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Rigorous analysis of the transverse acoustic modes in optical
waveguides by exploiting their structural symmetry
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A full-vectorial finite element based approach has been developed to find accurate modal solutions
of acoustic modes in Ge-doped planar silica waveguides. The structural symmetry is exploited and
Aitken’s extrapolation is also used to improve the accuracy of the solution. The spatial dependences
of the dominant and non-dominant displacement vectors are shown for the fundamental and higher
order transverse modes. The modal hybridness and modal birefringence between the two fundamental
transverse modes are also presented.

OCIS codes: (350.7420); (230.7370); (080.1753).

1. Introduction
Acoustic waves propagate inside a waveguide due
to the periodic displacement of the molecules and
these propagation properties can be character-
ized by the material density, elasticity, Young’s
modulus, and Poisson’s ratio [1]. The particle
displacement can either be in the longitudinal
direction or in the transverse plane. An acoustic
mode can be supported in a waveguide provided
that at least one of the velocities (the shear or
longitudinal velocities) in the cladding exceeds
that of the core and the propagation of such a
mode can be classified as being of the torsional,
bending, rotational or longitudinal type [2,3].

It is well known that the acoustic waves in
optical waveguides interacts with the propagation
of light through the related phenomena of Brillouin
Scattering (BS), Stimulated Brillouin Scatter-
ing (SBS) and Guided Acoustic Wave Brillouin
Scattering (GAWBS) [4-6]. The analyses of such
interactions are not trivial, especially with the
increased complexity of modern optical waveguide
structures, such as micro-structured optical fibers
[6] and sub-wavelength silicon nanowires. It is
well known [7] that modes in optical waveguides
with two-dimensional confinement are hybrid in
nature, similar to the acoustic modes in acoustic
waveguides, which are shown here to be also hybrid
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in nature. Most of the optical materials considered
are isotropic; however some materials such as
lithium niobate is anisotropic. On the other hand,
most of the acoustic materials have very different
longitudinal and transverse wave velocities, which
essentially causes them to be equivalent to having
anisotropic acoustic indices. In these cases, a
rigorous full-vectorial analysis [8-10] is required for
the accurate characterization of the acoustic wave
propagation. For this work, a numerical approach
based on the powerful and versatile Finite Element
Method (FEM) has been developed [11], which
can be applied for the analysis of arbitrarily
shaped both weakly and strongly guiding acoustic
waveguides.

Silica optical fibers are the most extensively used
optical waveguides because of their wide availabil-
ity and extremely low optical loss and their planar
versions are also widely used for the fabrication of
various planar photonic integrated circuits (PICs).
In this paper, modal solutions of transverse acous-
tic modes of a Ge-doped planar silica waveguide are
presented.

2. Theory
The propagation of an acoustic wave along the ax-
ial direction, taken here as the z-axis, is associated
with the molecular displacement, Ui, and a time
harmonic wave can be written in the following form
[9]:

Ui = u (ux, uy, juz) exp[j (ωt− kz)]. (1)
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where the angular frequency, ω, identifies the time
dependence; the propagation constant, k identifies
the axial dependence of the acoustic wave and ux,
uy and uz are the particle displacement vectors
along the x, y and z directions, respectively. For
a loss-less system, uz (the longitudinal component)
is 90◦ out of phase with the two transverse com-
ponents, ux and uy. In this case, by defining uz
as an imaginary component, as shown in Eq. (1),
the system equation can be transformed to a much
simpler real eigenvalue equation. The deformation
in an acoustically vibrating body can be described
by the strain field, S, given by:

S = Ou. (2)

The elastic restoring forces can be defined in
terms of the stress field, T and the inertial and elas-
tic restoring forces in a freely vibrating medium are
related through the translational equation of mo-
tion where:

OT = ρ
∂2u

∂t2
. (3)

Hooke’s Law states that the strain and stress are
linearly proportional to each other and are given
by:

Tij = cijklSkl. (4)

here, the microscopic spring constants, cijkl, are
called the elastic stiffness constants. The compli-
ance and stiffness tensors can be denoted in matrix
form as:

[T ] = [c] [S] . (5)

in which cijkl is the fourth order tensor which
obeys the symmetry condition and hence can be
represented by using two suffix notations. Further-
more, the elastic stiffness constants are related to
the shear and longitudinal velocities.

