losing business in the long term. As a result of this

unsustainable development over time, less stable companies are driven out

of the market which decreases competition, whilst larger companies’ cap-

itals are reduced; hence premiums rise rapidly. The market hardens and

underwriters are less likely to take on risks due to the risk of becoming

insolvent. The lack of competition and high rates once again makes the

market profitable, thereby attracting more companies to join the market

whilst existing businesses begin lowering rates again to compete. This

causes market saturation and insurance cycles continue. Such endogenous

cyclical processes are mainly caused by market uncertainty and insurers’

responses to the changes in competition, although it is often triggered by

a major claim burst such as follows a catastrophic event.

2



CHAPTER 1. INTRODUCTION

Insurance markets are generally competitive, but they are characterized

by imperfections and inefficiencies that sometimes prevent the markets

from reaching competitive equilibrium. Such market failures come from

informational asymmetries, contract frauds, regulatory interventions, cap-

ital constraints, etc (Cummins and Dionne, 2008). Analyses of market

dynamics can be focused on different perspectives of players in the system;

either customers (the buyer) or insurers (the seller) as economic agents.

However, the limitations of traditional insurance market models have been

recognized recently, such as: (1) They ignore the heterogeneity of individ-

ual players; (2) They assume that economic players have full rationality

and the power to foresee the long term future; (3) The environment is

static in a way that makes it possible to achieve profit optimization in

some states; (4) The market and agents are separately considered rather

than simulating them together to see the emerging result.

Daykin et al. (1994) argue that insurance market cycle is hard to be an-

alyzed by any existing individual explanation alone and that insurers can

not be considered in isolation. This is a dynamic phenomenon that involves

many interactions among different explanations and individual agents. A

single company’s action cannot represent the dynamics of a whole mar-

ket, because different companies in the market have different motivations

and abilities to response the changing environment. As Taylor (2009) also

argues, the existing literature contains numerous studies of particular iso-

lated aspects of the market. The emphasis of his approach to insurance

market modeling is less on the detail of any single aspect but more on

3
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the integration of all market dynamics into a single model. He addresses

the fact that an insurer’s pricing decision not only needs to balance risk

and return from its own perspective, but also must compare its price with

competitors in a competitive market. To improve these limitations of tradi-

tional insurance market model, the approach of ABM simulation provides

a possible solution.

Proponents of ABM view the economy as a complex adaptive system: the

structure of the markets, the interplay between agents and time lags are

the cause of much of the complexity and interesting behavior we see in

the real world. Much of science (including economics) is reductionist; an

attempt to reduce the world to its basic elements. However, the interaction

of these elements causes behavior (often described as emergence), which

cannot be predicted by studying the elements themselves. The agents of

a complex system, often by following simple rules, form a system that be-

haves qualitatively differently from the individual agents themselves. A

good example of this sort of system is an ant colony. The colony as a

whole can perform complex tasks, such as defending the colony from an

aggressor by way of individual ants processing simple pieces of information

(Beinhocker, 2007). ABM attempts to capture this and typically has the

following features (Palin et al., 2008):

1. Heterogeneous agents: a finite number of heterogeneous agents follow

different rules that reflect common real-world behaviors; these rules

can be very simple (for example, if more customers come to buy an

insurance from a particular insurer, then this insurer increases its

4



CHAPTER 1. INTRODUCTION

price) to highly complicated (for example, this insurer may wait for

a while in order to increase market share to destroy its competitors).

Neo-classical economic models, which tend to assume there is only

a single representative agent or an infinite number of homogeneous

agents. They simplify these different behavioral rules as a unified

rule that is based on perfect rationality.

2. Adaptation: agents have limited information to make their decisions

in a complex real-world system that is different from a theoretical-

world with perfect rationality. They have to keep learning from their

own mistakes and others who have influences on them, in order to fit

or adapt to the system. Therefore, these behavioral rules are evolving

and adapting the dynamics of system over time. Following the exam-

ple of an insurer above, if the rule of waiting is better than increasing

price suddenly, then more agents will adapt this rule. However, when

too many insurers use this rule, the market becomes too competitive

and decreases the profitability, more insurers will change their rules

again.

3. Local interactions: agents in the real-world environment often in-

teract and influence each other locally, this also contrasts with neo-

classical economic models that assume any decision of an individual

agent can affect all other agents in the system. This creates both

heterogeneity and agents’ adaptive nature, since agents have differ-

ent limited information sets that only contain the situations of their

local environment. For example, one rule may fit well in one local

environment but may not suit other places. A large insurer may in-

5
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crease price rapidly when many relatively small insurers around it,

but it should not change price suddenly when other large insurers are

competing it in the same business segment.

4. Feedback loops and externalities: the dynamic process with adaptive

nature can have a positive or negative feedback between the indi-

viduals and the system, which often moves the system away from

an rational economic equilibrium. For example, an insurer increases

its price after it saw the market average price is increasing, but this

insurer’s action actually contributes the overall market price to in-

crease further. Likewise, insurers often reduce their individual prices

too much to follow the market price reduction. Again, this contrasts

with neo-classical economic models, which assume that systems al-

ways return to equilibrium shortly. They assume that insurers are

rational (or have a full information set) enough to ignore the mis-

leading information in the market. While there is a feedback loop

between an individual insurer and the whole system, there is also a

loop of externality between the individual insurer and other insurers.

This means that a single decision of an individual insurer affects the

whole system, and the system affects other insurers. Then, the other

insurers’ reactions feedback to the system and affect the original in-

surer again.

We apply ABM to build an artificial system that captures several key fea-

tures of the non-life insurance market. For example, insurers have different

short-term objectives at particular times. A big insurer has a large capi-

tal and a well-diversified risk portfolio. Therefore, a large insurer prefers

6
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a stable market price, since its price is close to the fundamental value of

unit risk which stabilizes its market share. On the other hand, a small

insurer is keen to diversify its risk portfolio through different forms of price

competition, so its short-term objective is to increase market share rather

than stabilize its market price. Insurers’ objectives and pricing decisions

are dependent on both their current market position and the level of com-

petition. The interactions of these different multi-agents are often difficult

to be analyzed by traditional models. The above five unique features of

ABM assist us to understand the dynamic nature of the insurance market.

Our focus is on the market cycles.

We implement our ABM of insurance market in two steps. First step is to

build a base case model of our insurance market. We locate insurance com-

panies equally in an one-dimensional (1-D) circular street, where customers

are uniformly distributed along the street. Insurers cannot move their lo-

cations but have a competitive advantage to attract customers who are

closer to them than other insurers. Insurers price their contracts, based on

their local demand situations. In fact, this local situation is also affected

by the pricing decisions of an insurer’s direct competitors. Second step

is to build some extensions that are based on the first base case model.

We introduce a two-dimensional (2-D) planar space where insurers have

an option to move their locations. We call this dynamic movements as

non-price strategical competition, because insurers not only compete with

price but also change their locations in order to attract more customers.

We compare the simulation results from these two steps to analyze the

impact of non-price strategical movement on market cycles and individual
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insurers’ performance. We conclude that, although there is no significant

impact on overall market performance whether insurers can or cannot move

in the system, the impacts on individual insurers are significantly different.

Based on the simulation results of the base case model that are validated

by the real-world data from the UK insurance sectors, we confirm our hy-

pothesis of explaining insurance cycles endogenously. We argue that the

non-life insurance market has a monopolistically competitive nature with

differentiated products, despite the contracts are similar. This is because

non-price product characteristics or attributes do matter that are modeled

by the insurers’ individual fixed locations, they generate a differentiation

of the insurance products of different insurers. When we are close to the

extremes in the cycle (either at the bottom of a soft phase or the top of a

hard phase), the market becomes more monopolistic and local, prices are

less dispersed. The role of non-price product characteristics in customers’

purchasing decision becomes relatively more significant since prices are very

similar globally over the market, customers react to the product differen-

tiation and become more localized in terms of their purchase. When we

are in the middle parts of the cycle, the market is more competitive and

diffuse, prices are more dispersed. Non-price product characteristics are

less relevant to customers’ purchasing decision since prices are very vari-

able globally over the market, customers react primarily to prices, and will

buy insurance from cheaper insurers. A more detailed and comprehensive

description of this hypothesis is explained in Chapter 4.

In the extensions of the base case model, our insurance market captures
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CHAPTER 1. INTRODUCTION

one key behavioral rule (or bias) of individual companies (or economic de-

cision makers in general). Insurers are more likely to compare themselves

with competitors who have similar business strategies and/or sizes. We

call these competitors as “neighbors” of an insurer, because they compete

with the insurer directly in the local market. Insurers often define their

profit targets as a percentage of average market loss ratio in the business

segments where they focus on. Also, insurers compare their annual per-

formances in their business reports with a few selected competitors who

have similar market positions. Financial analysts in the equity market (or

rating agencies) also value the stocks and risks of insurers by comparing

a group of companies with similar business strategies and sizes of market

share, this leads the managers of insurance companies to keep following

each other (Doherty and Phillips, 2002). As Banerjee (1992) argues that

decision makers are influenced in their decision making by what others

around them are doing. Ariely et al. (2010) and Simonsohn and Ariely

(2008) experimentally examine and find evidence that decision makers use

a behavioral rule to value a product by looking at other people’s pricing

decisions, even when this valuation method is not applicable. This real-

world observation, so-called “keeping up with the Joneses”, is supported

by empirical research in Behavioral Economics (Gali, 1994). For example,

a consumer’s total utility not only positively depends on his own consump-

tion, but also negatively links to his peers’ consumptions. Economists often

find, for the same amount of consumption, a person feels relatively hap-

pier when he lives with poor people who consume less than this person in

comparison to a rich group. This simple behavior often creates a risk of

“herding”, since people often try to follow the action of their peer group.

9



CHAPTER 1. INTRODUCTION

This is not good for an economic agent since it causes over-consumption

or over-pricing of an asset. However, it is human nature that has a huge

impact on real-world systemic risks of financial markets. We try to model

and understand this behavior in our insurance market.

The structure of this PhD thesis as follows: Chapter 2 provides the in-

troduction of insurance cycle, its evidence and real-world observations,

recent developments in the literature. Chapter 3 gives the general intro-

duction about the Agent-based Modeling, includes its distinctive features

and economic applications. We introduce and explain our first base case

model of insurance market in Chapter 4. In Chapter 5, we extend this

base case with further analyses, such as extending 1-D circular street to

2-D planar space, introducing agents’ movements on the map of product

attributes and taking capital constraint into accounts of insurers’ pricing

decision. Finally, Chapter 6 concludes our research and provides directions

for future research.
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Chapter 2

Insurance Cycles

The persistent fluctuations of insurance premium in the Non-Life Insurance

market significantly affect the overall business performance of insurance

companies. In the real world, an insurance cycle can have a significant im-

pact on the stability of Non-Life Insurance companies. Trufin et al. (2009)

study the increase in ruin probabilities when the premium income of in-

surance company is subject to insurance cycles. Both their analytical and

numerical results support this conclusion.

Some useful applications of understanding insurance cycle are in the field

of individual business risk management (Simmons and Cross, 1986; Line

et al., 2003) and in preventing systemic risks in the whole industry (Gron,

1994; Maher, 2006). From a business risk management perspective, Lloyd’s

Franchise Performance Director Tolle (2007) said that “mitigating the in-

surance cycles was the ‘biggest challenge’ facing managing agents in the

next few years.” From a regulatory perspective, as Meyers (2007) men-

tioned, “... insurance cycle contributes an artificial volatility to under-
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writing results that lies outside the statistical realm of insurance risk. For

internal model development under Solvency II, underwriting cycles must

be analyzed, because the additional volatility could produce a higher cap-

ital requirement...”

Jones and Ren (2006) present a model for analyzing the impact of in-

surance cycles on an insurer’s surplus. It includes a strategy parameter

that indicates how an insurer responds to the cycles and allows one to

analyze ruin probabilities under the different strategies that mix between

maintaining market share and conserving capital (Boor, 2004; Felisky and

Goodall, 2007; Wright, 2008). However, their model is static and assumes

that the insurer does not change strategy with the evolution of the insur-

ance cycle. They emphasize that a dynamic model will be necessary to

analyze the ruin probability if one assumes that strategies do change over

the cycles. A similar suggestion of linking the insurance cycles and ruin

theory is made by Daykin et al. (1994).

Kaufmann et al. (2001) and DArch et al. (1997) apply exogenously-induced

cycles into their “dynamic financial analysis” (DFA) models. They used

a homogeneous Markov chain model in discrete time to assign one of the

three different states of market competition to each line of business for

each projection year (i.e. from weak to average competition, and finally

to strong competition). Both of them report the growing interest in DFA

models in the Non-Life Insurance industry1. DArch et al. (1998) argue that

1There are some DFA software products for Non-Life Insurance companies available
in the market. Each of them relies on its unique DFA methodology, since DFA combines
many economic and mathematical concepts and methods which are almost impossible
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the enhancement of the public-access DFA model is an on-going process

and that one important required improvement is to continue developing

the insurance cycle module.

Industrial practitioners are keen to understand this industry-specific be-

havior, but academics involved with macro-economic business cycles seem

to have little interest in this particular sector. This imbalance between in-

dustry and academia has two main reasons. The first reason, as Harrington

and Nichaus (2003) discovered, is that historical insurance cycles do not

appear to be strongly related to the general business cycles of the overall

economic activity. Grace and Hotchkiss (1995) also found those external

unanticipated economic shocks in the general economy to have little effect

on insurance cycles. The second main reason is caused by the traditionally

conservative features of the insurance market. As Mooney (1986) states,

insurance is a necessity good and the demand for insurance products is

relatively stable. Therefore, investment activity in the insurance market is

relatively passive when compared to other financial markets, such as the

stock market, the derivative market, etc. The process of innovation in both

products and technologies has always been slower in the insurance market

than other markets (Daykin et al., 1994).

However, many recent developments in the financial market are chang-

ing the traditional insurance market. The growing activities of insurance

companies are playing increasingly significant roles in the overall stability

to identify. Our ABM application to cycles will be an advantage if added into the DFA
models in the near future.
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of the financial market. Barrieu and Albertini (2009) edit a volume about

Insurance-Linked Securities (ILS) that is written mainly by practitioners,

which gives an excellent overview of the challenging field of modern insur-

ance. As Krutov (2010) describes, ILS and certain reinsurance instruments

provide the way of investing in insurance directly by many different par-

ties. Securitization of insurance risk has also become an important tool

for risk and capital management that can be utilized by insurance com-

panies alongside the more traditional approaches. Meanwhile, Shelp and

Ehrbar (2009) and Spencer (2010) describe the huge influence in the broad

financial market that was brought by the ‘boom and bust’ history of the

insurance giant AIG. During the past five years of global financial crisis,

many stories were revealed by insiders that clearly blurred the natural

boundary between the insurance market and the rest of the financial mar-

ket. For example, both Lewis (2010) and Sorkin (2009) reveal the growing

connection of hedge funds with insurance companies, which are bridged by

trading many well-known structured finance products.

This expanding interconnection between the insurance market and the rest

of the financial market demonstrates the importance of understanding the

cycles. The correlation between insurance cycles and general business cy-

cles will become significant in line with these recent developments. Risk

managers and regulators in the insurance industry will benefit from a com-

plete understanding of insurance cycles in order to perform enterprise risk

management or to prevent systemic risks (Ingram et al., 2012).
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2.1 Non-Life Insurance Market

Non-Life Insurance is commonly known as General Insurance in the UK. It

typically comprises any insurance that is not related to the insured individ-

ual’s death or other events, such as terminal or critical illness (these cases

are known as: Life-Health Insurance). It is also called Property-Casualty or

Property-Liability Insurance in the US. It accounts for around one quarter

(24.8%) of the total gross written premiums in the UK insurance market,

nearly 3.5% of the total UK GDP. It is estimated that an annual average

of £1,000 of Non-Life Insurance premiums are spent by each person in the

UK (Data Source: CEA 2012).

In terms of product classes, Non-Life Insurance is broadly divided into

three main areas in the UK: personal lines, commercial lines and the Lon-

don market2. In terms of business classes, Non-Life Insurance can generally

be split into six main classes (the individual market shares are shown in

the pie chart of Figure 2.1): Motor, General Liability, Legal Expenses,

Property, MAT (i.e. Marine, Aviation and Transport) and other non-life

items (CEA, 2012).

2The London market consists of a large number of companies (more than 300) which
operate in the City of London, together with a well-known Lloyd’s insurance syndicate.
It includes specialist reinsurance companies, as well as the reinsurance subsidiaries of
direct writers. It mainly focuses on large international risks that include marine and
aviation, large property risk, liability and reinsurance classes.
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Figure 2.1: European P&C insurance premiums by product (2012)

The Non-Life Insurance market is traditionally very competitive, de-

spite there being some obvious existing barriers to entry. Government

regulation attempts to ensure a continued operation of the market by im-

posing minimum capital requirements and solvency standards on individual

companies. Insurers also require some sophisticated technologies and ex-

pertise in this specialized market.

In spite of these barriers, there are several causative factors behind the

competitive nature. Firstly, capital committed to support insurance com-

panies is subject to the usual rules of supply and demand: when there is

an attractive profitability, then there will be enough new capital to create

new competitors into the market (Booth et al., 2005). Informational effi-

ciency that has been improved by advanced IT developments is one of the

drivers for competition in the non-life insurance market. Secondly, the idea

of insurance is to diversify risks through many different kinds of pooling

arrangements. One of the important means of risk diversification is to do
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global business. The UK market may be of interest to other international

insurance companies or other global financial entities (Skipper and Kwon,

2007). Finally, insurers have not been able to patent, copyright or franchise

their products, because it is relatively hard (i.e. compares to other goods

market, but not impossible) to develop differentiated products and niche

markets. Even though it is a specialized market, the new entrants can eas-

ily follow the prices of the existing companies without initially investing

huge amounts of capital (Harrington and Nichaus, 2003).

As an example, considering the UK insurance market in the fifteen years

from 1997 to 2012, there were about 1,000 insurance companies (both Life

and Non-Life) operating in the market. Most of them were national in-

surance companies (around 50% in terms of company number and 80% in

terms of market share in total premiums). Some were other European and

non-EU insurance companies’ branches in the UK market. The remainders

were subsidiaries fully owned by other financial entities (see Figure 2.2).

The largest five Non-Life insurers in the UK had less than 40% market

share in 2000, and the next five largest companies accounted for less than

10% of the market share. The 15 largest companies occupied less than

50% of the overall Non-Life UK market in 2000, although there was a

slight increase in market share for the big 15 companies since 2008 (see

Figure 2.3).
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Figure 2.2: Numbers of UK insurers by types of entity (CEA, 2012)

Figure 2.3: Market share of the largest insurers in the UK (CEA, 2012)
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2.2 Cycles: Evidence and Observation

An insurance cycle is a repeated process whereby rates, premiums and

profits alternately rise and fall over time, rather than grow smoothly. It

often occurs in the Non-Life Insurance sector, where the insured risks are

relatively harder to measure and the potential claims are more difficult to

predict than in the Life-Health insurance sector (Lyons et al., 1996).

We refer to a soft market when the curve of the price is downward, and

a hard market when the price is moving up (see Figure 2.4 for the cycle

of general market loss ratio in the UK as an simple illustration, more de-

tailed real market data validations will be discussed in Chapter 4). In a

competitive market, the usual cyclical behavior starts with a hard mar-

ket when higher profit attracts new entrants. The increased competition

between new and existing firms pushes the individual companies to lower

premium or relax terms and conditions in order to maintain or to seize

the market share. The mixed strategies of excess capacity and competitive

price-cutting and terms, lead to weakening insurance companies improp-

erly operating their business (Stewart, 1980; Smith, 1981).

Figure 2.4: An illustration of insurance cycles
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Due to the variability associated with the business, these unsustainable

levels of low premium rates may persist for some time and might even

show a profit prior to the expected future claims occurring. In the long

term, when those claims occur along with some unexpected large shocks,

there will be large amounts of losses as a result of this mis-pricing. In-

evitably, some insurers will become insolvent and they will be forced to

leave the market by regulation or by investors withdrawing their finances.

The market then moves from profit to loss in a soft-market. However,

normally there are some well-established and well-capitalized insurers who

will be able to recover these losses from many other different sources of fi-

nance, such as by the transfer of capital from other departments within the

group. Therefore, they may recover quickly from this poor performance en-

vironment. Eventually, they will become profitable since less competition

provides the condition for increasing premium rates. This new profitability

will soon attract new entrants, and so the cycle continues (Booth et al.,

2005).

During the 20th century in the US, many researchers observed the exis-

tence of about six to eight-year insurance cycles in the Non-Life Insurance

market as a whole, and many different lengths of cycles in the individ-

ual business lines (Venezian, 1985; Simmons and Cross, 1986; Doherty and

Kang, 1988; Grace and Hotchkiss, 1995). Cummins and Outreville (1987)

find that the cycle length is between six and eight years in the six out of

13 developed countries in their sample, and that cycles are presented in

automobile insurance profits in all six countries tested, with an average

cycle length of 7.1 years.
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Lamm-Tennant and Weiss (1997) explore further and find the presence

of insurance cycles at an international level. Their research extends the

sample of Cummins and Outreville (1987) and updates some data periods.

They also expand the scope by examining results in five additional lines

of business and cycles in the average loss ratio in addition to the overall

underwriting profit ratio. Fenn and Vencappa (2005) test the determinants

of cycles in the UK motor insurance market. Their results confirm the ex-

istence of a second-order auto-regressive structure to economic loss ratios,

which generates a cyclical response in underwriting profits with peaks and

troughs around every eight years. Chen et al. (1999) investigate the pres-

ence of insurance cycles in Asia. They analyze the insurance markets in

Japan, Malaysia, Singapore, South Korea, and Taiwan. Their model sup-

ports the existence of the cycles in Asia, the insurance cycles being found

in at least one line of all the five Asian countries tested.

Booth et al. (2005) reproduce a table from (Roth, 1984), which shows the

combined ratio for US stock property-casualty companies. A combined

ratio of greater than 100 represents an underwriting loss: the ratio repre-

sents the losses and underwriting expenses dividend by total premiums. It

is clear from their figures that there is a cyclical pattern. Daykin et al.

(1994) provide some empirical observations of actual behavior of Non-Life

Insurance in various countries, such as from the whole markets of both the

UK and the USA. They also collect corresponding data from Finland, both

the whole Finnish market and six of the largest non-life insurers in Finland.

The observations exhibit common features of more or less irregular cycles
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several years in length. Harrington and Nichaus (2003) argue that many

cycle observers believe and some evidence suggests that the insurance cy-

cle causes actual premiums to fluctuate in a cyclical fashion around fair

premium levels.

2.3 Time Series Analysis of Insurance Cy-

cles

To test and determine insurance cycles based on empirical real market

data, Weiss (2007) provides and reviews a summary of some time series

analyses from early literature. Cointegration analysis can be used to deter-

mine whether insurance market performance are related to other economic

factors, such as general demand of the economy, interest rates, investment

opportunities, etc. If other variables have cyclical behavior, then insurance

cycle follows a similar pattern. Autoregression analysis can be applied to

test the cycles and the length of the autocorrelation process.

Based on the cointegration analysis of the relationship between aggregate

market underwriting margins and interest rates (i.e. 90-day Treasury bill

rates) between 1930 and 1989 in the US, Haley (1993) presents evidence

that it has a negatively related and cointegrated relationship. However,

Haley (1995) expands the cointegration analysis to 17 individual lines of

insurance business, he finds that these individual lines are not necessarily

cointegrated with the risk-free interest rate. Choi et al. (2002) support

the negative and cointegraing relationship between aggregate market per-
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formance and interest rate. Grace and Hotchkiss (1995) conduct a similar

analysis, which not only support Haley (1993), but also find a positive coin-

tegrating relationship between the combined ratio and other economic fac-

tors: GDP (represents a proxy for demand of insurance) and the consumer

price index. As Weiss (2007) emphasizes that these findings of relation-

ship between insurance market performance and key economic variables are

important because they link the insurance cycle with the general macroe-

conomic business cycle.

From the empirical US data on major lines of non-life insurance, Venezian

(1985) recognizes the underwriting profits can be modeled by a second-

order auto-regression process. The analysis shows that cycles appear in

several lines of insurance business, but the lengths of the cycles can vary

and the phases of cycles among different lines do not necessarily coincide.

Similarly, Cummins and Outreville (1987) provide an international analysis

of insurance cycle model, as an AR(2) process:

Πt = α0 + α1Πt−1 + α2Πt−2 + εt (2.1)

where Πt can be many different market performance variables in period t,

such as the average price, market premium, loss ratio, combined ratio or

inverse loss ratio, market profits, etc. εt is an i.i.d error term with E(εt) = 0

and V ar(εt) = σ2
ε . In this AR(2) process, cycles occur if the coefficients

on the lagged terms α1 > 0, and −1 < α2 < 0, and α2
1 + 4α2 < 0, that is,

if complex roots exist (Trufin et al., 2009). As Trufin et al. (2009) suggest

that such ARMA analysis can be misleading if the underlying time series
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are not stationary. Therefore, it is necessary to check the stationarity be-

fore fitting any ARMA model.

The length of cycles is then equal to:

Cycle Length =
2π

arccos(α1/2
√
−α2)

(2.2)

For example, in the case of Winter (1991), he estimates the process of

loss ratio for US property-liability insurance between 1948 and 1988 as:

Πt = 0.42+1.02Πt−1−0.48Πt−2, the length of cycle is a period of 8.6 years.

More recently, Wang et al. (2010) develop a regime-switching model for

calibrating and simulating insurance cycles. They argue this model is bet-

ter than an autoregressive approach since it captures the asymmetrical

features of the downward versus upward cycle paths. Based on statistical

tests on the real market data from SNL Financial, the National Associa-

tion of Insurance Commissioners and A.M.Best’s Aggregates and Average

(1976-2010), they observe the following asymmetrical statistical behavior:

(1) it takes more years for prices to go down than to go up; (2) Price going

up tends to be larger than going down; (3) The volatilities are different in

the hardening phases vs. softening phases of a cycle path.

2.4 Existing Explanations and Challenges

The US “Liability Insurance Crisis” of the mid to late 1980s motivated

many industrial practitioners to start thinking about the existence of in-
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surance cycles. In this period the aggregate Non-Life Insurance premiums

increased by over 70% per annum in 1985 and 1986, and limitations on the

availability of insurance were widely reported (Fenn and Vencappa, 2005).

Both causes and mechanisms of the cycles are studied extensively in the

insurance literature, particularly in this period of the 1980s (Stewart et al.,

1991).

The major industry-specific inducing factors of the cycles are discussed

in (Daykin et al., 1994). They include these factors: time lag effect,

claim process delays, inflation uncertainty, fluctuations in investment re-

turn, changes in demand, large unexpected external shocks in claim losses,

and market competitive activities. Weiss (2007) provides a good summary

and a more detailed discussion is given by Derien (2008). Much of the

literature analyses the explanations of the insurance cycles from individual

or combinations of these cycle-inducing factors.

The theoretical debates of insurance cycle mainly focus on either funda-

mental or technical aspects of the pricing process of insurance premiums.

The fundamental (economic) view of Non-Life Insurance products’ prices

reflects intrinsic value of risk and insurance (also referred as the price of

risk). For example, the changes in interest rate affect the investment re-

turn of the assets which leads to change future premium. The second part

of pricing decision comes from technical elements such as time delays in

financial reporting, i.e. those elements do not reflect the true value of the

product, but will inevitably affect the decision making. The common ap-

proaches of the pricing techniques can be found in most Risk Management
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& Insurance or Actuarial Science textbooks (Hart et al., 2007). It can be

mainly classified as: cost-based approach, supply meets demand approach,

price negotiation approach, incentive mechanisms approach and financial

option model-based pricing method (Madsen and Pedersen, 2002; Madsen

et al., 2005).

