

City, University of London Institutional Repository

Citation: Naval, S., Laxmi, V., Rajarajan, M., Gaur, M. S. & Conti, M. (2015). Employing

Program Semantics for Malware Detection. IEEE Transactions on Information Forensics
and Security, 10(12), pp. 2591-2604. doi: 10.1109/tifs.2015.2469253

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/12313/

Link to published version: https://doi.org/10.1109/tifs.2015.2469253

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 1

Employing Program Semantics

for Malware Detection
Smita Naval, Vijay Laxmi, Member, IEEE, Muttukrishnan Rajarajan, Senior Member, IEEE,

Manoj Singh Gaur, Member, IEEE, and Mauro Conti, Senior Member, IEEE

Abstract—In recent years, malware has emerged as a critical
security threat. Additionally, malware authors continue to embed
numerous anti–detection features to evade existing malware de-
tection approaches. Against this advanced class of malicious pro-
grams, dynamic behavior–based malware detection approaches
outperform the traditional signature–based approaches by neu-
tralizing the effects of obfuscation and morphing techniques.
The majority of dynamic behavior detectors rely on system–calls
to model the infection and propagation dynamics of malware.
However, these approaches do not account an important anti–
detection feature of modern malware, i.e., system–call injection
attack. This attack allows the malicious binaries to inject irrele-
vant and independent system–calls during the program execution
thus modifying the execution sequences defeating the existing
system–call based detection. To address this problem, we propose
an evasion–proof solution that is not vulnerable to system–call
injection attacks. Our proposed approach precisely characterizes
the program semantics using Asymptotic Equipartition Prop-
erty (AEP) mainly applied in information theoretic domain. The
AEP allows us to extract the information–rich call sequences
that are further quantified to detect the malicious binaries.
Furthermore, the proposed detection model is less vulnerable to
call–injection attacks as the discriminating components are not
directly visible to malware authors. This particular characteristic
of proposed approach hampers a malware author’s aim of
defeating our approach. We run a thorough set of experiments
to evaluate our solution and compare it with existing system-
call based malware detection techniques. The results demonstrate
that the proposed solution is effective in identifying real malware
instances.

Index Terms—Malware, Malware Detection, System–calls,
Semantically–relevant paths, System–call injection attacks

I. INTRODUCTION

O
VER the last decade, malware has emerged as a crucial

security threat. The proliferation of advanced computing

and networking technology has empowered malware programs

with advanced anti-detection and anti-analysis features. The

advanced malware programs instigate a variety of attacks

such as Distributed Denial of Service (DDoS) attacks, social

engineering attacks and clickfraud attacks, to name a few.

Malware is a persistent threat to any computer system’s

integrity, confidentiality, and availability [1]. These software

S. Naval1 , V. Laxmi2 and M. S. Gaur3 are with the Department of Com-
puter Science and Engineering, Malaviya National Institute of Technology,
Jaipur-302017, India E-mail: (smita.710@gmail.com1 , vlaxmi@mnit.ac.in2 ,
gaurms@mnit.ac.in3)

M. Rajarajan is with the Department of Security Engineering,
City University London, Northampton Square, London, UK E-mail:
r.muttukrishnan@city.ac.uk

M. Conti is with the Department of Mathematics, University of Padua,
Padua 35131, Italy E-mail: conti@math.unipd.it

programs have a disruptive impact on our applications, service

providers, storage, servers, and networks. In 2013, AV-test

institute discovered a total of 100 million new malicious files

and this number has reached 120 million in 2014 [2]. This

explosion of completely new malware threats and variants of

existing malicious threats cause substantial damage in terms

of financial losses. For instance, Stuxnet, Rocra, Code-Red,

and Slammer are few known malware threats that induced

significant financial losses costing billions of US dollars [3].

This trend is continuing and requires an assurance to mitigate

these malicious threats. Towards the security and privacy of

connected systems, malware detection becomes the first line

of defense.

A solution that can detect almost every malicious program

is practically impossible [4], and the evidence of this belief

can be seen by the detection efficiency of existing Anti-

Virus (AV) products [5]. These AV solutions mostly depend on

signature databases that need to be updated frequently. While

the process of malware creation has advanced, the malware

detection process still relies on signature-based approaches and

thus has been proved to be inefficient in capturing new and

advanced class of malware samples.

Existing arsenal of malware detection solutions relies on

static and dynamic techniques. The static techniques look for

syntactic markers or signatures to detect malware. Analyzing

a malware sample to identify the unique static markers re-

quires greater efforts as the effectiveness of these markers

is hampered by obfuscation and morphism (polymorphism

and metamorphism) techniques. As a consequence, the static

methods for malware detection may not capture unknown

malware instances [6]. To nullify the effects of obfuscation,

polymorphism and metamorphism on malware executables, re-

searchers have given preference to dynamic malware detection

approaches. In particular, the dynamic behavior-based malware

detection approaches utilize the semantic of a malware pro-

gram by examining its runtime interaction with system objects,

resources, and services [7]. Therefore, these approaches are

well suited for capturing new and syntactically different but

semantically similar unseen malware variants.

The majority of dynamic behavior-based malware detec-

tors [8]–[11] makes use of system-calls as these provide

an interface of application’s interaction with Operating Sys-

tem (OS). A system call is an interface between a user-level

application and kernel-level services. These services include

hardware, input-output related activities, creation/deletion of

processes and many more. To infect the host system, malware

needs to invoke a sequence of system-calls as these are nonby-

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 2

passable. Therefore, capturing malware by employing system-

calls will allow devising a reliable detection solution. However,

the present malware programs are equipped with advanced

anti-detection techniques which can evade even system-call

based malware detectors [12].

To counter system-call based approaches, malware authors

make use of shadow attacks [13] and system-call injection

attacks [14]. The feasibility of former attacks was first

demonstrated by authors in [13]. The authors in their paper

have shown that the critical system-call sequences of malware

can be divided and exported into separate shadow processes.

The shadow processes individually act in benign manner and

collectively these depict malicious behavior. These shadow

processes communicate with rewritten malicious code to

deliver their malicious payload. The system-call injection

attacks are deployed by inserting irrelevant and independent

calls in the actual execution flow of malware binaries. By

doing so, detection approaches based on graph matching or

path similarity analysis are defeated. These attacks are the

variant of code-injection attacks [14], [15]. The shadow

attacks suffer from the following limitations that restrict its

applicability in practice.

1) The shadow attacks lead to multi-process malware that

is slower than the original single process malware. Such

a malware, cannot be used in various real-time attack

situations (such as chain attacks) [16].

2) The implementation of these attacks requires the division

of malware; the communication of multiple processes;

the bootstrap, and the execution sequence of multiple

processes. Failure of any shadow process will result into

the failure of entire process [17].

The aforementioned challenges limit the feasibility of the

shadow attacks. On the other hand, the system-call injection

attacks are free of these limitations, and, therefore, to earn

more revenue, malware authors would prefer these attacks.

Taking this fact into consideration, we present an effective

system-call based malware detection approach that is resistant

against system-call injection attacks.

In this paper, we devise a novel malware detection mecha-

nism, which is resilient against system-call injection attacks.

The proposed detector characterizes the program behavior by

exploiting the system-level information flow. The character-

ized behavior is represented in terms of semantically-relevant

paths employed to build and train the feature space. For ex-

tracting and identifying semantically-relevant paths, we adopt

the concept of Asymptotic Equipartition Property (AEP [18])

from information theory. According to AEP, in any graph,

there exists a few paths that carry almost all information of

the graph. Following this concept and the proofs given in [19],

we apply AEP in our approach to extract semantically-relevant

paths, which depict the program behavior. We construct a set of

such semantically-relevant paths on which we apply a measure

called Average Logarithmic Branching Factor (ALBF) [19]

to build our feature space. Finally, our model is trained

to differentiate between benign and malware programs. The

contributions of this paper are summarized below:

• We propose a novel malware detection approach

that characterizes the program behavior in terms of

semantically-relevant paths. In our approach, these paths

are extracted by exploiting system-level information flow.

• We form a novel feature space constructed by quantify-

ing the semantically-relevant paths using ALBF metric.

Unlike other approaches [20]–[22], our feature space

consists of non-string features, and, therefore, it makes

our method an evasion-proof solution to malware authors.

• We show that our approach is resilient against system-call

injection attacks. The performance of our model remains

consistent even after injecting thousands of independent

system-calls into malware traces.

• We have tested the detection capability of our model

with real benign and malware instances. We observe

the detection accuracy of ∼95% which demonstrates the

effectiveness of our model in identifying real malicious

attacks.

The remainder of the paper is organized as follows: Sec-

tion II states our problem. The proposed method is illustrated

in Sections III and IV. The experimental setup that includes

dataset collection and results is discussed in Section V. In Sec-

tion VI, we discuss the merits and demerits of our approach.

Section VII highlights the existing work in the domain of

malware detection. Finally, the concluding remarks are given

in Section VIII.

