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End-user Interactions with Intelligent 
and Autonomous Systems

 

 

Abstract 
Systems that learn from or personalize themselves to 
users are quickly becoming mainstream yet interaction 
with these systems is limited and often uninformative 
for the end user. This workshop focuses on approaches 
and challenges to explore making these systems 
transparent, controllable and ultimately trustworthy to 
end users. The aims of the workshop are to help 
establish connections among researchers and industrial 
practitioners using real-world problems as catalysts to 
facilitate the exchange of approaches, solutions, and 
ideas about how to better support end users. 
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recognition systems, network device alarms, smart 
home applications, music recommender, healthcare 
decision or fraud detection systems, are quickly 
becoming mainstream. Consumers and business 
specialists now often interact with systems on a daily 
basis in a form of “human-in-the loop” learning (e.g., 
[8, 1]). Yet, interacting with even well-designed 
systems is limited and often uninformative for the end 
user because of the internal complexity and current 
“black box” nature of most intelligent systems.  

This workshop focuses on approaches and challenges in 
this area. The aims of the workshop are to help 
establish connections among researchers and industrial 
practitioners bringing real-world problems to the table, 
and to facilitate the exchange of approaches, solutions, 
and ideas about how to better support end users of 
intelligent systems. 

Interaction Challenges for End Users 
Traditionally, researchers have investigated end-user 
interactions with intelligent and autonomous systems to 
inform Artificial Intelligence (AI) or Intelligent User 
Interfaces (IUI). Only recently has a HCI stance 
emerged with end users as the main focus. Three 
example areas of research are: 

Transparency 
Making the system’s decisions and behavior 
understandable by end users is a first step in successful 
interactions, and we look forward to exploring new 
approaches during the workshop. Recent attempts have 
moved beyond explaining rule-based systems [25] 
toward more complex algorithms [20, 26]. Examples of 
explanations for specific decisions include why… and 
why not… descriptions [14, 16], visual depictions of the 

assistant’s known correct predictions versus its known 
failures [29], confidence of the system in making 
predictions [13, 19], and electronic “door tags” 
displaying predictions of worker interruptibility with the 
reasons (e.g., “talking detected” [31]). Recent work by 
Lim and Dey has resulted in a toolkit for applications to 
generate explanations for popular machine learning 
systems [17]. However, some complex systems’ 
understandability by end users, for example those 
employing neural networks [3], has received scant 
attention. As collaborative approaches (e.g. Collective 
Intelligence) receive more attention, transparency of 
systems based on interactions of multiple users may be 
necessary [21]. 

Control 
Recent research has made inroads into supporting end 
user interactions to directly shape a system’s decisions 
or reasoning via programming by demonstration [5, 
15] or via input of more training examples [2, 7]. A 
different way is to incorporate user interactions that 
can cause a deeper change in the underlying 
algorithms. These approaches include imposing user 
constraints [4, 23, 12], similarity metric learning from 
rich user feedback [9], clustering documents using a 
set of user-selected representative words for each class 
[18], and allowing the user to directly build a decision 
tree for the data set with the help of visualization 
techniques [32]. Several methods have also allowed 
end users to modify features that the algorithm uses, 
for example by reweighting them [12, 27, 28] or 
labeling them [22, 33, 6]. The workshop will explore 
the range of interaction approaches for end users to 
shape learning and personalization. 
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User Experience 
Traditionally, system “accuracy” underpins evaluation 
methods for intelligent and autonomous systems. 
However, systems that personalize themselves suggest 
the need for additional measures, such as trust and 
satisfaction, to comprehensively assess the user 
experience of interacting with these systems. There has 
been some initial work to investigate what makes these 
kinds of system trustworthy [10]. It has also been 
found that making the reasoning transparent can 
improve perceptions of satisfaction and reliability 
toward music recommendations [24], as well as other 
types of recommender systems [11, 30]. However, 
experienced users’ satisfaction with the system may 
actually decrease [19]. The workshop will discuss 
measures for evaluating user interactions with 
intelligent and autonomous systems. 

Workshop Goals 
This workshop has three primary goals: (1) to map out 
the space of current work and to exchange information 
about current approaches among researchers already 
working in this area; (2) to generally share information 
among researchers already working in this area with 
HCI researchers new to the area, and with practitioners 
interested in current and future techniques that can be 
embodied in their systems; and (3) to match real-world 
end-user problems and applications with potential 
solutions or approaches drawn from new and emerging 
research findings. 
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