Major existing explanations are summarized and reviewed as follows:

Market competition cause structure fluctuations: This idea comes

from the growing interest in economics of industrial organization (Porter,

1980). It suggests that the cycles are caused by periods of “destructive

competition” followed by oligopolistic coordination to cut back supply in

order to increase prices before the next round of competition arrives (Stew-

art, 1980, 1985; Stewart et al., 1991). The main drawback of this argument

comes from the difficulty of implementing a complete mathematics-based

model that applies dynamic interactions of the complex market behavior.

Dutang et al. (2012) and Dutang (2012) apply a game-theoretic approach

to analyze insurance market cycles. They consider a discrete framework

and insurers are subject to competition as each seek market share and

profits based on defined objective function and constraint function. From

their initial results of a simple case which only includes three insurers, they

conclude the competition modeled through Nash equilibrium alone cannot

explain the presence of insurance cycles. Recently, increasing attention on

Complexity Economics and the necessity of building dynamic economics

models has promoted the development of interconnected dynamical mod-

els (Winter, 1994).
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Irrational forecasting errors due to “naive” actuarial forecast-

ing (also known as extrapolation hypothesis): This idea focuses

on the premium pricing stage and assumes that future expenses are rel-

atively stable when compared to the premiums. Venezian (1985) argues

that those “naive” pricing procedures are unable to reflect the changes of

expectations about future claim costs. Cummins and Outreville (1987)

argue that if under rational expectation theory, the prices of the insur-

ance products reflect all information (about future costs) that is currently

available. Venezian demonstrates how such estimation errors can lead to

cycles. The drawback is that his hypothesis assumes an unrealistic degree

of irrationality on the part of insurers who fail to learn from the experi-

ence of past forecasting errors (Feldblum, 2000; Fenn and Vencappa, 2005).

Time delays due to adjustment costs and reporting lags (also

known as accounting cycles: rational-expectations/institutional-

intervention hypothesis): This idea suggests that the pricing behavior

of insurers is consistent with both assumptions of the insurance market be-

ing competitive and insurers holding rational expectations to update their

pricing information. However, it focuses on the inevitable time delay in

getting this updated information (Balzer and Benjamin, 1980; Cummins

and Outreville, 1987; Berger, 1988; Dagg, 1995; Booth et al., 2005). This

theory predicts a long-run relationship between premiums and the expected

value of claims that is consistent with rational expectation theory, subject

to second order serial correlation of the short run deviations from this long

run relationship. However, an unanswered question of this explanation
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is why there is no obvious cyclical behavior in the Life-Health Insurance

market, despite the time delays that also occur in this Life-Health sector

(Haberman, 1992; Zimbidis and Haberman, 1993).

Capital constraints due to the imbalance between internal and

external finances (also known as “cash flow underwriting” cy-

cles): It states that financial capital cannot be adjusted instantaneously

when insurers need them. There are costs in getting external funding to

adjust premium level in response to a change of expected claim loss. This

induces a degree of persistence to a change of new pricing information

(Winter, 1988; Gron, 1990, 1992, 1994). This explanation also states that

if the investment return in the external financial market is more than the

internal earning, then insurers would do better to invest in external oppor-

tunities rather than hold capital (Doherty and Kang, 1988; Doherty and

Garven, 1995). It links cycles with the change of interest rates. However,

this explanation has lost favor recently, since the insurance cycles have lost

no force despite the stability of interest rates at the beginning of the 2000s

(Feldblum, 2000).

Micro-foundations of firm-level factors (also known as “Finan-

cial quality hypothesis” and “Option pricing hypothesis”): It

incorporates default risk endogenously by viewing premium pricing as be-

ing analogous to the pricing of risky corporate debts (Cummins, 1991).

Similar idea of comparing insurance products to financial assets can be

found in two discussion papers (Madsen and Pedersen, 2002; Madsen et al.,

2005). They indicate that one way to view the buying of insurance is to
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consider it as buying a call option on losses. It refers to the fact that the

insured parties care about the insolvency risk of the insurer (Harrington

and Danzon, 1994). The buyers of the insurance product demand financial

quality of their contracts. It predicts a positive (or negative, depend on

short- or long-run) relationship between surplus and underwriting profits.

When firms have lower insolvency risks, they can set higher premiums for

the same covers (Doherty and Garven, 1986; Cummins and Danzon, 1997).

Elements such as interest rate and investment return affect the solvency

level of the insurer and will have an influence on premium.

Behavioral models of underwriters’ “mass psychology”: This idea

interprets cycles as being dependent on the psychology of the underwrit-

ers (Kunreuther, 1989; Kunreuther et al., 2013), such behavioral biases in

insurance decision as status quo or reference level bias (Tversky and Kah-

neman, 1991), availability bias (Kahneman and Tversky, 1973) and more

generally prospect theory (Kahneman and Tversky, 1979). It argues that

insurers are over-confident about their private information. This bias leads

to mis-adjustment of their own prices, since the price is more related to

the subjective judgment rather than fundamental value. It also argues that

insurers become optimistic and compete strenuously for new business dur-

ing profit years and feel pessimistic when the soft market arrives (Ligon

and Thistle, 2007). Broader discussions of behavioral elements such as

fears, ambitions, individual level motivations etc, related to insurers can

be found in the article (Fitzpatrick, 2004). However, the fundamental prob-

lem of this is the assumption of a uniform psychology among underwriters

(Feldblum, 2000): over-confidence may cancel out under-confidence if it is
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assumed that insurers are heterogeneous in terms of psychology.

As Fenn and Vencappa (2005) state, “although many researchers try to ex-

plain cycles from individual factor, separating these hypotheses empirically

has proved difficult.” They find that the insurance cycle is a multi-factorial

phenomenon and each of the existing explanations mentioned above is ca-

pable of explaining some parts of the cycles in a complementary way. Some

of them discover the prime triggers of the motion. For example, high mar-

ket competition forces insurers to act aggressively. Others recognize those

factors that increase the amplitude of the cycle. For instance, both the

extrapolation hypothesis and the institutional-intervention hypothesis re-

alize the difficulties of updating new information to reflect the true value

of a product in the real world.

More likely, there is a feedback process that combines these different fac-

tors. As an example, insurance cycles can have an impact on insurers’

pricing decisions, while the outcomes of these pricing decisions will feed

into the cycles (Boor, 2004). Most importantly, all of these competing

theories of insurance cycle require exogenous factors to elicit cycles, such

as “destructive competition” from external forces, interest rates, errors of

actuarial methods, delays in information process, external shocks affect

capitals, rating agency reviews insurers’ financial quality, etc.
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Agent-Based Modeling

There are some existing explanations of insurance cycle that partially ex-

plain the existence of the cycle from different aspects, but a full picture

is still not clear (Daykin et al., 1994). A complete and strict explanation

of the cycle is needed in order to see the full picture, although this would

add considerable difficulties to the problem and make any model largely

intractable.

The complexity of these intractable difficulties is often ignored by the tra-

ditional “reductionism” approach of conventional economic models. Some

of these models assume a single representative rational agent, while others

assume there is no dynamic interaction among the agents in a system. They

often ignore the “Fallacy of Composition“, which states that the whole is

not equal to the sum of its parts (Ehrentreich, 2007). In a dynamically

evolutionary system, the relationship between the parts and the whole is

non-linear, and such complexity as a whole is hardly explained by analyz-

ing any one individual part.
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In his speech at the International Conference on Complex Systems in 2000,

the Nobel Prize winner Kenneth Arrow stated that until the 1980s the ‘sea

of truth’ in economics laid in simplicity, whereas since then it has become

recognized that ‘the sea of truth lies in complexity ’. In response to Arrow’s

statement, a newly developed approach of conducting research, so-called

“Agent-Based Modeling (ABM)”, sheds light on solving intractable prob-

lems in such complex systems (Pyka and Fagiolo, 2005).

Nevertheless, these existing “Ceteris Paribus” based individual explana-

tions of insurance cycles provide useful knowledge for us to implement a

more integrated model to understand the cycles. From them, we know that

insurance cycles have occurred in the past and that it is difficult to predict

them in the future. We recognize that it will become a dangerous task if

the risk management model designers do not understand the triggers of

the motion for the cycles. It is necessary to emphasize that the goal of our

research is neither to replace any existing explanation of the cycles, nor

to add another new individual explanation onto the existing list of these

different explanations.

In fact, our research project aims to achieve the following goals: (1) to

recognize the competitive Non-Life Insurance market as a complex sys-

tem; (2) to understand the dynamic interactions among the heterogeneous

agents in the market; (3) to apply the different features from these exist-

ing explanations of cycles in order to model the agents and the market

activities; (4) to integrate these different and individual and independent
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explanations into one complete and dynamic ABM model; (5) to build

our own model of an artificial insurance market based on behavioral sim-

ulations; and finally (6), to give a dynamic picture of understanding the

insurance cycles.

The reason for us using ABM to achieve our goal is because: The compet-

itive Non-Life Insurance market is a complex system. Agent-based models

attempt to capture the emergent complex dynamics of real-world systems

and typically have the following features that are consistent with our re-

search (Palin et al., 2008):

1. Heterogeneous agents: a finite number of heterogeneous agents follow

different rules that reflect common real-world behaviors; these rules

can be very simple (for example, if more customers come to buy an in-

surance from a particular insurer, then this insurer increases its price)

to highly complicated (for example, this insurer may wait for a while

in order to increase market share to destroy its competitors). This

process of repeated interaction among these agents over time end-

lessly changes both their initial states and progressive patterns. This

dynamic interaction leads individuals to become heterogeneous, even

if their initial states were similar (Tesfatsion, 2006). Neo-classical

economic models, which tend to assume there is only a single repre-

sentative agent or an infinite number of homogeneous agents. They

simplify these different behavioral rules as a unified rule that is based

on perfect rationality.

2. Adaptation: agents have limited information to make their decisions
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in a complex real-world system that is different from a theoretical-

world with perfect rationality. They have to keep learning from their

own mistakes and others who have influences on them, in order to fit

or adapt to the system (Pyka and Fagiolo, 2005). Therefore, these

behavioral rules are evolving and adapting the dynamics of system

over time. Following the example of an insurer above, if the rule of

waiting is better than increasing price suddenly, then more agents

will adapt this rule. However, when too many insurers use this rule,

the market becomes too competitive and decreases the profitability,

more insurers will change their rules again.

3. Local interactions: agents in the real-world environment often in-

teract and influence each other locally, this also contrasts with neo-

classical economic models that assume any decision of an individual

agent can affect all other agents in the system. This creates both

heterogeneity and agents’ adaptive nature, since agents have differ-

ent limited information sets that only contain the situations of their

local environment. For example, one rule may fit well in one local

environment but may not suit other places. A large insurer may in-

crease price rapidly when many relatively small insurers around it,

but it should not change price suddenly when other large insurers are

competing it in the same business segment.

4. Feedback loops and externalities: the dynamic process with adaptive

nature can have a positive or negative feedback between the indi-

viduals and the system, which often moves the system away from

an rational economic equilibrium. For example, an insurer increases
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its price after it saw the market average price is increasing, but this

insurer’s action actually contributes the overall market price to in-

crease further. Likewise, insurers often reduce their individual prices

too much to follow the market price reduction. Again, this contrasts

with neo-classical economic models, which assume that systems al-

ways return to equilibrium shortly. They assume that insurers are

rational (or have a full information set) enough to ignore the mis-

leading information in the market. While there is a feedback loop

between an individual insurer and the whole system, there is also a

loop of externality between the individual insurer and other insurers.

This means that a single decision of an individual insurer affects the

whole system, and the system affects other insurers. Then, the other

insurers’ reactions feedback to the system and affect the original in-

surer again.

Figure 3.1 illustrates the dynamic process of a complex adaptive system

with agents. ABM simulations are now becoming popular to analyze some

problems in the field of behavioral economics, due to the above main unique

features (LeBaron, 2005).

Figure 3.1: An illustration of a complex adaptive system
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In Economics, as Tesfatsion (2000, 2003, 2006) conclude that, “... de-

centralized market economies are complex adaptive systems.”. In this kind

of system, the main difference with traditional economic analysis is that

randomness and determinism are both relevant to the overall behavior.

Such systems exist on the edge of chaos; they may exhibit almost regular

behavior, but then change dramatically and unpredictably in time and/or

space as a result of small changes in conditions (Vicsek, 2002). In order to

deal with this complexity, an individual needs to be adaptive rather than

perfectly rational as traditional theory assumed1. Axelrod (1997) also ar-

gues that the adaptation may be at the individual level through learning,

or it may be at the population level through differential survival and repro-

duction of the more successful individuals. Either way, the consequences

of adaptive processes are often very hard to capture by traditional analysis

when there are many interacting agents following rules that have non-linear

effects.

In order to solve the complexity, ABM-based computer simulations will

provide a useful way of doing research. Daykin et al. (1994) state that,

“a complete and strict simultaneous treatment of several insurers taking

1We often see ‘adaptive’ in relation to ‘rational’; for example, rational expectation
theories were developed in response to perceived flaws in theories based on adaptive
expectation (Mankiw, 2009). Under adaptive expectations, expectations of future value
of an economic variable are based on past value. However, rational expectations assume
individuals are able to take all available information to make decisions. Therefore,
whether agents are adaptive or fully rational, both of them are trying to maximize their
goals. The distinction is the way of dealing with different information sets or the ability
of foreseeing the future. Bruun (2005) suggests that “Besides being a complex dynamic
system..., the [competitive] economy is also adaptive.” She argues that even people are
rational, although they would be better off if they were just adaptive since the world
is too complex to be rational. As a complex system is non-linear and often has no
equilibrium, rational agents would be better to use rule of thumb to adapt/respond to
the dynamic system in order to achieve a Nash-equilibrium.
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decisions independently adds considerably to the dimensions of the prob-

lem, making it largely intractable ...” However, they emphasize that the

interactions among the agents in the competitive market are too important

to ignore and it is worthwhile adopting even very approximate approaches

to explore the possible impact. Nowadays, the computer is more powerful

than it was in the early 1990s and provides a great opportunity to further

explore the advantage of the simulation.

In this section, both recent developments and future prospects of the ABM

are introduced. It is necessary to know the distinctive features of the ABM

when comparing it to the traditional economic models. The rest of this

section focuses on some ABM applications in Economics.

3.1 Introduction of ABM: Development and

Prospect

The complex adaptive systems bring many difficult questions for traditional

economic analysis, such as (1) how to model individual behavior, (2) how

to understand the learning process of an individual, and (3) how to build a

quantitative model in order to implement the complex interactions among

these agents. Some of these problems can be explained separately based on

different fields of science. However, ABM in Economics (a.k.a Agent-Based

Computational Economics) provides a way to link these standalone science

via a blend of concepts and tools from individual research, studies within

areas, such as Evolutionary Economics, Cognitive Science and Computer
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Science (Tesfatsion, 2000). (See Figure 3.2.)

Figure 3.2: An illustration of agent based models

Evolutionary Economics stresses complex inter-dependencies, competi-

tion and selections through the actions of diverse agents from experience

and interactions in the market. The properties of emergence from evolu-

tion states the large-scale effects from some locally interacting small and

simple agents (Pyka and Fagiolo, 2005). Evolutionary economists are sur-

prised to see how small innovations or technology breakthroughs are able

to change the big world. The area of Evolutionary Economics started

with Schumpeter (1934, 1942), and has been recognized by mainstream

economists since the studies by Hayek (1948). Schelling (1969, 1978, 1980,

1986) recognize that simple behavior can have a big impact on the macro-

environment. Numerous studies on evolutionary economics are reviewed

by Nelson (1995) and Nelson and Winter (2002).
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Cognitive Science teaches us how the same information or data will have

different effects on different people. It also explains how different meanings

can be taken by people with different experiences. An individual’s cognitive

ability forms their rules of thumb and their skills of pattern recognition.

Ross (2005) and Sutherland (2007) confirm that personal experience mat-

ters when discussing an individual’s way of thinking. There are several

different learning algorithms that have been modeled by artificial intelli-

gence research (Tesfatsion, 2007): (a) “Reactive Reinforcement Learning”

is to update an agent’s future behavior automatically in response to suc-

cessive rewards attained through previous actions taken. The well-known

“Tit for Tat” strategy is one of good examples to illustrate this learning

idea (Axelrod, 1990). (b) “Belief-based Learning” is to update an agent’s

future behavior automatically in response to the agent’s measurement of

his different beliefs. (c) “Anticipatory Learning” is a forward looking ap-

proach, it is to update an agent’s future behavior automatically in response

to future rewards. (d) “Evolutionary Learning” is to improve an agent’s

future behavior automatically by combining some most relatively success-

ful strategies into one new strategy. (e) “Connectionist Learning” is to

improve an agent’s future behavior automatically by connecting all possi-

ble information that the agent obtained in the past. The agent calculates

the weighted average of these information. This impressive learning ability

can be achieved by artificial neural networks on the computer. As Tesfat-

sion (2007) states, it is a decentralised information processing paradigm

inspired by biological nervous systems, like the human brain.
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Fast developments in computer technology have benefited researchers in

terms of them being able to take the opportunities and advantages of sim-

ulation techniques. The dynamic interactions can be easily implemented

by using simple rules. The learning process can be represented by using

genetic algorithms or neural networks on the machine. Many new de-

velopments in machine learning will definitely further improve the ability

and results of simulation (LeBaron et al., 1999). Artificial Intelligence

(‘machines that think’ or problem solving mechanisms) first appeared as a

significant disciplinary division during the 1950s. Both the move toward a

networked computing environment and the development of object-oriented

programming techniques bring many advantages for scientific research in

Economics (O’Sullivan and Haklay, 2000).

In fact, ABM is the kind of simulation where computer technology is used

with a combination of both Evolutionary Economics and Cognitive Sci-

ence. Axelrod (1997) states that, “to appreciate the value of simulation as

a research methodology, it pays to think of it as a new way of conducting

scientific research2.” Simulation is a way of doing research through exper-

iments. The ABM simulation tools can be used for testing the impact of

2Traditional, there are two ways of doing research. The first way is through ‘In-
duction’, the discovery of patterns in the empirical data. The other way is based on
‘Deduction’, which involves specifying a set of axioms and proving consequences that
can be derived from those simplified assumptions. In contrast to both traditional meth-
ods, simulation starts with a set of explicit assumptions that is similar to deduction
but it does not prove theorems. Instead, a simulation is keen to generate data that can
be analyzed inductively. The simulated data comes from a rigorously specified set of
rules rather than directly measured from the real world. Therefore, simulation has the
ability to control the experiment, which offers the researchers a tool for scenario testing.
Axelrod (1997) summaries that, “While induction can be used to find patterns in data,
and deduction can be used to find consequences of assumptions, simulation modeling
can be used as an aid intuition.”
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new policies, potential strategies or decisions in the dynamic market.

3.2 Distinctive Features of ABM

In a public lecture at LSE (2010), both Professor Geoffrey Hodgson and

Paul Ormerod criticise mainstream economic analysis. Hodgson (1988,

1999a,b, 2001, 2004) argue that the early static analysis of economics is

not sufficient for modern economics. However, it is also too unrealistic to

do economics by relying on rational expectation. Ormerod (1997, 1999,

2006) provide some ideas about social network and complex systems in

order to understand the ‘rule of thumb’ of human beings. Both Hodgson

and Ormerod recommend that the approach of ABM can be used to fill

the current gap in the economic analysis. Some distinctive unique features

of ABM when comparing to the traditional economic analysis are summa-

rized as follows:

Bottom-up rather than top-down: Most traditional models use top-

down analysis to explain economic problems. Such way of building a model

simplifies problems initially but, this simplicity has drawbacks as it fore-

goes some factors that may become important at later stages. It assumes

all individuals are the same as a single representative agent and they are

managed by the market. The market allocates the resource and improves

efficiency for the economy, but ABM has a different view about the role of

the market. It argues that the market does not have the ability to oversee

individuals, since ABM recognizes that the autonomous interacting hetero-

geneous agents are too complex to look after (Tesfatsion and Judd, 2006).
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Instead, ABM studies the self-organizing capabilities of decentralized enti-

ties to react in the market. Therefore, ABM focuses on individuals rather

than a single representative agent. It is a bottom-up approach.

Dynamic rather than static model: Tesfatsion (2006) introduces a

common procedure of implementing an ABM application. Once initial

model conditions are set, all subsequent events in these agent-based mod-

els are initiated and driven by agent-agent and agent-environment inter-

actions. No further outside interventions by the modeler are permitted.

The model is dynamic in terms of the interactions among the heteroge-

neous agents and there are feedback loops between the market and the

agents. As Arthur (2000, 2005) notice, this complex system involves out-

of-equilibrium dynamics. The ABM approach emphasizes the dynamic

process rather than concentrating on a solution to achieve possible equi-

librium.

Consistency with other models, rather than being standalone:

Many recently developed standalone models or economics theories can par-

tially overcome some problems of early traditional economics analysis, such

as DSGE modeling, game theory, and behavioral economics (Camerer and

Lowenstein, 2003). ABM provides an opportunity to work consistently

with them in order to achieve a full picture to explain economic problems.

ABM has the feature of producing data by simulation rather than entirely

relying on historical data. ABM is able to analyze the non-equilibrium

states. The agents in the ABM follow rules of thumb which is similar to

the idea from behavioral economics. As LeBaron (2006) states, ABM may
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be a critical tool for implementing the behavioral models.

Computer simulation-based research with learning capacity: John-

son (2001) notices that the ABM builders are often those economists who

have some computer programming skills. It is essential for ABM re-

searchers to understand some kinds of object-oriented programming lan-

guage such as Java or Objective-C. ABM is different from the usual sim-

ulations in economic analysis. It features some techniques such as neural

network and genetic algorithms. The agents not only have the ability to

recognize the patterns, but also learn from these patterns to improve them-

selves.

3.3 ABM Applications in Economics and In-

surance

Tesfatsion (2010) maintains a website which is fully dedicated to Agent-

based Computational Economics. There are growing numbers of ABM

applications which link to explain early unsolved economic questions and

behavior. It is impossible to cover details of all new developments here,

but the following few ABM applications are worth mentioning. They are

briefly reviewed for the purpose of our research.

The idea of using ABM for investigating a wide range of social structures

can be found in the Sugarscape model (Epstein and Axtell, 1996; Epstein,

1999; Beinhocker, 2007). More specifically, its use in explaining the exis-
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tence of segregation in human choices is based on the theory of Schelling

(1969, 1986). Models such as “Tit-for-tat” prove that simplest strategies

can beat more sophisticated ones (Axelrod, 1990). The literature demon-

strates how useful ABM can be in analyzing complex ideas through basic

simple rules.

There are many more specific applications of ABM applied to explain

common economic problems. Tesfatsion (1999) uses ABM to analyze an

evolutionary labor market with adaptive search ability. Banal-Estaol and

Ruprez-Micola (2009) use ABM simulation and “Reactive Reinforcement

Learning” to study how the diversification of electricity generation port-

folio influences wholesale price. Farmer (1999, 2001) introduce the ABM

application to make real investment strategies from an academic’s point of

view to a practical investment model. Similar ABM applications in the in-

vestment field are used by Lettau (1997) and Chakrabarti and Roll (1999).

Lettau studies an example of mutual fund flows to analyze the portfo-

lio decisions of boundedly rational agents in a financial market, where

the learning process in the application is modeled via genetic algorithm.

Chakrabarti and Roll build an application to analyze some herding behav-

ior in the financial world.

In the field of macroeconomics, Arifovic (1996) and Arifovic and Gencay

(2000) study statistical properties of the time series of the exchange rate

data generated in the environment where agents update their savings and

portfolio decisions using the genetic algorithm. Moreover, the ABM model

of Arifovic and Masson (1999) tries to explain the currency crisis. Allen
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and Carroll (2001) apply ABM to agents who are learning to choose con-

sumption. The well-known artificial stock market ABM model was built

by researchers in the Santa Fe Institute (SFI) in 1980-1990s (Arthur et al.,

1996; Ehrentreich, 2002, 2006). The so-called “second generation” SFI

model was updated by LeBaron (1999, 2001, 2005). They try to explain

some stylized facts in the stock market. Similarly, Ladley and Schenk-Hopp

(2009) find that many stylized facts of limit-order markets are not depen-

dent on individual strategic behavior. They can be simply obtained from

the interaction of the market mechanism and non-strategic zero-intelligence

agents.

In terms of analyzing economic cycles, the traditional cobweb theory (also

known as: Pork or Cattle Cycles models) describes cyclical supply and

demand in a competitive market, where firms are price takers and the

amount of their outputs must be decided before the market prices are ob-

served (Kaldor, 1934). The market price will decrease when supply is more

than demand for common goods, and vice versa. In fact, firms’ decisions

on outputs are based on their expectations about the price in the next pe-

riod, but the actual price in the next period also depends on firms’ current

decisions on outputs. So there are feedback loops between the decisions of

outputs and the market prices and the key to understanding such market

dynamics is the nature of firms’ expectations (Nerlove, 1958).

Economists face some complex problems, such as dynamic interactions

among heterogeneous agents, feedback loops, non-equilibrium, etc. In this

situation of complexity, ABM provides useful tools to improve the tradi-
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tional economic models. It does not reject the traditional findings from

the cobweb model; it adds extra contributions to the economic theory by

improving the economic agents’ expectation formations. For example, Ar-

ifovic (1994) uses a genetic algorithm (GA, i.e. an ABM tool) to update

firms’ decision rules on next-period productions and sales. The GA tool

is implemented in an ABM simulated cobweb market and its several dis-

tinctive features have the capacity to better model the learning behavior

(expectation formations) of firms in the real world, e.g. using genetic oper-

ators such as reproduction, crossover, mutation and election to select more

suitable rules or pricing strategies in the real world (Holland and Miller,

1991). Their results show that the ABM simulations with the GA tool can

better capture several features of the experimental behavior of human sub-

jects than other traditional models (Nerlove, 1958; DeCanio, 1979). Chen

and Yeh (1996) generalize Arifovic’s work by applying genetic program-

ming (GP) learning in their ABM simulations.

Recently, the approach of ABM simulation and Complexity Economics

in general are becoming popular in the field of Actuarial Science and In-

surance Economics. Parodi (2012a,b, 2009) introduce computational intel-

ligence (or machine learning) and its applications can be useful to improve

existing methods in general insurance. Taylor (2009) constructs a simple

dynamic model with artificial agents (i.e. insurers) to compete locally by

comparing direct competitors with similar firm sizes. Although Taylor does

not specifically call this model as ABM simulation, there are many similar

features of ABM approach and it aims to capture the real world stylized

facts in non-life insurance market.
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Mills (2010) summarizes many interesting examples from complexity sci-

ence in order to invite actuaries to join this research field and apply useful

and insightful techniques to improve existing problems in the field of in-

surance. Ingram et al. (2012) apply the theory of plural rationality (i.e.

it suggests individuals moving in and out of different solidarities in dif-

ferent parts of their lives, rather than having an unchanged rational or

irrational behavior in their whole life) and present a simple ABM model

that agents move among four forms of social solidarity. This dynamic

movements among different solidarities and the interactions of different

agents with different associated nature in each solidarity can suggest some

stylized facts of insurance market.

3.4 ABM Model Evaluation: Verification and

Validation

Midgley et al. (2007) state that both verification and validation of ABMs

are difficult3 because the heterogeneity of the (computational) economic

agents and the possibility of different emergent macro-behaviors come from

the dynamic interactions among these micro-agents. Fagiolo et al. (2007)

describe the problem of finding an appropriate method for conducting em-

pirical validation as the Achilles’ heel of the ABM approach to economic

modeling.

