A\ _F ==
UNIVERSITY OF LONDON
EST 1894

"# $% & ‘(') * & +,- % ./ &&0 & 0&
0 & & % ""#! '&1"1™234 151563 151567

$ 144 00 0&% 0 84&'4 & 4"2"24

$ 144'& 4"1"™234 151563 151567
! y
$ % $
&' ($
)) # $
$
" $ $ $

+ ((

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

**ref chk, fig chk, table chk, section # chk, spell chk, smart quotes layout chk, ** chk
9RFDE 1R PRUH OHDUQHG SURJUDPV ZHfUKH GHDOLQJ
VRPH FDVHV 3DGDSWLYH VRIWZDUH® VHHPVY DSSURSULDWH
O9RFDE 3GDWD’" LV SOXUDO 6R QHHG *GDWD DUH" LQVYV
9RFDE ,W%Neried &proach (capitalized)
O9RFDE ,WTV QDw-Y¥HD VYD WM ORZHU
**Vocab/numbering: change éfollowing globally:
Principle (i)-> Principle Representatieh
Principle (ii)-> Principle Representatie
Principle (iii) -> Principle ML-1
Principle (iv)-> Principle ML-2
**Length: TiiS suggests manuscripts be between 10,000 and 15,000 words.

Why-Oriented EndJser Debugging of
Naive Bayes Text Classification

Todd Kuleszg Simone StumffWengKeen Wong
Margaret M. Burnett, Stephen PerodaAndrew K@, lan Oberst
10regon State University
School of Electrical Engineering and Computer Soéen
Corvallis, OR 97331 USA
1-541-737-3617

{kuleszto,wong,burnett,peronas,obersti}@eecs.oregonstate.edu

2City University London
Centre for HumarComputer Interaction Design
London, UK EC1V OHB
++44-20-7040 8168
Simone.Stumpf.1@city.ac.uk

"$Q HDUO\ YHUVLRQ RI WKLV SDSHU DSSHDUHG LQ ,8,1 >

3The InformationSchool
DUB group

University of Washington

Seattle, WA 98195 USA

ajko@uw.edu

Abstract **D2.5

Machine learning techniques are increasingly useadtailigent assistantssoftware
targeted at and otinuously adapting to assistirend users with email, shopping, and
other tasks. Examples include desktop SPAM filters, recommender systems, and
handwriting recognitionFixing such intelligent assistants when they learn incorrect
behavior, however, has received only limited attentibo directly support endser
SGHEXJJLQJ RI DVVLVWDQW EHKDYLRUV OHDUQHG YLD VWI
Why-oriented approach that allows users to ask questions about how the assistant made
LWV SUHGLFWLRQV SURYLGHYVesboQsy anrtUallondy Risel¥ KAHVH 3 ZK)\
interactively change WKHVH DQVZHUV WR 3GHEXJ" WKHVH DVVLVW
predictions. To understand the strengths and weaknesses of the approach, we conducted
an exploratory study to investigate barriers that pagiip wuld encounter when
debugging an intelligent assistansing our approach, and the information those
participants requested to overcome these barriers. To help ensure the inclusiveness of our
investigation, we also explored how gender differencegeplaa role in barriers and
information needs. We then use these results to consider opportunities faridfted
DSSURDFKHY WR DGGUHVYVY WKH XVHUVY EDUULHUV DQG LQI

1. Introduction ** D2
Machine learning is increasingly being used to powgslligent assistanissoftware
that continuously tunes itseehavior tomatcha specific end usé interaction patterns, so
as to assist the user in getting work done (helping organize email, recommending books
UHOHYDQW WR WKH XV H-Wiftén bhQes/, nd & o WWEN adsidtants D Q G

adapt themselves in helpful ways, the benefits are obvious: SPAM filters misclassify

fewer emails, recommendations find interests quickly, and handwriting recognition tools
GR D JRRG MRE RI Wh&¢sQJ XS WKH XVHUTYV

KDW KDSSHQV KRZHYHU ZKHQ D XVHUYV DVVLVWDQW L
VWUDLJKWIRUZDUG DQVZHU PLJKW VHHP WoBtsddh &hSURYLGH
approach can be unrealistically tiroensuming for an end user, and may not sdtiee
particular misbehaviors the user cares most about. We posit instead that, just as with
regular software, when an intelligent assistaalsf it should be possibl® debug it
directly. Further, since intelligent assistants do not return to the ledni®gramming
specialists, the only peopie a positionto debug intelligent assistants are the end users
themselves, because they are the only ones using that specific adaptation.