II. THE PROBLEM

To evade detection, malware is continuously being evolved

and equipped with anti-detection techniques such as code

obfuscation, polymorphism, metamorphism, anti-debugging,

anti-VM, code-injection, to name a few. By incorporating these

techniques into malicious code, malware authors try to extend

the lifetime of malicious code and hide its actual malicious

intent. The anti-detection techniques have instigated a never-

ending arms-race between malware detectors and malware au-

thors. In this paper, we propose a novel detection technique for

identifying detection-aware malicious threats. Our proposed

approach investigates the program semantics to identify the

information-rich components of malware and benign files.

A. Technical Viewpoint

The Complexity of sophisticated malware codes makes them

difficult to detect and analyze. These programs can be found in

multiple statically diverse forms having the same functionality.

Therefore, to understand the behavior of a malware program

we have to dive into its semantics instead of the syntax.

The semantic (behavior) of any program can be explored by

exploiting its execution-flow. During execution, the malicious

programs try to infect host machine with actual malicious

payload (if it is not environment-aware [23]–[25] or having

trigger-based behavior [26]). Our prime objective is to define

a metric that can quantify the program semantics. For this,

we consider AEP that is based on Shannon’s entropy [27].

The Shannon’s entropy describes the amount of meaningful

information present in a program object [19] as it remains

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 3

unchanged when one-to-one function is applied [18]. Using

entropy, we extract semantically-relevant call sequences and

quantify them to construct feature space of the proposed detec-

tion model. Our notion of characterizing program semantics is

not vulnerable to call-injection attack or behavior obfuscation

as the discriminating components are composed of: 1) multiple

call sequences, and 2) non-string based features.

The behavior components of malware often exhibit similar

behavior with the different set of call sequences incurred

due to the injection attacks. For example, self-replication

behavior of malware in which it copies its content to

either a new file or into an already existing file, can be

represented in one of the following system-call based path se-

quences: 1) NtCreateFile→NtOpenFile→NtReadFi-

le→NtWriteFile, 2) NtOpenFile→NtCreateFile→
NtReadFile→NtWriteFile, and 3) NtCreateSecti-

on→NtMapViewOfSection→NtCreateFile→NtSe-

tInformationFile→NtWriteFile. To capture these

paths showing similar behavior, we represent the program

behavior through multiple paths carrying almost the same

information quotient. These behavior components are further

transformed into a non-string based feature space to avoid

string-based evasions [1]. The problem statement is composed

of sub-problems listed as follows:

1) Encapsulating program behavior into semantically-

relevant paths through AEP concept and extract them

via ALBF.

2) Verify and validate the specified behavior by construct-

ing a learning-based detection model.

The proposed approach enables us to transform the input

binary programs into two forms; one that characterizes the

most relevant information; andthe other that exploits this

relevant information to construct a detection model and thus

verifies effectiveness of extracted behavior.

III. ENCAPSULATING PROGRAM BEHAVIOR

In this phase, execution traces of binaries are transformed

into Ordered System-Call Graph (OSCG) derived from the

sequence of invoked system-calls. A vertex of OSCG corre-

sponds to a system-call in program trace. An edge from vertex

u to vertex v of OSCG corresponds to the occurrence of the

pair 〈Su,Sv〉 in the sequence. Here, Su and Sv are system-

calls corresponding to vertices u and v respectively. The graph

preserves order. So, a pair 〈S1,S2〉 shall add an edge from

vertex 1 to 2, whereas 〈S2,S1〉 shall add an edge from vertex

2 to 1. An OSCG is constructed for each input binary. In order

to specify program behavior, the OSCGs are used to determine

all reachable paths from initial node (the first call invoked) to

the final node (last call invoked) of the sample. We apply AEP

on each path to check if it is semantically-relevant path. The

detailed description is given in subsequent paragraphs.

A. Transforming Program Binaries as OSCG

To transform binaries into ordered system-call

graph (OSCG), each binary is executed in a virtualized

environment. In particular, we have employed Ether [28].

Execution of binaries is monitored and invoked system-calls

are logged. We prefer Ether to other analysis frameworks

as it provides host-based tracing by employing hardware

virtualization. It is resilient to anti-debugging, anti-emulation

and code-obfuscation and in-guest changes are also made

hidden [29]. Ether produces a page fault or exception to

intercept the system-calls made by the target application.

Whenever this application requires a system service, it

executes SYSENTER that transfers the control to kernel space

where it copies the value (address) stored in a special register

SYSENTER_EIP_MSR into instruction pointer (IP). Ether

sets SYSENTER_EIP_MSR to a default value. Accessing this

value causes a page fault and in this way Ether knows that

a system-call has been made. The SYSENTER_EIP_MSR is

changed back to its original value, and the target application

continues its execution. Ether mediates all access to the

SYSENTER_EIP_MSR register and can, therefore, hide any

modifications of the register from the analysis target.

The acquired traces are used in extracting the se-

quence of invoked system-calls. Consider an execution

trace ξ = S1,S2,S3,S1,S2,S2,S3,S3,S2. This trace has three

distinct system-calls S1,S2 and S3. So, we construct

OSCG with three nodes. As the sequence has pairs

〈S1,S2〉,〈S2,S3〉,〈S3,S1〉 and 〈S3,S2〉, edges are added from

node 1 to 2, node 2 to 3, node 3 to 1, and node 3 to 2.

Graph-based representation such as OSCG, also, captures the

sequential nature of the data [30]. Representing execution

traces in the form of directed labeled graph is not new. In the

past, many approaches have used graph-based representations

to detect malicious files [8], [9], [11], [31]. In OSCG, we

ignore all the system-call parameters to avoid the sensitivity

towards handles, arguments and other system artifacts.

We shall be using ξ to represent execution trace of a sample

and S to represent the set of all possible (distinct) system-

calls. In our case |S| = 284, i.e., S = {S1,S2, · · · ,S284} as

only 284 possible system-calls can be invoked on Windows

XP (SP2) [32]. Each call in S performs a service at the kernel

level that is requested by running binary. For instance, routine

NtMapViewOfSection is only invoked to map the view

of a section into the virtual address space of running process,

NtWriteFile is called to write into a file and NtClose

is the routine invoked to close the handles created by other

routines. Successive calls to these routines collectively de-

pict program behavior. To characterize the program behavior

through OSCG, we preserve the order in which system-calls

are invoked.

Definition 1 An Ordered System-Call Graph (OSCG) G =

(S,E) is a directed graph, where S is the set of vertices and

each vertex represents a system-call. E = {Ei j|Si

ρi j
→ S j; Si,S j ∈

S}, where ρi j denotes the transition probability from system-

call Si to system-call S j.

It is assumed that paths in graph G are Markov chains, i.e., the

future state depends on the present state only and not on past

states. The transition probability ρi j is computed as follows.

ρi j =
count(Si → S j)

∑284
k=1 count(Si → Sk)

(1)

where, Si → S j represents a transition from Si to S j. As

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 4

discussed earlier, the paths of graph G are Markov chains.

Therefore, the computed transition probability must satisfy

Markov property [33] as given in Equation 2.

284

∑
i=1, j=1

ρi j =

{

0 if all entries in ith row are zero

1 otherwise

}

(2)

For example, consider the execution trace

ξ = {S1,S2,S3,S1,S4,S6,S2,S2,S3,S6} of a program P .

For S = {S1,S2, · · · ,S5,S6}, Figure 1 shows the corresponding

graph G and matrix for this example. Here, the set of distinct

system-calls invoked by the program P is (S1,S2,S3,S4,S6).
The system-call S5 is an isolated node as it is not invoked

during execution of P . Edges are directed and labeled

with transition probability ρi j. For instance, in the execution

trace ξ , two transitions S3 → S1 and S3 → S6 occurred

from node S3, therefore, both the edges are labeled with

equal probability, i.e., 0.5. The matrix representation of P

shows a 6 × 6 square matrix called transition probability

matrix (TPM). Every row in TPM adds either to 1 or to 0.

TPM in our case is 284× 284 as |S| for Windows XP (SP2)

is 284.

Fig. 1: An Example of Ordered System-Call Graph (OSCG) and
Transition Probability Matrix (TPM).

B. Specifying Program Behavior

The proposed approach is based on semantically-relevant

paths. This concept is inherited from information theoretic

model and first introduced by Cui et al. [19] in the domain

of software testing. According to AEP, “for a random process

there exists few paths that carry much more information than

the other paths of the graph” [18]. The authors have proved

this concept and named these paths as ‘typical paths’. In

literature, AEP has been applied successfully to the identically

independent distributed processes and Markov chains [18]. In

this paper, we also follow the same concept and hypothesize

that there exist paths that are more probable than the other

paths of OSCG. A path P of a graph G is defined as follows.

Definition 2 A path P = {S1,S2, · · ·Sn} is an alternate se-

quence of nodes and edges of G which starts from S1 and

ends at Sn.

Here, S1 denotes Sstart and Sn represents Send . Sstart is the first

system-call invoked and Send is the last system-call invoked

during execution of a program P . Each link in a path is

expressed by its transition from one system-call to the other.