By substituting Eqs. (2) and (5), Eq. (3) can be
transformed to a wave equation with u as the only
variable. Classically, in the FEM [12] for a solid
structure, the displacement field, u, can be writ-
ten with the help of the interpolation shape func-
tion and its spatial derivatives and integrations can
be easily carried out over the elements. The wave
equation associated with the acoustic wave prop-
agation can be developed by employing powerful

Galerkin approach and minimizing the energy func-
tional, a corresponding eigenvalue equation can be
formed, which is given as:(

[A]− ω2 [B]
)
U = F. (6)

where [A] is the stiffness matrix, related to strain
energy and [B] is the mass matrix related to the
kinetic energy. These matrices are generated for a
given propagation constant, k. The column vectors,
F, contain the nodal values of the applied forces,
which in this case are taken to be equal to zero.
Solving this generalized eigenvalue equation of the
system yields the eigenvalue as ω2, where ω is the
acoustic angular frequency and the eigenvector U,
the displacement vector. From a given input, k, and
its corresponding output, ω, the phase velocity of
the acoustic wave, v, can be calculated from:

v = ω/k. (7)

However, if it is necessary to calculate the prop-
agation constant for a given frequency, a simple
iterative approach can be considered. Numerically
efficient computer code has been developed by
using the sparse matrix solver along with the
versatile mesh generation for an arbitrary shaped
waveguide and modal solutions of acoustic modes
in practical optical waveguides can be obtained.

3. Results
Silica fibers are the most commonly used optical
waveguides due to their property of having the
lowest loss so far shown by any optical waveguide
and millions of kilometers have been laid down for
long-distance communication networks. However,
when various photonic components are considered
for modern communication systems, often planar
forms are used as functionality of a PIC can be
increased for a compact, reliable and yet low-cost
systems. Although, in the fabrication of PICs,
semiconductor materials like InP or GaAs have
the advantages of allowing the incorporation of
active components such as semiconductor lasers
or alternatively electro-optic dielectric materials
such as lithium niobate for high-speed modulators,
however, for many passive devices such as power
splitters and AWG filters, often planar silica guides
are used as they have lower loss and cost less and
also they provides lower coupling loss to a silica
fiber.
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Often silica can be doped by Ge to increase the
refractive index to form a waveguide core, and this
process also increases equivalent acoustic index
of the doped region compared to un-doped silica
cladding and as a result, this optical waveguide
will also supports acoustic waves. The longitudinal
and shear acoustic wave velocities of the un-doped
silica cladding are taken as, VLC = 5933 m/s
and VSC = 3764 m/s, respectively. Similarly,
the longitudinal and shear wave velocities in for
3% Ge-doped core are taken as VLG = 5806 m/s
and VSG = 3677 m/s, respectively [13]. Here the
densities of the both doped and undoped silica are
taken as 2202 kg/m3. This waveguide will support
both the longitudinal modes and transverse modes.
In this work, however our study has been focused
on the transverse modes only, which have more
complex spatial variations. The acoustic waveguide
is illustrated in Fig.1, and its height and width are
shown as H and W. It can be observed here that
this waveguide has a two-fold symmetry and this
symmetry can be exploited, as is discussed later.

W

HGe:SiO2

SiO2

Fig. 1. Ge-doped planar Silica waveguide.

This waveguide supports two near degenerate
fundamental transverse modes. In a way similar
to that for optical modes, one of the modes has
dominant Ux component and other has a dominant
Uy component and these will be identified as Ux

mn
and Uy

mn modes, respectively, where m and n
will identify their spatial variations. However,
these modes also have other two non-dominant
components, such as the Ux

mn mode, which will
also have Uy and Uz displacement vectors. This
confirms that even for a transverse mode, there
will be a material displacement along the axial
direction also. So, any scalar approach would
be unsuitable to find acoustic modes in such a
waveguide. The Ux, Uy and Uz displacement vector
profiles of the fundamental Ux

11 mode at k = 17.0
µm−1 are shown in Fig.2 when the waveguide
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Fig. 2. Ux, Uy and Uz displacement vectors of the Ux
11

mode.

width, W = 2 µm and its height, H = 1 µm.
The outline of the waveguide is shown by solid
black lines in the figure. It can be observed that
the dominant Ux profile of this mode, shown in
Fig.2a, is nearly Gaussian in shape with its peak
value at the center of the waveguide. On the
other hand, the non-dominant Uy vector as shown
in Fig.2b, shows a higher order spatial variation
with alternative positive and negative peaks at the
adjacent corners of the waveguide where its peak
value is about 2 orders of magnitude lower than
that of the dominant displacement vector, Ux. The
Uz profile is shown in Fig.2c, which illustrates its
positive and negative peaks along the two vertical
side walls. Its maximum magnitude is about 5% of
the fundamental displacement vector, Ux. In this
case 200x200 mesh divisions were used for the full
structure and the corresponding acoustic frequency
was 10.044952 GHz. Similarly, for the fundamental
Uy
11 mode, its acoustic frequency was 10.048059