Enabling end users to debug their assistants istmoal: most users &ve little
knowledge of how systems based on machine learning operate. Prior work, however, has
shown that end users can learn to understand how a learning system makes its decisions
[Tullio et al. 2007].We therefore prototyped a new approach that aimsupport end
users in guiding and correctiAg.e., debugging automated text classification. The
domain we chose to explore was classification-ofagl messages intomail folders, as
supported by the widely used naive Bayes algorithm.

Our work makes thee primary contributions. First, we present a néiwy-oriented
approachto allow end users to debug their intelligent assistants. The approach not only
focuses on answering ender questions abowthythe program is behaving in its current
manner; it als@rovides interactive explanations that serve ael@agging mechanism
Because end users are directly debugging the assistant (as opposed to providing new
training examples), our approach presents information that a programmer would expect
when directly dbugging other kinds of software: representations of both the intelligent
D V V L VIWYib @QeW fis\ource codeandruntime state The essence of the approach is
VLPSOH LI WKH XVHUV GR QRW OLNH WKH H[SODQDWLRQV
canchangethe explanations to direct the assistant to behave more accurately.

Second, our work explores the difficulties experienced by end users attempting to
debug an assistant in this Whyiented manner. We present an exploratory study that
identifiesand categorizebarriers users encountered while debugging using a prototype

based on our interactive approach. We also investigated bothinftrabation needsf

enduser debuggers expressed, and when they needed this inforrkatialiy, because
of recentevidence of gender differences in debugging (e@rigpreanu et al. 2008
Subrahmaniyan et al. 200)8 we investigated differences in barriers and information
needs by gender to highlight design considerations that could differently impact these
subsets of end users.

Third, we consider how to progress further with \Admented debugging by
identifying machine learning solutionand open research questios to how machine
learning systems can address the information needs andrbarfiend users attempting

to debug their intelligent assistants.

2. Related Work**D 2.9

As part of its support for debugging, our Wasrented approach explains the logic of
an intelligent assistant to end users so that they can understand how tat.dEbeigiare
thus two major classes of prior work: techniques that supporusexddebugging, and
techniques that support communication between users and machine learning systems. We
next discuss each, identifying the foundations that informed the de$igmir own

prototype.

2.1 End-User Debugging **D2.75

Outside of machine learning, there are a number of debugging systems that help end
users find and understand the causes of faulty behavior. For example, in the spreadsheet
domain, WYSIWYT [Burnett et aR003] has a fault localization device that helps users
UHDVRQ DERXW VXFFHVVIXO DQG XQVXFFHVVIXO 3SWHVWV’
to be faulty. WoodsteinWagnerand Lieberman 2004] helps users to debuwgrmmerce
problems by explaining ewts and transactions between services.

The Whyline [Ko 2008] pioneered a method (also outside the realm of machine
learning) to debug certain types of programs in an explana#éiotric way. Because the
Whyline informs our approach, we present it in saletil.

The original Whyline was explored in three contexts: evwased virtual worlds
written in the Alice programming system [Ko et al. 2004], Java programs [Ko et al.
2008], and the Crystal system for debugging unexpected behaviors in complexasterfac

[Myers et al. 2006]. In each case, the tools help programmers understand the causes of

program output by allowing them to select an element of the program and receive a list of
why and why not TXHVWLRQV DQG DQVZHUV LQ UHVSRQVH 7KH\
DQVZHUVY DUH H[WUDFWHG DXWRPDWLFDOO\ IURP D SURJUI
answers derive from a reachability analysis to identify decision points in the program that
could have led to the desired output. In the Crystal prototype, rathempthaenting
answers as sequences of statement executions, answers are presented in terms-of the user
modifiable input that influenced code execution. In all of these Whyline tools, the key
design idea is that users select some output they want to understahthe system
explains the underlying program logic that caused it.

Some researchers have focused on the problems and needs end users encounter when
they debug. For example, Ko et al. exploledrning barriersthat novice programmers
encountered wherarning how to solve problems in a programming environment [Ko et
al. 2004]. Researchers from the WYSIWYT project have categorizethftienation
needs of end users debugging [Kissinger et al. 2006], enumerating the types of
information that end users gght in attempting to debug spreadsheets. These barriers and
information needs may also relate to ficaditional debugging, such as fixing intelligent
assistants**MMB to anyone: R1 wanted more on KissingePotentially this ighe right
place to put thator perhaps it goes better later? (And if later, maybe we should hint at
that her@) **TDK: | was planning on discussing this later, in the Information Needs

section.