3Verification is to determine that one is ‘solving the equations right’ or implementing
the ABM simulations correctly, while validation is to evaluate that one has ‘solved the
right equation’ or set the right Agent-based Model (Boehm, 1981). Both of them are
two necessary steps in common procedures of the model assurance.
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Nevertheless, some common methods of model verification and validation

can be summarized and applied in our model evaluation in the later Chap-

ters as follows:

Face validity (Verification): By using diagrams to graphically repre-

sent the simulated data, we can see whether the preliminary results

are (or looks like) reasonable. Some practitioners in the general in-

surance market may give us advice. For example in our model, if

more numbers of insurers are competing in the market that increases

the competition, then the average market price should be lower. Oth-

erwise, there must be some errors in the implementation. It is a sub-

jective measure that is based on users’ limited opinion and knowledge

about the real world (Banks et al., 2004).

Turing test (Verification): This technique may be applied as well. We

send both simulated outputs and empirical data to some pricing ac-

tuaries, let them distinguish whether one data is from simulation or

not. We collect and weight their results to make our decision, since

people have different subjective view. If there are some artificially

deterministic patterns in the simulated outputs, then the stochas-

tic processes in the model must have been implemented incorrectly,

such as claims distribution, random shocks. Bharathy and Silverman

(2010) suggest that a Turing’s test could improve the strengths of

face validation when validating Agent-based social systems.

Internal validity and tracing (Verification): In contrast with exter-

nal validity (e.g.: Face validity and Turing’s test) that compares
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model/simulation results with real-world system, the internal valid-

ity tests the correctness of the internal logic (Mehrens and Lehman,

1991). For example, if we change the claim distribution from Pareto

to other more risky distribution, the simulated average prices should

be higher in order to reflect the risk-based pricing process. Other-

wise, there must be some logic errors in the model. However, from

the experience of our model, many unexpected results that initially

seems to be no logic, but they actually are emerged from complex

interactions.

Sensitivity analysis (Validation): This is an important step in a model

that contains many parameters (e.g. ABMs), it shows the effect of the

different parameters and their values. We change or adjust the input

values and the internal parameters such as agents’ number, then we

determine the consequence upon its output. This procedure assists

us to eliminate some unnecessary parameters in order to avoid some

problems due to over-parameterisation. However, from our model

experience, some parameters may not be significant individually, but

a combination of them may have big impacts on the result. Therefore,

the judgments are based on economic theories (Leamer, 1985).

Predictive validation with backtesting (Validation): This technique

is used to compare the model’s prediction with actual system behav-

ior. We apply some of existing historical data to calibrate our model

first, we then use the remaining data to determine if the model be-

haves as the system supposes to. In our case, we have the data set of

motor insurance market in different countries for various periods, so
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we can use the first half of all years (or one of countries) for calibration

purpose and next half of periods (or another country) for validation.

We finally check whether our simulated results are consistent with

the real data from the UK ABI and US A.M.Best.

Statistical validation (Validation): Finally, common statistical tests

can be conducted here, they can help us to determine if the model’s

behavior has an acceptable range of accuracy. It significantly in-

creases the credibility of the model. In the initial stage, the partic-

ular interests are the distributions of claim and loss ratio, together

with their moments and other common statistics. Graphical tests

are useful for us to spot any big difference. Some simple meth-

ods help us to check if our two samples (simulated data from the

model and observed data from the real market) are considered be-

longing to the same distribution, such methods as Quantile-Quantile

plot and Box plot, etc. For the purpose of statistical significance

tests, we should perform some goodness-of-fit tests, such as the Chi-

Square test and Kolmogorov-Smirnov test. The Chi-Square tests

whether outcome frequencies follow a specified distribution and the

Kolmogorov-Smirnov tests whether two samples are drawn from iden-

tical distributions. We can also test the autocorrelation of the time

series data. Particular testing procedures will be discussed in the

Chapter 4 of this thesis, and Klugman et al. (2012) provide a more

detailed explanation.

Some principles should be applied to our model specification and evalu-

ation: (1) both the nature and the goal of our ABM analysis should be
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understood clearly, whether a qualitative representation of real world re-

sults or quantitative; (2) any specification of our ABM should be based on

economic theories as closely as possible, such as from behavioral economic

theory; (3) sensitivity analysis should be applied to some combinations of

parameters and to select the most important parameters; (4) estimation

on some parameters that have observable data in the real market, while

making reasonable assumptions for those parameters without obtainable

data.

3.5 Examples of existing ABM

We present a couple of ABM examples with the most commonly used 2-

dimensional environment and summarize some of their key features. Both

of these existing models can be implemented by different programming

languages, but we use the NetLogo platform (Wilensky, 1999) as an exam-

ple to illustrate the basic elements4. Each presentation follows four steps:

model objective, implementation, agent rules, applications.

3.5.1 Forest-fire model

Model objective: As Mills (2010) states that the Forest-fire Model has a 2-D

environment on a lattice. It aims to simulate and understand the spread of

a fire through a forest. It shows, as the density of trees becomes high, even

a small initial fire will have a devastating consequence. More importantly,

the relationship between density and burned area is not linear, there is a

4NetLogo is a multi-agent programmable modeling environment. See
http://ccl.northwestern.edu/netlogo/
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critical point (or tipping point) where results a dramatic change.

Implementation: As shown in Figure 3.3 that is implemented by NetL-

ogo (Wilensky, 1997), there are also three main parts: left side PART 1

is the initial model setup that controls the density of forest in the 2-D

environment. The middle PART 2 is the simulation environment where

green color represents the tree and dark area is the empty cell (unwooded

area). Right side PART 3 shows the simulation results. The trees are the

agents, so they are fixed in the environment and they can be in three states:

with or without being on fire, or become burned. Both trees and fires are

randomly generated in the environment. Based on the results in PART 3,

when density is below 50 percent, there is a very low probability of having

a systemic risk (i.e. the percent of burned area is small). However, when

the density reaches 60 percent, it changes the percent of burned area a lot

(i.e. increases from 1.7% to 78.4%).

Figure 3.3: Forest fire model
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Agent rules: The behavior rule in this model is simple but it still cap-

tures the key feature of a complex system, i.e. the presence of a non-linear

threshold that affects dynamic results completely. The basic model as-

sumes that fire only spreads to neighboring trees in four directions: north,

east, south and west. If a burning tree has no neighbor, then the fire will

be stopped after the tree is burned. However, if we apply this simple model

to more complex real-world problems, then other behavior rules can also

be tested in different situations, such as adding the impact of wind speed,

the form of topography, etc.

Real-world applications: Although this 2-D model looks simply, it can be

used in many situations to understand the complexity of non-linear re-

lationship and systemic risk management, such as contagion in financial

markets, domino effect in social network and demand surge in insurance

risk management, etc.

3.5.2 Sugarscape model

Model Objective: Sugarscape Model aims to simulate and analyze some

complex social problems (Epstein and Axtell, 1996), such as population

growth, wealth distribution, etc. The basic model setup is simple, but it

can be extended to many different social situations.

Implementation: As shown in Figure 3.4, there are three main parts in

the NetLogo platform screen. Left side PART 1 includes the initial model

assumptions and parameter values. Right side PART 3 produces the out-
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comes of simulation. The middle PART 2 illustrates the dynamics of

agents’ interactions in a 2-D environment: the red dots are agents that

are randomly distributed on the 2-D grid environment. Grid cells contain

sugar that the agents aim to occupy and collect in order to grow agents’

wealth. Cells are colored according to their sugar amounts, the more yel-

low colored cells contain more sugar. Once an agent collects sugar in one

cell, the cell requires some time to produce new sugar. Agents interact and

compete each other in such complex system.

Agent rules: There can be many different agents’ behavioral rules, de-

pending on a particular real-world situation that researchers aim to ana-

lyze. For example, the rules of agent movement can manage the following

agents’ behavior: speed of movement, direction, vision, etc.

Real-world applications: Different agents’ behavioral rules can explain many

different social problems. For example, if the speed of movement is too

quick but agents are myopic with short vision, then this results aggressive

competition among agents to move toward a same area in order to compete

sugar (i.e. a herding behavior). The results of this herding behavior are

similar to the recent crashes in stock and credit markets.

54



CHAPTER 3. AGENT-BASED MODELING

Figure 3.4: Sugarscape model
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Chapter 4

An ABM of the Non-life

Insurance Market

4.1 Introduction

The major existing (and competing) theories of insurance cycle are re-

viewed in Chapter 2, together with their main drawbacks and limitations

of explaining this market dynamics of non-life insurance. Chapter 3 intro-

duces the approach of Agent-based modeling (ABM) as a newly developed

research tool that provides a helpful and complementary way to improve

our understanding of cyclic market aggregate behavior, since ABM mainly

focuses on understanding the basic individual agent’s behavioral patterns

(e.g. insurers’ rules of thumb in the real-world environment to dealing with

different market situations) and interacting them in an artificial system to

achieve many complex aggregate stylized facts that are appeared in the real

world. This chapter applies ABM to explain the cyclic behavior of insur-

ance premium and market combined ratio in the non-life insurance market.
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This chapter is organized as follows. Section 2 reviews and summarizes the

distinguishing features of our ABM insurance market that aims to address

the limitations and challenges of existing traditional models, in comparison

to the previous studies of underwriting cycle. Section 3 presents our base

case model in detail along with addressing main assumptions and simpli-

fications. Section 4 explains the real market data from the UK insurance

sectors. Section 5 discusses the estimations of model parameter values.

Simulation results are evaluated and illustrated in Section 6, followed by

the key procedures of verification and validation for our model in line with

real market data in Section 7. Then, we discuss the results and the fur-

ther sensitivity analysis of key parameters in Sections 8. Finally, Section

9 concludes this chapter.

4.2 Literature Review

4.2.1 Monopolistic competition

Existing insurance cycle literature recognizes the competitive nature of this

market (Winter, 1994). Most models assume perfect competition and re-

quire assumptions such as: (1) Insurance products are homogeneous: insur-

ance contracts have similar terms and conditions among different insurers;

(2) Every insurer is a price taker: no individual insurer has a significant

market power to decide the market price, but the price is decided by the

aggregation of all insurers; (3) Zero transaction costs and perfect informa-

tion of exchanging goods or services between buyers and sellers: insured
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customers pay premium regularly and insurers compensate their customers

when claims are incurred, so the process is straightforward. In this com-

petitive market, price reflects the average cost of risks (i.e. it should be

stable on average if the market is large enough to diversify individual risks,

but sometimes it may have random fluctuations around the mean because

of the uncertain nature of this business), and therefore the market should

not exhibit patterns such as cycles, in theory(Cummins and Dionne, 2008).

However, several sources of market imperfection cause cyclic behavior. For

example, Cummins and Outreville (1987) argue the time delay of process-

ing past information cause auto-correlation in price, since it takes time to

get useful information from raw claim data; Harrington and Danzon (2000)

discuss how the practical limitations of liability law and insurance regu-

lation affect the competitive price, since government has a responsibility

to control the price within a certain range therefore maintaining a stable

market; Danzon (1983) finds that rating bureaus in U.S. property-liability

insurance market facilitate entry and competition by allowing small in-

surers to compete without the substantial information or loss experience

available to larger ones; this leads to the cyclic dynamics of excessive ca-

pacity and insolvency in the industry.

In contrast with the assumption of “perfect competition” in the tradi-

tional insurance market literature, we suggest that non-life insurance mar-

ket is characterized by monopolistic competition (Davies and Cline, 2005).

Our argument in favor of the “monopolistic competition” assumption and

against the above three main structural characteristics of perfect competi-
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tion are:

1. Although there are a large number of insurers, and products (i.e.

insurance policies and contracts) are generally similar, they are dif-

ferentiated in terms of non-price characteristics or product attributes.

Schlesinger and Schulenburg (1991) emphasize that, whereas the in-

surance contract might be roughly similar from insurer to insurer, the

insurance product is a service and will be variable. More specifically,

such different services (Wells and Stafford, 1995) include: insurers’

reputation and branding, their perceived reliability and trustworthi-

ness, also the relationships between insurers and customers (Crosby

and Stephens, 1987), ease of policy cancellation, online websites, ac-

cess to information and communication, protection and safety of per-

sonal data, marketing and advertising methods, sales promotional

activity, convenience, out-of-hours phone service and complaint han-

dling (Doerpinghaus, 1991), etc.

2. The market is therefore segmented with slightly different products

targeted at different customers’ preferences over these characteris-

tics. Monopolistic competition means that insurers face highly, but

not perfectly, price-elastic demand. Although no single insurer has

significant power to affect the market price, each of them has lo-

cal power to influence the price in its particular market segment,

and in neighboring segments. Insurers maximize profits by setting

prices competitively and also through non-price competition. They

can identify ex-post whether other insurers make higher profits in

other areas of the market (i.e. different groups of customers) and will
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strategically target these more profitable areas.

3. Although it is straightforward to exchange services in insurance busi-

ness once the contract is completed, it requires investments and costs

for both buyers and sellers to start a contract and collect mutually

trusted information. Insurers invest in developing skills so as to bet-

ter underwrite the risks of their existing customers and attract poten-

tial new customers, while customers expend both money and time to

understand the benefits of their contracts and find suitable insurers

(Schlesinger and Schulenburg, 1993). This process of searching and

matching entails transactional costs, which means that the insurance

market is not perfectly competitive.

Our recognition of monopolistic competition suggests that each individual

insurer has local power to affect the price in its targeted customer groups,

although this localized impact is not enough to influence the whole mar-

ket. There are two important questions related to this: (1) Since an insurer

has the power to affect the local price in its market segment, instead of

being a pure price-taker, as suggested under perfect competition, the in-

surer’s price decision and strategic behavior now become significant to its

profitability. How to model these kinds of individual behavior? (2) The

market is loosely segmented with heterogeneous insurers and customers, so

how does one explain how the collection of these individual parts affects

the overall market? The following subsections discuss these issues.
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4.2.2 Behavioral economics

Behavioral Economics purports to provide a more realistic approach to

real-world behavior and to individual agents’ decision-making processes

compared to early, classical economic models with rational agents (Simon,

1987). It argues that economic agents may not achieve full rationality in

reality (i.e. they exhibit bounded rationality) and these agents are not nec-

essary to purely seek the goal of profit and standalone utility maximization

since heuristics may influence decision instead of being strict logic (Camerer

and Lowenstein, 2003). For example, the findings from Prospect Theory

(Kahneman and Tversky, 1979) are very relevant to pricing decisions in

the insurance market. Recently, Blake et al. (2013) apply some of these

findings to investigate optimal investment strategies in defined contribu-

tion pension plans under loss aversion. One reason for the use of simple

heuristics may be that collective experience in organizations teaches man-

agers that some heuristics can deliver near-optimal or robust performance.

For example, Conlisk (2003) shows that adaptive heuristics for stopping

searches, based on an aspiration target which involves an average of past

performance, can approximate optimal stopping rules. Owadally et al.

(2013) also show that a simple rule based on deviations from a target can

lead to robust contribution rules for a savings and investment plan. Bau-

mol and Quandt (1964) investigate rules of thumb which managers may

use to achieve “optimally imperfect” pricing decisions in practical settings.

Kunreuther et al. (1993) find that insurers attach greater importance to

losses than to gains of equivalent magnitude, they are willing to give up
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more gains in order to avoid equivalent losses (i.e. loss aversion). As a

result, they update their prices more aggressively when they reach an in-

solvency level. Meanwhile, insurers and customers often overweight small

probabilities (e.g. few occurrences but large severity) and underweight large

probabilities (e.g. more frequency but small severity) of events. This is of-

ten referred to as non-linear probability weighting or availability bias.

Kunreuther et al. (1993) also recognize that insurers often use a reference

level to set prices rather than depending purely on updated new infor-

mation about the risk of its portfolio (i.e. reference dependence or status

quo bias). This reference level may take the form of the past price, or

the average market performance, or the direct competitors’ decisions, or

the average capital level, etc. This is consistent with the interdependent

(benchmark) decision-making behavior that is proposed by Gali (1994),

who argues that the happiness of an economic agent not only depends on

his/her own consumption but also on his comparison with other agents’

levels of consumption (i.e. so-called “keeping up with Joneses”).

Kunreuther et al. (2013) use some real-world examples (so-called “anoma-

lies”) to explain the impact of behavioral decision processes on both supply

and demand in the insurance market. They argue that, in the real world,

neither insurers’ sale of insurance, nor customers’ purchase of insurance,

occurs purely for the purpose of risk transfer as rational decision-making

would dictate. Both parties may have other insurance-related goals that

are not consistent with being rational agents. As Kunreuther et al. (2013)

mentioned that insurers’ goals are influenced by their different stakehold-
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ers. Likewise, customers may also have four main goal categories that may

influence their purchases: investment goals, satisfying legal or other official

requirements, compensating their personal feeling of worry or regret, and

meeting social cognitive norms.

Kunreuther (1989) analyses the role of actuaries and underwriters’ behavior

in the insurance product design and pricing decision. He finds that insur-

ers are often not willing to offer protection against some uncommon risks,

even though new opportunities with low overall supply and low competi-

tion could be profitable. The empirical evidence from their investigations of

actuaries and underwriters suggests that there are ambiguities associated

with these risks which affect the judgment of actuaries and underwriters,

rather than being based on an rational profit-maximization analysis.

Stone (1973) also observes that underwriters’ pricing behavior often follows

a safety-first approach in order to avoid insolvency risk rather than max-

imizing the expected profits of their risk portfolio. Doherty and Phillips

(2002) analyze the interconnection between changing A.M. Best’s rating

standards and build-up of capital by U.S. property-liability insurers. They

show that the pressure for insurers to maintain their existing rate lev-

els provides a plausible explanation of the dramatic build-up of capital

in the industry when the credit rating agency increases the capital re-

quirements during the 1990’s, rather than being considered as an rational

profit-maximization decision. Insurers’ apparent inertia to switch their rat-

ing methods also seems to be irrational.
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Grace et al. (2004) find that insurers stick with rating guidelines based on

recent loss history, rather than using more analytical and scientific CAT

models when they estimate future premiums after suffering a major catas-

trophic event. As a result, after a major disaster, insurers often increase

future premiums excessively or reduce the supply of catastrophe coverage

drastically.

Ligon and Thistle (2007) suggest that such boundedly rational behavior

by market participants can help to explain the underwriting cycle. They

develop a model where insurers are overconfident about the private infor-

mation which they hold on expected losses. The insurers also overreact

to new information which becomes available to them. These insurers of-

ten overestimate the precision of their own abilities when deciding correct

prices, which may lead to cyclic deviation of market price from the true

expected risk.

Similarly, Boyer and Outreville (2011) present a behavioral pricing model

that focuses on underwriter sentiment. They illustrate that cycles can be

purely driven by a biased perception of the random process that generates

future losses. Fear and greed on financial markets can preclude rational

behavior. Fitzpatrick (2004) describes how fear can contribute to the cy-

cle formation dynamics. For example, insurance companies may create

powerful short-term incentives (e.g. bonus and promotion based on short

term performance) for underwriters to sell as many policies as possible at

irrationally unprofitable price levels under normal circumstances. Such a

culture then generates ‘fear’ when huge losses are realized in more extreme
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circumstances.

Also, Ingram et al. (2012) discuss the role of “surprise” in pricing deci-

sion when agents are moving from one social state to another in order to

understand the human-side dynamics of the insurance cycle based on the

theory of Plural Rationalities (or so-called “cultural theory of risk”) (Dou-

glas and Wildavsky, 1982, p. 174). They argue that individual agents

often move in and out of many different personal situations when making

decisions, they may make rational decisions in some particular situations

while being irrational in other circumstances. The rotation of these differ-

ent states may create cycles.

Agent-based Modeling (ABM) provides a way to model such boundedly

rational behavior by individuals (LeBaron, 2000). It makes it possible to

implement simple behavioral rules followed by insurers. Because insur-

ers do not exhibit pure profit-maximizing behavior, these rules allow us

to represent commonly observed real-world behavior such as non-linear

reaction to gain and loss by insurers (i.e. Prospect Theory), and perfor-

mance comparison against competitors or benchmarks (i.e. interdependent

decision-making behavior).

4.2.3 Economic location models

Two characteristics of monopolistically competitive markets are important

in our model structure: (1) sellers have a degree of control over price lo-

cally, although no one can dominate the market globally; (2) customers
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perceive that there are non-price differences among different sellers’ prod-

ucts or services, which depend on customers’ individual product preference.

The main difference between monopolistic and perfectly competitive mar-

kets is that the products are heterogeneous in monopolistic competition,

because strategic non-price competition between insurers leads to product

differentiation.

We use economic location models as our main tool to analyze the dy-

namics of insurance markets (Hotelling, 1929; Salop, 1979; D’Aspremont

et al., 1979; Economides, 1986b). These models use “location” and “dis-

tance” as a way to define and capture product differentiation. The models

can be based on geographic location with physical distance as in the orig-

inal model of Hotelling (1929), but generally distance represents variation

in customers’ preferences in a product characteristic space (Salop, 1979).

For example, a customer rents a DVD from the nearest shop because it

costs less on transportation and saves time (i.e. geographic location in a

physical distance). A customer could also buy a particular bottle of per-

fume from many options with similar prices at one counter because she has

a unique preference and it has a closest preference distance between the

customer and the perfume (i.e. customers’ preference distance). Although

physical distance is easy to measure and observe, the distance between

customers’ preferences is abstract. It may be possible to calibrate the dis-

tance between customers’ preferences using customers’ product experience

(Riordan, 1986).

As mentioned in Schlesinger and Schulenburg (1991), insurance policies
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are also different in terms of non-price characteristics about the insurance

product, e.g. provision of online or telephone service, product bundling,

etc. Nowadays the physical locations of direct insurance companies and

intermediate brokers are less relevant to the majority of customers’ pur-

chasing decisions because of the development of advanced information and

communication technologies (Petersen and Rajan, 2002). So the location

space is more “a preference space for product characteristics” (Degryse and

Ongena, 2005). A customer is at a particular location because he prefers

a particular set of characteristics about the insurance policy. His location

is his own most preferred product specification. He might have a utility

function in terms of price as well as in terms of this particular product

specification, where the distances between the customer’s personal unique

location and the particular characteristics of potential products can be seen

as extra costs (e.g. the cost of searching a product that matches customer’s

preference or the cost of switching from existing products to a better op-

tion) (Berger et al., 1989). Location or the distance between suppliers and

purchasers may also represent the cost of acquiring the necessary informa-

tion to build mutual trust (Schlesinger and Schulenburg, 1993).

Location, or distance differentiation, in our model represents and com-

bines different sources of costs which affect customers’ insurance purchas-

ing decision, and which are not related to the actual market price of the

product. Such “non-price costs” include the physical transportation cost

(Regan and Tennyson, 2000), the information searching cost (Dahlby and

West, 1986; Posey and Yavas, 1995; Posey and Tennyson, 1998), and the

customer switching cost (Schlesinger and Schulenburg, 1993). Both phys-
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ical transportation and information searching activity are much cheaper

nowadays than in the past, but they are still relevant to insurers’ selection

of distribution channels and methods of selling their new products (e.g.

whether through traditional approaches of direct human contact, or on-

line websites without human intervention). Customer switching cost arises

because of customer inertia and customer loyalty, and is consistent with

findings from Behavioral Economics. For example, Liebman and Zeck-

hauser (2008) argue that, in reality, customer inertia and confusion lead

to customers sticking with overpriced and poorly designed policies, and

this explains the anomalies of consumers’ irrational purchasing behavior

as outlined in (Kunreuther et al., 2013, p. 40).

4.2.4 Emergent behavior in complex systems

Behavioral Economics attempts to understand the individual behavior of

an economic agent with bounded rationality. Economic Location Models

capture the main characteristics of a monopolistically competitive system.

One of our main contributions is to combine these two elements into one

agent-based model. As explained in Chapter 3 where Agent-based Model-

ing was introduced, the key benefit and advantage of ABM is the ability to

simulate the interaction between heterogeneous agents, in an endogenous

fashion and in a complex system (monopolistic completion based on an

economic location model). This can generate emergent and complex be-

havior which is hard to be explained by using traditional economic models

but which appears commonly in the real world.
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The bottom-up approach of agent-based modeling can explain many styl-

ized facts in the real world. For example, Froot et al. (1992) disagree

with the standard models of informed speculation, which suggest that ra-

tional traders learn by acquiring private information, unavailable to other

investors, when they hold assets over a long horizon. Instead, they argue

that speculators’ behavior is of a short-term nature and speculators rely on

learning from other traders’ decisions, which explains herding phenomena

in real financial markets. Similarly, Lux (1995) uses a self-organizing pro-

cess to understand herd behavior in speculative market and the emergent

results of bubbles and crashes.

Arthur et al. (1996) suggest an ABM of asset pricing based on hetero-

geneous agents who continually adapt their individual expectations to the

current market, but this market is endogenously created by the aggregation

of these individual expectations. It has a recursive nature and a feedback

loop, since an individual agent’s expectation is formed on the basis of its

anticipation of other agents’ expectations. Thus, individual beliefs or ex-

pectations become endogenous to the market in the system, and constantly

compete within an ecology of other agents’ beliefs, so that agents co-evolve

over time.

Returning to our insurance market and underwriting cycle literature, Lai

and Witt (1992) and Lai et al. (2000) attempt to analyze cycles from an

endogenous view. However, if one uses the definition of endogenous expec-

tation of Arthur et al. (1996), their models are not completely endogenous.

Although the model of Lai et al. (2000) suggests that changes in both
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insurers’ and customers’ expectations about the future environment may

cause cycles and crises, the sources of these expectation changes are still

based on exogenous variables rather than endogenous factors (e.g. other

insurers’ expectations). An example of exogenous variables in their model

is interest rates, which may be affected by credit markets as well as regu-

latory or political risk. Our model tries to offer a more complete view of

endogenous market dynamics, one of the outcomes being the emergence of

insurance cycles.

4.3 Model Specification

4.3.1 Outline and model assumptions

In our ABM of the insurance market, the market process is similar to Tay-

lor (2009). The insurance market is simplified and contains insurers and

customers only. It operates in discrete time, the unit of time is arbitrary

but may be thought of as the minimum period during which an insurer is

able to reassess and respond to its market circumstances (e.g. one year).

As illustrated in Figure 4.1, insurers interact in each time period (t, t+ 1)

according to the following steps: (1) At time t, each insurer offers its

own unique market competitive price to all customers. (2) Every cus-

tomer calculates the total cost of purchasing insurance from each insurer.

This includes both the price of insurance from a particular insurer and the

distance-related costs between the customer and this insurer. The distance-

related costs are explained in the subsection of Economic Location Models
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above, which states that customers incur a smaller cost when the charac-

teristics of a particular insurer’s products are closer to matching customers’

personal preference or product specification than other competitors. (3)

Based on the estimated total costs, customers select the lowest option, and

the whole market is balanced between supply and demand. Insurers collect

premiums after being selected by their customers at time t. (4) Customers’

total claims are randomly generated and paid by insurers at time t+1. (5)

Insurers update their underwriting results after paying the claims to their

customers. (6) Market performance is updated at the end of each time pe-

riod. This includes combined (or loss) ratios, premiums and profits, both

for the whole industry and individual insurers. (7) Based on newly updated

market performance, insurers decide what their competitive price will be

in the next time period.

The market process then recommences at the beginning of the next pe-

riod. Beyond some basic assumptions1 which are also made by both Taylor

(2009) and Maynard (2012), we also assume that the market is monopolis-

tically competitive, rather than perfectly competitive. It is compulsory for

each customer to purchase an insurance policy in each time period. The

next several subsections discuss each step in greater detail.

1Common market simplifications, such as: Zero claim inflation; Short tail business;
No tax and administration expenses; No agency cost and complicated moral hazard
problems; No external capital market, reinsurance, brokers, intermediary agent; No in-
ternational operation, multinational currency, exchange rate; No other complex invest-
ment vehicle, financial product, hedging instrument, derivatives, legal issues, accounting
and reporting policy, etc.
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Figure 4.1: Market process of Non-life insurance market

4.3.2 Insurer’s market competitive price

(1) Neoclassical Price Theory

It is a standard result in neoclassical price theory that a firm’s profits

are maximized when marginal cost (MC) equals marginal revenue. This

occurs when the firm charges the price P ∗ given by

P ∗ = MC × (1 + ε−1)−1 (4.1)
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where ε is the price-elasticity of demand. See for example Hirschey and

Pappas (1996, p. 637) or Petersen and Lewis (1999, p. 429).