GHz for the same wavenumber, k = 17 µm−1. As
the waveguide width and height were not the same,
their eigenfrequencies were not exactly the same
but yet very close. For this mode, the dominant
Uy displacement vector was Gaussian in shape
(but is not shown here) with its spatial variation
was similar to that shown in Fig.2a (similar to
the dominant Ux of the Ux

11 mode). For this Uy
11

mode, its non-dominant Ux displacement has four
peaks at the four corners of the waveguide and Uz

shows its maximum values at the upper and lower
horizontal interfaces (but these are not shown
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here). The close proximity of two fundamental
transverse modes allows these modes to interact
and eigenvectors become mixed - this cannot be
avoided when the whole structures is simulated as
both the eigenmodes appear in close proximity. If
a finer mesh division can be used then this mode
degeneration will reduce.

The spatial variation of the Uy vector for the
same Ux

11 mode, at k = 17 µm−1, but when
mesh division is increased to 500x500 is shown in
Fig.3a. This shows the degeneration has reduced,
as four peaks at four corners of the waveguide
are more clearly visible. It can also be observed
that their peak magnitudes are nearly equal (their
exact values cannot be identified here, but from
the numerical data obtained, they have been
identified as +1.2619 × 10−4 and −1.2156 × 10−4,
respectively). However, when a lower mesh is used,
the four peaks begin to mix and the positive and
negative peaks become unequal and the Uy profile
transforms to show its peak at the center, as shown
in Fig.3b, when the mesh division was reduced to
80x80.
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Fig. 3. Uy displacement vectors of the Ux
11 mode, when

(a) 500x500 and (b) 80x80 mesh divisions.

To quantify this mode degeneration, next, the
ratio of the minimum peaks with the maximum
peaks is shown in Fig.4 with the mesh division
used. It can be observed that when a higher
mesh division is used, in this case 500x500, the
positive and negative peaks were almost equal in
magnitude, and their ratio was 0.9633. On the
other hand, when a smaller mesh is used, in this
case 80x80, the larger peak becomes 8.47 times
bigger than the smaller peak, and the profile shows
a nearly Gaussian shape with its peak value now
at the center of the waveguide as shown in Fig.3b.
It can be stated that the Ux

11 and Uy
11 modes are

mixing up at a progressive rate and non-dominant
Uy vector of the Ux

11 mode is being influenced by

the dominant Uy vector of the Uy
11 mode. When the

aspect ratio of the waveguide is increased then this
degeneration is reduced as the modal birefringence
of the waveguide becomes higher. On the other
hand, when the acoustic frequency is reduced, this
degeneration is reduced, but not shown here, as
the difference between the two similar eigenvalues
is increased. However, this modal degeneration
between two similar transverse modes cannot be
avoided, unless the symmetry of the structures is
exploited, as discussed below.
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Fig. 4. Degeneration ratio against mesh division for Uy

displacement vectors of the Ux
11 mode.

Symmetry conditions of optical waveguides have
been extensively exploited [14], whenever they
exist, for the modal solutions of optical waveguides.
This not only can avoid mode degeneration by
separating two interacting modes, but also allow
much improved solutions, with a given computer
resource. Since this structure has a two-fold sym-
metry, only one-quarter of the waveguide needs to
be considered, which will allow a much finer mesh
division to be used. The combinations of n × U
and n.U at the vertical and horizontal symmetry
lines can be used, and there are 4 combinations,
which will give all the Ux

mn and Uy
mn modes, with

various combinations of m and n values, being
them odd or even.

Besides the exploitation of the symmetry condi-
tion (if it exists), Aitken’s extrapolation [15] tech-
nique can also be used to improve the solution accu-
racy. To exploit this, the structure must be refined
in a fixed geometric ratio. From three successive
mesh refinements, final solutions can be extrapo-
lated for a possible infinite mesh refinement as given
here:

ω∞ = ω3 −
(ω3 − ω2)

2

ω3 − 2ω2 + ω1
. (8)

where, ω1, ω2, and ω3 are results obtained by
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successively using higher mesh divisions and ω∞ is
the extrapolated result equivalent to infinite mesh
divisions. Here, this geometric ratio does not have
to be 1:2:4 but other ratio can also be used, but it
should be noted that mesh divisions can only be of
integer value and in all the regions the same mesh
refinement ratio must be maintained.