2.2 Communicating with Machine Learning Systemg* D2.75

Several recent studies havwghlighted the need to explain a machine learning
DOJRULWKPYTV UHDVRQLQJ WR XVHUV)RU H[DPSOH 3DWH
developers familiar with machine learning who need to apply machine learning-to real
world problems [Patel et al. 2008Flass et al. investigated the types of questions users
familiar with intelligent agents would like to ask an adaptive agent in order to increase
their trust in the agent [Glass et al. 2008]. Similarly, researchers identified the types of
information endusers wanted contegiware applications to provide when explaining
their current context, to increase both trust in and understanding of the system [Lim and
Dey 2009].

Much of the work in explaining probabilistic machine learning algorithms has
focused ornthe naive Bayes classifier [Becker et al. 2001, Kononenko 1993] and, more
generally, on linear additive classifiers [Poulin et al. 2006]. Explanation of these
algorithms is relatively straightforward and computationally feasible on modern
hardware. Tullioet al. reported that, given some basic types of explanations, end users
can understand how machine learning systems operate [Tullio et al. 2007], with the
caveat that overcoming any preliminary faulty assumptions may be problematic. More
sophisticated, thagh computationally expensive, explanation algorithms have been
developed for general Bayesian networks [Lacave and Diez 2002]. Finally, Lim et al.
[Lim et al. 2009] investigated the usefulness of the Whyline approach for explaining
simple decision treesd found that the approach was viable for explaining this relatively
understandable form of machine learning.

Regarding allowing end users to actualifluencebehaviors in machine learning
settings, some Programming by Demonstration (PBD) systems |eargrams
interactively, via machine learning techniques, based on sequences of user actions (see
[Lieberman 2001] for a collection of such systems). When debugging these kinds of
programs, endiser corrections are limited to the addition or removal of itrgidata?
unless the user reverts to a traditional programming language such as Lisp (e.g., [Vander
=DQGHQ DQG O\HUV @ JRU HI[DPSOH *DPXW DOORZV XVl
it makes a mistake, leading to the addition or deletion of training dgarmidcDaniel
and Myers 1999]. Recent work with PBD systems allows some debugging of programs
[Chen and Weld 2008], but again, their technique only allows the user to retract actions
in a demonstration, which results in adding missing values to the galata rather than
GLUHFWO\ PRGLI\LQJ WKH FODVVLILHUfV ORJLF 6WLOO R
specific mistakes by an intelligent assistant, but do not take these corrections into account
when the assistant makes future decisions. For examgl®Scripter/Koala programs
misidentify web page objects, the user can specify the correct object for a particular page;
the fix, however, will not affect how the program identifies similar objects on different
pages [Little et al. 2007].

Debugging that s, directly changing the logic éfintelligent assistants has received

only limited attention. One such system, EnsembleMatrix [Talbot et al. 2009], provides

ERWK D YLVXDOL]DWLRQ RI D FODVVLILHUYVY DFFXUDF\ LC
EnsembleMatrixhowever, is targeted at machine learning experts developing complex
ensemble classifiers, rather than end users working with the resulting classifiers.
ODQLODWUL[>.DSRRU HW DO @ SURYLGHYVY DQ LQWHUDI
accuracy, but ussU LQWHUDFWLRQV DUH UHVWULFWHG WR WKH F
matrix.

Our own prior research has begun to explore-s®et interactions with intelligent
assistants, to understand how to effectively enable end users to debug such programs.
Usinga paper prototype, we previously investigated three different types of explanations
(keywordbased, rulébased, and similaritpased) that machine learning systems could
provide to end users regarding why it was behaving in a particular manner, as well as
user reactions to these explanations [Stumpf et al. 2007]. This paper prototype was also
used to elicit corrections to the logic from participants (e.g., adjusting feature weights),
allowing us to design an interactive prototype supporting the explasati@st
understood by participants and the types of corrections they most requested [Stumpf et al.
2008]. The interactive prototype permitted us to run offline experiments studying the
effects of the corrections provided by end users on prediction acotgestys traditional
labelbased corrections. The results suggest that even when very simple corrections are
LQFRUSRUDWHG LQWR -MaKihty ipocass, it \Wab éphtential Hid-ihcrease Q
the accuracy of the resulting predictions [Stumpf e2808, Stumpf et al. 2009]. For
VRPH XVHUV KRZHYHU WKH TXDOLW\ RI WKH DVVLVWDQW
their corrections; there were barriers that prevented them from successfully debugging
theassistant

In summary, the ability of end useto interactively debug machihearned logic has
been limited. Researchers have begun to investigate how such logic can be explained to
end users, but user corrections, if available at all, has been heavily restricted to specific
forms (e.g., addition fotraining data) or situations (e.g., the initial creation of a new
program via PBD). In addition to explaining the underlying logic, this paper also
addresses supportingnd usersactually fixing the logic of a program learned by a

machine.