For any path between two nodes of OSCG, path probability

is computed from transition probability of its constituent

links. The path probability Pr(P) of a path P is given by

Pr(P) = Pr(S1).Pr(Sn = Sn|Sn−1 = Sn−1, · · · ,S1 = S1) =
Pr(S1) · · ·Pr(Sn = Sn|Sn−1 = Sn−1). The Pr(S1) is the initial

probability of node S1. The initial probability of a node Si is

the probability of occurrence of Si among all the system-calls

invoked in the execution trace ξ . Paths containing links with

high transition probability are likely to contribute more to the

semantic quotient.

We aimed to compute all the paths originating from Sstart

to Send nodes of formed OSCG for extracting semantically-

relevant paths of a program P . Computing all-paths between

two nodes is an NP-complete problem [34]. To resolve this, we

approximate this phase by extracting candidate paths instead

of all paths. In order to determine if a path is semantically-

relevant, we apply AEP on each candidate path P of the

sample. For this, we first determine the maximal entropy rate

λ ∗ of the binary program under consideration as follows [19].

λ ∗ = max

{

lim
n→∞

log(Tn)

n

}

, (3)

Here, Tn is the total number of paths of length n in G.

Using λ ∗, we extract the semantically-relevant paths that carry

nontrivial amount of information. Now, in order to define ε-

semantically-relevant path with ε > 0, we apply following two

properties (Equation 4 and Equation 5) on each path P:

∣

∣

∣

1
n

log 1
Pr(S1,S2,··· ,Sn)

−λ ∗
∣

∣

∣
< ε, (4)

logB(S1,S2, · · · ,Sn)

n− 1
>

1

2
(λ ∗− ε), (5)

Where B(S1,S2, · · · ,Sn) = ∏1≤i≤n b(Si) and b(Si) is the

branching factor of the node Si. The left hand side (LHS)

of Equation (5) is average logarithmic branching factor used

for constructing our feature space. We select ALBF metric of

each path to construct our feature space as branching factor

is a good indicator of semantic relatedness [35]. Now, we can

define ε-semantically-relevant paths as follows: (Definition 3).

Definition 3 A path P = {S1,S2, · · · ,Sn} is ε-semantically-

relevant if it satisfies Property 1 and Property 2 (Equa-

tions 4 and 5).

We use T(ε) to denote ε-relevant set, a set of all ε-seman-

tically-relevant paths of the program P. The paths in T(ε)
vary according to the value of ε . If ε1 < ε2 · · ·< εk, T(ε1)⊆
T(ε2) · · · ⊆ T(εk). A very small value of ε may not capture

all paths needed to encapsulate information content whereas a

high value of ε may include irrelevant/redundant path lowering

the information content of T. We have kept the value of ε
ranging from 0.5 to 7.5. The upper limit of ε is the maximum

value (7.59) of Property 1 (LHS) in all paths of malware

datasets. The initial value of ε is considered 0.5 that is greater

than 0. With respect to each value of ε , we train our model

with the features relevant for specifying malicious behavior.

The authors in [19], have proved two theorems , which

ensure that typical (semantically-relevant) paths carry relevant

information of the graph. The theorems are stated as follows:

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 5

Theorem 1: Let ε > 0. The ε-typical paths take probability

1, asymptotically; i.e.,

limsup
n→∞

Pr(
∣

∣

∣

1
n

log 1
Pr(S1,S2,··· ,Sn)

−λ ∗
∣

∣

∣
< ε) = 1.

Theorem 2: Let ε > 0. For any path P of G achieves λ ∗,

limsup
n→∞

Pr(
logB(S1,S2, · · · ,Sn)

n− 1
>

1

2
(λ ∗− ε)) = 1.

Theorems 1 and 2 have been proved by employing limsup

definition of entropy rate instead of limit definition. Prov-

ing AEP with the limit definition, as in Shannon-Mcmillan-

Breiman theorem [18], is difficult as it requires a strong side

condition (ergodicity). In the present context, malware does

not constitute same behavior averaged over time and does

not exhibit ergodicity. Therefore, we can also consider the

limsup definition of typical paths. Assuming the theorems

and proofs are valid, we apply their concept of typical paths

towards semantically-relevant paths in our approach. The set of

semantically-relevant paths is not unique as a given program

may have multiple execution traces due to the presence of

conditional constructs (triggering of different constructs can

invoke different executions). Any execution trace that results

in invocation of malicious activity should suffice to extract

semantically-relevant paths capturing malicious behavior. We

have constructed OSCG from the single execution trace as

exploring more execution traces shall add to monitoring over-

head.

1) Semantically-relevant Path Extraction: Consider the

Transition Probability Matrix (TPM) and graph G as shown

in Figure 2. Here, we have a total of five nodes in the graph

and the matrix that show the transition from one node to the

other. In the example, Sstart is the node 1 and Send is the

node 5. All possible cycle-free paths from node 1 to 5 are

determined. We get a total of 9 paths. Then, we determine

the value of λ ∗ considering all possible path lengths of 2,3

and 4. Table I shows the values as computed by application

of Equation (4). These values range from 1.85 to 2.765 so we

can select the values for ε in the specified range. With ε = 2.1,

we get the paths P7 and P8 and for ε=2.6, we have P2, P3,

P6, P7, and P8 as candidates for semantically-relevant paths.

Selecting the different values of ε and applying Equation (5)

will give us different sets of semantically-relevant paths. With

these different sets of paths, we train our model and observe

detection accuracy.

Fig. 2: Ordered System-Call Graph (OSCG) and Transition Proba-
bility Matrix (TPM).

TABLE I: Paths from node 1 to 5 showing values w.r.t. Equation (4).

Paths Probability of Values of

the paths Property 1

P1: 1–2–5 Pr(P1) : 0.0108 2.765

P2: 1–2–3–5 Pr(P2) : 0.0032 2.100

P3: 1–2–4–5 Pr(P3) : 0.0013 2.530

P4: 1–2–4–3–5 Pr(P4) : 0.0002 2.675

P5: 1–4–2–3–5 Pr(P5) : 0.0016 2.925

P6: 1–4–3–5 Pr(P6) : 0.0021 2.330

P7: 1–4–2–5 Pr(P7) : 0.0054 1.850

P8: 1–4–3–2–5 Pr(P8) : 0.0010 2.095

P9: 1–4–5 Pr(P9) : 0.0108 2.765

IV. VERIFYING AND LEARNING MALWARE DETECTION

This section presents our learning-based model that dis-

criminates benign and malware programs. We aim to exploit

semantically-relevant behavior of these programs using ma-

chine learning techniques and propose a model capable of

identifying the suspicious behavior of malware binaries. The

obtained high detection accuracy confirms the efficiency of

the characterized behavior. In addition to that, we also show

that the proposed model is evasion-resistant against system-

call injection attacks.

For our proposed learning-based detection model, we con-

struct feature space F by utilizing extracted semantically-

relevant paths. We have used ‘histogram binning’ tech-

nique [36] (mainly applied in the fields of information re-

trieval, image processing and text processing) as it incorporates

approximate matching and reduces sensitivity to slight changes

in system-call sequences. This avoids the possibility of evasion

encountered due to detection-aware malware. ALBF metric has

been employed to determine the bin to which a semantically

relevant path belongs to. In our case, each bin corresponds to a

range of ALBF values. These bins are spaced at uniform inter-

vals and hold the frequency count of respective semantically-

relevant paths. These bins are considered as features. For

example, if feature space consists of three bins b1,b2,b3 and

for program P1, respective bin frequency counts are f1, f2, f3,

its feature vector shall be 〈 f1, f2, f3〉.

Selecting appropriate number of bins for building our

feature space involves a tradeoff between less detailed fea-

tures (small number of bins imply coarser granularity and loss

of information) and overly detailed features (too many bins

result in loss of generalization and flexibility). We determine

maximum ALBF value corresponding to malicious binaries.

Dividing this by bin size yields number of bins. We con-

structed and evaluated feature space with bins sizes of 1, 5, 10

and 15 and observe the detection accuracy. The initial results

indicate that the bins formed with a range interval of 5 (bin size

is five) identify benign and malware samples more accurately.

The feature vector containing bins with higher intervals merges

the relevant paths of different ALBF values and may result

in information loss. This merging also reduces number of

elements in a feature vector. Therefore, we set the interval

of 5 and consider 310 non-overlapping bins as features into

our feature vector.

The constructed Feature Vector Table (FVT) is trained

using learning algorithms. We use an ensemble-based learning

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 6

algorithm i.e., Random Forest, [37], [38] for differentiating

malware and benign samples. Since, it provides a better

generalization of information even in the presence of noise

and therefore widely used in the literature. It is a collection

of many decision trees. It is primarily used when the data set

is very large. The decision tree is constructed by randomly

selecting subsets of the training data and attributes that can

partition the available data set. The final decision tree is an

ensemble (i.e., a collection) of forest such that each decision

tree contributes towards the classification of instances.

V. EXPERIMENTAL SETUP AND RESULTS

The experiments are performed on Intel Core i3 2.40 GHz

with 2.8 GiB RAM, running on Ubuntu 12.04 operating

system. For capturing the system-call traces we use Xen

hypervisor [39] and create a virtual environment using Ether.

The underlying guest OS in Ether is Windows XP (SP2).