Variations of the acoustic frequency of the
fundamental Ux

11 mode for k = 17 µm−1 with the
mesh division are shown in Fig.5, for both the full
and quarter (exploiting the two-fold symmetry)
structures. In this case, equal mesh divisions are
used in both the transverse directions. It can be
noted that as the number of the mesh division is
increased, these solutions rapidly converge to their
exact solutions. However, it can be easily observed
that when 2-fold symmetry is used, as shown by a
dotted green line, convergence is much faster than
when the full structure is simulated as shown by a
dashed blue line. The solution accuracy which can
be obtained by a 50x50 mesh divisions for 2-fold
symmetry will have the similar accuracy as that of
using a 100x100 mesh for the full structure, but
requiring a much higher computational resources.
Besides that, when Aitken’s extrapolation is used,
the solution accuracy is much improved as shown
by dashed red line. For the full structure, when the
geometric ratio 1:2:4 and 1:1.5:2.25 (or 4:6:9) are
used, as identified as ATF(1:2:4) and ATF(4:6:9),
and shown by the red dashed and yellow solid
lines, respectively, it can be observed that better
solution accuracy can be obtained. However, it
can be noted that 4:6:9 geometric ratio, shown
by a yellow solid line, converges better than use
of 1:2:4 (dashed red line). On the other hand,
when the 4:6:9 geometric ratio for the quarter
structure (exploiting 2-fold symmetry), as shown
by a dashed cyan line (ATT(4:6:9)), best solution
convergence can be obtained, for a given mesh divi-
sion as here both symmetry and extrapolation have
been used. To show this region more clearly, an
expanded version of this region is shown as an inset.

Following the clear demonstration of the advan-
tages of exploiting symmetry conditions and also
that of using the Aitken’s extrapolation, dispersion
curves of all the transverse Ux

mn modes are calcu-
lated for a 2 µm × 1 µm Ge-doped silica waveguide
and shown in Fig.6. The variations of their phase
velocities with the acoustic frequencies are shown
here. For the fundamental Ux

11 mode, as shown
by a blue line, it can be observed that when the
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sion for the Ux

11 mode at k = 17 µm−1.

frequency is reduced the phase velocity increases
monotonically and reaches that of the cladding
shear velocity, VCS , as the mode approaches its
cutoff near 3.59 GHz. It was noted that as the
frequency is increased the mode becomes more
confined within the core. The full-width-half-
maximum (FWHM) of the displacement vectors
has been calculated. The FWHM for the Ux

11 mode
in the x-direction was 2.9 µm at f = 4 GHz and
this value reduces to 1.5 µm when the frequency
increases to 16 GHz. For this waveguide, the cutoff
frequency of the second mode, Ux

21, shown by a red
line is 7.19 GHz, so this waveguide will support
only one transverse mode (with the dominant Ux

displacement) between 3.6-7.2 GHz. It should
also be noted that the dispersion curves for the
Ux
12 and Ux

21 are different as the height and width
of the waveguide were not the same. Even when
the height and width of a waveguide are equal
(the waveguide has a 90◦ rotational symmetry),
the Ux

21 and Ux
12 modes would be degenerate but

by exploiting the symmetry conditions, as shown
here, they can be isolated. It should be noted that
similar dispersion curves for all the Uy

mn modes
can also be obtained. However, it should be noted
that for identical height and width, Ux

12 and Uy
21

will have the same eigenfrequency and as they also
require the same symmetry conditions they cannot
be isolated.

Although, the spatial variation of the dominant
displacement vector can be easily identified or
visualized, there has, however not been much
reported on the spatial variations of the other
two non-dominant displacement vectors for the
same mode. Rather, in many cases, a simpler
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scalar formulation has been used [16] to find the
modal solutions of the acoustic modes, where the
non-dominant components are totally neglected.
For a higher order Ux

21 mode the spatial variation
of the two non-dominant components, Uy and Uz

are shown in Fig.7. The Ux profile for this mode is
not shown, but this has two well defined half-wave
variations (m=2) along the x-direction and one
half-wave variation (n=1) along the y-direction.
The Uy profile for the same mode is shown in
Fig.7a, which identifies 3 half-wave (m+1) varia-
tions along the x-direction, and 2 half-wave (n+1)
variations along the y-direction. It has been verified
that this relation for the spatial variation of the
non-dominant transverse component holds true for
all the Ux

mn modes with m+1 and n+1 half-wave
variations along the x and y-directions. This can
also be confirmed for the Ux

11 mode as shown in
Fig.2. Similarly the Uz profile for the Ux

21 mode,
shown in Fig.7b, shows 3 (=m+1) and 1 (=n)
half-wave variations along the x- and y directions,
and the same relations has been checked to be true
for all Ux

mn modes. The spatial variations of the
non-dominant Ux displacement vector for the Uy

mn

modes is not shown here. However, it has been
identified during this study that, for these modes
it is the non-dominant transverse component, Ux

which will have m+1 and n+1 half-wave variations
along the x and y-directions, and its Uz component
will have m and n+1 half-wave variations along
the x and y-directions, as shown in Fig.7c for the
Uy
21 mode.