3. A Why-Oriented Approach for Debugging Intelligent
Assistants** D2

,QVSLUHG E\ WKH VXFFHVV RI WKH :K\OLQHfV VXSSRUW |
DO @ DQG IDYRUDEOH XVHU I|IHHGE Dsiyié edpteh@iohe LQJ 3Z K\’
[Lim et al. 2009, Lim and Dey 2®], we developed a Whyriented approach for end
user debugging of intelligent assistants. We applied this approach to the design of a
SURWRW\SH WKDW DOORZV HQG XVHUV WR GHEXJ DQ DVVL
an email application.

Our gproach is the first toombinethe following elements:

(1) it allows end users to ask questions directly to statistical machine learning systems

H J 3ZK\ ZLOO WKLV PHVVDJH EH ILOHG WR pu6\VWHPVT{"”’

(2) the answers to which explain both the curregicland execution state (e.g., a
visualization that shows importance of features/words to this folder, and how certain the
system is that it belongs in this folder) and

(3) can be changed: users adrangethese explanations by direct manipulation, to
debXJ WKH V\VWHPfV ORJLF 7kW\LRH BDEBEMIHHWE HDXNOMWWR) WK
logic and resulting predictions.

3.1 Design of the Why Questions **D2

Developing the set of why questions about the logic and execution state of the
intelligent assistnt comprised two stages. In the Generate stage, generated the set of all
possible questions that could be asked via the creation of a formal grammar. Then, in the
Filter stage, we filtered the set of questions generated by the grammar to remove
impossiblequestions, wher@nmpossiblerefers to situations that were not related to or
achievable by debugging an intelligent assistant. We chose this geseddilésr
approach, as opposed to handcrafting the questions ourselves, to be sure we would not
miss anypossible questiong2.12.

We began the Generate stage by inventorying the domain objects, such as messages
DQG IROGHUV ZKLFK LQIRWP adbKriveridoviadl &t \& Dapeafistac® RJL F
level, all logic (and corresponding runtime states) fegdhito the prediction, such as the
importance of a word to a foldeFEinally, we inventoried the types of feedback the
assistant could provide about its logic and execution state, such as its folder predictions

and its estimation of word importance. Thastf inventory (domain objects) is
enumerated in theSubjectssection of Table *QueryGrammar, and the latter two

together are th8ituationssection of Table **QueryGrammar.

00% WR 7RGG ,1G OLNH WR FKDQJH 3VRXtkPFH FRGH’

makes the story line much easier to unravel...
Step four relates to past, present, and future program states. Thus, we enumerated

three questioword phrases- why is, why didandhow can-- plus the negations of these

Table *QueryGrammar: The query grammar used to generate our Why questions.

Components Productions

Questions | Why...?
How...?

Verbs | {To be
iTo do
iCan/Make

Modifiers | {This

1Al

iMany
iRecent
#important

Subjects | iMessage

iFolder

iword

iChange

F(QG XVHU L H 3,7

Situations | iCurrent classification

iChange in classification
#importance

FAvailability (i.e., displayed in the Ul)

Queries | query] = [question] [verb] [subject] [situation] |
[question] [situation] [verb]subject]

Hsituation] = [situation] | [situation] [subject] |
[subject] [situation]

Hsubject] = [subject] | [modifier] [subject]
imodifier] = [modifier] | [modifier] [modifier]

SKUDVHYV :H LQFOXGHG 3KRZ FDQ" TXHVWLRQV WR VXSSRU
states of the system: when the system exphlaimgit did something, the answer often

implies how alterations could make the system do something different. We split these

three questioword phrases into two neterminals questionwords andverb words)to

make ourquery production more flexible. ThQuestionsand Verbs sections of Table
*QueryGrammar generate a sugsat of these types of questisord phrases. Finally,

in step five we added th®lodifiers section to allow generated questions to be more

specific, e.g., a question aborgcently changed predictions, rather thafi changed

predictions. TheQueriessection of Table *QueryGrammar describes how the various
components may be combined to form the universe of possible questions.