Therefore, we have built our prototype model by executing

binaries in Windows XP. Although, Microsoft abandoned its

support for XP but still it is a popular OS widely used in

various government agencies, banks and in ATMs. As a result,

existing recent similar approaches [6], [11], [14], [40] also

utilize XP. However, the proposed approach is not specific

to particular OS and analysis framework as: 1) the target

malicious binaries (PE format) affect all Windows platforms,

and 2) system-call sequence used in Windows XP is a subset

of those utilized in Windows 7 [32]. It will perform in a

similar fashion if system-call traces are collected with different

Windows OS and some other analysis framework (Anubis,

Cuckoo, GFISandbox, to name a few). In this section, we

present the implementation details and evaluation of our pro-

posed approach. The experiments are carried out using benign

and malware executable samples. The proposed approach

detects the malicious Windows PE binaries (PE is the most

popular file format among malware authors as reported by the

virustotal.com [41]).

A. Experimental Dataset

We utilize real instances of malware and benign samples.

The majority of malware detection approaches [40], [42] make

use of one malware dataset to evaluate the performance of their

approach. These approaches perform well on selected dataset,

however, do not generalize well to other datasets and result in

performance degradation. Therefore to evaluate generalization

of our approach, we used two different malware datasets and

label them as Dold (old dataset) and Dnew (new dataset) .

The former dataset consists of 1209 samples. This set also

includes samples utilized in [43] for their work of detecting

metamorphic malware. The types of samples in this set include

packed, polymorphic and metamorphic malware. We selected

this dataset for two reasons: 1) to represent the class of

malware samples discovered prior to 2012, and 2) to estimate

the performance of our method with morphed and packed

samples. The latter set (Dnew) of samples is downloaded

from the malware repository system, i.e., VirusShare.com. The

mentioned repository system labels each uploaded sample after

scanning it with 55 AV scanners. We can rely on the labeling

process of VirusShare.com as it is akin to comparing with

large number of AV scanners. This dataset consists of 1226

malware samples each of which was discovered from January

2013 to March 2014 and it is labeled as ‘new’. Both datasets

are divided into training (70%) and test (30%) set.

We used one benign dataset that contained total number

of 1316 samples. Benign samples are scanned by uploading

them to the web portal VirusTotal.com to verify their non-

maliciousness. Our benign dataset consists of different kinds

of software applications such as browsers, games, filezilla,

googletalk setup, iTunes, youtubedownloader, Media players,

wireshark, to name a few. We used these benign software

programs to evaluate the accuracy of proposed model.

As discussed earlier, we monitored the execution of each

benign and malware sample in the controlled environment

created using Ether. We observed that during execution there

were some malware samples that did not generate any log

and few benign and malware samples that cause executional

errors. The malware samples embedded with anti-detection

features (VM-aware and trigger-based) do not generate any

log. The execution errors occurred due to OS compatibility

issues. Our final datasets (benign and malware) include the

samples that are executed in guest OS without abnormal

termination, without execution errors and without generating

any logs.

To generate system-call logs, each sample is permitted to

execute for 10 minutes. According to [44], five minutes is

sufficient duration for the execution monitoring. We doubled

this execution time to capture the malware equipped with

capability of carrying out time-out attacks. We observed that

in all samples, benign as well as malicious, the execution

sequences are mostly made of 160 different calls out of 284

calls. We refer these calls as ‘frequent’ calls. Remaining 124

calls are regarded to as ‘rare’ in following discussions. The

experiments are performed with training sets of benign and

malware datasets, and the performance evaluation is carried

out using test samples.

B. Approximate All Path Computation

We constructed OSCG for each sample as discussed earlier

to determine the paths between Sstart and Send . Identifying

all paths between two nodes of a graph is an NP-complete

problem [34]. The time complexity of computing all paths is

exponential in case of a complete graph. To reduce the time

complexity, we approximate the ‘all path computation phase’

of our approach. We, first investigate if an OSCG is sparse.

We observe the average link-count in OSCGs of benign and

malware samples of our datasets. The average link-count of

benign samples is 174 and that of malware samples is 282

indicative of the sparse nature of our OSCGs as the number

of edges is in O(|S|), where S is the number of vertices (284)

in the graph.

To approximate the all-paths phase, we conducted an exper-

iment with 500 malware and 500 benign samples. The samples

are selected in a manner that they cover the entire range of

link-counts. With these samples, we exhaustively computed all

paths from Sstart and Send and computed average number of

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 7

paths for a given path-length. Figure 3 shows this distribution

for both benign and malware samples. As can be seen here,

average number of paths is normally distributed for benign as

well as malicious files. However, in path-length ranging from

10 to 31, the average number of paths in malware samples

is more than the benign samples. Paths in this range can

be used for discriminating a malware from benign. We have

used the paths in this particular range as candidate paths for

extracting semantically-relevant paths. Instead of computing

all paths for all the samples we computed the candidate

paths (approximation of all paths), which reduces the path

computation time for all the samples.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 6 11 16 21 26 31 36 41 46 51 56

A
ve

ra
ge

 N
um

be
r

of
 p

at
hs

 (
x

1K
)

 in
 D

at
as

et
s

Path Length

Benign
Malware

Fig. 3: Path distribution w.r.t. lengths in benign and malware datasets.

Table II shows the average time consumed in determining

all paths and candidate paths. We observe that time taken

in computing all paths is higher than the candidate paths. It

means that using candidate path we can reduce the overall

computation time. The maximum time consumed was ∼ 11

hours and ∼ 9.7 hours for all-path computation and candidate-

path computation respectively. We also observe that there

are some samples, which required higher processing time

than the samples having higher link-count. This indicates that

processing time is not directly proportional to link-count. The

processing time for this particular phase needs to improve for

practical application. In the majority of samples (∼ 88.3%),

candidate paths have a link-count of atmost 450 which result

into a total time of ∼ 1.83 hours.

TABLE II: Processing time of all-paths and candidate-paths.

Link-count Avg. Time of Avg. Time of % of Samples

up to All-paths candidate-paths Covered
(in sec.) (in sec.)

50 0.01 0.005 0.98

51-150 1.78 0.47 6.07

151-250 450.64 162.89 37.89

251-350 9271.65 1145.72 27.32

351-450 19080.20 5292.86 16.08

451-550 24848.32 15565.60 9.84

551-650 33482.56 28384.77 1.33

651-750 39524.45 35109.9 0.49

We determined the candidate-paths for all the samples and,

then, extracted the semantically-relevant paths as explained in

Section III. We constructed T(ε), ε-relevant set of benign and

malware samples and feature vectors for all binaries using

the frequency distribution of ALBF values of their T(ε). The

constructed feature vector is trained using Random Forest as

described earlier. The above process has been repeated for

different ε values.

C. Detection Accuracy

We have evaluate the performance of our proposal in

terms of popular evaluation metrics [45], [46] – i.e, True

Positive Rate (TPR), False Positive Rate (FPR), True Negative

Rate (TNR) and False Negative Rate (FNR). In the present

context, we designate malware class as positive and benign

class as negative. TPR (FPR) is the fraction of malware

instances correctly (incorrectly) classified. Similarly, TNR

(FNR) denotes the fraction of benign instances correctly

(incorrectly) classified. For any malware detection model, it is

desired that TPR should be high and FPR and FNR should be

low. For two datasets Dold , Dnew considered in our evaluation,

Table III summarizes TPR and TNR for different values of ε .

TABLE III: Detection accuracy of Dold and Dnew.

Dold Dnew Overall

ε TPR TNR TPR TNR Acc

0.5 0.3 100.0 1.7 100.0 50.50

1.0 4.5 32.7 18.1 99.2 38.62

1.5 64.0 71.3 44.6 62.7 60.65

2.0 81.8 88.4 77.9 78.1 81.55

2.3 92.3 91.5 88.4 93.3 91.37

2.6 96.2 95.3 94.6 93.8 94.97

2.9 95.9 96.1 94.3 95.4 95.42

3.2 90.3 94.3 94.7 96.1 93.85

3.5 91.4 95.1 92.3 93.9 93.17

4.0 88.6 92.6 89.1 91.5 90.45

4.5 87.9 88.9 90.3 89.0 89.02

5.5 87.1 89.2 89.3 89.6 88.80

6.5 84.1 88.6 87.1 90.3 87.52

7.5 84.6 87.1 85.0 87.2 85.97

As can be seen from Table III, ε ∈ {2.3,2.6,2.9,3.2}
yields higher detection accuracy. It can be easily deduced

from the table statistics that our constructed feature space

has the ability to discriminate between malware and benign

samples. Our model achieves the highest accuracy of 95.425%

at ε = 2.9. Therefore, we have selected it as a threshold. We

conducted this experiment extensively with various values of ε
to validate our hypothesis that lower values of ε excludes some

of information-rich paths. This is reflected in poor performance

exhibited by initial rows of Table III. Too many paths, as

happens at higher values of ε , can lead to generalization and,

therefore, result into the decrease in detection accuracy.