Equation (4.1) is an example of cost-plus or mark-up pricing. Price is

formulated as a function of cost which is marked-up through the term

(1 + ε−1)−1. If a market is competitive and its demand elasticity is high,

then the price-cost margin (P ∗ −MC)/MC and mark-up P ∗/MC will be

lower. In a perfectly competitive market, with perfect elasticity of demand,

there is no mark-up and firms charge a price equal to the marginal cost

and make no economic profit.

(2) Cost-plus or Mark-up Pricing

Management accounting studies report that cost-plus pricing is very preva-

lent among firms in a wide range of industries. For example, Drury and

Tayles (2006) report that 60% of 112 firms surveyed in the U.K. use it

in some forms to set prices. Many firms practise an approximate form of

cost-plus or mark-up pricing. Typically, they use a rule of thumb rather

than a precise calculation of marginal cost and elasticity of demand. For

example, the marginal cost MC is Equation (4.1) is replaced by an average

cost and the elasticity of demand is estimated based on recent sales data.

See Lucas (2003) and Petersen and Lewis (1999, p. 427).

Although cost-plus pricing through a rule of thumb is sometimes criticized

as simplistic, it is also regarded as a practice which enables managers to

determine optimal prices efficiently in a practical setting. See for example

Petersen and Lewis (1999, p. 429), Hirschey and Pappas (1996, p. 640),
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Lavoie (2001) and Lee (1999, p. 201). It is expensive and difficult to collect

information on demand schedules, marginal costs and marginal revenues,

so cost-plus pricing represents a pragmatic proxy for marginal analysis.

Turning specifically to the insurance industry, there appears to be no pub-

lished work on marginal cost and revenue analysis by insurers. It appears

that insurers have only limited information about demand schedules and

uncertain knowledge of consumers. Indeed, Warthen and Sommer (1996)

refer to the elasticity of demand for individual insurers as a variable that

cannot be estimated. Monopolistic competition means that firms are in-

terdependent and will adapt their strategies in response to the market

environment and to each other, so the demand function faced by any one

firm is highly variable and not easy to measure. A form of cost-plus pricing

based on Equation (4.1) is therefore more practical than a comprehensive

marginal analysis of revenue and cost. Indeed, Booth et al. (2005, p. 404)

suggest that the insurance premium calculation consists of a two-stage pro-

cess, the first being a costing exercise with actuarial input and the second

being a pricing stage which involves a commercial adjustment to the cost.

(3) Pricing by Insurers

We assume in our model that insurers price their policies using a modified

form of Equation (4.1). First, in the absence of information on incremental

cost and revenue, insurers use the average cost of a policy. Long-run aver-

age cost and marginal cost are often not too different (Petersen and Lewis,

1999, p. 429). Much of the cost is variable rather than fixed (Feldblum,

2001). In the case of insurance business, the expected loss on a contract
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is the variable cost, and this is the key element in premium considera-

tion. Second, the average cost is based on established actuarial premium

principles (Kaas et al., 2008). Detailed premium principles and proper-

ties are included in the Appendix. In Equation (4.1), MC is therefore

replaced by P̃it + αFit, where P̃it is the pure premium based on the ex-

pected claim cost faced by insurer i at time t, and αFit is a risk loading or

safety loading (α > 0 is a loading factor and Fit is the standard deviation

of claims experienced by insurer i at time t). This is consistent with the

Standard Deviation Premium Principle, which states that a risk-averse in-

surer requires a loading to compensate for the uncertainty of its risk-taking

business, with risk being measured using the standard deviation. Third,

we define the log-mark-up mit employed by insurer i at time t through the

following equation:

Pit =
(
P̃it + αFit

)
emit (4.2)

Since the exponential function has the following expansion based on the

Taylor Approximation:

ex =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ ... ∀x

so if x is small enough, the approximation is:

ex = 1 + x
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Therefore, Equation (4.1) can be approximated to:

P ∗ = MC × (1 + ε−1)−1

= MC × (e−ε
−1

)

=
(
P̃it + αFit

)
emit

Where mit = −ε−1it for insurer i at time t. To evaluate the optimal mark-up,

the management of an insurance company must estimate price-elasticity of

demand εit. This varies (a) at different price points, (b) in different seg-

ments of the market where customers have different product preferences,

(c) at different stages of the underwriting cycle. Insurers cannot therefore

estimate their price-elasticity of demand precisely (Warthen and Sommer,

1996). Note that individual insurers will experience different price sensi-

tivity in different segments of the market and at different times. This is

due to the characteristics of monopolistic competition (Davies and Cline,

2005). This suggests that each individual insurer locally has the power to

affect the price in its targeted customer groups and market segments, but

any one of these local-level impacts is not enough to influence the whole

market. In the case of motor insurance, the market demand as a whole is

relatively inelastic relative to price, but the local demand is very elastic for

an individual insurer (Feldblum, 2001).

Following the general example given by Hirschey and Pappas (1996, p.

639), we assume that insurer i calculates a crude elasticity of demand at
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time t using an arc-elasticity over the previous two periods:

ε̂it =
(Qi,t−1 −Qi,t−2)/(Qi,t−1 +Qi,t−2)

(Pi,t−1 − Pi,t−2)/(Pi,t−1 + Pi,t−2)
(4.3)

where Qi,t denotes the number of insurance policies sold by insurer i at time

t and Pi,t denotes the price of these policies. (The above approximates the

point elasticity of demand ε = ∂Q/Q
∂P/P

where Q is quantity demanded and P

is price.)

Comparing Equations (4.1) and (4.2), and using Equation (4.3), a first-

order approximation suggests a crude estimate of the mark-up as follows:

m̂it ≈ −
1

ε̂it
= −(Pi,t−1 − Pi,t−2)/(Qi,t−1 +Qi,t−2)

(Qi,t−1 −Qi,t−2)/(Pi,t−1 + Pi,t−2)
(4.4)

This approximation is based on −ε̂−1it being typically small in a highly

competitive market where individual insurers face a gently sloping, and

nearly horizontal, demand curve. Finally, insurer i estimates the optimal

mark-up by updating its previous estimate using a weighted average2:

mit = βm̂it + (1− β)mi,t−1 (4.5)

where 0 < β ≤ 1. It is noteworthy that exponential weighted moving

averages such as in Equation (4.5) occur in macroeconomic models of the

business cycle with variable mark-ups and sticky prices (Rotemberg and

2In the (rare) circumstances where Qi,t−1 = Qi,t−2, which would lead to an infinite
value of m̂it in Equation (4.4), one may calculate the arc-elasticity using values at time
t − 3, but this would lead to outdated estimates based on different market conditions
and possibly distant price points. Instead, we assume that the insurer does not update
its estimate in Equation (4.5) and sets m̂it = mi,t−1.
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Woodford, 1999).

4.3.3 Customer’s total cost of purchasing an insur-

ance

(1) Nature of Customers

In line with the simple insurance market models of Taylor (1986, 1987,

2009), we use the following specification for customers. Each customer

selects the policy at the beginning of each time period. The terms and

conditions of one policy are the same for every customer. These include:

a fixed contract period, identical inception and renewal times (e.g. at the

beginning of every year), two parties only (i.e. the customer and insurer

without intermediaries such as brokers involved), etc. Therefore, all proce-

dures that customers need to perform in our simulation can be summarized

as follows: (1) At the beginning of each time period, customers search and

select one insurance policy according to their selection rule (i.e. the lowest

available total cost); (2) Customers immediately pay the premium to their

insurers at the beginning of each time period; (3) Their risks are randomly

generated by some common claim distributions; (4) Their claims are paid

by the selected insurers at the end of each time period, at which point cus-

tomers start to search and select again for the next period after insurers

update their prices.

We make some further assumptions about customers. Customers have

no connection with each other (Independent); The risks of customers are

identically distributed (Identical); Customers care about the cost of pur-
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chasing insurance in the next period only, and disregard future periods

(Myopic behavior); Customers only use insurance to exchange the risk

over a fixed period and there is no other motivation or negotiation process

between sellers and buyers (Passive); There is no moral hazard or fraud

(Honest behavior); Customers take all opportunities to collect information,

so they know all prices in the market (Diligent).

(2) Location and Distance

A combination of Economic Location models and ABM simulations pro-

vides a good way to understand the dynamics of monopolistic competition.

Examples of Economic Location models include: two competing shops in a

linear street of fixed length (Hotelling, 1929), several competing firms in a

circle city (Salop, 1979), and hybrid variations. In our base case analysis,

we use a one-dimensional circle city that is similar to Salop (1979) as illus-

trated in Figure 4.2. The circular city model is also used by Ladley (2013)

in his inter-bank lending model to define relationships between banks and

households. It assumes a large number of consumers who are identical (ex-

cept for their locations) and who are uniformly distributed along the larger

circle in Figure 4.2. Insurers (shown as smaller circles on Figure 4.2) are

also evenly located on the larger circular space. We also assume that nei-

ther customers nor insurers change their locations, Therefore, our analysis

focuses on price competition, and location plays a role of segmenting the

whole market into local competition (Salop, 1979). We define ∆ij as the

shortest distance3 between insurer i and customer j along the circumfer-

3When implementing the distance on MATLAB, we map the circle city to a fixed
line with 1 unit length and the shortest distance ∆ij between an insurer i at location
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ence.

Figure 4.2: Economic location model: a circle city

(3) Customer’s Total Cost Function

We simplify our customers’ decision rules by assuming that they minimize a

total cost function. A more elaborate decision rule would involve a utility

function, such as the one used by Schlesinger and Schulenburg (1991).

Customer j has the following total cost function of purchasing an insurance

from an insurer i at time t of period (t, t+ 1):

TCij,t = Pit + γ∆ij (4.7)

A and one customer j at location B is:

∆ij = min (abs(A−B), abs(1−A+B), abs(1 +A−B)) (4.6)

where abs(.) is an absolute value MATLAB function.
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where γ is monetary cost per unit of distance. This is similar to utility

loss per unit of distance in Schlesinger and Schulenburg (1991), signifying

a reduction in utility from having to buy a policy which does not satisfy

the consumer’s ideal product characteristics. The product-characteristics

distance ∆ij affects the ability of insurer i to attract the customer j. A

small ∆ij leads to have a low cost of purchasing insurance from insurer i

for the customer j at time t of each period. This is similar to the inter-

bank lending model of Ladley (2013) where depositors select a bank to

place their funds. He argues that the distance between a bank and a po-

tential depositor affects the bank’s attractiveness to the depositor. Ladley

(2013) uses a linear distance to model transaction costs, although he also

tests alternative functions, and finds that these generate few qualitative

differences.

4.3.4 Balancing market supply and demand

Every customer ranks all insurers from the lowest total cost to the high-

est. A customer chooses the insurer with the lowest total cost, from the

customer’s point of view, unless this insurer has reached full capacity, in

which case the customer chooses an insurer with the next lower total cost.

An insurer reaches full capacity if it uses all of its existing capital to sup-

port its insurance business. We assume that the claims of customers are

i.i.d, therefore insurers select the potential customers by fulfilling their in-

dividual capacity. Once they reach their full capacities, they stop taking

other customers. An insurer’s total capacity in each time period depends

on its existing level of capital and the required solvency ratio, and it de-
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fines the maximum total gross premiums that an insurer can take in each

time period. To avoid insurers’ selection biases, we distribute customers

randomly in the system and insurers select interested customers randomly

until they reach their full capacity. For example, if an insurer can only

take up to 10 customers, but there are 20 customers waiting in a queue

that is represented by 20 cells in a column, the insurer will select the first

ten cells. Since the 20 customers were randomly allocated to the cells in

the column, the insurer actually selects the 10 customers randomly (i.e.:

avoided selection bias).

4.3.5 Claim loss experience

Following Taylor (2009), we generate a simple claim loss experience that is

stochastic. This loss experience may include catastrophe (CAT) events to

understand the impact of such events on market dynamics (Taylor, 2009),

but we focus on the normal loss situations in our base case analysis.

Let

• L(M×T ): a random loss matrix that contains the total loss of each of

M individual customers in T time periods4.

• B(M×T ): a random claim frequency matrix that contains non-CAT

claim count for each of M individual customers in T time periods,

where each element of the matrix follows an independent Bernoulli

distribution. This simplification means that each customer can be in

4Losses for each customer in past periods, i.e. before time 0, are also simulated, so
that insurers have some claims data on which to base their prices as from time 0.
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only one of two possible states in each time period: either at least

one claim is made or there is no claim at all. Customers may have

several claims at different stages during one time period, but insurers

may sum up these claims into one cell for this particular period.

• G(M×T ): a random claim severity matrix that contains non-CAT

claim amount for each of M individual customers in T time peri-

ods, where each element of the matrix follows a Gamma distribution

with two parameters defining its mean µG and coefficient of variation

CoVG. Therefore the shape parameter of the Gamma distribution is

1/(CoV 2
G) and the scale parameter is µG(CoV 2

G).

Then the claim loss experience for all time periods is:

L(M×T ) = B(M×T ) ◦G(M×T ) (4.8)

where (B ◦G)i,j = (B)i,j × (G)i,j is the Hadamard product that takes two

matrices of the same dimensions, and produces another matrix where each

element (i, j) is the product of elements (i, j) of the original two matrices.

Each cell in L(M×T ) represents the total loss for an individual customer by

a particular time.

4.3.6 Individual underwriting results

In line with the equation for defining underwriting result of an insurance

company (Daykin et al., 1994, p. 327), an individual insurer’s underwriting

result is traditionally measured as the excess of earned premiums in the

year over incurred claims and expenses. However, we assume zero expense
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in our model and also ignore the interest rate (investment return) in a

single period. Therefore, our underwriting result for insurer i at time t is:

πit = GWPit − Claimit (4.9)

where:

• πit: Underwriting profit or loss;

• GWPit: Gross written premium (which is ‘TotalExposure×InsurerPrice’);

• Claimit: Total claim payments (which is the sum of ‘CustomerSelection×

IndividualLoss’);

Furthermore, following the balance sheet results (Taylor, 2009) and the

basic equation (Daykin et al., 1994, p. 327), we have the following accu-

mulation process for capital Kit, insurer i ∈ I has capital Ki,t+1 at the end

of an underwriting period (t, t+ 1) as:

Ki,t+1 = Kit + πit (4.10)

4.3.7 Overall market performance

We measure the aggregate market performance in a ratio form. The most

commonly used ratios are:

Loss ratio =

∑I
i=1Claimit∑I
i=1GWPit

(4.11)

and

Combined ratio =

∑I
i=1Claimit +

∑I
i=1Expenseit∑I

i=1GWPit
(4.12)
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Since we ignore both expense and investment return in our model, the

above two ratios are identical in our simulation. However, we need to take

extra care when we use real market data to calibrate and validate our

model, since these real market performance ratios contain both expense

and investment loadings.

4.3.8 Re-pricing

At the end of each time period, insurers collect information from the mar-

ket to update their prices. They use such information as the mean and

standard deviation of their own total portfolio loss to update their safety

loading in Equation (4.2), the quantity of insurance sold to update their

mark-up adjustment in Equation (4.5).

The theoretical pure risk premium is:

P0 = λµ (4.13)

Where λ is the mean of claim frequency and µ is the average claim amount.

In reality, insurers estimate the pure premium from their own experience

and the market average based on Credibility Theory (Kaas et al., 2008, p.

203-227). We employ a simple example of the practical pure risk premium:

P̃it = zX̄it + (1− z)λ′µ′ (4.14)

where

X̄it = wXi,t−1 + (1− w)X̄i,t−1 (4.15)
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In the above:

• λ: expected claim frequency per unit risk exposure;

• µ: expected claim size or amount;

• λ′: market collected average claim frequency per unit risk exposure;

• µ′: market collected average claim size or amount;

• z: credibility factor of insurer experience, z ∈ [0, 1];

• X̄it: insurer i’s past weighted average claims experience at time t;

• w: weight on the loss experience of the previous period, w ∈ [0, 1];

• Xi,t−1: insurer i’s average realized claim at time (t− 1).

The credibility factor z explains the credibility or acceptability of an in-

surer’s own experience. It depends on the size of the insurer’s portfolio in

theory. The weight w determines the importance of the experience of the

previous period against the past claim history, given that more recent data

are normally more relevant to the decision of current risk premium.

In our case, both individual insurers’ own claim experience and market

average claim data are generated from the simulations, therefore we can

calculate the prices or estimate the risks based on these generated data.

However, in reality, as Nielsen et al. (2012a, p. 2-3) suggest when data is

scarce or unreliable, insurers need to use different approaches to include

their own prior knowledge into their estimations. Prior knowledge can

come in many forms (or guises). One of the most important sources is
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external data that are related to the insurer’s business, such as market

average data, or data about their main competitors (Nielsen et al., 2012b;

Guillen et al., 2008a; Gustafsson et al., 2007). Other prior knowledge could

be on parametric shapes that have shown themselves to be relevant and

helpful in related studies, or even nonparametric shapes taken from sources

other than data at hand (Buch-Kromann et al., 2007). In particular, when

insurers try to quantify the operational risk of their business, they have

to acquire as much prior knowledge as possible and then adjust this with

their own real observations (Bolance et al., 2013). Furthermore, sugges-

tions from industry experts are also very important (Clemen and Winkler,

1999).

4.4 Data

We use actual data from the UK non-life insurance market to calibrate and

validate our model. The data is collected from the Association of British

Insurers (ABI) database between year 1983 and 2011. This includes loss

ratios and combined loss ratios, on an annual basis, for UK motor insur-

ance, UK property insurance, and all of UK non-life insurance business.

Figure 4.3 shows both UK motor insurance market loss ratios and combined

ratios from 1983 to 2011. The two series of ratios follow a similar cyclic

pattern, since the main difference between them is the expense, which is

stable over time as a proportion of premium (i.e. about 20-25 percent).
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Figure 4.3: Actual market data: UK motor sector ratios (Source: ABI)

These market performance ratios are calculated as follows:

RealMarketLossRatio =
Claims

Premiums

=
ActualClaimCost

ExpectedClaimCost + ExpenseLoading

and

RealMarketCombinedRatio =
Claims + Expense

Premiums

=
ActualClaimCost + ActualExpense

ExpectedClaimCost + ExpenseLoading

Table 4.1 shows basic statistics for the UK motor insurance market. We

find that: (1) the mean of loss ratios is below one (i.e. 0.8190) because

the premium includes both the expected claims to match the actual claims

and expenses loadings to cover normal business operations. (2) the mean

of combined ratios is above one (i.e. 1.0550) because insurers can earn

89



CHAPTER 4. AN ABM OF THE NON-LIFE INSURANCE MARKET

investment return on the premium which they collect in advance of claim

payments. Therefore it is possible for insurers to have the sum of expected

claim and expected expense to be less than the sum of actual claim and

actual expense, since the investment return may cover the losses in their

underwriting results that is not included in the combined ratios.

Table 4.1: Basic statistics of UK motor sector (Year: 1983-2011)

Mean StandardDeviation CoefficientOfVariation

Loss Ratio 0.8190 0.0728 0.0889
Combined Ratio 1.0550 0.0787 0.0746

We ignore both expenses and investment incomes in our model sim-

ulation. Therefore, our simulated loss ratios are the same as simulated

combined ratios which is close to one, rather than being below one (as

actual UK motor market loss ratio) or above one (as actual UK motor

market combined ratio). This is because without taking consideration of

expense and investment loadings, the expected loss (i.e. premium) should

be close to the actual loss (i.e. claim). As Daykin et al. (1994) mention,

both the combined ratio and the loss ratio should drift around one since

the insurance market is competitive overall. If it is below one, it will at-

tract more competition in the long run. If it is above one, most insurers

will become insolvent in the long run. For this reason, when we calibrate

or validate our model, we focus on the Standard Deviation and Coefficient

of Variation of the actual market data, and keep the mean of our simulated

ratios close to one.
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4.5 Parameter Estimation

4.5.1 Summary of parameters

This subsection summarizes parameters in our base case model and their

initial values appear in Table 4.2.

• N : Number of insurers;

• M : Number of customers;

• T : Time periods of a single simulation;

• α: Risk (or safety) loading factor in the price Equation (4.2);

• β: Weight of current market mark-up in the overall mark-up Equa-

tion (4.5);

• γ: Weight of location element in the customer’s total cost func-

tion (4.7);

• b: Bernoulli distribution parameter in Equation (4.8);

• µG: Mean of Gamma distribution in Equation (4.8);

• CoVG: Coefficient of variation of Gamma distribution in Equation (4.8);

• w: Weight of past claim experience in the claim estimation (4.15);

• z: Credibility of own experience in the pure risk premium func-

tion (4.14);

• K0: Initial capital for every insurer in the capital accumulation Equa-

tion (4.10).
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Table 4.2: Initial values of base case parameters

Parameter Initial Value Explanation

N 20 Balance simulation time and real-world representation
M 1000 Balance simulation time and real-world representation
T 1000 Balance simulation time and stability of results
α 0.001 Estimation and calibration from real-market data
β 0.3 Estimation and calibration from real-market data
γ 0.05 Estimation and calibration from real-market data
b 1 Every customer has claim but different amount
µG 100 Keep the average amount of random claims to be 100
CoVG 0.1 Keep variance low to focus analysis on price
w 0.2 Use a rule of thumb (20/80) to simplify this process
z 0.2 Use a rule of thumb (20/80) to simplify this process
K0 100000 Avoid insolvency during simulations

4.5.2 Initialization of parameter values

The parameters α, β and γ in Table 4.2 are the key parameters in our

model, and their estimation is discussed in the next section. Here we

briefly discuss how we chose the remaining parameters, whose values we

found not too significantly affect our simulation results and conclusions.

We follow three steps:

Step 1 Reasonableness check: We firstly test different values of each param-

eter in a reasonable range, as observed from the real-world insurance

market, e.g.: N ∈ [2, 100], M ∈ [100, 1000000], T ∈ [50, 10000], and

K0 > 0. We continually narrow the range until we reach a level where

there is no material difference in the simulation results; we then try

to balance the simulation time and real-world representation of these

values. This step is applied to set the following parameters in Ta-

ble 4.2: N , M , T , and K0.

92



CHAPTER 4. AN ABM OF THE NON-LIFE INSURANCE MARKET

Step 2 Justification from existing literature: Some parameters may not play

a significant role in our main ABM analysis but necessary for the

simulation to run, we try to assume initial values that are close to

existing literature. For example, claim distributions can be generated

by many different models, our implementation is in line with Taylor

(2009) since this paper has a similar market structure and aims to

understand a similar research question.

Step 3 Real-world rules of thumb: The initial values of other less important

parameters are assumed by applying some real-world practical rules

of thumb, such as market practitioners’ feedback, industry experts’

opinion, etc. For example, we use some common rules such as 20/80

(or 50/50) on weight w and credibility z of current claim experience in

insurers’ price estimation. Furthermore, an initial sensitivity analysis

shows that the changes of these parameters have no significant impact

on our key simulation results. This is because claim volatility is low

since our focus is on insurers’ pricing dynamics and our aim was to

keep claim stable. Therefore, the stable claim samples lead insurers’

claim experience to be similar to overall market experience over time,

which means that the weight w and credibility z do not have a sizable

effect on the model results.

4.5.3 Estimation of key parameters

The three key parameters in our model are α, β and γ. They are similar

to the “base case dynamical parameters” of Taylor (2009). We calibrate

them based on real market data in this subsection, then we perform further

93



CHAPTER 4. AN ABM OF THE NON-LIFE INSURANCE MARKET

sensitivity tests to determine how they affect insurance cycles. They are:

• Safety (Risk) Loading factor α in Equation (4.2): This governs the

mean of loss ratio. We set α to normalize mean loss ratio at 100%.

In theory as mentioned in Daykin et al. (1994), the market loss ratio

should drift around one since insurance market is overall competitive.

If it is below one, it will attract more competition in the long run. If

it is above one, most insurers will become insolvent in the long run.

• Mark-up Weight β in Equation (4.5): It manages the insurer’s re-

action to current market environment. We perform a brute-force

grid search with refinement to equate standard deviation and lag-1

auto-correlation with real data.

• Location Weight γ in the customer’s total cost function (4.7): It

controls the role of an insurer’s non-price competitive advantage in a

customer’s purchase decision. We also apply a brute-force grid search

of a combination of location and mark-up weights with refinement

equate standard deviation and lag-1 auto-correlation with real data.

More details appear below.

1. Parameter estimation for the key parameters α, β and γ proceeds

by a version of the method of moments. Because our data is au-

tocorrelated, we would like to solve for α, β, γ by equating the

following statistics calculated from the simulated data to the cor-

responding statistics from the UK sample data: (1) µSim = µReal; (2)

σSim = σReal; and (3) ρSim = ρReal, where µSim, σSim and ρSim repre-

sent the mean, standard deviation and lag-1 autocorrelation from the
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simulated sample path and, whereas µReal, σReal and ρReal represent

the respective statistics from the sample time series data.

2. In theory, we could use a grid search procedure whereby we try a

large number of combinations of values for (α, β, γ), carry out a

large number of years simulation, calculate the mean µSim, standard

deviation σSim and lag-1 autocorrelation ρSim, minimize a weighted

penalty function such as abs(µSim−µReal) +w1×abs(σSim−σReal) +

w2 × abs(ρSim − ρReal), and then refine the grid around the penalty-

minimizing triplet (α, β, γ), and start the grid search again, etc.

3. In practice, we observe from our initial simulations that α controls

the mean, but has little effect on the higher moments of the simulated

time series. We can also see that this is true by construction in our

model if we assume that the mark-up (or elasticity of demand) is seri-

ally independent of aggregate claims (from Equations (4.2), (4.4) and

(4.5)). So we can choose α to satisfy condition (1) µSim = µReal above

(if µReal is a reasonable mean loss ratio). However, both real market

loss and combined ratios contain real world elements of expense and

investment returns as explained in Section 4.4, and therefore they

are slightly different from our simulated results since we ignore these

elements. As a result, a more reasonable mean loss ratio is close to

one given that the motor insurance market is competitive (Daykin

et al., 1994). If it is below one, it will attract more competition in

the long run. If it is above one, most insurers will become insolvent

in the long run. Since Table 4.1 shows similar values of standard

deviation for both real-world loss ratio and combined ratio, we can
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chose to target any one of these two ratios as long as we target the

mean of our simulated ratios to be close to one.

4. We then use a grid search procedure with refinement to estimate β

and γ: we have found that there are several pairs of values of (β

and γ) which satisfy condition (2) σSim = σReal. It gives a surface

when we plot standard deviation of simulated data vs. β and γ, and

there is a line of values of (β and γ) corresponding to the sample

standard deviation (We have found that we can always raise the

standard deviation of claims process to achieve this.) Likewise, there

is no unique pair of values of (β and γ) which satisfies condition (3)

ρSim = ρReal. One possible strategy is to choose (β and γ) which

minimizes w1‖σSim− σReal‖+w2‖ρSim− ρReal‖, but the choice of w1

and w2 is then arbitrary. Instead, we choose the pair of values (β and

γ) which satisfies condition (2) and we minimize ‖ρSim − ρReal‖, i.e.

this gives us the closest approximation of condition (3). The valid

key parameter combinations are summarized in Figure 4.4.

5. As a result, the initial values for the three key parameters are esti-

mated by a brute-force grid search procedure with refinement, equat-

ing standard deviation and lag-1 auto-correlation with real data. The

estimated parameter values for α, β and γ are given in Table 4.2.
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Figure 4.4: Key Parameters’ Estimations: statistics (standard deviation

and lag-1 autocorrelation) for loss ratio under different parameter combi-

nations

4.6 Simulation Results

In this section, we show the main results of our model and illustrate the

dynamics of the motor insurance market. The detailed discussions are

included in the next several subsections, but a key summary follows:

• Claim experience and market premium: We generate a sample of

non-CAT claims for each customer at each time period, so the over-

all market losses are stable over time. This simplification helps us

to capture the dynamic cyclic behavior of price and loss ratio that

are due to insurers’ interactions, rather than being driven by major

market losses.