For example, RXU JUDPPDU GHILQHV Mu&skoj YWerlg QadbjdcKHU\ DV 3
[situatio©” G6HOHFWLQJ WKH ILUYV WestidjV[veHiGans BEbdck FWLRQ IR
SURGXFHV WK MWhg WiRtBiX iressagStuatior]?” 7TKH ILUVW SURGXFWL
the Situationscomponent urrent classificatioh can then be substituted fagituatior,
UHVXOWLQJ LQ WKH WRPMIQHiEWhEsGage KeHfNed/tb EQon News?

**1.3, **2.11

In the Filter stage, we filtered the questions generated by the graimrinree ways.
First, we removed questions about subject/situation combinations that could not be
accomplished by the intelligent assistant. For example, a mess&gbjé&} can change
its current classification (&ituatior), but words and folders I& Subjecty cannot. We
further refined our list of questions by removing any questions not relating to debugging,
VXFK DV 3:K\ FDQ LPSRUWDQW ZRUGV EH @hragisg@@b\HG""~)LQI
similar questions; this explains why there are no qiRQiV EHJLQQLQJ ZLWK 3+RZ F
VLQFH Mowda®,JPDNH VRPHWKLQJ KDSSHQ"" LV DQVZHUHG E\
SURYLGHGGWH\diMKHWRPHWKLQJ KDSSHQ"" TXHVWLRQV 7KLV G
with the results of [Lim et al. 2009], who found thatrgicipants were more successful
reasoning about intelligent assistants in the form of decision trees when presented with
DQVZHUV WR HLWKHU 3:K\«" RU 3:K\ QRW«" TXHVWLRQV V
SUHVHQWHG ZLWK DQVZHU¥MIWR 3+RZ WR«” TXHVWLRQV

The Filter stage resulted in the nine Why questions depicted in Table

*WhyQuestions. (While the number nine may seem small, the original Whyline

1C

required only six types of questions [Ko 2008] in the complex domain of Java
programming.) Figure *WhyQuestioMenu shows how these questions were presented
in the prototype, including their context dependency (such as the ability of the user to
select questions relating to specific folders).

Table *WhyQuestions: The Why questions and the query grammar productions

used to generate themColor is used to map each noiterminal production to the

terminal English phrase it generated.Text in < > is dynamically replaced with the
word or folder the user has selected.

Why Questions

Generating Production

Why will this message
<Personal> ?

Why Z R Qtfii&V message
<Bankruptcy> ?

Why did this message ?

Why Z D V QHisWwnessage
my recent changes ?

Why did so many messages

?
Why is this email ?
Why does <banking> the

<Bankruptcy> folder ?
Why D U H&) fh'Wortant words
2

Why F D QWaWke | this message
<Systems> ? !

[question] [verb] [modifier]
[subject] [] [subject]

[question] [verb] [modifier]
[subject] [] [subject]

[question] [verb] [modifier]
[subject] []

[question] [verb] [modifier]
[subject] [] [modifier]
[subject]

[question] [verb] [modifier]
[subject] []

[question] [verb] [modifier]
[subject] []

[question] [verb] [subject]
[] [subject]

[question] [verb] [modifier]
[subject] []

[question] [verb] [subject]
[modifier] [subject] []
[subject]

! The user interface moved the location®f in this question to fit the grammatical

rules of English.

11

3.2Design of the Interactive Why Answers** D2

,Q WKH RULJLQDO :K\/LQH DQVZHUV WR 3ZK\" TXHVWLRQ\
source code, but in intelligent assistants, there is no source code that represents the
DVVLVWDQWYV énd Dddr§oHdbBk @ Rdrmddify Rbus, the inttive answer
FRQWHQW ZRXOG KDYH WR UHSUHVHQW WKH DVVLVWDQWY
FRGH ZKLOH VWLOO DOORZLQJ HQG XVHUV WR HGLW LW HI

Thus, we designed the interactive answers according to fimarges:

Principle Representatietx #2.6 SHSUHVHQWDWLRQV RI ERWK WKH DV

execution state should be available to and manipulable byssrddebuggers.

Principle Representatie?: Explanations of the source code and execution state
SsKRXOG QRW REVFXUH RU RYHUO\ VLPSOLI\ WKH SURJUDPTV
Principle ML-1: The intelligent assistant should be explainable to end users.