The misclassified instances are shown in Table IV. As can

be seen, our model performs best at selected threshold of

ε=2.9. For malware classification, FPR and FNR should be

low as a high value of FPR shall result in malware being

considered benign. A high FNR may prohibit execution of

legitimate applications. With Dold samples, we achieved 3.9%

and 4.6% of FPR and FNR respectively. Similarly, FPR of

4.1% and FNR of 5.7% is obtained with Dnew.

Some of the malware samples yield only partial logs,

and this has contributed towards FPR. During runtime, these

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 8

samples terminated very quickly and did not reveal their actual

payload. In our case, this behavior was observed with samples

belonging to worm.autorun malware family. The samples

of this family try to infect the system by creating .inf file on

root directory of system. When these files detect the presence

of virtual environment, they do not reveal their malicious

payload and terminate the execution. Hence, these instances

were misclassified. A false negative is observed when a

legitimate monitored application shows high similarity with

the malicious samples. We found that the system-calls related

to memory access, process and thread handling activities were

common to malware samples. Any benign application using

these calls may show high correlation with malware samples

and may be misclassified. This aids to FNR.

TABLE IV: False rate with Dold and Dnew.

Dold Dnew

ε FNR FPR FNR FPR

0.5 99.7 0 98.3 0

1 95.5 67.3 81.9 0.8

1.5 36 28.7 55.4 37.3

2.0 18.2 11.6 22.1 21.9

2.3 7.7 8.5 11.6 6.7

2.6 3.8 4.7 5.4 6.2

2.9 4.1 3.9 5.7 4.6

3.2 9.7 5.7 5.3 3.9

3.5 8.6 4.9 7.7 6.1

4 11.4 7.4 10.9 8.5

4.5 12.1 11.1 9.7 11

5.5 12.9 10.8 10.7 10.4

6.5 15.9 11.4 12.9 9.7

7.5 15.4 12.9 15 12.8

To reduce the false alarm rate in our approach, we need

to identify and remove the call-transitions that are common

to OSCGs of most of the malware and benign samples. For

this, we may first extract the common subgraph (using graph

isomorphism [47]) from all malware and benign samples and

then the edges of this subgraph can be removed from all

the OSCGs. However, the false alarm rate in our approach

is considerably low when compared to approaches [6], [40],

and [20] in which the false alarm rate of 10.9%, 9.8% and

9.7% is observed respectively.

The detection capability of our approach with unknown

samples (test samples that are not used in training phase) is

evaluated using two test datasets with both the training models

prepared with ε value as 2.9. We performed testing of our

both the test sets. For the first test set, we observed overall

detection accuracy of 94.2% (Dold: 94.8%, Dnew: 94.7%). In

case of second test set, we achieved an overall accuracy of

93.4% (Dold: 93.7%, Dnew: 93.1%). The detection accuracy

of test samples is approximately similar to that of our trained

model. There is a minor difference in detection accuracy of

both the sets and this was expected because the learning-

based models always perform better with training samples

due to the implicit knowledge about the samples. Similar

trends of false detection rate are observed with test samples.

Our experimental results indicate that the proposed method is

effective in discriminating the benign and malware instances.

D. Resilient against dynamic obfuscation

As discussed earlier, modern malware inserts irrelevant and

independent system-calls to evade the system-call based

detection approaches that rely on either signature or exact

pattern matching. These solutions are evaded by malware

authors as these methods directly work on raw system-features

such as opcodes, instructions, hexbytes, and etc. that can

be obfuscated or replaced by equivalent alternate features.

The discriminating components are clearly visible and hence

tampered by malware writers. On the other hand, our method

provides a solution by employing a feature space that is not

linearly related to raw system features and hence opaque to

malware writers.

To measure the robustness of proposed approach in the

presence of system-call injection attack, we performed experi-

ments on two sets of system-calls, i.e., rarely invoked system-

calls (RISC) and frequently invoked system-calls (FISC). The

former set consists of calls that are rarely invoked by malware

or benign applications in our datasets. As stated earlier, the

malware and benign applications mostly utilize 160 calls

out of 284. Therefore, remaining calls serve as irrelevant to

both the applications and therefore become valid candidates

of injection attacks. The latter set includes frequent calls

invoked by benign and malware applications. For this, we have

selected the benign sample from the set containing 100 benign

programs, which are considered on the basis of larger trace

size among all the other benign samples. We also evaluated

the impact of considering single or different benign programs

on our approach. For single program we selected the sample

AdbRdr930_en_US.exe containing more than 105 calls.

We observed that in both cases the results are nearly the

same. It indicates that considering different benign programs

for injection does not affect our approach.

In both the experiments, we inserted system-calls into

random locations of the execution trace of randomly selected

malware programs. The malware samples considered for this

are the test samples of Dnew dataset as these samples belong

to the class of latest malware attacks. The number of calls

in these malware traces ranges from 674 to 124652. We

inserted total calls that are 10%, 20%, · · · , 100%, 150%, 200%

of malware traces. For inserting system-calls, we adopt the

strategy followed by authors in [11]. These calls are injected

one at a time and at random positions in the malware traces.

For both the experiments, we observed the performance of our

model with ε value of 2.9 and results are shown in Figure 4.

Figure 4 illustrates the performance of our model with both

the experiments in terms of detection accuracy. The detection

accuracy of our model does not vary up to 30% of call-

injection rate. For some malware samples, this translates to

injection of ∼30000 calls. We exhaustively injected calls into

malware traces and in this way injection also occur in extracted

semantically-relevant paths and therefore beyond 30% call

injection rate we observed the fall in detection accuracy.

Figure 5 shows TPR and FPR values with respect to both

the experiments. It means that the discriminating patterns

of proposed approach are not affected by the injected calls.

However, when we increase the injection rate, the detection

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 9

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

D
et

ec
tio

n
A

cc
ur

ac
y

(%
)

Number of System Calls (%)

Rarely Invoked System Calls (RISC)
Frequently Invoked System Calls (FISC)

Fig. 4: Detection capability in presence of behavior obfuscation with
RISC and FISC.

accuracy starts decreasing. This fall in the detection accuracy

is expected as when we insert more calls into the malware

traces, TPM no longer matches the modified samples as more

paths are added into semantically-relevant set affecting its

frequency distribution. This is expected as insertion of rarely

invoked system-calls does not affect TPM as it is akin to

adding some transition to almost isolated nodes and such paths

are unlikely to be included in semantically-relevant set unless

a large number of injection takes place. With RISC, our model

performs better when compared to FISC. By inserting benign

call sequences, we observe an increase in false detection rate of

our model. The maximum decrease of 6.9% and 13.6% in the

detection accuracy is observed for RISC and FISC experiments

respectively. The feasibility of inserting calls of RISC set is

more than the FISC as the latter set of calls can affect the

prime objective of malware. Therefore, our method shall work

without much loss in detection accuracy.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

T
ru

e
Po

si
tiv

es
 a

nd
 F

al
se

 P
os

iti
ve

s
(%

)

Number of System Calls (%)

RISC: TPR
RISC: FPR
FISC: TPR
FISC: FPR

Fig. 5: True Positives and False Positives with RISC and FISC.

The other important concern of call-injection in our ap-

proach is to modify the Sstart and Send . For this, we closely

inspect the variation in ALBF value of paths after adding

two irrelevant calls, i.e., S′start and S′end at initial and last

position of malware trace. By doing so, we observed that

the semantically-relevant set contains same paths with two

additional links, i.e., S′start → Sstart and Send → S′end showing

single outgoing transition. The ALBF metric (Equation 4) is

sensitive to path-length as well as the branching factor. If two

additional links are added that were not there in the previous

OSCG, then only path-length is affected and increased by 2.

The branching factor remains same as the link-count is 1 for

both the links. A negligible fall in ALBF is observed due

to increase in the path-length. This fall in the majority of

cases does not change the bins of those modified paths hence

it will not affect our approach. Now, if a long sequence of

unrelated calls is added (pre/post) to just increase the path-

length then in very few cases it will affect the ALBF as we

have restricted the path-lengths (from 10 to 31). To evade the

approach, malware authors have to append and prepend a long

sequence of unrelated calls with higher outgoing transitions,

which modify the bins of all the paths in such a way that

increases the false alarm rate.

E. Comparison with existing approaches

In the previous section, we have shown that our approach

has resulted into better detection accuracy. However, we need

to compare with other approaches to asses the quality of our

results. Here, we present a comparative evaluation with current

state-of-art dynamic malware detection techniques. Moreover,

we analyze the impact of call-injection attack on our approach

to one proposed by Park et al. [11].

Compared to previous work, our proposed approach shows

improved malware detection rates. Figure 6 shows the TPR

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
P

R
 a

nd
 F

P
R

 (
%

)

TPR
FPR

Shan
et al. [6]

Ahm
adi et al. [40]

Islam
et al. [20]

Anderson
et al. [30]

Proposed
Approach

Fig. 6: Comparison with existing malware detection approaches.

and FPR of every approach. From this figure, our proposed

approach is shown to outperform other methods, with the

highest true positives and the lowest false positives. The better

performance of our approach is due to semantically-relevant

paths, which represent the program semantics that cover the

most relevant behavior of malware and benign programs.