• Loss ratio: Casual inspection reveals that there are cyclic patters over
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both short and long periods in the market loss ratio, as well as in the

loss ratios of individual insurers. However, individual insurers’ results

are more volatile than the overall market and different insurers have

different cycle periods. This may reflect local market competition

involves in the process.

• Mark-up pricing adjustment dynamics: The mark-up adjustment has

a direct impact on the market competitive price of an insurer, it is

worth looking at its pattern over time. Not surprisingly, both short

and long term average results of current estimated mark-up such as

in Equation (4.5) exhibit cyclic patterns.

• Cyclic market behavior: The autocorrelation function and partial

autocorrelation function suggest that market combined ratios, pre-

miums and profits over time follow an AR(2) process.

Simulated data collection: we follow a few steps to test and select our

simulated data. (1) We use different claim samples that are generated

from same distribution parameters to run different lengths of simulations

(e.g. test 100, 500, 1000, 2500, and 5000 time periods). (2) We compare

the average results of key variables (e.g.: market premium, loss ratio and

profit, etc) from each simulation with same time periods, together with

their statistics. (3) We find that a time length of 500 periods and more gives

us stable results under different claim samples, since our claim distribution

has a low coefficient of variation and therefore stable claim samples. This

means that we can use a single simulation (e.g. a particular claim sample

time series) over (at least) 500 time periods to analyze our model. (4)

We chose 1000 time periods for our experiment, since it balances both
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the simulation time and result stability. (5) We also discard the first 100

periods to avoid transient results at initialization, which means that all

statistical analyses later are performed based on the 900 periods after this

first 100 periods.

4.6.1 Claim experience and market premium

Figure 4.5 shows one simulation over 500 time periods of claim experience,

insurers’ offered prices, and premiums paid, all averaged over the market.

According to rational expectations theory, insurers’ prices should follow

the claim pattern over time in response to new information about risk in

a fully competitive market (Cummins and Outreville, 1987). However, in

monopolistic competition, the interaction of insurers plays a key role in

the determination of the market competitive price. Therefore, it is not

surprising that prices in our simulation behave differently from claims, as

may be seen in Figure 4.5. The thick dark line is the market average

claim experience, which is stable over time. The thin dark line is the

market average premium, which is cyclic and more volatile than claim.

The dotted line is the average of all insurers’ offered prices, which is higher

than market average premium since customers prefer and select the lowest

possible prices. This figure only provides an initial snapshot about the

prices and claims in our simulation over time. More detailed results will be

discussed later when we analyze the cyclic patterns of simulated loss ratios.

There appears to be cycles in between 6 and 8 time periods, therefore we

will show some results with a shorter length of timespan.
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Figure 4.5: Claim experience: comparison of claim and premium 1

Figure 4.6 shows the histograms of market average losses (i.e. the left

diagram) and market average premiums (i.e. the right diagram) in one

simulation over 1000 time periods. It is apparent that they are distributed

differently. Average claims in the market are approximately normally dis-

tributed over 1000 time periods as expected by the Central Limit Theorem,

while the market average premiums are clearly non-normally distributed:

it is easy for insurers to reduce prices to attract customers, but it is difficult

to increase prices and retain customers to cover their poor claim experi-

ences. Therefore, the distribution of market average premiums over 1000

time periods is negatively skewed.
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Figure 4.6: Claim experience: comparison of claim and premium 2

4.6.2 Loss ratio

Our simulated loss ratio is a ratio of claims paid to premiums collected at

each time period (see Equation (4.11)), so it should follow a similar pattern

to premiums assuming non-CAT claims. Figure 4.7 shows the market loss

ratio, which depicts the performance of the overall market, over the first 50

time periods. A casual observation of the chart seems to indicate a cyclic

pattern.
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Figure 4.7: Loss ratio: market performance over 50 periods

Figure 4.8 shows the Autocorrelation (AcF: left diagram) and Partial

autocorrelation (PAcF: right diagram) plots of the simulated market loss

ratios over 1000 time periods. It is strongly suggestive of an AR(2) process.

The AcF plot illustrates the correlations are diminishing and changing

directions, they become insignificant after a few time lags. The PAcF plot

shows both first and second lags are significant autocorrelated. An AR(2)

process of loss ratio is consistent with existing insurance cycle literature

(Cummins and Outreville, 1987).
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Figure 4.8: Loss ratio: AcF and PAcF correlograms

The market loss ratio is a combination of individual insurers’ perfor-

mance in the whole market, therefore we expect that individual insurers

also experience cyclic performance. In Figure 4.9, we randomly select an

individual insurer and show its loss ratio over 50 time periods. A cyclic pat-

tern is immediately obvious. One might expect that an individual insurer’s

performance is more volatile than the market average performance.
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Figure 4.9: Loss ratio: an individual insurer over 50 periods

4.6.3 Mark-up pricing dynamics

Insurers’ individual mark-up adjustments mit in Equation (4.2) reflect the

current situations of local market competition and insurers’ individual elas-

ticity of demand. When local demand is elastic, insurers are unable to

increase their prices since customers will change their product selection

quickly to other cheaper options. Therefore, a more competitive local en-

vironment will force insurers to adjust their mark-up more cautiously until

the local competition becomes less intensive. As a result, although we can-

not directly measure the local market competition intensity, the change

and pattern of mark-up adjustments provide useful information about the

changes in local market conditions and its impact on the price and insurers’

performance.

Figure 4.10 shows the market average of all insurers’ mark-up adjustments
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over 50 time periods. Two conclusions may be drawn. (1) As discussed

when Equation (4.4) was introduced, the values of mark-up are typically

small in a highly competitive market where individual insurers face a gen-

tly sloping, and nearly horizontal, demand curve. (2) There is also a cyclic

pattern in the values of mark-up over time, which reflects the cyclic nature

of market competition.

Figure 4.10: Mark-up adjustment: market average over 50 periods

Figure 4.11 shows the mark-up adjustment for a randomly chosen indi-

vidual insurer, over 50 time periods. Similar to the comparison of market

average and individual insurers’ loss ratio as above, it also exhibits a cyclic

pattern and a more volatile result than a market average. On rare oc-

casions, individual markup adjustments appear to be negative. Negative

numbers mean that the relationship between price and quantity is posi-

tive, i.e. price of policies and quantity of policies sold sometimes increase
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at the same time. This appears counterintuitive, but it arises because

the purchasing decision of customers not only depends on price, but also

depends on location (i.e. local competitions among neighbors). When lo-

cation dominates in the total cost function, the relationship between price

and quantity of an insurer may be positive. For example, if an insurer

increases its price at the same time as neighboring insurers are increasing

their prices, then it is possible for the insurer to sell more policies if its

price increase is less than the price increase of its neighbors.

Figure 4.11: Mark-up adjustment: an invidual insurer over 50 periods

4.6.4 Cyclic behavior of market premium

One useful way to look at a cycle is by showing the correlograms of au-

tocorrelation function (AcF) and partial autocorrelation function (PAcF).

Figure 4.12 shows that the market premium has a similar AcF and PAcF

as the loss ratio shown in Figure 4.7. Correlations are diminishing as lag

106



CHAPTER 4. AN ABM OF THE NON-LIFE INSURANCE MARKET

increases in the AcF plot; they change signs, and become insignificant after

a few time lags. The PAcF plot shows that both first and second lags are

significantly autocorrelated.

Figure 4.12: Market premium: AcF and PAcF correlograms
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4.7 Verification and Validation

4.7.1 Basic model verification

Claim parameter

We test different combinations of parameters for claim distributions. There

are nine different cases, as laid out in Figure 4.3. The key conditions for

the generated claims are: (1) We try to set the mean of simulated claims

equal to 100, since this keeps our insurers’ price around 100. (2) We try to

use the claim distribution and combine other model parameters so that the

mean of simulated loss ratios is close to one, and the standard deviation

and coefficient of variation are close to the statistics of our sample of UK

insurance market data. Therefore, Scenario 9 as highlighted in Table 4.3

is the most suitable option.

Table 4.3: Model verification: claim parameter illustration 1

To verify the implementation of our model, we should expect that a

more volatile risk claim portfolio should have more volatile loss ratios since

insurers have less certainty about claim experience and therefore price is

relative unstable. At the same time, such high volatility should require

a higher risk loading to compensate for the extra uncertainty, therefore
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it leads to a lower loss ratio (i.e. the ratio of claim over premium). As

illustrated in Figure 4.13, our results do verify this. When the standard

deviation of simulated claims decreases from Case 1 to Case 9 as shown

in Table 4.3, the mean of simulated loss ratio increases and the standard

deviation decreases in Figure 4.13.

Figure 4.13: Model verification: claim parameter illustration 2

Figure 4.14 shows the coefficient of variation (ratio of standard devi-

ation to mean) of the loss ratio. This increases as the volatility of the

simulated claim increases, consistent with Figure 4.13.

Figure 4.14: Model verification: claim parameter illustration 3
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Testing varying market concentration

We should expect that an increase in the number of insurers in a fixed

market will bring more competition, and this should therefore lead to lower

premiums, and an increase in the combined ratio in the insurance market.

Meanwhile, higher competition will force insurers to react to the environ-

ment more quickly and more aggressively than in a less competitive situa-

tion, therefore the volatility of insurers’ performance and market combined

ratio is also increased. The results from our model are indeed consistent

with this, as shown in Figure 4.15.

Figure 4.15: Model verification: number of insurers

Likewise, we should also expect that an increase in the number of cus-

tomers in a fixed market will bring less competition (i.e. opposite to the

increase in the number of insurers). Therefore, this should lead to higher

premiums and the combined ratio will fall. Simultaneously, lower compe-

tition will allow insurers to react to the environment more slowly and less

vigorously than in a more competitive situation. The volatility of insur-

ers’ performance and market combined ratio are expected to decrease. As

illustrated in Figure 4.16, our model results verify this suggestion.
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Figure 4.16: Model verification: number of customers

Distribution of firms’ sizes

Axtell (1999) suggests that one way to verify an ABM market is to check

that the distribution of firms’ sizes follows a power law, i.e. a small percent-

age of firms in the market have the most market share. For example, the

real UK non-life market also has such a distribution as shown in Table 4.4,

around 90 percent of market share is occupied by the 10 largest insurers.

Table 4.4: Model verification: actual market firm size distribution
Business Class Market share 2010 Market share 2011

Personal line top 5 insurers 63.7% 63.0%
Personal line top 10 insurers 85.3% 82.9%
Personal line top 20 insurers 98.5% 97.0%

Commercial line top 5 insurers 67.8% 65.7%
Commercial line top 10 insurers 90.4% 87.1%
Commercial line top 20 insurers 98.8% 97.2%

Whole industry top 5 insurers 66% 64%
Whole industry top 10 insurers 88% 85%
Whole industry top 20 insurers 99% 97%

In fact, if we simulate our model many times over a fixed time horizon
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and collect all insurers’ final capital accumulations in each simulation, the

distribution of insurers’ sizes also appears to decline very fast, in accordance

with a power law. This is depicted in Figure 4.17, together with a log-log

plot of a power law distribution.

Figure 4.17: Model verification: simulated firm size distribution

4.7.2 Model validation

We use real-world data from ABI UK database to validate our model. The

data period is from 1983 to 2011 (a total of 29 years of annual combined

ratios). We collect three samples of UK data: (1) UK motor insurance

annual combined ratios (labeled as UK Motor); (2) UK property insurance

annual combined ratios (labeled as UK Property); and (3) Global results

of insurers who are based in the UK (labeled as UK World). A snapshot

of these actual UK market data samples are displayed in the bar plots of

Figure 4.18.
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Figure 4.18: Actual UK market data (annual combined ratios 1983-2011)
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To validate our model, we randomly simulate two samples of combined

ratios from our model: (1) the first is 29 periods long time interval and

is randomly cut from a simulation over a total of 1000 periods in order

to compare with real world 29 years data; (2) the second is 900 periods

long (we generate data over 1000 periods but discard the first 100 to avoid

transient results at initialization). A snapshot of these simulated data

samples are displayed in the bar plots of Figure 4.19.

Figure 4.19: Model validation: simulated combined (or loss) ratios
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Testing stationarity (ADF and PP tests)

We test the stationarity of the data series in the three sample datasets as

well as in the two simulated datasets. The results are included in Table 4.5,

where the simulated sample of 29 years is labeled as Simulated T29 and

the simulated sample of 900 years is labeled as Simulated T900. All results

based on the augmented DickeyFuller test (ADF) reject the null hypothesis

of a unit root at the 90% level, most of them are at 95% level. Therefore,

there is no statistical evidence to suggest that the data is non-stationary.

More detailed statistics are included in the Appendix.

Table 4.5: Model validation: testing stationarity of data series

Identification of AR Process

The autocorrelations and partial autocorrelations in the sample datasets

and in the simulated datasets indicate that an AR(2) process might be

a good fit. The correlogram for the UK Motor sample data is shown in

Table 4.6. The partial autocorrelations are significant at lags 1 and 2, but

not at higher lags, which is suggestive of an AR(2) process.
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Table 4.6: UK motor correlogram: ACF and PACF

We compare different Autoregressive models and confirm AR(2) is the

best process to model the data series, based on the Akaike information

criterion (AIC). The value of AIC provides a measure of the relative qual-

ity of a statistical model based on a given set of data. It deals with the

trade-off between the goodness-of-fit of the selected model and its com-

plexity. Given a set of candidate models for the data, the preferred model

is the one with the minimum AIC value. A summary of AIC results is in-

cluded in Table 4.7. Disregarding the marginally more negative AIC value

for AR(1) compared to AR(2) for the 29-year simulated data, an AR(2)

model appears to be the best fit for all the actual and simulated datasets.

More detailed statistics regarding the AR(2) model (e.g. Autocorrelation

Function ACF and Partial Autocorrelation Function PACF, correlograms)

are included in the Appendix.
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Table 4.7: Model validation: AIC results of AR process

Data Sample AR(1) AR(2) AR(3)

UK Motor -2.5002 -3.2670 -3.2376
UK Property -1.6851 -1.7530 -1.6475
UK World -3.0910 -3.2885 -3.1694
Simulated T29 -1.4917 -1.4594 -1.3691
Simulated T900 -2.0103 -2.0162 -2.0157

Diagnostic check on residuals

Uncorrelatedness check (Residual Correlogram and Durbin-Watson statis-

tic): After fitting an AR(2) process, we check for correlation in the resid-

uals. Table 4.8 shows that there is no significant autocorrelation in the

residuals in the case of the UK Motor data. The correlograms for the re-

maining four sample and simulated datasets may be found in the Appendix

and also confirm uncorrelatedness of the residuals. The Durbin-Watson

(DW) statistics from the AR(2) regression for all five datasets are collected

in Table 4.9, where they are compared with the lower (dL) and upper (dU)

critical values at 1% significance points from the DW significance tables.

Table 4.8: UK motor residual testing: uncorrelatedness check
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Table 4.9: Testing residuals (uncorrelatedness): Durbin-Watson statistics

Data Sample Durbin-Watson 1% Significance 1% Significance
statistics dL dU

UK Motor 1.5654 1.053 1.332
UK Property 2.0430 1.053 1.332
UK World 1.8542 1.053 1.332
Simulated T29 2.0347 1.053 1.332
Simulated T900 1.9900 1.653 1.693

The results from Table 4.9 indicate that all Durbin-Watson statistics

(DW) are greater than the upper critical values (dU) at 1% significance

point. Therefore, there is no statistical evidence that the error terms are

positively autocorrelated. Likewise, there is no negative autorcorrelation,

since (4−DW ) > dU for all AR(2) regressions either.

Evaluating goodness-of-fit

(1) Kolmogorov-Smirnov (KS) test: we use a two-sample K-S test to check

the goodness-of-fit of our ABM to the insurance market data. We simulate

our ABM for a period of 900 years generating loss ratios with the same

mean and standard deviation as in the UK Motor sample data. The results

are graphically represented in Figure 4.20. The top two histograms show

the distributions of actual Motor Insurance market combined (or loss) ra-

tios (i.e. left diagram) and our simulated data (i.e. right diagram). Both of

them are right-skewed compare to the normal distribution and most of loss

ratios are distributed around one, as suggested by Daykin et al. (1994).

The bottom two diagrams are the QQ-plot between actual and simulated
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data (i.e. left diagram) and their empirical CDF (i.e. right diagram). Al-

though there are some large outliers in the long series of simulated data,

the simulated data from the ABM are a close fit to the actual market data.

Figure 4.20: Validation: goodness-of-fit 1 (UK motor data)

We use a two-sample Kolmogorov-Smirnov (K-S) test to compare the

distribution of the simulated loss ratios with the distribution of the actual

market loss ratios. (The alternative Pearson Chi-Square test could also be

used, but it is less powerful for small sample sizes, so we prefer the K-S

test.) The K-S test cannot reject the null hypothesis that the simulated

loss ratios and the actual market loss ratios come from the same continuous

probability distribution (i.e. the p-value is 0.1997). This confirms that our

ABM has a close fit to the actual insurance market, and provides powerful

validation for our model.
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We also test the annual changes in the loss ratio. It is useful to con-

sider this as the changes reflect insurers’ reactions to market competition.

Histograms for the changes in the loss ratio are shown in the top two panels

in Figure 4.21. The bottom two panels in Figure 4.21 exhibit the Q-Q plot

and empirical CDFs. Visual inspection seems to suggest that our model

fits the data reasonably closely. This is indeed confirmed by a two-sample

Kolmogorov-Smirnov (K-S) test (i.e. the p-value is 0.1363) on the changes

in the loss ratios in the data, compared to the changes in the simulated

loss ratios.

Figure 4.21: Validation: goodness-of-fit 2 (UK motor data)

(2) Chow test (for model evaluation): The so-called Chow test is a

common application of the F-test to test for the presence of a structural

break and to perform model evaluation (Greene, 2003, p. 130-139). In our

case, we have two data sets: one is collected from a real-world insurance

market and the other is generated from our ABM simulation. The real-
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world data comes from a complex system that we do not know and that

appears to be an AR(2) process. The simulated data is collected from our

ABM insurance market model and another AR(2) process has been fitted

to this data. Therefore, we want to compare these two AR(2) processes in

order to evaluate the goodness-of-fit of our model.

We randomly select 29 continuous data points from the 900-year large

simulated data sample, then fit an AR(2) process to each of three sets of

data: (1) the actual market data which we labeled as “UK Motor” earlier,

(2) the selected simulated data, (3) a concatenation of these two datasets.

We collect the residuals from these regressions, and calculate the sum of

squared residuals in each case. Let S1, S2 and S3 denote the sum of squared

residuals when an AR(2) is fitted to datasets (1), (2) and (3) respectively.

Table 4.10 summarizes the relevant calculated values. We then use the

Chow test to test whether there is a significant difference between the

AR(2) processes fitted to the two different datasets (1) and (2) above.

Table 4.10: Chow test: UK motor insurance data
AR(2) regression Sum of squared residuals Data points

UK Motor actual data 0.048112 29
Simulated data 0.345649 29
A combined data 0.450799 58

The Chow test statistic is:

F(k,N1+N2−2k) =
[S3 − (S1 + S2)]/(k)

(S1 + S2)/(N1 +N2 − 2k)

=
[0.450799− (0.048112 + 0.345649)]/(3)

(0.048112 + 0.345649)/(29 + 29− 6)

= 2.51
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In the above, N1 and N2 are the number of observations in each data groups

and k is the total number of parameters (i.e. k = 3 in an AR(2) process).

The test statistic follows the F distribution with k and N1 + N2 − 2k

degrees of freedom. The critical value at 5% level with degrees of freedom

(3, 52) is about 2.8. Hence, we cannot reject the null hypothesis that

the AR(2) process fitted to the actual market loss ratio is the same as the

AR(2) process fitted to the simulated loss ratio from our model. This again

provides strong validation that our agent-based model is a close fit to the

actual UK motor insurance market.

4.8 Discussion of Results

Our results in Section 4.6 at page 97 show that cycles emerge endogenously

in our agent-based model of the motor insurance market. Furthermore, the

validation procedures in Section 4.7 at page 108 confirm that our model has

a good fit to the insurance market data described in Section 4.4 at page 88.

In this section, we discuss these results further and ask whether our agent-

based model can provide insights into the workings of the insurance market.

Firstly, it is worth stating that the AR(2) time series fitted to the ac-

tual UK Motor insurance loss ratios in Table 4.11 imply an insurance cycle

period of 7 years (i.e. α1 = 1.08729, α2 = −0.828939). An AR(2) process

Πt = α0 + α1Πt−1 + α2Πt−2 + εt, where Πt is the simulated market loss

ratios at time t. εt is an i.i.d error term with E(εt) = 0 and V ar(εt) = σ2
ε .

In this AR(2) process, cycles occur if the coefficients on the lagged terms

α1 > 0, and −1 < α2 < 0, and α2
1 + 4α2 < 0, that is, if complex roots exist
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(Trufin et al., 2009). The length of cycles is then equal to:

Cycle Length =
2π

arccos(α1/2
√
−α2)

Based on the coefficients in Table 4.11, it meets the conditions of the

coefficients on the lagged terms α1 and α2 of forming cycles. This compares

favorably with the cycle period of 8 years (i.e. α1 = 0.440515, α2 =

−0.095599), as estimated in our agent-based model, using AR(2) process

fitted to the simulated 900 years in Table 4.12.

Table 4.11: UK Motor AR2 regression
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Table 4.12: Simulated 900 years AR2 regression

Although AR(2) processes are commonly fitted to loss ratios in insur-

ance cycle analysis (Venezian, 1985; Cummins and Outreville, 1987; Win-

ter, 1988; Trufin et al., 2009), it is also worth stating here that the Akaike

Information Criterion (AIC) suggests that an ARMA(1,1) model may be

a better fit to the UK Motor combined ratio data. AIC values for different

time series models are given in Table 4.13. Nevertheless, the correlograms

and partial correlograms in Table 4.6 and in the Appendix suggest that a

pure AR model is also acceptable, and we proceed with such an AR model,

as much of the literature on insurance cycles does.
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Table 4.13: ARMA model selection: UK motor insurance data

ARMA model Akaike Information Criterion (AIC)

ARMA(1,1) -3.771342

ARMA(1,2) -3.68369

MA(1) -3.652445

MA(2) -3.638675

ARMA(2,2) -3.417043

ARMA(2,1) -3.330944

MA(3) -3.291313

AR(2) -3.269969

AR(3) -3.237646

AR(1) -2.500187

Secondly, it is worth highlighting the presence of cycles in our agent-

based model. Unlike in other models, these cycles appear endogenously

in our ABM. As we discussed in Chapter 2, there are many competing

explanations for insurance cycles: cycles in interest rates, entry and exit of

insurers into the market, irrational expectations through actuarial forecast-

ing methods, regulatory lags, shocks to capital held by capital-constrained

insurers, etc. In all of these models, an exogenous factor is required to ini-

tiate and drive underwriting cycles. No such exogenous variable appears

in our ABM, and yet cycles are present.

This is a remarkable result which deserves further comment. A possible

explanation for this is that our agent-based model captures a number of

essential features of insurance markets, which may be missing from other
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models. The insurance market is not perfectly competitive, but is mo-

nopolistically competitive with differentiated products. Price competition

drives the market, but customers’ non-price preferences over product char-

acteristics and insurers’ attributes, as well as behavioral responses by both

insurers and customers, act to dampen and turn prices, thereby generating

cycles.

In our model, the elasticity of demand appears to vary both over time

as well as over the product characteristic space. Insurers estimate a possi-

ble mark-up over the actuarially determined premium, when pricing their

policies. This mark-up is based on the demand elasticity which they are

estimating: see Equation (4.3). Figure 4.22 shows the crude mark-up esti-

mated by 4 randomly chosen insurers over 30 years. (They calculate this

mark-up in accordance with Equation (4.4).) The mark-up clearly varies

over time and indeed appears to be cyclic.
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Figure 4.22: Mark-up over 30 years of 4 insurers

In Figure 4.23, we show the variation over 50 years of the average

distance, in the product characteristic space, between an insurer and its

customers. Some customers are switching from insurer to insurer over time,
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but one might anticipate that the group of customers which is ‘close’ to

an insurer (i.e. which prefers this insurer and its product over competi-

tors) would remain relatively stable over time. However, the variation in

Figure 4.23 shows that the market appears to become more segmented

and ‘local’, and then less so, over time. In other words, the market goes

through phases: there are times, presumably of relatively higher prices,

when price dictates customer choice, and there are other times, presumably

when prices are lower, when non-price preferences are of greater importance

in customer decisions. The response of insurers in terms of pricing, and

of customers in terms of product selection, then drives the market and

appears to engender cycles.
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Figure 4.23: Average distance over 50 years

It is also interesting to examine the effect of the two parameters which

may be under the control of insurers and regulators: the safety loading

factor α and the mark-up adjustment factor β. The safety loading factor
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α, which appears in Equation (4.2), represents insurer’s attitude to risk.

One might expect that, if insurers raise their safety loading factor, they will

demand a higher premium, and this will reduce and stabilize the loss ratio

in the overall market. Figure 4.24 does indeed show that both the mean and

the standard deviation of the loss ratio in our agent-based model initially

fall as α increases. It also shows that the mean and standard deviation of

loss ratio start to increase as α increases beyond a certain value. This would

appear to be an instance of the “winner’s curse” phenomenon (Doherty

and Posey, 1997). If insurers are too sensitive to risk and apply a high

safety loading, customers will be more likely to switch to other insurers

as they search for lower prices. Insurers which are under-pricing, possibly

because of initial favorable claims experience or a low customer base, then

acquire more customers, but subsequently suffer large losses, contributing

eventually to an increase in the level and volatility of the loss ratio for the

insurance market as a whole.

Figure 4.24: Sensitivity analysis: safety loading
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The mark-up adjustment factor β, which appears in Equation (4.5),

governs how much weight insurers place on past experience when estimat-

ing the mark-up which they can apply to the actuarial premium when they

price their products5 . The larger β is, the less reliant insurers are on the

past. Figure 4.25 shows that loss ratios are less autocorrelated (particu-

larly at lag 1) as β increases. Thus, as β increases, large loss ratios are

less likely to be followed by large loss ratios. This is a sensible result be-

cause faster reaction by individual insurers to local market competition

may help the market as a whole avoid entrenched underwriting cycles.

Technological innovations in insurance product design and sales - such as

insurance aggregators in personal lines, telematics usage-based insurance

contracts employing ‘big data’ machine learning - may enable insurers to

learn about their market and react to competition much faster, and thus

price their products in a more accurate and timely way. This may reduce

the risk of large losses from deep troughs in cycles in insurance markets.