In this study it is shown here that the acoustic
modes are fully vectorial in nature and for a trans-
verse mode, although its dominant displacement
is along one of the transverse direction, however,
other two non-dominant (another one transverse
and one longitudinal) are also present. This
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makes the modes fully hybrid in nature. Similarly,
modes in optical waveguides with 2-dimensional
confinements are also fully hybrid in nature and
this hybridness increases when the index contrast
between core and cladding is increased. A study of
modal hybridness is important for the calculation
of polarization cross-talk [17] or in the design
of polarization rotators [18]. Hybridness can be
defined as the ratio of the maximum value of
the non-dominant component with the maximum
value of the dominant components. As for each
mode, there are two non-dominant components,
so there will be two different hybridness values
for each of the modes; however, the ratio between
the longitudinal and transverse components is of
greatest interest.

For the Ux
11 and Uy

11 modes, the variations of
the hybridness with the acoustic frequency are
shown in Fig.8. Here the hybridness for the trans-
verse modes has been defined as the ratio of the
maximum Uz vector to the maximum transverse
displacement, which are Ux and Uy for the Ux

11 and
Uy
11 modes, respectively. It can be observed that

as the frequency is decreased modal hybridness
increases and reaches its maximum value and
then reduces as the modes approach their cutoff
frequencies. The modal hybridness of the Ux

11,
Uy
21, and Ux

31 modes are shown in Fig.9. It can be
observed that modal hybridness of the higher order
modes are higher than that of the fundamental
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As the waveguide under consideration, with W =
2 µm and H= 1 µm, does not have a 90◦ rotational
symmetry so the propagation velocities of the fun-
damental Ux

11 and Uy
11 modes were although close

but not identical. For an optical waveguide the
difference between the effective indices of the 2 po-
larized quasi-TE and quasi-TM modes is known as
the modal birefringence. Similarly, here the phase
velocities of the Ux

11 and Uy
11 modes are slightly

different. The variation of this modal birefringence
(but defined here in terms of their phase velocity
difference) with the acoustic frequency is shown
in Fig.10 by a blue line for the above waveguide.
As the frequency is reduced, difference in their
phase velocity increases, reaches a maxima, and
then decreases. Subsequently another waveguide
is studied where Ge-doping is increased to 6%, so
that the difference between the shear velocities in
the core and cladding, 4VS = VSG − VSC , is now
double. The variation of phase velocity difference

for this guide is shown by a solid red line. In a
way similar to that seen in optical waveguides, the
modal birefringence is increased as the equivalent
acoustic index contrast between core and cladding
is increased. The peak birefringence appears at
a lower frequency as with higher index contrast
the modal cutoff point is also shifted to a lower
frequency.
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Fig. 10. Variation of modal birefringence with frequency
for different Ge doped waveguides.

4. Conclusions

A rigorous full-vectorial acoustic mode solver
has been developed by using computationally
efficient finite element method. In this work, the
advantages of using the symmetry conditions and
the type of symmetry walls which can be used
are discussed. It is also shown that by using
Aitken’s extrapolation the solution accuracy can
also be improved with the use of finite computer
resources. The spatial variations of the dominant
and non-dominant displacement vectors of the
acoustic modes are also shown here.

It is shown here that Ge:doped planar silica
waveguide can support transverse acoustic modes.
The co-guidance of the acoustic and optical mode
will give rise to SBS above a certain threshold
power. This can be detrimental as this would
limit high power delivery through this waveguide.
On the other hand this can be exploited in the
design of compact temperature and pressure
sensors. Although, the longitudinal modes are not
shown here, this waveguide will also support this
class of modes. All these modes may have either
dominant transverse or longitudinal component
but also two other non-dominant components. The
optical modes in a waveguide with two-dimensional
confinement are also hybrid in nature, and the
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modal hybridness increases when index contrast is
increased. To study the complex interaction be-
tween the fully hybrid acoustic modes and optical
modes, a full vectorial approach needs to be used,
as shown here. The numerical approach presented
here can be used for a wide range of practical
optical waveguides with either co- or anti-guiding
acoustic modes to study their acousto-optical
interactions.
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