Park et al. [11] proposed a graph clustering method [48]

for deriving the common behavior of malware samples. The

authors performed an abstraction from system-call traces and

used kernel objects [49] to represent malware behavior. Fur-

ther, they applied graph matching and determined a threshold

to asses the detection rate of their approach. Moreover, the

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 10

authors have built a kernel object behavior graph (KOBG)

to exploit the dependency between the kernel objects. The

kernel objects and their dependencies information is extracted

from the system-call traces acquired using Ether framework.

To evaluate Park’s approach on our samples, we adapted

their approach as mentioned in [11]. We constructed KOBG

in similar fashion and built a weighted common behavior

graph (WCBG) using McGregor algorithm. To implement the

algorithm, we made use of graph C++ Library provided by

the Boost Software [50].

Figure 7 contrasts the performance decay of our proposed

with the one in [11] for call-injection rate ranging from 0%

to 100%. It is quite clear that our approach outperforms

the approach in [11]. In our approach, the maximum fall

observed is ∼13% while in [11] the observed maximum fall

is ∼23%. The detection accuracy of Park’s approach with 0%

injection rate is observed as 92.45%. The false alarm rates of

their approach are 8.2 (FNR) and 6.9 (FPR). The approach

by Park et al. [11] is based on exact-pattern matching as

a result of which the call-injection attack and false alarm

rates result into higher performance deterioration. However,

our approach is not based on exact pattern matching, but

abstracts semantically-relevant paths as bins of branching

factor. Therefore, it is less vulnerable to call-injection attack.

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

Pe
rf

or
m

an
ce

 D
ec

ay
 (

%
)

Number of System Calls (%)

Proposed Approach Park et al. [11]

Fig. 7: Comparison of proposed approach and approach in [11].

VI. DISCUSSION

In this paper, we introduced the concept of specifying

program semantics in order to discriminate the malicious

from non-malicious binaries. To address this, we abstracted

the system-calls to a higher level and created sets containing

semantically-relevant paths. These semantically-relevant paths

cumulatively represent the program semantics since each path

sequence exhibits a specific functionality of the program. In

this section, we discuss the merits and demerits of proposed

approach. For any malware detection approach, it has to

address the issues such as generality, resiliency, stealthiness

and associated overhead.

A. Generality

Generality determines the ability of detection model to scale

uniformity with 1) comprehensive set of malware samples, and

2) known (training) and unknown (test) malware instances.

We used two different datasets that include a wide spectrum

of malware samples. The overall detection accuracy with both

the datasets Dold and Dnew are observed as 96% and 94.85%

respectively. Both the figures are nearly the same with a

marginal difference of 1.15% occurred due to the presence

of malware samples in Dnew, which do not manifest their

malicious behavior during runtime. These samples are termed

as detection-aware malware. The detection-aware malware

senses the presence of instrumented virtual environment. In the

proposed approach, to create the virtual environment, we used

Ether. Ether can be detected as the BIOS data strings for Ether

make use of emulated variant from Bochs virtual machine.

Moreover, the Ethernet card that is emulated by underlying

Xen system can be analyzed easily. The detection-aware

malware exploits these variations and ensures that it cannot

be analyzed. As a result, it generates partial log or no log

during runtime. Our datasets do not include the samples with

no logs. Therefore, the only concern is the generated partial

logs that result into misclassification. Although, in our case

the false alarm rates were significantly low as compared to

other existing approaches [6], [20], [30], [40]. This particular

limitation is common to the majority of dynamic malware

detection approaches. In future, we can substitute Ether with

more resilient framework or we may augment more than

one framework (emulated, virtualized, and instrumented) to

retrieve complete logs of detection-aware malware.

The other factor that assures the generality is the per-

formance of our detection model with known and unknown

malware samples. We observed the uniformity in our train-

ing (95.42%) and testing (93.8%) results. In our case, the

difference in training and testing results is only 1.6% which is

negligible. Hence, our model achieves the generality and thus

capable of detecting a wide range of malware instances.

B. Resiliency

Resiliency refers to the robustness of the proposed approach

in the presence of possible evasion embedded into malware

files. As our proposed model relies on system-call traces, one

possible evasion technique to thwart our model is system-call

injection attack. Using this attack, malware authors modify

the system-call sequences of malware binaries at run time.

For incorporating this, the malware authors either make mod-

ifications into the malware program or create new binaries

through the injection of system-calls. We ran two different

experiments to evaluate the robustness of our approach against

behavior obfuscation. The experimental results indicate that

the detection accuracy remain invariant up to 30% of call

injection rate. Beyond this, we observed a fall in detection

accuracy that stabilizes above an injection rate of 70%. The

system-call sequences of our malware dataset contain on an

average more than 105 calls. Inserting even 10K, 20K and

30K independent calls into malware traces does not affect

the proposed mechanism. Furthermore, our dataset consists of

packed, polymorphic and metamorphic samples which indicate

that the proposed approach can complement existing static

malware detection methods.

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 11

C. Stealthiness

Stealthiness refers to the detection capability by which

our approach operates with high detection accuracy without

disclosing discriminating patterns to malware attackers. The

discriminating component of our approach is neither a se-

quence of system-calls nor a feature space linearly derived

from these sequences. The discriminating component of our

method is composed of the ranges of ALBF values. As these

values are accumulated in bin, our feature space is non-linearly

related to the sequence of calls. Multiple semantically-relevant

paths imply different subsequence of calls being used in the

construction of feature space. Modification in one path shall

not impact performance of the proposed model. Only large

modifications in transitions of all semantically-relevant paths

will affect our model. The modification is complex as the

attacker needs to identify all semantically-relevant paths and

modifying the path sequences in a way that it substantially

modifies ALBF bins. Hence, our proposed approach provides

stealthiness and is resilient against present and future mali-

cious threats.

D. System Overhead

In conjunction to its detection accuracy and resiliency

against call-injection attacks, we also discuss the associated

overheads of the proposed approach. Table V shows the best,

average and worst time per sample during the main steps of

our approach. The total time shown in the Table V does not

include monitoring time as it is common to all behavior-based

approaches. Each step is discussed as follows.

TABLE V: Best, Average and Worst Processing time of each

sample

Main Steps Best Average Worst

Time (in sec.) Time (in sec.) Time (in sec.)

System-Call Monitoring – – 600

OSCG Construction 0.001 0.02 1.2

Candidate-Paths Computation 0.005 3355.86 35109.9

Semantically-relevant Paths
Extraction

0.07 0.18 0.67

Training Time 1.54 1.54 1.54

Total Time 1.616 3357.6 35113.31
-Monitoring Time

1) System-call Monitoring: Execution tracing of benign and

malware binaries in our approach depends on Ether. Therefore,

the overheads associated with Ether are inherited into our

approach. We fixed the time-out of 10 minutes (600 seconds).

Therefore, we observe this overhead of collecting system-

call traces. Monitoring executables from Ether is a time-

consuming task. Ether uses exceptions whenever a running

application makes a system-call to access system services.

These exceptions result into significant performance over-

head. To reduce this overhead, we can use a faster analysis

framework. The proposed approach is not specific to a given

monitoring environment and can be generalized by applying

the same methodology with other operating systems as well

as virtual/sandboxing environments. To investigate this, we

conducted a small experiment using 20 malware samples of

Dnew dataset. We collected execution traces of these samples

from Cuckoo sandbox with 10 minutes of timeout. To extract

the run-time traces of executables, we submit the sample

via submit.py. The inline “Cuckoo Agent” (agent.py)

receives the executable and analyzes it. After the analysis

is over, a behavior report is generated which includes logs

containing various parameters such as API, system-calls, static

attributes, DLL invoked, PE header, and processes created

during runtime. We used the generated behavior report and

extracted the system-calls that are invoked. We then created

the feature space for these samples in a similar fashion as men-

tioned earlier and closely observed the variation in frequency

distribution of Ether generated traces with Cuckoo generated

traces. We found out that there is a negligible variance in the

frequency distribution in both the cases.

2) OSCG Construction: In this phase, we extract the

system-call sequences from the acquired traces and then build

the TPM using the transitions of system-calls. The processing

time for TPM construction is negligible (average: 0.02 sec.

and worst: 1.2 sec.) as it depends on the trace length. For

samples with larger trace-length, OSCG is constructed in few

seconds and for average trace length, it is constructed in few

milliseconds. We can say that this phase does not lead to higher

processing time.

3) Candidate-path Computation: In our approach, we de-

termined the paths between Sstart to Send . In this quest, we

observed that the time complexity for determining all paths is

very high. We have shown that our OSCGs are sparse in nature

as the average link-count of our samples is less than the total

number of nodes. Therefore, our approach does not result into

exponential time complexity. However, the processing time

for computing all-paths is significantly high that it affects

the applicability of our approach in real-time situations. To

reduce this processing, we approximated all-path computation

and determined the candidate paths by restricting the path-

length. The average processing time for computing candidate-

paths is ∼3355 seconds and the worst processing time is

∼35109 seconds. Though, this approximation improves the

processing time of our approach yet when compared to other

existing approaches it is slightly high. In order to minimize

the time complexity of this phase, we can use more efficient

path-computation algorithm. The authors in [34], proposed

a survey of various parallel graph algorithms using systolic

arrays, associative processors, array processors, and multiple

CPU computers. General-Purpose Computing on Graphics

Processing Units (GPGPU) provides a powerful platform to

implement the data-intensive algorithm. Kaczmarski et al. [51]

proposed an approach for accelerating the Breadth First

Search (BFS) algorithm with CUDA implementation on GPU.