5The location (product preference) weight γ: Both parameters α and β represent an
insurer’s attitude towards business risk and market competition, γ reflects a customer’s
non-price product preference in the purchasing decision. It represents the stickiness
or inertia of a customer to a particular insurer or product. If parameter γ is small,
this means customers care the price Pit of insurance more than the insurance contract
meets their individual product specification or personal preference when γ is large. The
larger the γ, the more importance of an insurer’s targeted product specification to this
particular targeted customer segment, the less role of price in this group of customers’
purchasing decision. We consider the special case when γ = 0, then “Location” (or
product differentiation) plays no role in the competition, the market becomes from
monopolistic to perfect competition. Then, customers purchase the insurance with the
lowest price in each time period, they switch from their existing insurers to other cheaper
options in every time step because there is no any other cost to influence their switching
decisions. The market dynamics are similar to the phenomenon of so-called “winner’s
curse” (Doherty and Posey, 1997): those mistakenly underpriced insurance products
attract all customers in every business period.
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Figure 4.25: Sensitivity analysis: weight of mark-up adjustment
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4.9 Conclusion

In this chapter, we presented an agent-based model (ABM) of a non-life

insurance market, with the aim of understanding the dynamics which may

generate insurance cycles. Unlike other models and theories of insurance

cycles, our model had no exogenous factor driving cycles, and yet we found

that cycles in loss ratios emerge. While we could not dismiss the role of

exogenous factors such as capital shocks and interest rate fluctuations in

promoting and maintaining insurance cycles, our ABM showed that cycles

can arise endogenously if insurance markets are modeled as competitive,

but not perfectly competitive. In particular, we made use of an economic

location model to capture product differentiation and non-price prefer-

ences. In our model, insurers competed against each other and priced

their products by calculating a premium based on past experience, and

then adjusting through cost-plus or mark-up pricing. This provided a re-

alistic description of actuarial and insurance practice. We calibrated and

validated our agent-based model using UK motor insurance data. Simple

time series analysis showed that cycles were present in the simulated in-

surance loss ratios from our ABM, and that these cycles were comparable

to those in the actual data. Our ABM showed that the monopolistically

competitive nature of non-life insurance markets, with their differentiated

products and with boundedly rational behavior of insurers and customers,

may inherently create cycles, without requiring external factors.
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Chapter 5

Extensions to the ABM Base

Case

5.1 Introduction

In the previous chapters, we separately introduced agent-based modeling

and the phenomenon of insurance cycles. Chapter 4 presented an agent-

based model of the motor insurance market, which was calibrated on actual

UK data, and we found that cycles emerged without exogenous factors. In

this chapter, we extend the model of Chapter 4 in three ways. First, we

consider the impact of capital constraint on the insurer’s pricing decision.

We include an adjustment to the pricing function which takes into ac-

count the capital of the insurer. Second, we recognize that insurers can

adapt to customers’ preferences and change their strategies, and therefore

move on the product characteristic space. Third, we allow for a larger-

dimensional product characteristic space, rather than the one-dimensional

circular space used heretofore.
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The simulation follows the same market process of the base case in Chap-

ter 4. It still contains insurers and customers only. It also operates in

discrete time. Insurers still interact in each time period (t, t + 1) accord-

ing to the steps detailed below and illustrated in Figure 5.1: (1) At time

t, each insurer offers its own unique market competitive price to all cus-

tomers. (2) Given all insurers’ prices, every customer calculates the total

cost of purchasing insurance from each insurer. (3) Based on the estimated

total costs, customers select the lowest option until supply and demand are

balanced in the market. Insurers collect all premiums after being selected

by their potential customers at time t. (4) Customers’ total claims are

randomly generated and paid by insurers at time t + 1. (5) Insurers up-

date their underwriting results after paying the claims to their customers

at time t + 1. (6) The market performance is updated at the end of each

time period. This includes both the whole industry and individual insur-

ers’ loss ratios, premiums and profits. (7) All extensions in this Chapter 5

are implemented in this final step. In Chapter 4 base case, insurers decide

their next period competitive prices in this step to begin a new round of

competition at t + 1. However, in this chapter, we update the insurer’s

price function using a capital-based adjustment. Insurers not only update

their price, but also change their location. They compete not just on price

but also on product characteristics and other attributes.

The structure of this chapter is as follows: Section 2 summarizes and ex-

plains the key elements that we try to target in the model extensions, along

with the purposes for us to understand them. They are: (1) the role of

136



CHAPTER 5. EXTENSIONS TO THE ABM BASE CASE

capital in an insurer’s pricing decision (i.e. price function); (2) the role of

an insurer’s non-price competition in our dynamic system; (3) the impact

of different insurers’ behavior rules on both the market performance as a

whole and different individual insurers’ performance. Section 3 focuses on

the role of an insurer’s capital in its price function. The model structure is

the same as the base case in Chapter 4, but we adapt the insurer’s pricing

equation by adding an adjustment that includes an insurer’s existing cap-

ital level. In Section 4, we model our insurers as moving agents, so they

can move their positions on the 1-D space of Circle City to compete with

each other. These movements represent non-price competition, since insur-

ers aim to compete by moving toward customers, seeking to satisfy their

preferences and attract more customers from competitors. These move-

ments can be modeled through insurers’ behavioral rules and associated

parameters. Finally, in Section 5, we generalize our 1-D Circle City to 2-D

Planar Space for several reasons. It performs a robustness check for the

early 1-D versions, since the results of explaining insurance cycle from this

2-D version are similar and consistent with the early 1-D versions. It also

increases the flexibility of moving agents, so it generalizes our model in line

with the real market competition. We can think about this 2-D space as a

strategy map, so insurers can use this kind of ABM simulations to monitor

and plan their business strategies in the real world.
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Figure 5.1: Market process: extended versions

5.2 Key Elements in our Model Extensions

5.2.1 The role of capital in pricing decision

In the previous Chapter 4, we simplify the role of capital in an insurer’s

pricing decision by artificially setting the individual capitals of insurers

high enough to avoid the possibility of insolvency, for several reasons: (1)

we aim to focus our initial analysis on the basic interactions of insurers

in the base case, such as their reactions to the market demand and claim

experience; (2) we believe that capital is one of contributing factors of am-
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plifying insurance cycle, but it is not the original source of cycle motion;

(3) if we model capital in consistent with the real world, we have to arti-

ficially assume other elements as well, such as dividend distribution (e.g.

the level of dividend payout ratio, etc) or entry-exit activities. We think

that it would be better for us to keep our insurance market system closed

without being complicated by capital outflow (e.g. dividend or insolvent

insurers’ exit) and inflow (e.g. government and investors’ capital injections

or new entrants).

Obviously, as addressed in Chapter 2 literature review on insurance cy-

cle, an insurer’s capital plays an important role of affecting its pricing

decision. There are three different hypotheses related to this discussion

and had been tested on real market data by researchers. First, the ca-

pacity constraint hypothesis states that internal capitals are cheaper than

external capitals, therefore insurers are willing to reduce price when they

have more capitals. This hypothesis predicts a negative relationship be-

tween insurer’s capacity and underwriting margin. Gron (1994) provides

an empirical test by examining this relationship. Based on the results of

testing data on four insurance business lines, they generally support it and

unanticipated decreases in capacity cause higher profitability and price.

Second, the financial quality hypothesis extends the capacity constraint

model by allowing insurer’s default risk to be endogenous. It predicts a

negative relationship between insurer’s capacity and underwriting margin

in the short run, but positive in the long run. Finally, the option pricing

hypothesis as a contingent claim analysis is different from both hypothe-

ses above, which states the insurance policy is similar to risky debt. It
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predicts a positive relationship in both short and long run. More detailed

discussions and related literature review on these capital related hypothe-

ses are included in the following section, when we apply a capital-based

adjustment in our price equation.

5.2.2 Non-price competition in an dynamic system

The customer’s total cost function (i.e. TCij,t = Pit + γ∆ij) appears in

Chapter 4, where ∆ij represents the element of non-price competition. In

Chapter 4, we assume that the positions of insurers are fixed in the “prod-

uct attribute circle city” over time, so insurers cannot change their non-

price strategies (although they have some non-price competitive advantages

to attract the customers who are close to their locations). The purpose of

this simplification is that we believe non-price competition matter in the

overall market dynamics (e.g. competition on product characteristics or at-

tribute to meet customers’ preferences) and they generate a differentiation

of the insurance products of different insurers, particularly in a monopo-

listically competitive insurance market. However, we understand that the

aggregate insurance market cycles are mainly dominated by the insurers’

pricing decisions. As our cycle hypothesis suggests that “price competition

drives the aggregate cycle, but non-price competition acts to dampen and

helps to turn the cycle when top and bottom are reached”. Now in this

Chapter 5, we relax this assumption, so insurers can move their locations

after determining the best position for them to move. We analyze this

non-price competition to confirm whether our initial hypothesis is true or

not. Furthermore, non-price competition may not have a direct impact
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on aggregate market performance, but it does affect individual insurers’

performance and their individual cycles directly.

It is easy to define price competition, which states that firms are compet-

ing on the basis of offering a lower price. However, it is useful to specify

the definition of non-price strategic competition in our model. Common

non-price competition is based on product differentiation and distribu-

tion method, which is the process of distinguishing a product to make it

more attractive to a particular target customer. Stigler (1968) lists some

non-price variables when firms offer similar products, such as advertising,

durability of product, investment advice or warranties of free repairs. In

the financial services industry, the nature of a product is often similar. So

the non-price competition is focused on information and knowledge about

the customers. Insurance companies often compete through improving

the mutual knowledge between themselves and potential customers. They

select different channels to distribute their products and advertise their

brands, thus increasing the customers’ knowledge about the firms. Mean-

while, the insurers collect customer data from different sources and use

sophisticated IT systems to analyze this information, thus increasing the

insurers’ knowledge about the customers. In our model, we model all of

these non-price strategies by using one variable. The key idea of this im-

plementation is similar to traditional economic non-price location models,

in that we assume the non-price strategy incurs extra cost, but it gains a

specific competitive advantage to the firm.
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5.2.3 Model agent’s behavior rules

Basically, any agent’s decision can be modeled by defining some behav-

ior rules in ABM simulations. Fascinatingly, although these rules look like

very simple and observes them easily from the real market, the interactions

of these basic rules can produce some very complex systemic results, such

as insurance cycle in our case. We have already modeled the price equation

in Chapter 4, now there are a few behavior rules to manage the insurers’

non-price strategic movements. The pricing behavior is consistent with

the traditional risk averse utility and supply-demand market competition,

which means that more uncertain risks should be charged at a higher price

and the more competitive market should offer a lower price, and vice versa.

However, the rule of non-price strategic movement is new to the traditional

cycle models that are based on a perfectly competitive market, although

it has become more popular in the area of ABM research and in the field

of Behavioral Economics. The major advantage of ABM simulation is to

understand the impacts of these (non-traditional) behavior rules in the real

world.

An insurer’s belief about a competitor’s current action and future strategy

plays a key role in deciding its own action in the next period. We model

this belief by using two different behavior rules to understand which one of

them or a combination of them is significant for analyzing the real-world

insurance market, such as insurance cycle.

Rule case 1: Before an insurer tests all available options of changing its

(non-price) business strategy at the start of next period, the insurer
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assumes that all other insurers will remain in their existing business

strategies and will maintain their current prices in the next period.

The insurer will select a business strategy in the next period that

should earn a maximum expected profit, assuming others will not

change their current positions.

Rule case 2: An insurer assumes that all other insurers will remain in

their existing (non-price) business strategies and will maintain their

current prices in the next period, but this insurer will compare its

current profit with others who are selected to be its direct competitors

(i.e. those insurers who have similar size/capital or business strategy

of this insurer). The insurer then selects the business strategy in next

period that is closer to the business strategy of the top performing

player in this peer group.

Intuitively, these two cases reflect two different beliefs of insurers about

the creation of profit in next period. The first case tells us that the insurer

considers its own profit and selects an available business strategy to react

to the current environment (assuming others do not change in the next

period). The optimal business strategy can be summarized as avoiding

higher competition to earn more profit by focusing their specialized mar-

ket segments over time, or by moving away from other competitors. The

second case tells a different story, since the insurer also considers other com-

petitors’ profits. It changes its own strategy towards the top performing

competitor among its peer group. As a result, there is a herding behavior.

Insurers believe that a better strategy has a better performance, so they

aim to move toward the top performing player. As Abel (1990) mentioned
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that agents are “keeping up with the Joneses”.

In reality, there may be some interactions between these two behavior

rules; sometimes one rule is more significant than the other one (LeBaron

et al., 1999). In the insurance market, companies need to earn more prof-

its, but they also need to compare their performance with other direct

competitors. Particularly, in an uncertain environment, when the absolute

performance is difficult to be defined, the relative comparison among a peer

group becomes more important. This dynamic behavior of herding may

affect insurance market cycles (Feldblum, 2000).

5.3 Extension 1: Capital-based Adjustment

in Price

5.3.1 Roles of capital in price

Choi et al. (2002) compare a few alternative models of insurance pricing as

theories of the underwriting cycle. They discuss the relationship between

an insurer’s capital (i.e. surplus) and its price in both short and long run.

They define “long-run” as an equilibrium relationship between capital and

price, and “short-run” as for the temporary impact of capital on the dy-

namic of price. Although different hypotheses have different predictions

about this relationship in different lengths of period, it is clear that the

level of capital plays an important role of affecting an insurer’s price. Here,

we review three major hypotheses that provide different conclusions about

this relationship. It is useful for us to compare these theories, before adding
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a capital-based adjustment into our insurers’ price equation in this model

extension.

Capacity constraint hypothesis

Over the past two decades, capacity constraint hypothesis is the most pop-

ular theory of understanding insurance cycle and has been discussed by

many researchers (Winter, 1988, 1991, 1994; Gron, 1990, 1992, 1994; Do-

herty and Garven, 1995). Rather than assuming capital market is perfect or

assuming an insurer’s capital adjusts quickly to the market environment

as suggested in Cummins and Outreville (1987), it assumes that capital

market is imperfect and insurers take both time and cost to adjust their

capitals in the short term. Choi et al. (2002) provide empirical evidence

to support that the slow adjustment of capital implies the persistence of

cycles, also see (Niehaus and Terry, 1993; Haley, 1993, 1995; Grace and

Hotchkiss, 1995; Fung et al., 1998). Therefore, this hypothesis focuses on

short-run price determination, since capital can be adjusted fully in the

long term to match the market demand. For example, a negative shock

to the overall capital of insurance market reduces market supply, so the

market price has to be increased to balance the existing demand in the

short run. As existing insurers enjoy a higher price than before, the capi-

tal accumulates by earning more profits over time, so the market returns

to the long-run equilibrium. As a result, it predicts that capital and price

have a negative relationship in the short run, but no relationship in the

long run.
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Financial quality hypothesis

An extension to the capacity constraint hypothesis, Cummins and Danzon

(1997) further develop a model of price determination that includes the

negative impact of default risk on demand for insurance. The model sug-

gests that price may increase or decrease following a loss shock that reduces

an insurer’s capital, depending on factors such as the effect of the shock

on the price elasticity of demand. Since demand for insurance links to the

financial quality of an insurer, the price is also affected by the insurer’s

quality. Similar arguments are in both Harrington and Danzon (1994) and

Cagle and Harrington (1995). While capacity constraint hypothesis anal-

yses the impact of capital on overall market supply (i.e. a high market

capital means a large supply, so this situation reduces market price if short

term demand of insurance is fixed, vice versa), financial quality hypothesis

focuses more on the downside risk and the impact of insolvency risk on the

market price. It argues that capital not only affects supply of insurance in

the short run, but also the total demand of policyholders. For the same ex-

ample of a negative shock to the capital, insurers now have a resistance to

increase the market price, since customers reduce their demands when the

overall default risk of insurers is increased. If the effect of supply change

is larger than demand change, then it predicts a similar relationship to

capacity constraint hypothesis. However, in the long run, as Choi et al.

(2002) suggest an insurer with a higher level of capital is able to charge a

higher price, since customers’ willingness to pay is higher. As a result, it

predicts that capital and price have a negative relationship in the short run

(i.e. same as capacity constraint hypothesis), but a positive relationship in
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the long run (i.e. different from capacity constraint hypothesis).

Option pricing hypothesis

The option pricing hypothesis is based on the contingent claim analysis

from the traditional financial pricing theory, which states an insurance

policy is similar to a risky debt (Cummins, 1991). The idea is that insur-

ers have the option to default as same to a call option on the assets of the

company. On the other side, policyholders hold a short position in a put

option on the same assets of the company with an exercise price equal to

aggregate losses. Different from other pricing hypotheses, option pricing

hypothesis argues that the policyholders actually bear the risk of default

and should be compensated by this risk taking activity. According to the

traditional option theory, the value of the bankruptcy has a negative re-

lationship with a firm’s capital in both short and long run. Therefore, if

the capital of an insurer is low and its default risk is high, then customers

require a low price to compensate their risk sharing with this insurer. The

empirical test of Sommer (1996) on the cross-sectional data supports op-

tion pricing hypothesis. As a result, it predicts that capital and price have

a positive relationship in the short run (i.e. different from both capacity

constraint hypothesis and financial quality hypothesis), and a positive re-

lationship as well in the long run (i.e. same as financial quality hypothesis).

Summary of relationships between capital and price

All three different pricing hypotheses link the insurer’s capital to its pricing

decision, but they have different predictions in either short or long run

situations. Table 5.1 provides a conclusion. Both capacity constraint and
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financial quality theories suggest a negative relationship between capital

and price in the short run: when an insurer’s capital increases, its price

decreases. Both financial quality and option pricing theories suggest a

positive relationship between capital and price in the long run, but option

pricing theory also expects a positive relationship in the short run.

Table 5.1: Summary of three pricing models: capital vs price

Hypothesis Short-run relationship Long-run relationship

Capacity constraint Negative None
Financial quality Negative Positive
Option pricing Positive Positive

5.3.2 Model extension: capital in price equation

As explained in the previous subsection, the relationship between the level

of capital and its role on sitting price is complicated based on different

pricing hypotheses (see Table 5.1). However, the prediction of capacity

constraint hypothesis has the most supporters in both theoretical insur-

ance cycle papers and empirical data tests (Choi et al., 2002). Therefore,

we apply the short-run negative relationship between capital and price to

extend our model, by adding an extra capital-based adjustment (i.e. esit)

in our early price equation in Chapter 4.

The exended price equation is:

P ′it = Pit e
sit (5.1)

=
(

(P̃it + αFit)e
mit

)
esit (5.2)
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Where P ′it is the extended price in this Chapter 5 and Pit is the early

Chapter 4 price Equation (4.2). In line with the implementation of Taylor

(2009), we define the estimated capital-based adjustment of price equation

as follows:

sit = −Kit −K0

K0

(5.3)

Where Kit is the existing capital of an insurer i at time t and K0 is the

benchmark capital. In the case of Taylor (2009), the benchmark is the

steady state solvency (i.e. a long term ideal situation of an insurer’s sol-

vency level in a perfect competitive market). As Taylor argues, an in-

surer’s premium should increase (decrease) as its current solvency ratio

(i.e. SolvencyRatio = Capital/Exposure, it is denoted by Sit) falls below

(rises above) the steady state solvency (i.e. it is denoted by S0), as imple-

mented by this equation (Taylor, 2009):

Pit = P0 e
−k(Sit−S0) (5.4)

Where P0 is the steady state premium per exposure unit (i.e. theoretical

pure risk premium) that is sufficient to pay future claims in the long run

and k is a premium-to-solvency sensitivity parameter. In our model exten-

sion, we use an insurer’s initial capital level at the beginning of simulation

as our benchmark capital, since we ignore insolvency risk and entry-exit

issues in our model by starting with a high level of initial capital. Our ob-

jective is to minimize the exogenous factors and focus on the endogenous

interactions of insurers within this closed system. The ideas behind this

implementation are: (1) Insurers care about their capital situations and af-
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fect their pricing decisions (Choi et al., 2002); (2) When their capitals are

below the benchmark level, they start to increase their prices as suggested

by capacity constraint hypothesis (Niehaus and Terry, 1993; Haley, 1993);

(3) The level of price increase or decrease depends on the gap between

existing capital and the benchmark, and also the weight of this gap that

is relative to the benchmark capital (i.e. a relative measure). As Gron and

Winton (2001) suggest that this relative level of supply disruption affects

insurers’ prices. (4) The exponential function is consistent with Taylor

(2009), which explains that the bigger gap below the benchmark the more

nervous for an insurer to increase its price, vice versa.

Nevertheless, one of main benefits from implementing an ABM system

is providing us an experimental field to test different hypotheses. For this

purpose, we can test the three hypotheses in Table 5.1 and see which re-

sults are closest to the real data. In order to achieve that, we introduce a

new parameter κ which controls the role of capital level in price function,

as follows:

P ′it = Pit e
κ(−sit) (5.5)

where

sit = −Kit −K0

K0

(5.6)

that means: If κ < 0, there is a negative relationship between capital level

and price (i.e. Capacity Constraint Theory and Financial Quality Theory:

a more safe company is willing to charge less price). If κ = 0, there is no

short-term relationship between capital and price (i.e. that is the original

price function in Chapter 4). If κ > 0, there is a positive relationship (i.e.
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Option Pricing Theory: a more safe company is able to charge more). The

simulation results are included in the following Table 5.2:

Table 5.2: Model extension: three versions of capital relation in price

equation (MeanLR and S.D.LR are the mean and standard deviation of

loss ratios; Rho(1) and Rho(2) are the partial autocorrelation of first and

second time lags of loss ratios.)

Based on the statistical results in Table 5.2, we understand: (1) When

κ < 0 or is close to κ = 0, there are cyclic patterns of loss ratios over

time. Therefore, there are cycles in loss ratio time series that are similar

to real-world situations, i.e. Rho(1) > 0 and Rho(2) < 0. The reason for

this is: since the relationship between capital and price is negative, insurers

increase price when the capital is low that will increase overall profits. A

high overall profit will build up capitals, which will decrease prices. In

fact, the loss ratios continually shift their directions around the mean,

which form cycles. (2) When κ > 0 and is far away from κ = 0, there is no

cycle in loss ratio time series, i.e. both Rho(1) > 0 and Rho(2) > 0. This is

because: when capital is high (low), insurers keep increasing (decreasing)

price and earn more (less) profit that will further build up (reduce) capital.

151



CHAPTER 5. EXTENSIONS TO THE ABM BASE CASE

5.3.3 Simulation results

We follow the market process in Figure 5.1 to run this first model exten-

sion and use the same parameter values as in Chapter 4 base case model.

Therefore, the only difference between this extension and the base case of

Chapter 4 is the extended price Equation (5.1). We compare the autocor-

relation function (AcF) and partial autocorrelation function (PAcF) of the

market loss ratios from both models. Figure 5.2 shows the results of the

base case in Chapter 4. Based on both AcF (left) and PAcF (right), the

market loss ratios follow an AR(2) process over time since both first and

second lags are significantly opposite to each other, while other lags are

statistically insignificant.

Figure 5.2: Market loss ratio: AcF and PAcF of the base case model

Figure 5.3 shows the results of the model extension 1. A similar AR(2)

process of market loss ratios is also appeared. However, if comparing with

Figure 5.2, the values of both first and second lag coefficients become wider

from 0.38 to 0.43 in the first lag and from −0.12 to −0.2 in the second lag.
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Figure 5.3: Market loss ratio: AcF and PAcF of the extended model 1

According to the AR(2) process:

Πt = α0 + α1Πt−1 + α2Πt−2 + εt

where Πt is the simulated market loss ratios. εt is an i.i.d error term with

E(εt) = 0 and V ar(εt) = σ2
ε . In this AR(2) process, cycles occur if the

coefficients on the lagged terms α1 > 0, and−1 < α2 < 0, and α2
1+4α2 < 0,

that is, if complex roots exist (Trufin et al., 2009). The length of cycles is

then equal to:

Cycle Length =
2π

arccos(α1/2
√
−α2)

Based on the results of our simulations, both of the above two cases meet

the conditions of the coefficients on the lagged terms α1 and α2 of forming

cycles. Also, based on the calculation of cycle length and the estimated

values of α1 and α2, the base case model in Chapter 4 has a cycle with a

period of 6.34 years and the extended model has a period of 5.87 years. This
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result is sensible, because when insurers add the capital-based adjustment

into their pricing decisions and the relationship between capital and price is

negative in the short run, insurers will start to reduce (increase) price when

they perform well (badly). This will reduce the length of cycle between a

hard market and a soft market.

5.3.4 Conclusion

Based on the simulation results of this model extension 1 and its com-

parison with the base case in Chapter 4, we conclude that the change of

an insurer’s capital has an impact on the cyclic pattern of market loss ra-

tios over time. It supports our initial endogenous cycle hypothesis, which

suggests that “capital constraint” is an external contributing factor of am-

plifying cycles (i.e. it expands the AR(2) process, both the first and second

lag coefficients become wider). The key endogenous source of cycle is the

interaction of insurers’ competition in a monopolistically competitive mar-

ket.

5.4 Extension 2: 1-D Circle City with Mov-

ing Agents

5.4.1 Roles of strategical movement in non-price com-

petition

In Chapter 4, we used an economic location model to capture some key

features of monopolistic competition, but we assumed that agents were
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fixed in product characteristic space. The locations on this space capture

the differentiation of insurers’ products, from the point of view of cus-

tomers. In this section, we allow insurers (agents) to move in this space.

This means that insurers can change their business strategies, alter their

products or the way that they are perceived by customers, and thus move

to more profitable market segments. In short, insurers can compete using

non-price strategies, as well as on price.

Therefore, firms compete through both price and non-price strategies.

Price strategy is related to the nature of product (i.e. the expected risk

of customers and the level of demand) and non-price business strategy is

represented by the distance between firms and potential customers. Firms

attract customers from their competitors by a combination of offering a

lower price and being located closer to them in order to achieve profit

maximization. In a simple example, two DVD rental shops compete with

each other on a straight street. We assume that they can charge different

prices for identical products and move their shop locations without incur-

ring any cost. Customers buy/rent DVDs from the shop with the lowest

total cost of the DVDs and their travel expenses. Hotelling (1929) shows

that the market reaches stability in competition, when both shops locate

at the middle point of the street and offer an identical price. He assumes

that both firms are identical and customers are independent, identical and

uniformly distributed on the street. This simple case can be extended to

more complex situations. Brekke et al. (2006) apply the Hotelling model to

analyze the quality and location of choices under price regulation. Econo-

mides (1986a) analyses firms’ decisions of minimal and maximal product
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differentiation in Hotelling’s duopolistic competition. He also expands the

original Hotelling model from one-dimensional products to two dimensions

(Economides, 1986b), increases the number of firms to more than two com-

petitors (Economides, 1993) and updates the firms’ actions as a sequential

decision making process (Economides et al., 2002).

In this section, we analyze the impacts of insurers’ location movements

on both market aggregate results and insurers’ individual performance.

Before discussing the simulation results, we explain how we model this

dynamic movement.

5.4.2 Non-price business strategy modeling

We illustrate the insurance market by using the diagram in Figure 5.4. This

is an example for illustration purposes, the actual simulation may change

the number of insurers and customers, etc. We define the small red bubbles

are individual insurers (e.g. from insurer A to H), and the large black circle

is the circular street on which many customers are uniformly distributed.

Insurers’ locations on the street define their product characteristics, hence

differentiating them from each other. Customers’ locations reflect their

individual non-price product preferences. In Chapter 4, neither insurers nor

customers can move on the space over time, their locations are fixed. The

insurer’s location defines the level of attractiveness to customers. Insurers

only make one strategical decision that is the competitive price for the next

period.
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Figure 5.4: Model dynamics: a circle city

Now, in this model extension 2, insurers have two strategical decisions

to make: a pricing decision, and a non-price business strategy decision.

They move toward new locations where they expect to earn more profits,

as in the example of DVD rental shops. We use three behavioral parameters

to manage insurers’ movement on the space of product characteristics, as

summarized in Table 5.3. We explain these parameters in the following

three subsections.

Table 5.3: Behavioral parameters in model extension

Parameter Range of values Explanation

θ1 [0, 1] Speed of an agent’s movement
θ2 [0, 1] Scope of an agent’s comparison
θ3 [0, 1] Proportion of insurers who move

Speed of an insurer’s movement

Insurers can only move along the circular street (i.e. the large black circle

in Figure 5.4), where the customers are uniformly distributed and fixed on
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the street. Therefore, the maximum range of movement is the circumfer-

ence and the possible direction is either clockwise or anti-clockwise. We

normalize the circumference to be of unit length. The speed parameter θ1

controls insurers’ moving speed by specifying by how much they can move

along the circumference from one time period to the next. This behav-

ioral parameter has two real-world applications: (1) It reflects the speed

of strategical adjustment of insurers in the market to react the current

competition. In different insurance sectors, insurers may exhibit different

speeds of reaction to competition. We can test the impact of this variation

in speed on the dynamics of the insurance cycle. For example, personal

motor insurance is data-driven, whereas commercial Directors & Officer

(D& O) liability insurance is mainly based on underwriting skill and expe-

rience. Therefore, the speed of strategical change is faster in motor sector

than D&O. (2) We can also test some real-world scenarios where the speed

of insurers’ market reaction becomes faster over time. For example, prod-

uct cover of motor insurance traditionally is updated slowly with a time

delay to change the policy conditions, but it is becoming faster since newly

developed technologies, such as comparison websites (insurance aggrega-

tors), are becoming popular with both insurers and customers. Customers

can now design their own policies to suit their circumstances.

Scope of an insurer’s comparison

The scope of an insurer’s movement determines the proximity of its direct

competitors. It controls how many neighbors there are against which an

insurer might compare its performance. It then decides to move toward the

most profitable location (i.e. customer group or market segment). If there
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are eight insurers in the market, then an insurer selects a non-negative

integer1 number of competitors who have the nearest location from the in-

surer. In Figure 5.4, if insurer A only selects two direct competitors against

which to compare its performance, then it should select insurers B and H.

On the other hand, if A selects four competitors, then it should select in-

surers B, H, C, and G. After comparing its performance with that of its

selected direct competitors, insurer A moves toward the direct competi-

tor who earns the highest profit. This behavioral parameter reflects the

following real-world behavior: (1) Although the whole insurance market

is very competitive, most insurers in this complex system often compare

their performance locally. For example, a large insurer only targets some

competitors with a similar large size and a specialist firm only focuses on

the competitors in its niche market. (2) With the assistance and contribu-

tion from different market participants (e.g. news agency, market regulator

and industry association ABI), the scope of an insurer’s comparison may

change over time due to the increased speed of information flow in the mar-

ket. This scope parameter can help us to test the impact of such changes

in the real world.

Proportion of insurers who move

Parameter θ3 is the proportion of insurers who can move on the circu-

lar street in Figure 5.4 and change their locations and thus their business

strategy. If it is zero, then no insurer can move and the extended model

returns to the base case of Chapter 4. If it is one, then all insurers are able

1Use Int(x) function, that is calculated as rounding the number θ2 × 8 − 1 to the
next smaller integer, or be zero if it is less than one
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to move in the system. We use it to analyze whether non-price strategical

movement actually creates a benefit to insurers or not, and how much the

impact of this parameter will be on the whole market performance. When

insurers are able to move, they move toward the location of the direct

competitor who has the highest profit. Therefore, the movement reflects

so-called “Keeping or catching up with the Joneses” feature in Behavioral

Economics. In other words, it leads to herding behavior if a group of insur-

ers move together and toward the same direction. In fact, this parameter

can help us to understand the impact of agents’ herding activities. If a

large percentage of insurers are herding toward a particular strategy, then

it would be better for some insurers to stay in their individual market seg-

ments where there is less competition. Likewise, when most insurers stay

fixed in their existing market segments, it would be better for some in-

surers to move and explore more profitable opportunities. This behavioral

parameter can help us to analyze this kind of real-world dynamics, which

is similar to Arthur’s El Farol Bar problem (Arthur, 1994).

Local comparison

The above three behavioral parameters manage an insurer’s strategical

movement. An insurer’s decision as to its next location depends on its

comparison of performance with its direct competitors. Insurers carry out

a local comparison as follows (we use insurer A in Figure 5.4 as an example):

1. At the beginning of each discrete time period, the simulation gen-

erates a n × n symmetric matrix, where n is the total number of

insurers. Each cell in this matrix represents a distance (measured
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along the circumference) between two insurers, but all cells in the

main diagonal are zeros since the distance between an insurer and

itself is zero.

2. In this distance matrix, the elements in the row corresponding to

insurer A represent the distances between insurer A and all other

insurers. The lowest distance is between insurer A and itself, i.e.

(A,A) = 0. For example, an element (A,B) in the matrix is the

distance between insurer A and insurer B, which is equal to another

element (B,A). Based on this distance matrix, insurer A sorts other

insurers by proximity, i.e. from the smallest distance to the largest

one.

3. Depending on the scope of an insurer’s movement (i.e. the behavioral

parameter θ2), insurer A selects an integer (θ2 × n − 1) number of

other insurers from the lowest distance insurer to the (θ2 × n− 1)th

low distance insurer to to be its direct competitors. These insurers

are the peer group against which the insurer compares itself. Other

remaining insurers become irrelevant in the local comparison of in-

surer A.

4. After insurer A selects its group of direct competitors in each time

period, it compares its own performance with this group of peers at

the end of each time period. We use individual loss ratios instead

of profits to measure the insurers’ performance, since profit is an

absolute value that can be affected by an insurer’s size. There is

also a n× n performance matrix in the simulation, which records all

selected direct competitors’ performance for each insurer.
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5. Insurers can move along the circular street at the end of every time

period, therefore both distance and performance matrices are up-

dated. The peer group representing an insurer’s direct competitors

also changes in each time period, based on new information about

insurers’ locations.

The above procedure explains the steps in selecting an insurer’s direct

competitors with close locations (i.e. similar customer preference, market

segment or product characteristics). This is a common activity in the

real-world insurance market, since an insurer often compares its business

performance with the competitors in the market segments that are sim-

ilar to the insurer. Likewise, insurers often compare their performance

with other insurers who have similar sizes, i.e. a large insurer is more inter-

ested to compare with other large insurers’ performance than small insurers

(Taylor, 2009). When selecting direct competitors with a similar size, an

insurer follows a similar procedure to selecting direct competitors with a

similar location.

In our model, we can control whether insurers select direct competitors

based on the location or size alone, or both location and size. We have two

“switch” parameters for strategy and size comparisons, which can only be

either one or zero. When the “strategy comparison switch” is on (i.e. it

becomes one) and “size comparison switch” is off (i.e. it becomes zero),

each insurer will only select its direct competitors among the insurers with

closest distance. Likewise, when the “strategy comparison switch” is off

(i.e. it becomes zero) and “size comparison switch” is on (i.e. it becomes
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one), each insurer will only select its direct competitors from insurers with

similar sizes. If both the “strategy comparison switch” and “size compar-

ison switch” are on, then each insurer will select half of its competitors

based on size and the other half based on location (there be an overlap

when these two criteria are used). In reality, insurers may weight these cri-

teria when choosing a subset of competitors against which they compare

themselves. This could be implemented and simulated, but we then face

the difficulty of estimating a suitable weight. We have chosen an equal

weighting for the sake of simplicity.

Location decision and strategical movement

After every insurer follows the above steps to select its own group of di-

rect competitors, it identifies the highest profitable insurer among this peer

group. The insurers start to move toward the location of the best perform-

ing competitor. This is implemented as follows:

1. Each insurer has access to all of its direct competitors’ performances

that are recorded in the n× n performance matrix. This means that

an row A contains the loss ratios of all of A’s direct competitors (loss

ratios for unselected insurers are recorded as zero in this matrix).

2. There is an index matrix that defines the lowest loss ratio (i.e. except

zeros in the performance matrix) in each row. This means that the

insurer corresponding to this row will now move toward the location

of this indexed competitor (i.e. the top performer in the peer group).

For example, if the element (A,B) (i.e. the element in row A and

column B) in the index matrix is equal to 1 and other elements in
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row A are zeros, then insurer B is the top performer and insurer A

will move toward the location of insurer B.

3. The index matrix maps the location of the selected best performing

competitor for each insurer. For example, if insurer A selects its

direct competitors as insurers B,H,C and G in Figure 5.4 and the

competitor G has the best performance, then insurer A will move

toward the location of competitor G in an anti-clockwise movement.

4. The movement is dependent on the speed parameter2 θ1. Similarly,

if insurer H has an identical behavior rule, then it is more likely to

move toward competitor G as well. This is because insurer H is close

to insurer A and they have a similar peer group of direct competi-

tors. Therefore, this kind of dynamics has the nature of herding.

However, if some insurers are unable to move (i.e. parameter θ3 man-

ages the proportion of insurers who can move in the system), the

market dynamics is affected by this group of fixed insurers. Both

local comparison and herding behavior cause some problems of over-

heating the competition, which means insurers compete too high in

some market segments but too low in other segments.

2Ideally, the speed parameter should be implemented as a maximum speed of an
agent’s movement, i.e. agents can move at any speed up to this maximum and the exact
speed can be dependent on a more complicated decision rule. However, for simplicity, we
assume a fixed speed, it means that agents move by θ1 at each time step. We try to keep
θ1 small enough to avoid excessively large jumps on the space. This implementation is
similar to many 2D ABM models as agents move from one cell to a neighboring cell.
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5.4.3 Simulation results

When running the simulations of this model extension 2, we use the same

parameter values from the base case in Chapter 4, except these behavioral

parameters as discussed in this section. We test ten different scenarios (i.e.

ten different combinations of three behavioral parameters) of this extended

model, they are:

Scenario 1: (parameter values θ1 = θ2 = θ3 = 0) This is a special case

where we fix the locations of all agents in the system, therefore it is

also the base case of Chapter 4.

Scenario 2: (parameter values θ1 = 0.01 θ2 = 0.2 θ3 = 0.2) We use

relatively small values for the behavioral parameters, this means that

agents move relatively slow and they compare their performance with

a small peer group of direct competitors, and only a few of them can

move their locations in the system. In this Scenario 2, it defines that

20% of agents in the system can move and 80% cannot (i.e. θ3 = 0.2),

and they only compare their performance with 20% of the insurers

who have similar size and location (i.e. θ2 = 0.2), and finally they

move 1% of the total distance (i.e. the circumference of the circular

street in Figure 5.4) in each time period (i.e. θ1 = 0.01).

Scenario 3: (parameter values θ1 = 0.01 θ2 = 0.2 θ3 = 0.5) We increase

the proportion of insurers who can move their locations from 20%

to 50% (i.e. θ3 = 0.5) and keep other parameters unchanged as in

Scenario 2, therefore more insurers are able to change their non-price

strategies.
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Scenario 4: (parameter values θ1 = 0.01 θ2 = 0.2 θ3 = 0.8) We increase

the proportion of insurers who can move their locations from 50%

to 80% (i.e. θ3 = 0.8) and keep other parameters unchanged as in

Scenario 2, therefore more insurers are able to change their non-price

strategies.

Scenario 5: (parameter values θ1 = 0.01 θ2 = 0.2 θ3 = 1) We further

increase the proportion of insurers who can move their locations from

80% to 100% (i.e. θ3 = 1) and keep other parameters unchanged as in

Scenario 2, therefore more insurers are able to change their non-price

strategies.

Scenario 6: (parameter values θ1 = 0.01 θ2 = 0.2 θ3 = 0.5) We use this

Scenario 6 to compare with Scenario 3, we let insurers to compare

their performance with the selected direct competitors who have sim-

ilar location but not similar size, instead of comparing direct com-

petitors who have both similar size and location in Scenario 3.

Scenario 7: (parameter values θ1 = 0.01 θ2 = 0.2 θ3 = 0.5) We use this

Scenario 7 to compare with Scenario 3, we let insurers to compare

their performance with the selected direct competitors who have sim-

ilar size but not similar location, instead of comparing direct com-

petitors who have both similar size and location in Scenario 3.

Scenario 8: (parameter values θ1 = 0.01 θ2 = 0.8 θ3 = 0.5) We increase

the insurers’ scope of comparing their performance from θ2 = 0.2 in

Scenario 3 to θ2 = 0.8 and keep other parameters unchanged as in

Scenario 3.
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Scenario 9: (parameter values θ1 = 0.05 θ2 = 0.2 θ3 = 0.5) We increase

the speed of agent’s movement from θ1 = 0.01 in Scenario 3 to θ1 =

0.05 and keep other parameters unchanged as in Scenario 3.

Scenario 10: (parameter values θ1 = 0.05 θ2 = 0.8 θ3 = 0.5) We increase

both the insurers’ scope of comparing their performance (from θ2 =

0.2 in Scenario 3 to θ2 = 0.8) and the speed of agent’s movement

(from θ1 = 0.01 to θ1 = 0.05) and keep the proportion of insurers

who can move unchanged as in Scenario 3.

Based on these ten different scenarios, we aim to understand the impacts of

these behavioral parameters on both the overall market dynamics and in-

dividual insurers’ performance. These different scenarios help us to answer

several questions: (1) What is the impact on insurance market cycle when

(more) insurers are able to move their non-price strategies? (2) What is

the impact on insurers’ performance when insurers move faster? (3) What

is the impact when insurers compare a larger peer group to make their

decisions of movement? (4) What are the market results when insurers

select their peer groups based purely on firm size, or location, or both?

Market performance

Table 5.4 includes the market performance (i.e. the mean and standard

deviation of market loss ratios) of the above ten different scenarios: we

use “Slow/Fast” to represent two different speed parameter values θ1 =

0.01/0.05 and “Small/Large” to represent two different scope parameter

values θ2 = 0.2/0.8, also “MeanLR” and “StdevLR” are the mean and

standard deviations of simulated loss ratios over 1000 time periods. All
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simulations are based on a same claim sample and other parameters remain

unchanged as in the base case of Chapter 4.

Table 5.4: Scenario testing: extension 2 (market performance)

Scenarios Speed Scope % MeanLR StdevLR
MovingAgents (Market) (Market)

Scenario 1 Fixed Fixed 0% 0.97 0.08
Scenario 2 Slow Small 20% 0.99 0.09
Scenario 3 Slow Small 50% 1.00 0.13
Scenario 4 Slow Small 80% 1.05 0.09
Scenario 5 Slow Small 100% 1.08 0.06
Scenario 6 Slow Small 50% 1.02 0.13
Scenario 7 Slow Small 50% 1.01 0.13
Scenario 8 Slow Large 50% 1.01 0.10
Scenario 9 Fast Small 50% 1.03 0.09
Scenario 10 Fast Large 50% 1.03 0.10

The summary of these results is as follows:

• Comparing Scenario 2 with Scenario 1 that allows insurers to move

their non-price strategies to compete in the system, the overall mar-

ket performance becomes worse: the mean of market loss ratio in-

creases from 0.97 to 0.99 and the standard deviation increases from

0.08 to 0.09. This is sensible, because the market becomes more com-

petitive if the insurers are able to move their non-price strategies.

• Comparing Scenarios 1,2,3,4,5 when the proportion of moving agents

increases, the market performance becomes worse and worse: the

mean of market loss ratio increases. However, the standard deviation

increases initially before the proportion of moving agents reaches to

a half, then decreases from 50% to 100%. This pattern tells us that

the volatility of market performance is affected by the proportion of

moving insurers in the market, but the relationship is not linear.
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• Comparing Scenario 3 with both Scenario 6 and Scenario 7, where

the differences are the insurers in Scenario 3 select their direct com-

petitors based on both size and location while Scenario 6 only looks

at location and Scenario 7 only looks at size. The standard devi-

ation of loss ratios is similar, but Scenario 3 has a slightly better

average market performance than both Scenario 6 and Scenario 7.

This suggests that it is better for insurers to compare the competi-

tors who have both similar size and location when deciding to move

their locations.

• Comparing Scenario 3 with Scenario 8, insurers in Scenario 8 select

more direct competitors into their peer groups when comparing their

performance than in Scenario 3. As a result, this brings more com-

petition into some locally profitable market segments. It changes the

profitability of these market segments and leads a high average mar-

ket loss ratio, due to the pressure from high competition. However,

a large value of “scope parameter” in Scenario 8 also provides more

flexibility for insurers to move their next period strategies, which

creates more opportunities to earn higher profits at the same time,

therefore the actual impact on market performance is hard to be

defined.

• Comparing Scenario 3 with both Scenario 9 and Scenario 10, insurers’

speed of moving their locations are faster in both Scenario 9 and

Scenario 10 than in Scenario 3. This leads to have a more competitive

market and produce a lower market performance on average (i.e. the

mean of loss ratios increases from 1.00 in Scenario 3 to 1.03.).
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Individual insurers’ performance

After testing the market performance, we divide insurers into two groups:

one group contains all insurers who are able to move (i.e. we call it as “mov-

ing group”) and the other group includes those insurers cannot move (i.e.

“fixed group”). We look at the average performance of these two groups

and the summary is in Table 5.5. On average, the insurers in the fixed

group perform better than those in the group with moving insurers. This

is because moving agents often follow a herding behavior and compete with

each other aggressively. Although some of the fixed insurers individually

perform badly in some periods when their local competition is high as the

moving agents invade their local market segments, other fixed insurers who

are far away from the areas of intense competition perform better. There-

fore, the standard deviation of the loss ratio of the fixed group is higher

than the moving group.

Table 5.5: Scenario testing: extension 2 (individual performance)

Scenarios MeanLR StdevLR MeanLR StdevLR
(Fixed) (Fixed) (Moving) (Moving)

Scenario 1 0.9706 0.0799 n/a n/a
Scenario 2 0.9576 0.0918 1.0084 0.0521
Scenario 3 0.9736 0.0847 0.9997 0.0575
Scenario 4 1.0140 0.0664 1.0216 0.0444
Scenario 5 n/a n/a 1.0241 0.0465
Scenario 6 0.9628 0.0860 1.0213 0.0365
Scenario 7 0.9641 0.0862 1.0000 0.0407
Scenario 8 0.9576 0.0949 1.0099 0.0569
Scenario 9 0.9985 0.0695 1.0156 0.0544
Scenario 10 0.9710 0.0942 1.0217 0.0467
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Herding behavior and insurance cycle over time

We also look at individual insurers’ performance over time, to understand

the impact of herding behavior on the market dynamics (e.g. insurance

cycle) in the system.

Firstly (testing the speed of insurers’ movements), we compare Scenario

3 with Scenario 9, both cases have 50% of insurers move their locations

(i.e. θ3 = 0.5) and all of these insurers select a small number of direct

competitors to compare their performance (i.e. θ2 = 0.2). The only differ-

ence is the speed of insurers’ movements (i.e. slow θ1 = 0.01 in Scenario

3 and fast θ1 = 0.05 in Scenario 9). Therefore, we compare the impact of

insurers’ speed on the herding dynamics and market cycles.

Figure 5.5 illustrates the movements of 20 insurers in the circle city. The

x-axis represents the time period and the y-axis defines the locations of

20 insurers over time who are initially distributed equally on the circular

street. There are 10 insurers start to move their locations at the begin-

ning of simulation based on the behavioral parameters (i.e. we call them as

“moving agents”) and the rest of insurers stay at their original positions

over time (i.e. “fixed agents”). The insurers who are able to move their

locations will always move, and those stay at one location will always fix

at that location. This implementation may represent two types of insurers

in the real-world insurance market: one group of insurers always focus on

their special business strategies (i.e. niche market), while another group

of insurers change their strategies according to the profitability in different
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market segments. The moving insurers move toward the best performing

competitors in their individual peer groups. The competition in local mar-

ket segments are changed by the movements of insurers, so insurers move

from less profitable market segments to other segments with higher poten-

tial profits. Some moving insurers change their directions before they reach

the most profitable area if the speed of movement is slow. Following the

movements of insurers in Figure 5.5 over time, the whole market is divided

into two main parts at the end of simulation.

Figure 5.5: Scenario 3 Insurers’ location movements

Figure 5.6 shows the average market loss ratios for the two groups of

insurers (i.e. a group of 10 insurers who are able to move and another group

of 10 insurers are fixed) over four time intervals. The x-axis represents

four time intervals and the y-axis is the mean of loss ratios. Each time
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interval includes 250 time periods of loss ratios (e.g. the periods from 1 to

250 years are included in the first time interval on the x-axis). From the

figure, we have two conclusions: (1) Fixed insurers have better performance

than moving insurers over time, so the herding behavior is bad for moving

insurers in this system on average. (2) Insurers’ performance change over

time: moving agents initially improve their performance by adjusting and

moving their strategies, so they earn some profits from some fixed insurers.

However, once the moving insurers herd together and start to compete with

themselves, their performance become worse and worse.

Figure 5.6: Scenario 3 Average performance of two insurer groups

Figure 5.7 of Scenario 9 shows a similar diagram of location movement

in Figure 5.5 of Scenario 3. The difference is that insurers herd together

faster and closer in Scenario 9 than in Scenario 3, because the speed of

insurers’ movements are increased in Scenario 9. Moving agents shift be-
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tween the top and bottom market segments, this generates individual profit

cycles in these two local markets. In each market segment, average profits

increase when moving insurers leave, vice versa.

Figure 5.7: Scenario 9 Insurers’ location movement

Figure 5.8 shows the average performance of two groups of different

insurers (i.e. fixed and moving) over 4 time intervals. There are cyclic pat-

terns in both insurer groups. When moving agents enter the fixed insurers’

market segments, the average performance of fixed insurers becomes worse

due to a higher competition. The individual performance cycle in each

group is due to the movements of moving agents.
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Figure 5.8: Scenario 9 Average performance of two insurer groups

Secondly (testing the scope of insurers’ comparison), we compare Sce-

nario 3 with Scenario 8, both cases have 50% of insurers move their lo-

cations (i.e. θ3 = 0.5) and all of them move their locations with a slow

speed (i.e. θ1 = 0.01). The only difference is the scope of insurers’ local

comparison (i.e. θ2 = 0.2 in Scenario 3 and θ2 = 0.8 in Scenario 8) that

means moving insurers in Scenario 3 select 20% of other insurers to com-

pare their performance and move toward the best performing competitors,

but they select 80% of other insurers in Scenario 8. Therefore, we compare

the impact of insurers’ scope on the herding dynamics and market cycles.

Figure 5.9 is the location movement of Scenario 8. It is similar to the

above Figure 5.5 of Scenario 3 and Figure 5.7 of Scenario 9. Comparing

to Figure 5.5 of Scenario 3, the scope of insurers’ local comparison leads
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insurers to observe the best performing competitor more globally in the

system, so moving agents are more likely to herd together and compete

in same local market segments. All of these moving agents move between

profitable market segments, but the profitable market segments become

less profitable after they move in.

Figure 5.9: Scenario 8 Insurers’ location movement

Figure 5.10 shows a cyclic pattern of performance in the group of fixed

insurers. This is due to the dynamics of “move in and move out” of moving

insurers. The performance of moving agents become worse over time, since

they herd together closer over time and compete with themselves more

aggressively.
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Figure 5.10: Scenario 8 Average performance of two insurer groups

Finally (testing the proportion of insurers who can move), we compare

Scenario 2, Scenario 3, Scenario 4 and Scenario 5, all of these four scenarios

have moving insurers who move slowly and compare a small number of

direct competitors to decide their next movements. However, the number

of moving agents in the system increases from 4 to 20. We look at the

impact of this change on the insurers’ performance and market dynamics.

Figure 5.11 illustrates the location movements for all scenarios: Scenario

2 is the top-left diagram, Scenario 3 is top-right, Scenario 4 is bottom-left

and Scenario 5 is the bottom-right diagram. In consistent with traditional

location model (Hotelling, 1929), the long term equilibrium is for moving

agents to herd together, particularly in Scenario 5 when all insurers can

move.

Figure 5.12 includes the individual performance of two insurer groups
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(i.e. fixed and moving groups) for each corresponding case. There are a

few interesting conclusions: (1) Herding behavior is bad for moving agents,

since the performance is worse than fixed agents on average. However, as

discussed in the traditional location model (Hotelling, 1929), the best strat-

egy for moving agents is to keep together based on game theoretical analysis

and the system achieves a Nash equilibrium. (2) The market competition

is increased by increasing the proportion of moving insurers. Although this

is good to the customers as the price of insurance is decreased due to the

competitive nature, some insurers suffer large losses in the competition.

This is because they follow similar non-price strategies, so the only way

to compete is to reduce their prices (i.e. less on product differentiation).

More detailed simulation results of cycles in the individual insurers’ local

markets are included in Appendix A.5.

5.4.4 Conclusion

In this model extension 2, we take the benefits of ABM that aim to target

insurers’ individual behavior from a bottom-up approach to understand the

market dynamics. We are not only able to understand the overall insur-

ance market cycle that is based on the base case analysis of Chapter 4, but

also understand the individual insurers’ performance in their local market

segments and the interactions between agents with different behavior rules.

Individual local market segments often have cyclic performance patterns

as well, since the moving agents continually adapt their business strategies

and move between less profitable segments to more profitable ones. The

herding behavior creates high competition among themselves in their local
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market segments. This kind of cyclic behavior in different market segments

is consistent with literature in insurance cycle. Feldblum (2001) discusses

that the shift of insurers’ strategical focuses may cause cycles within the

market. He finds that the pattern of the cycle differs by line of insurance

business. Berger et al. (1999) analyze the merit of strategic focus in the

insurance market. They find that some specialists are worth to fix their

strategies in particular niche markets (i.e. this suggestion is similar to the

fixed agents in our model). Gron and Winton (2001) find different lines

of insurance business have different dynamic patterns of cycle. They sug-

gest that this may be due to the capital flow between these different lines

within the insurance market over time. Chen et al. (2007) compare the

difference between nonspecialized strategy insurers with specialized ones.

They conclude that nonspecialists are more efficient for some types of in-

surers, whereas specialists are more efficient for other types. The type

of insurers depends on: whether insurers are large or small, in personal

line or commercial line of business, cost efficient or not, in a high or low

competitive market segments, etc.

5.5 Extension 3: 2-D Planar Space

5.5.1 A more generalized system

In this model extension 3, we provide a more generalized version of our

ABM of insurance market. Although an 1-D circle city is enough for us

to better understand the insurance cycle than traditional models, a 2-D

framework is more helpful for the users of ABM to visualize the whole dy-
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namics of the market. It is a common implementation in the field of ABM

research, as we introduced some existing 2-D ABM examples in Chapter 3,

such as Forest-fire model (Mills, 2010) and Sugarscape model (Palin et al.,

2008). In this section, we summarize the main updated elements of our

ABM in this extension. This is followed by a comparison of the simulation

results on both aggregate market and individual insurers’ cycles from this

2-D extension with the early three 1-D versions.

From 1-D circle city to 2-D planar space

Figure 5.13 illustrates how we extend the original 1-D circle city (i.e. left

diagram) to a 2-D planar space (i.e. right diagram). In the left diagram,

insurers are equidistantly located and customers are uniformly distributed

along the circular street. Now, in the right diagram, both insurers (i.e. red

dots) and customers (i.e. blue bubbles) are randomly distributed in the

system. A key difference between these two different dimensional spaces

is the corner or border effect when agents measure the distances among

themselves and customers. The original 1-D circle city model is intro-

duced by Salop (1979), in order to avoid the corner effect of Hotelling’s

linear street model (Hotelling, 1929). In our case, the system is closed by

the four boundaries and each agent’s location is defined by a coordinate

in the xy-plane, therefore their distances are also measured by Euclidean

distance. The reason for us to build this 2-D space with corner or bor-

der effect is the following: if we think this 2-D planar space as a strategy

map of insurers that defines customers’ product preference in motor insur-

ance sector. The x-axis defines the product preference of customers with

different ages from young to old, while the y-axis defines the preference of
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customers with different market value vehicles from low to high. Therefore,

any single blue bubble in the system defines a product preference of one

customer at a particular age with a specific car. Insurers want to target

different customer groups, as defined by the red dots. Insurers’ movements

in the space represent their strategical decisions to target different market

segments. As an example of moving horizontally from left to right, this

means that insurers target from young customers to old age groups. We

think, in reality, young customers (e.g. 18 years old) have very different

insurance product preference to old customers (e.g. 70 years old), but they

are more similar to the age group who are close to them (e.g. age between

20 and 30 years old.) Therefore, for insurers who are changing their strate-

gical targets, it is more likely for them to move smoothly between different

market segments with similar preferences (i.e. They are moving from 18

to 20-30s years old market segments first, then moving towards 70 years

old.). In this case, once insurers reach a particular corner or border, they

will not cross the corner or border. 3

3Nevertheless, it is also possible to implement the system without corner or bor-
der effect, which can be represented by a torus or sphere. As Garcia (2005, p. 390)
describes that “In networked ABMs, environments (or systems) are frequently mod-
eled where agents of a similar type are spatially connected to neighbors in a torus
(donut-shaped). In a two-dimensional space, the agent space looks like a lattice, but
in a three-dimensional space, agents are on the edge of a lattice interact with their
neighbors on the other side of the lattice, forming a donut-shape.”