The authors have shown the significant improvement over

CPU-based implementation of BFS. The results we present

show great promise in using semantically-relevant paths to

classify malware, the computational complexity would be

prohibitive in a real-time setting. In future, we will also create

the parallel version of our path-computation algorithm and

reduce the incurred overhead.

4) Training Time: Training time includes the time taken to

train our feature vector. This is measured with respect to

entire feature vector. It is one-time cost of the order ∼1.54

seconds. It is not measured per sample. Although, to keep our

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 12

system up-to-date, we need to train our model with the newer

samples within fixed time interval (monthly or quarterly).

VII. RELATED WORK

Our proposed approach addresses the problem of malware

detection. The desirable property of any malware detector

is that it must be capable of detecting zero-day and unseen

malicious attacks. Modern malware is analysis-aware, i.e., it

tries to evade the existing detection mechanisms whether static

or dynamic. As discussed earlier, we prefer execution-based

dynamic approach over static to overcome the limitations of

the latter. In this section, we review dynamic approaches of

malware detection published in the literature that represent the

extracted dynamic attributes in one of the following forms: 1)

n-grams, 2) feature-statistics and 3) graphs.

A. n-gram based Approaches

The n-gram based representation has been deployed in many

dynamic malware detection approaches [45], [52], [53]. n-

gram is a contiguous sequence of n features extracted in a

sliding window (moves one feature at a time) manner from

program traces. The authors in [45], [52] have presented an ap-

proach that identifies the malicious behavior using Application

Programming Interface (APIs) and system-calls respectively.

They have applied a fingerprinting approach matching the n-

gram features prominently present in malware but absent in

benign applications. Yongzheng et al. [53] have presented

a visualization approach using DotPlots to cluster similar

malware instances. For this, authors have made use of byte

opcodes and constructed the n-gram features. They have also

applied hash-based content sampling to reduce their feature

space. The n-gram based representation methods suffer from

the drawback of dimensionality and depend on two parameters

n (consecutive number of features to be considered) and

L (total number of n-gram) [30].

B. Feature-statistics based Approaches

In literature, security researchers have utilized the statistics

of extracted features to identify malicious binaries. The statis-

tics include feature count, probability, data-value, entropy,

information-gain, temporal values, to name a few. Islam et

al. [20] have proposed an approach that uses static and

dynamic attributes to classify benign and malware samples.

They have applied four classifiers, Support Vector Machines,

Decision Trees, Random Forest, and Instance-based to carry

out their objective. A similar approach was proposed by

Ahmadi et al. [40]. The authors have used API calls to

construct their feature vector. Then, they applied two feature

selection methods (fisher score and CFSSUBSETEVAL) to

remove the redundant and irrelevant features. Authors in [54]

used temporal values of system object and visualized the

malware sample using treemaps and threaded graphs. Directly

applying feature-statistics of raw feature leads to high false

alarm rates as these statistics provide a low signal-to-noise

ratio.

C. Graph-based Approaches

The Graph-based representation is deployed to encode the

relative information of dynamic attributes. To detect malware

using graph-based modeling, a graph or subgraph with aggre-

gated feature attributes is formed. This modeling represents

the dependency structure of binaries in terms of control-flow,

data-flow, and information-flow. The proposed approach makes

use of graph-based representation as other two have few limita-

tions that restrict them in specifying actual malicious behavior.

Our proposed approach extracts the program semantics and

uses it to train our detection model. Existing approaches [8],

[9], [11], [30], [55]–[57] use graph-based representation to

capture malicious programs. The authors in [55], [56] have

presented a visualization approach to cluster the samples

showing malign behavior. Another clustering approach pro-

posed by Jacob et al. [9] which specifically identifies bot-

initiated Command & Control (C&C) communication. They

have constructed a behavior graph of system call traces. C&C

templates are created with known and unknown C&C commu-

nications. The authors claimed that these templates share sim-

ilarity in behavior graph and thus samples with homogeneous

C&C activities are grouped into the same clusters. A similar

behavior-based malware detection approach was proposed by

Shan et al. [6]. In their approach, authors have constructed

behavior templates containing OS-level information-flow. The

behavior templates represent the group of atomic behaviors.

An unknown sample with suspicious behavior is marked if its

behavior template is matched with one of the templates stored

in database.

Shun et al. [57] have developed a dependency structure ma-

trix (DSM) to show the task/module dependencies to detect the

module-based co-working malware. The approach proposed

by Anderson et al. [30] detects malware by utilizing Markov

chain based dependency graphs of program traces. They have

incorporated multiple kernel learning to construct a weighted

combination of combined feature set (opcodes, basic blocks

and system calls). Fredrikson et al. [8] have developed a tool

named as HOLMES. It works in two steps: 1) Extraction of

significant malicious behaviors and 2) Creation of a discrim-

inative specification of malware behavior. For this, a depen-

dency graph is constructed in which graph vertices (system-

calls) are connected by dependency in their arguments. They

have extracted a common synthesized malware behavior by

applying structural leap mining. A similar approach has been

proposed by authors in [11]. They have constructed a kernel

object behavior graph (KOBG) to derive the common behavior

of malware families. The authors have created a HOTPath

and applied an exact pattern matching approach. The majority

of these approaches make use of graph matching that is

ambiguous due to graph isomorphism. On the other hand, our

approach that is independent of any graph-matching and thus

more robust with system-call injection attacks as compared to

other existing approaches as shown by our experiments.

VIII. CONCLUSION

Malware detection is the first line of defense against mali-

cious threats. Modern malware is detection-aware therefore

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 13

detecting all types of malware is a daunting task. In this

paper, we proposed a new mechanism for identifying current

malicious binaries which are resilient to static and dynamic

obfuscation techniques. To carry out this objective, we

captured the execution flow of malicious binaries in terms of

system-calls and transformed them into Ordered System-Call

Graph (OSCG). Then, we applied the concept of Asymptotic

Equipartition Property (AEP) inherited from information the-

ory. Using AEP, we produced a set of semantically-relevant

paths from each OSCG. These paths cumulatively describe

the average behavior of a binary. Our experimental results

demonstrate that semantically-relevant paths can be used to

infer the malicious behavior and to detect numerous new and

unseen malware samples. The proposed approach shows its

robustness against system-call injection attacks. In addition,

we also compared our method with existing solutions. We

observed that our approach was more efficient in terms of

malware detection rate. Our future work will focus on the

development of path computation algorithms to reduce the

overhead.

REFERENCES

[1] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna,
“Revolver: An automated approach to the detection of evasive web-
based malware,” in Proc. of the 22Nd USENIX Conference on Secu-

rity (SEC’13), 2013, pp. 637–652.
[2] AV-test. (2014, Nov.) Av–test malware statistics. [Online]. Available:

http://www.av-test.org/en/statistics/malware/
[3] W. Wang, I. Murynets, J. Bickford, C. V. Wart, and G. Xu, “What you

see predicts what you get–lightweight agent–based malware detection,”
Secur. and Commun. Netw., vol. 6, no. 1, pp. 33–48, 2013.

[4] D. Spinellis, “Reliable identification of bounded-length viruses is NP-
complete,” IEEE Trans. Inf. Theory, vol. 49, no. 1, pp. 280–284, Jan.
2003.

[5] H. Qiu and F. Osorio, “Static malware detection with segmented sand-
boxing,” in Proc. of IEEE 8th International Conference on Malicious

and Unwanted Software (MALWARE’13), Oct 2013, pp. 132–141.
[6] Z. Shan and X. Wang, “Growing grapes in your computer to defend

against malware,” IEEE Trans. on Inf. Forensics and Secur., vol. 9, no. 2,
pp. 196–207, Feb 2014.

[7] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
“Semantics-aware malware detection,” in Proc. of IEEE Symposium on

Security and Privacy (SP’10), 2005, pp. 32–46.
[8] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan,

“Synthesizing near-optimal malware specifications from suspicious be-
haviors,” in Proc. of IEEE Symposium on Security and Privacy (SP’10),
2010, pp. 45–60.

[9] G. Jacob, R. Hund, C. Kruegel, and T. Holz, “Jackstraws: Picking
command and control connections from bot traffic,” in Proc. of the 20th

USENIX Conference on Security (SEC’11), 2011, pp. 29–48.
[10] H. Lu, X. Wang, B. Zhao, F. Wang, and J. Su, “Endmal: An anti-

obfuscation and collaborative malware detection system using syscall
sequences,” Math. and Comput. Model., vol. 58, no. 5–6, pp. 1140–
1154, 2013.

[11] Y. Park, D. S. Reeves, and M. Stamp, “Deriving common malware
behavior through graph clustering,” J. Comput. Secur., vol. 39, Part B,
pp. 419 – 430, 2013.

[12] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system call
detection,” ACM Trans. Inf. Syst. Secur., vol. 9, no. 1, pp. 61–93, Feb.
2006.

[13] W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu, “Shadow attacks:
automatically evading system-call-behavior based malware detection,”
J. Comput. Virol., vol. 8, no. 1-2, pp. 1–13, 2012.

[14] T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla, “Bee master: De-
tecting host-based code injection attacks,” in Proc. of 11th International

Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment (DIMVA’14), 2014, vol. 8550, pp. 235–254.
[15] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-

injection attacks with instruction-set randomization,” in Proc. of the 10th

ACM Conference on Computer and Communications Security (CCS’03),
2003, pp. 272–280.

[16] Y. Ji, Y. He, D. Zhu, Q. Li, and D. Guo, “A mulitiprocess mechanism
of evading behavior-based bot detection approaches,” in Information

Security Practice and Experience, ser. Lecture Notes in Computer
Science. Springer International Publishing, 2014, vol. 8434, pp. 75–89.

[17] M. Ramilli, M. Bishop, and S. Sun, “Multiprocess Malware,” in Proc.

of 6th International Conference on Malicious and Unwanted Soft-

ware (MALWARE’11), Oct 2011, pp. 8–13.
[18] T. M. Cover and J. A. Thomas, Elements of Information Theory 2nd

Edition (Wiley Series in Telecommunications and Signal Processing).
Wiley-Interscience, July 2006.

[19] C. Cui, Z. Dang, and T. R. Fischer, “Typical paths of a graph,” J.

Fundam. Inf., vol. 110, no. 1-4, pp. 95–109, Jan. 2011.
[20] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification of

malware based on integrated static and dynamic features,” J. of Netw.

and Comput. Appl., vol. 36, no. 2, pp. 646 – 656, 2013.
[21] N. Kheir, “Behavioral classification and detection of malware through

HTTP user agent anomalies,” J. of Inf. Secur. and Appl., vol. 18, no. 1,
pp. 2 – 13, 2013.

[22] R. Moskovitch, Y. Elovici, and L. Rokach, “Detection of unknown
computer worms based on behavioral classification of the host,” J.

Computational Stat. and Data Anal., vol. 52, no. 9, pp. 4544 – 4566,
2008.

[23] D. Balzarotti, M. Cova, C. Karlberger, E. Kirda, C. Kruegel, and
G. Vigna, “Efficient detection of split personalities in malware,” in Proc.

of International Conference on Network and Distributed System Security

Symposium (NDSS’10), 2010, pp. 1–16.
[24] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti, “Detecting

environment-sensitive malware,” in Proc. of Recent Advances in Intru-

sion Detection (RAID’11), vol. 6961, 2011, pp. 338–357.
[25] S. Naval, V. Laxmi, M. Gaur, S. Raja, M. Rajarajan, and M. Conti,

“Environment-reactive malware behavior: Detection and categorization,”
in Proc. of 7th International Workshop on Autonomous and Spontaneous

Security (SETOP’14), 2014, pp. 1–16.
[26] G. Suarez-Tangil, M. Conti, J. Tapiador, and P. Peris-Lopez, “Detecting

targeted smartphone malware with behavior-triggering stochastic mod-
els,” in Proc. of 19th European Symposium on Research in Computer

Security (ESORICS’14), 2014, vol. 8712, pp. 183–201.
[27] C. Shannon and W. Weaver, “The Mathematical Theory of Communi-

cation,” 1963.
[28] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis

via hardware virtualization extensions,” in Proc. of the 15th ACM

Conference on Computer and Communications Security (CCS’08), 2008,
pp. 51–62.

[29] G. Pék, B. Bencsáth, and L. Buttyán, “nEther: In-guest detection of
out-of-the-guest malware analyzers,” in Proc. of the Fourth European

Workshop on System Security (EUROSEC’11), 2011, pp. 3:1–3:6.
[30] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-based

malware detection using dynamic analysis,” J. Comput. Virol., vol. 7,
no. 4, pp. 247–258, 2011.

[31] D. Babić, D. Reynaud, and D. Song, “Recognizing malicious software
behaviors with tree automata inference,” Form. Methods Syst. Des.,
vol. 41, no. 1, pp. 107–128, Aug. 2012.

[32] M. J. Jurczyk. (2014, Nov.) Windows win32k.sys system call table.
[Online]. Available: http://j00ru.vexillium.org/win32k_syscalls/

[33] J. R. Norris, Markov Chains. Cambridge University Press, 1998.
[34] M. J. Quinn and N. Deo, “Parallel graph algorithms,” ACM Comput.

Surv., vol. 16, no. 3, pp. 319–348, Sep. 1984.
[35] S. Edelkamp and R. E. Korf, “The branching factor of regular search

spaces,” in Proceedings of the Fifteenth National/Tenth Conference on

Artificial Intelligence/Innovative Applications of Artificial Intelligence

(AAAI’98 / IAAI’98), 1998, pp. 299–304.
[36] S. Maji, A. Berg, and J. Malik, “Classification using intersection kernel

support vector machines is efficient,” in Proc. of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR’08), June 2008, pp.
1–8.

[37] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[38] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp.
832–844, Aug. 1998.

[39] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 164–177, Oct. 2003.

[40] A. Sami, H. Rahimi, and B. Yadegari, “Malware detection by be-
havioural sequential patterns,” Comput. Fraud and Secur., vol. 2013,
no. 8, pp. 11 – 19, 2013.

TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, NOVEMBER 2014 14

[41] VirusTotal. (2015, Feb.) File types statistics. [Online]. Available:
https://www.virustotal.com/en/statistics/

[42] K. Rieck, T. Holz, C. Willems, P. Düssel, and P. Laskov, “Learning and
classification of malware behavior,” in Proc. of the 5th International

Conference on Detection of Intrusions and Malware and Vulnerability

Assessment (DIMVA’08), 2008, pp. 108–125.
[43] P. Vinod, V. Laxmi, M. Gaur, and G. Chauhan, “Momentum: Metamor-

phic malware exploration techniques using MSA signatures,” in Proc.

of International Conference on Innovations in Information Technology

(IIT’12), March 2012, pp. 232–237.
[44] D. Quist, L. Liebrock, and J. Neil, “Improving antivirus accuracy with

hypervisor assisted analysis,” J. Comput. Virol., vol. 7, no. 2, pp. 121–
131, May 2011.

[45] P. Faruki, V. Laxmi, M. S. Gaur, and P. Vinod, “Behavioural detection
with api call-grams to identify malicious PE files,” in Proc. of the First

International Conference on Security of Internet of Things (SecurIT’12),
2012, pp. 85–91.

[46] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Lett.,
vol. 27, no. 8, pp. 861–874, 2006.

[47] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol. 23, no. 1, pp. 31–42, Jan. 1976.

[48] H. Bunke, P. Foggia, C. Guidobaldi, and M. Vento, “Graph clustering
using the weighted minimum common supergraph,” in Graph Based

Representations in Pattern Recognition, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2003, vol. 2726, pp. 235–246.

[49] Microsoft. (2015, Feb.) Kernel object. [Online]. Available: https:
//msdn.microsoft.com/en-us/library/ms724485%28VS.85%29.aspx

[50] Boost-Software. (2015, Feb.) Graph library. [Online]. Avail-

able: http://sourceforge.net/projects/boost/files/boost/1.57.0/boost_1_
57_0.tar.gz/download

[51] K. Kaczmarski, P. Przymus, and P. Rzazewski, “Improving high-
performance GPU graph traversal with compression,” in New Trends

in Database and Information Systems II, ser. Advances in Intelligent
Systems and Computing. Springer International Publishing, 2015, vol.
312, pp. 201–214.

[52] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“Accessminer: Using system-centric models for malware protection,” in
Proc. of the 17th ACM Conference on Computer and Communications

Security (CCS’10), 2010, pp. 399–412.
[53] Y. Wu and R. Yap, “Experiments with malware visualization,” in Proc.

of Detection of Intrusions and Malware, and Vulnerability Assessment

(DIMVA’13), 2013, vol. 7591, pp. 123–133.
[54] P. Trinius, T. Holz, J. Gobel, and F. Freiling, “Visual analysis of malware

behavior using treemaps and thread graphs,” in Proc. of 6th International

Workshop on Visualization for Cyber Security (VizSec’09), 2009, pp. 33–
38.

[55] D. Quist and L. Liebrock, “Visualizing compiled executables for mal-
ware analysis,” in Proc. of 6th International Workshop on Visualization

for Cyber Security (VizSec’09), Oct 2009, pp. 27–32.
[56] J. Saxe, D. Mentis, and C. Greamo, “Visualization of shared system

call sequence relationships in large malware corpora,” in Proc. of

the Ninth International Symposium on Visualization for Cyber Secu-

rity (VizSec’12), 2012, pp. 33–40.
[57] S.-T. Liu, H. ching Huang, and Y.-M. Chen, “A system call analysis

method with mapreduce for malware detection,” in Proc. of IEEE

17th International Conference on Parallel and Distributed Systems

(ICPADS’11), Dec 2011, pp. 631–637.