183



CHAPTER 5. EXTENSIONS TO THE ABM BASE CASE

Figure 5.13: A more generalized system

Distribution of customers

Figure 5.14 provides a more realistic setup that models a real-world situa-

tion regarding customers’ preferences on the 2-D map of product charac-

teristics. Instead of distributing customers’ preferences uniformly on the

circular street that represents different product characteristics, the cus-

tomers can be distributed using some density functions which are more

representative of real-world situations. In reality, some market segments

(i.e. product characteristics) have more customers (e.g. mainstream prod-

ucts) than other segments that only focus on some niche businesses. For

simplicity, as an example in Figure 5.20, we assume that the customers are

normally distributed on the two dimension in the product preference space.

This would not be unreasonable, if we define the 2-D space as the motor

insurance market that are segmented by the market value of the insured

cars (e.g. x-axis) and customers’ age (e.g. y-axis), since both data sets can

be collected from ABI database.
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Figure 5.14: Distribution of customers

Insurers’ behavior

Figure 5.15 illustrates the behavior of insurers in this 2-D space. As we

explained in the 1-D circle city, insurers only compare their direct com-

petitors (whom we call “neighbor”) who have close distances between each

other along the circular street and similar sizes in the system, and insurers

only move their locations along the street in the model extension 2. In this

2-D model extension 3, insurers have more dimensions to select their direct

competitors, but they still select direct competitors according to distance

and size. The distance between two insurers is calculated by the Euclidean

distance in a 2D plane, but it can be also implemented as the ‘Manhattan’

distance without changing the model results (Ladley and Rockey, 2010). If

insurers are allowed to move, they will also have more flexibility of move-

ment in terms of how they change their non-price business strategies in

this 2-D space. In the Figure 5.15, we can use the size of bubbles to repre-

sent different insurers’ capital levels. This helps the users of our ABM to
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visualize the process of capital accumulation. The center of these bubbles

defines the location of insurers, and therefore the distance is a straight-line

between two centers that is measured by Euclidean Distance of two X-Y

coordinates on the 2D space. For example, in the bottom left corner, there

are three insurers I1, I2 and I3 who are comparing each other. The lines

between their centers are the distances and the sizes of the bubbles are

their capital levels.

Figure 5.15: Insurers in the 2-D space

5.5.2 Simulation results

We use the same initial parameter values of the base case in Chapter 4

to run all simulations of this model extension 3. We follow three stages

to compare the results from this more generalized 2-D extension with the

results of early three different 1-D cases of our ABM. The three stages are:

(1) Comparing with the base case model in Chapter 4, which ignores the

role of capital in an insurer’s price function. (2) Comparing with the model
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extension 1, which includes the role of capital in insurer’s price equation

and the positive short-term relationship between capital and price. (3)

Comparing with the model extension 2, that allows insurers to move their

locations and tests individual insurers’ performance. Based on this three-

stage comparison of this 2-D version and the early 1-D versions, we find

that the results of early 1-D versions are robust and consistent with this

2-D extension.

Comparing results with Chapter 4 base case

Figure 5.16 shows the autocorrelation (AcF: left diagram) and partial au-

tocorrelation (PAcF: right diagram) of market loss ratios, based on the

same initial parameter values in Chapter 4 base case and the framework

of this extended 2-D system. Insurers have the same price function as in

Chapter 4 base case model and they are unable to move their locations in

the 2-D space. Comparing Figure 5.16 with Figure 4.8 of Chapter 4 base

case, it is also strongly suggestive of an AR(2) process and the coefficients

of the first two lags are similar to Chapter 4 base case. Therefore, we find

that the results of Chapter 4 base case are robust and appear to hold in a

more generalized setting.
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Figure 5.16: Loss ratio: AcF and PAcF (comparison with Chapter 4 base

case)

Comparing results with Chapter 5 extension 1

Figure 5.17 also shows the autocorrelation (AcF: left diagram) and partial

autocorrelation (PAcF: right diagram) of market loss ratios, based on the

same initial parameter values in Chapter 4 base case and the framework of

this extended 2-D system. However, we update the insurer’s price function

that is in line with the model extension 1, which includes the role of capi-

tal level in the price function. Figure 5.17 provides a similar conclusion of

model extension 1. Comparing Figure 5.17 with Figure 5.16, the autocor-

relations at both lags 1 and 2 are amplified in 5.17 which agrees with the
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conclusion in model extension 1. The level of capital has a contributing

impact on the cyclic pattern of market loss ratios over time, but the main

endogenous source of cycle is the interaction of insurers’ competition in a

monopolistically competitive market.

Figure 5.17: Loss ratio: AcF and PAcF (comparison with Chapter 5 ex-

tension 1)

Comparing results with Chapter 5 extension 2

We also allow insurers to move in this 2-D space, based on the same pro-

cedures of model extension 2. We test the impacts of three key behavioral

parameters θ1, θ2, and θ3, as summarized in the early Table 5.3 when we

discussed the model extension 2.
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Table 5.6 contains the mean and standard deviation of market loss ratios

of all ten scenarios that are suggested in the model extension 2.

Table 5.6: Scenario testing: extension 3 (market performance)

Scenarios Speed Scope %ofMovingAgents MeanLR StdevLR
θ1 θ2 θ3 (Market) (Market)

Scenario 1 0 0 0% 0.90 0.13
Scenario 2 0.01 0.2 20% 0.93 0.18
Scenario 3 0.01 0.2 50% 0.96 0.25
Scenario 4 0.01 0.2 80% 1.02 0.30
Scenario 5 0.01 0.2 100% 1.06 0.10
Scenario 6 0.01 0.2 50% 0.92 0.05
Scenario 7 0.01 0.2 50% 0.93 0.10
Scenario 8 0.01 0.8 50% 0.95 0.12
Scenario 9 0.05 0.2 50% 0.97 0.29
Scenario 10 0.05 0.8 50% 0.98 0.30

Both mean and standard deviation have similar patterns as the conclu-

sions of extension 2. To compare these results in Table 5.6 with extension

2 in Table 5.4, we found the following similarities and differences:

• Both extensions show that if insurers are able to move their non-price

strategies, the market becomes more competitive and has less profit.

Both extensions also show when both moving and fixed agents are

more mixed in the system, the overall market profit decreases and

risk (volatility) increases on average. Also, when the speed of in-

surers’ movement is increased that leads to have a more competitive

environment as in extension 2, it produces a lower and more volatile

market performance. Similarly, due to the same conclusion in ex-

tension 2 when comparing scenario 3 with scenario 8, the impact of

insurers’ scope parameter on market performance is inconclusive.
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• However, when comparing Scenario 3 with both Scenario 6 and Sce-

nario 7, where the differences are the insurers in Scenario 3 select

their direct competitors based on both size and location while Sce-

nario 6 only looks at location and Scenario 7 only looks at size. The

results are different from the model extension 2, both Scenario 6 and

Scenario 7 have better performance than Scenario 3. This may sug-

gest that insurer is better off to limit their comparison benchmarks

in a more complex system, otherwise they are too volatile to change

their non-price business strategies.

Table 5.7 contains the mean of loss ratios for two different insurer

groups: a group of insurers who are able to move (i.e. moving agents)

and the other group of insurers who cannot move (e.g. fixed agents). The

results are consistent with the conclusion of model extension 2: On aver-

age, the insurers in the fixed group perform better than those in the group

of moving insurers. This is because moving agents often follow a herding

behavior and compete aggressively with each other.

Table 5.7: Scenario testing: extension 3 (individual performance)

Scenarios MeanLR(Fixed) MeanLR(Moving)

Scenario 1 0.9005 n/a
Scenario 2 0.9263 0.9430
Scenario 3 0.9351 0.9781
Scenario 4 0.9302 1.0403
Scenario 5 n/a 1.0607
Scenario 6 0.9058 0.9530
Scenario 7 0.9005 0.9634
Scenario 8 0.8936 1.0048
Scenario 9 0.9291 1.0030
Scenario 10 0.9408 1.0034
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5.5.3 Conclusion

Based on the above simulation results of the 2-D extension and their com-

parisons with early three different 1-D cases, we find that the conclusions

of this more generalized 2-D version are similar to the early 1-D versions.

Therefore, our early cycle explanation is also robust in more generalized

and realistic situations. The benefit of this 2-D model extension not only

performs robustness testing on our cycle explanation, but also provides a

useful visualization tool to analyze insurers’ non-price strategical move-

ment. This kind of modeling strategical movement is common in the field

of ABM as introduced in Chapter 3, but we do not go further in this thesis

since it is beyond our main objective of understanding insurance cycle.

5.6 Conclusion

In this chapter, we extend our model by following three steps.

Firstly, we include the level of capital into insurers’ price function, there-

fore insurers’ competitive prices depend on their existing capital levels. We

analyze the impact of this extension on the market loss ratios and the pat-

tern of insurance cycle. We find that the simulation results support our

suggestion that capital constraint plays a role of amplifying cycle and it is

one of contributing cycle factors.

Secondly, we allow insurers to move their non-price business strategies

on the circular street in order to understand the individual performance of

insurers with different behavior rules. We find that herding behavior is bad
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for insurers on average, and local market segments appear different cycles

over time that mainly depend on the actions of moving insurers. When

moving insurers move toward a profitable market segment, this herding be-

havior creates a high competition in this particular segment and destroys

the profitability. In fact, cycles shift between different market segments

over time, which are consistent with empirical observations in different

lines of insurance business.

Finally, we generalize the 1-D circle city model into a 2-D planar space

that is a common type of environment in ABM research. We compare this

more generalized 2-D model extension with the early three different cases

of 1-D version: (1) The base case model in Chapter 4; (2) The model ex-

tension 1, which includes the role of capital in insurers’ price function; (3)

The model extension 2, which models the insurers’ non-price strategical

movement. The results of comparison show that, in terms of modeling and

explaining insurance market cycle, both the 2-D generalized model and

early 1-D versions provide similar conclusions. Therefore, we find that our

early 1-D analyses of insurance cycle are robust.
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Chapter 6

Conclusions

6.1 Summary

The aim of this thesis is to understand the insurance cycle endogenously.

We believe that non-life insurance market is monopolistically com-

petitive. Price competition drives the market, but non-price

preferences, product differentiation, and behavioral responses

act to dampen and turn prices, thereby generating cycles.

Chapter 2 provides the background of market cycles in the non-life insur-

ance market. Traditional approaches of analyzing the cycles are focused on

time series analyses, such as using cointegration analysis, or modeling the

market performance over time as a second-order autoregression process, or

developing a regime-switching model to analyze performance between soft

and hard markets. Most of existing theories of insurance cycle attempt

to explain cycles through discovering exogenous factors, such as entry-exit

of insurers, unexpected regulatory changes, capital flow in and out from
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the market, cycle in interest rate, etc. We try to understand the cycles

endogenously and focus on the interactions of insurers within this system.

Agent-based modeling provides a possible way for us to model the interac-

tions of insurers who have different behavior rules.

Chapter 3 introduces the agent-based modeling (ABM), its distinctive fea-

tures and applications in insurance economics. We also discuss some pos-

sible methods of performing model evaluation and show a couple of simple

ABM examples. The key reason of using ABM is because: it attempts to

capture the emergent complex dynamics of real-world systems, like cycles

in insurance market. Different from existing cycle literature, ABM rec-

ognizes that insurers are heterogeneous and they have different behavior

rules to decide their actions. The rationality of insurers is limited by the

information they have, so they have to learn and adapt from their current

local market environment. They interact and compete with each other lo-

cally, which affect the local market environment at the same time.

Chapter 4 explains the base case of our ABM of non-life insurance market.

We recognize that the insurance market is monopolistic competition, rather

than being a perfect competition as traditional literature assumed. Mo-

nopolistic competition suggests that each insurer has local power to affect

the price in its targeted customer groups. This is because customers have

different product preferences, so insurers can use product differentiations

to focus on particular market segments. We apply traditional economic lo-

cation models to capture customers’ product preferences and map them to

a product attribute space (i.e. a circular street in Chapter 4). We also use
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some recent findings from Behavioral Economics to model insurers’ behav-

ior of dealing with uncertainty, competition and product differentiation.

By interacting both insurers and customers in this system, we are able to

generate market performance cycles that match the real market data. We

focus our analysis on insurer’s pricing behavior, rather than allowing insur-

ers to change their business focuses on the product attribute space. This

is because we believe price competition play the key role of creating mar-

ket cycles, while non-price strategical movements on the product attribute

space have a small impact on the market dynamics. We use actual market

data samples from the UK insurance sectors to calibrate and validate our

simulated results.

Chapter 5 extends the base case model of Chapter 4 in three different ways.

Firstly, by adding a capital-based adjustment in insurer’s price equation

and comparing the simulation results with the base case, we suggest that

“capital constraint” is an external contributing factor of amplifying insur-

ance cycles, rather than an original source or force of cycle motion. The

key endogenous source or force of cycle is the interaction of insurers’ com-

petition in a monopolistically competitive market with uncertain nature,

as explained in the previous Chapter 4. Secondly, we allow insurers not

only change their prices, but also change their locations on the product at-

tribute space. Although this kind of non-price strategical movement plays

an insignificant role of affecting aggregate market dynamics, it affects in-

dividual insurers’ performance. Insurers with different behavior rules of

strategical movement perform differently. Therefore, cycles in individual

market segments are different from each other. They are also different from
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the aggregate market cycle. Finally, we provide a more generalized version

of our model, by expanding it from 1-D structure to 2-D, distributing both

insurers and customers on the product attribute space more realistically,

and allowing insurers to have more flexibility to compare their performance

with direct competitors and updating their non-price strategies. Compar-

ing this 2-D generalized model with the early three different versions of 1-D

structure, the simulation results are similar to the early versions. There-

fore, we argue that the conclusions from the early 1-D model are robust.

6.2 Directions for future research

The distinctive features of ABM and its potential benefits are explained in

early Chapter 3. The unique focus of ABM simulation is on the dynamic

interactions of agents’ behaviors. In the insurance market, there are impor-

tant innovations and developments recently which enable the collection of

customers’ behavioral patterns when purchasing insurance (e.g.: compari-

son website, insurance aggregators, etc) and the analysis of customer risk

behaviors (e.g.: telematics in motor insurance, usage-based insurance, etc).

As Guillen et al. (2008b) state, it is becoming more and more important

for insurers to monitor customer loyalty in a more competitive market as

customers are shifting their purchasing behavior from traditional broker-

based distribution to internet-based automatic system (Brockett et al.,

2008; Guillen et al., 2009). An ABM-based behavioral simulation can be a

powerful tool to predict these market trends and to investigate the poten-

tial impacts on insurers with different strategies.
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The simulation results from our ABM of insurance market not only ex-

plain the insurance cycle endogenously, but also potentially provide some

real-world applications. First, our ABM may help insurers to test optimal

pricing strategies of achieving individual profit maximization in different

market environments. Second, it may suggest some other business strate-

gies that identify and minimize the risk of underwriting cycles, such as

avoiding herd behavior and performing fundamental analysis to price in-

surance.

Based on our 2-D framework in the model extension 3 of Chapter 5, insur-

ance market practitioners and regulators are able to visualize the non-price

strategies and define their future movements better. Many possible ques-

tions are worth to research further in the future. Here we briefly discuss

the following:

Local market comparison and peer review

From an insurance market practitioner’s view (e.g. CEOs of major insur-

ance companies, actuaries, underwriters, etc), an updated performance

measure (i.e. loss ratio, combined ratio, etc) is necessary to manage their

business operations. However, most of companies compare themselves with

other insurers who have a similar size or total written premiums. We be-

lieve it would be better for insurers to compare both the size and the

strategical business focus. Our 2-D model can define an insurer’s major

competitors’ strategical focuses on customers’ preferences, therefore in-

surers can use our model to trace their major competitors or define new
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potential competitors in their existing focused market segments. Regular

peer review is a necessary procedure for an insurer to manage its busi-

ness, but it is crucial to define a proper group of peers. Otherwise, it may

push the business strategy toward a wrong direction. For example, while

Zurich Insurance Group has a similar size with AIG five years ago, but they

have different strategical focuses. AIG was moving toward non-traditional

strategies of financial innovations that are more focused on insuring credit

protection for the structured debt securities (e.g. credit defaults swaps

CDSs on collateralized debt obligations CDOs). AIG earned huge profits

at the beginning of this innovative process, but suffered a lot after 2008

global financial crisis. Meanwhile, Zurich Insurance Group did not com-

pare its performance with AIG and managed to avoid this crisis. It is worth

for us to research further on the behavior of insurers’ local comparison and

the process of peer review, so we can test it on our ABM.

Strategical planning and investment

It is easy to see that, from our model, if a local market segment appears a

high profitability, then it attracts other insurers move toward this particu-

lar segment and increases competition in this area. This kind of strategical

movement is rational from a profit maximization point of view, but it cre-

ates a herding behavior among these competitors. The main reason for the

herding is because insurers ignore the feedback loops between individual

decisions and aggregate market results (i.e. complexity). When a profitable

sub-market attracts a lot of new competitors, this sub-market becomes less

profitable and even makes loss since a high competition (due to excess sup-
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ply) reduces the price. To understand this complexity, we can simulate our

model and test different behavioral rules of insurers, such as testing the

speed of insurer’s movement, deciding whether follow the herding or not,

etc. These kinds of strategical scenario testing based on our ABM helps in-

surers understand the complexity to make better business investment plan.

In fact, insurance market practitioners often find insurance cycles appear

differently in different sectors and periods, some insurers move their busi-

ness focuses by following the cycles (i.e. from less profitable sectors to more

profitable areas), but other specialists remain in their niche markets over

time (i.e. no matter the status of cycle in this particular niche area). It

is worth for us to research further on the behavior of insurers’ strategical

movement, whether based on technical analysis (i.e. following the market

trend and cycle) or fundamental analysis (i.e. following an insurer’s own

expertise and its specific knowledge).

Merger and acquisition

Throughout our early analyses, we assume that insurers are individual

agents and their actions are independently made by themselves. Insur-

ers always compete with each other. However, in terms of the purpose

for risk mitigation in a cyclic environment, it is worth for us to research

further and test one possible way of mitigating the risk through merg-

ers and acquisitions (M&A). It diversifies the portfolio of business classes

into different market segments. The procedure of its implementation is

to modify the utility functions of our agents, let some agents cooperate

among each other and form an insurance group. They share their profits
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in each time period, but their business strategies are focused on different

market segments. They consider their overall group-level profits to decide

their strategical movements. In this way, they may suffer losses in some

market segments with high competition, but can gain more profits in other

less competitive market segments. In reality, some insurance giants may

have subsidiaries to expand new businesses or create product innovations

in some new sectors, together with their main businesses in the traditional

market segments. Our model provides a useful tool to test the performance

in these different market circumstances. Elango et al. (2008) investigate

the relationship between product diversification and insurer’s performance

using US data over the 1994 through 2002 time period. They find that

the relationship is complex and nonlinear. Liebenberg and Sommer (2008)

find that undiversified insurers consistently outperform diversified insur-

ers. This means that insurers who are strategic focused specialists have

competitive advantages.

Insurers’ reputation and customers’ recognition

Similar to our analysis, Laver (2005) use ABM to model the dynamics of

political competition as a complex system without assuming the existence

of long term equilibrium. Political parties or their party leaders in the

model of Laver (2005) are similar to insurers in our model and voters are

similar to our customers. Political parties change their strategies by moving

on the 2-D strategical map to attract voters and re-adapt their policy

positions, while voters continually review party support and switch parties

to increase their expectations based on their individual preferences. Laver
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(2005) explore different algorithms for party adaptation that are similar to

our insurers’ behavioral rules, including “Aggregator” which states these

agents adapt party policy to the ideal policy positions of party supporters,

“Hunter” which states the agents repeat policy moves that were rewards or

otherwise make random moves, “Predator” which states the agents move

party policy toward the policy position of the largest party, and “Sticker”

who never change party policy. To compare with our ABM and the real

insurance market, insurers have similar reputations and customers often

recognize these differences of insurers. Some insurers are very focused in

their specific business areas who never change their strategies, while others

move toward other business strategies whether by following other insurers

or purely seeking more profitable area alone. It is interesting to test the

benefits of these differences in reputation and recognition. It is worth for

us to model customers’ behavior as well, such as their recognitions and

expectations about insurers.
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A.1 Premium Principles and Properties

Some common premium principles are mentioned in the insurance literature, Kaas et al.
(2008) list ten principles in Chapter 5 of their textbook. We select five principles that
are relevant to our premium function. They provide the foundation for understanding
our implementation of insurer’s premium.

Five premium principles are:

1. Net premium principle: premium should be positively related to the expected
risk at least.

P (X) = E(X)

2. Expected value principle: premium should take into account of the future dis-
count of time value (here α is a discount rate).

P (X) = (1 + α)E(X)

3. Variance principle: premium should take into account of the future uncertainty
of the outcome (here α is a weight of risk loading).

P (X) = E(X) + αV ar(X)

4. Standard deviation principle: similar to variance principle, but may take into
account positive or negative correlation (here α is a weight of risk adjustment).

P (X) = E(X) + ασ(X)

5. Exponential principle: basically, premium depends on the expected risk and un-
certainty of future losses and the risk tolerance of an insurer (here α is the
constant risk averse coefficient for an insurer).

P (X) ≈ E(X) +
1

2
αV ar(X)

The reason for discussing these five principles is that they are commonly used in
real-world insurance practice. Other principles that we do not include here are not
practical in the real world (e.g. Percentile principle, Maximal Loss principle, or Esscher
principle), or some of them can be represented by one of the above mentioned principles.
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For example, the Exponential principle is a special case of both so-called “Zero Utility
Premium” and “Mean Value Principle”.

Five desirable properties of premium principles:

1. Non-negative loading: A premium without a positive loading will lead to ruin
with certainty. Therefore, the premium for a risk of random loss X should be
larger than the mean of this loss:

P (X) ≥ µ(X)

2. No rip-off: The maximal loss premium is a boundary case. If loss is unbounded,
the premium is infinite. Therefore, the premium should be less than the maximal
possible loss:

P (X) ≤ max(X)

3. Consistency: If we raise the claim by some fixed amount c, then the premium
should also be higher by the same amount.

P (X + c) = P (X) + c

4. Additivity: Pooling independent risks does not affect the total premium needed.
Therefore, for independent risks X and Y:

P (X + Y ) = P (X) + P (Y )

5. Iterativity: The premium for loss X can be calculated in two steps. First, condi-
tional calculation on every possible of event Y, then apply same premium prin-
ciple to calculate the expected risk of Y.

P (X) = P (P (X|Y ))

Kaas et al. (2008) summarize the properties of different premium principles in a table
on page 121-122. Within the above five listed principles, only the exponential premium
and the net premium principle satisfy all of these five properties. Obviously, the major
difference between these two premium options is that the net premium principle as-
sumes insurers are risk neutral and the exponential premium assumes insurers are risk
averse. For these reasons, the implementation of risk premium in our model is based on
the exponential premium principle that we discuss later. As Kaas et al. (2008) state,
the drawback of exponential utility based premium is that the insurer’s existing capital
level plays no role in the risk premium function, because the risk averse coefficient is
a constant. On the other hand, this is also a strong point since it is very convenient
not to have to know insurers’ current capital, which they argue that the capital is gen-
erally either random or simply not precisely known at each time period. Although we
consider that an insurer’s capital (size) affects its price decision, the role of capital is
not to change an insurer’s risk tolerance. In fact, capital in our model has two roles.
First, it measures the capacity/supply of each insurer. Second, our insurers also use
capital levels to define their direct competitors and change their non-price strategies
(e.g. agent’s local comparison rule).

The premium principles only offer advice for us to define the risk premium, which
means it is the minimal rational premium that an insurer can charge in a perfect com-
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petitive market. It links to the insurer’s risk aversion and the ruin probability, therefore
it intends to provide the lowest possible rational price. However, the real market is
dynamic and competition is changing over time, so the market competitive price should
also include other competitive adjustment factors or loadings.
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A.2 Details of Testing Stationarity (ADF test)

Table A.1: UK Motor: testing Stationarity
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Table A.2: UK Property: testing Stationarity

Table A.3: UK World: testing Stationarity

211



APPENDIX A.

Table A.4: Simulated 29 years: testing Stationarity

Table A.5: Simulated 900 years: testing Stationarity
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A.3 Details of AR(2) regression of data se-

ries

Table A.6: UK Motor ACF and PACF

Table A.7: UK Motor AR2 regression
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Table A.8: UK Property ACF and PACF

Table A.9: UK Property AR2 regression
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Table A.10: UK World ACF and PACF

Table A.11: UK World AR2 regression
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Table A.12: Simulated 29 years ACF and PACF

Table A.13: Simulated 29 years AR2 regression
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Table A.14: Simulated 900 years ACF and PACF

Table A.15: Simulated 900 years AR2 regression
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A.4 Details of testing residuals of AR2 pro-

cess

Table A.16: UK Motor residual testing: Uncorrelatedness

Table A.17: UK Property residual testing: Uncorrelatedness
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Table A.18: UK World residual testing: Uncorrelatedness

Table A.19: Simulated 29 years residual testing: Uncorrelatedness
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Table A.20: Simulated 900 years residual testing: Uncorrelatedness

A.5 Cycles in the individual insurers’ local

markets

If we look closer at the individual insurers in their local market segments in both a system
with all fixed insurers (Case 1) and another system with 50% of insurers are moving
agents (Case 2). From the autocorrelation function (AcF) and partial autocorrelation
function (PAcF) in Figure A.1 (i.e.: a system when all insurers are fixed as Case 1) and
Figure A.2 (i.e.: a system when 50% insurers are moving agents as Case 2), the cyclic
patterns of overall market loss ratios are similar (i.e. an AR(2) process). However, if
we look at the individual insurers’ loss ratios in both systems, the individual insurers’
local market performances are different. Figure A.3 and Figure A.4 of Case 1 show
the partial autocorrelation function (PAcF) of all 20 fixed insurers in the system when
all insurers are fixed. The individual insurers’ loss ratios appear similar cycles (i.e.
AR(2) process) to the overall market loss ratios in Figure A.1, since insurers are fixed
in their local markets and maintain their local competitions over time. Then, we look
at Figure A.5 of Case 2 that shows the 10 fixed insurers in the system when 50% of
insurers are moving agents. Although most of them still have (weaker) cycles in their
individual loss ratios, the cyclic patterns are different which are affected by the moving
agents’ herding behavior. Figure A.6 of Case 2 shows the PAcF of 10 moving insurers
in this system. Since they are herding to each other and moving toward profitable
local markets with feedback effects, their performances do not have cycles. This means,
when they move into a profitable market segment, the profitability in this local market
is reduced quickly by their herding behavior.
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Figure A.1: (Case 1) Overall market loss ratio when all insurers are fixed

Figure A.2: (Case 2) Overall market loss ratio when 50% insurers are
moving
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Figure A.3: (Case 1) Individual insurers’ loss ratios: the first half (All
insurers are fixed)

Figure A.4: (Case 1) Individual insurers’ loss ratios: the second half (All
insurers are fixed)
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Figure A.5: (Case 2) Individual insurers’ loss ratios: 10 fixed insurers (in
a system of 50% insurers are moving)

Figure A.6: (Case 2) Individual insurers’ loss ratios: 10 moving insurers
(in a system of 50% insurers are moving)
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