Principle ML-

7TKH LQWHOOLJHQW DVVLVWDQW VKRXOG KHHG

Principle Representatieh was inspired by the information content that traditional

debugging systems provide. Such systems provide a representation of the logic (source

code) that the programmer can edit. They also provide ways to inspect concrete data

about program execution states. For example, debuggers provide access to the value of

variables and the stack.

Principle Representatie? boils down to being fully truthful with the user about the
DVVLVWDQWYV ORJLF

ODFKLQH Osi@llh@deB JscRithiveHiQa X VHV FR

Ask why will this message be filed to "Systems"?

I| Azk why won't this message be filed to..?

Enron Mews

_- vy riid o Fnan T ECE

s w can'tl make this message o

Perscnal
Bankruptcy
Resumes
D26 13417

R0:26 1:34:17

R0 26 1:34:17

follows up call

audrey robertson@enroncom 200500026 1:34:17

Figure *WhyQuestionsMenu: The Why questions as presented in our prototype

12

temptation to hide complex details from the end user in an effort to make the system
easier to understand. Recent research [Tullio et al. 2007], however, showed that end users
couldunderstand the logic machine learning systesesto make their decisions, at least
in a rulebased systerni*2.9. Further, obscuring this logic would break the debugging
SSULQFLSOdicRR | A8RPIHDU HW DO @ E\ FUHDWLQJ DQ DUWL
the logic end users can view and interadgthwand the underlying logic actually
UHVSRQVLEOH IRU WKH DVVLVWDQWIV RXWSXW 7KXV DE\
ORJLF PD\ KDPSHU UDWKHU WKDQ KH.QS*28 KH XVHUYV GHE>
Principle ML-1 is almost a corollary to Principle Representaor'We wanted to
support underlying learning algorithms more complex than the trivially explainable
decision trees, but not algorithms so complex that supporting Principle Represehtation
would become impossible. Regarding Principle #L we also required that the
XQGHUO\LQJ OHDUQLQJ DOJRULWKP PXVW EH UHVSRQVLYH
to the logic representation. We expand upon both of these points in the next subsection.
3.3The Answer Design Principles and the Underlying Machine Learning
Engine **D2? *MMB to WKW, pls chk wording of entire subsection
With these four design principles in mind, we chose the naive Bayes [Russell and
Norvig 2003] algorithm for our prototype. N& Bayes is a widely used algorithm for
text classification, more complex than ordinary decision trees, yet seemed potentially
explainable to end users (Principle ML
The machine learning features in oumail prediction application were the words
embedded in actual-mail messages. Given our choice of naive Bayes as the learning
algorithm, these features and their associated predictive value for a classification are a
FRPSOHWH UHSUHYVHQWIDgi¢.LTREex&utidd IsteteD thie/ dsHisDIi W 1 V
WKHUHIRUH WKH FXUUHQW VHW RI SUHGLFWLRQV UHVXOWL
degree of certainty in each prediction. This application of Principle Represeritdtias
results in usemanipulable logic (words and their associategpartance), changes to
ZKLFK DIIHFW WKH DVVLVWDQWfV H[HFXWLRQ VWDWH L
confidence).
Although our previous work [Stumpf et al. 2007] found that-hdsed explanations

were the most easily understood type of explanatiomyciple RepresentatioB

13

stipulates that the explanation should accurately reflect the logic of the assistant. Thus,
given our use of naive Bayes, we chose keyviasked explanations consisting of words
and their weights. To implement Principle Repredem&?, the visualization is a truthful
reflection of the logic of naive Bayes and hence displays the union of all words in all e
mail messages. We allowed users to adjust the weights of any word. Because naive
Bayes classifiers also use class distributio inform their predictions, the distribution of
messages across folders is also shown to the end user. Hence, the visualization and
manipulations allow the user to directly change the logic the assistant should follow,
based on an accurate representatibhow the logic works.
Principle ML-2 says that corrections end users give the system should be heeded. We
had considered using user-ttaining [Stumpf et al. 2009] as the underlying algorithm.
When user cdraining receives new information from thetdd DERXW D IHDWXUH(Y|V Y
folder, this technique assigns a new weight, basedaamdinationof the usefassigned
YDOXH DQG WKH FOD YV ¥whithHHouidvooteQtial i bhé Quit©diZdrentIfrohv
the usetassigned valudn our previous wdk with user cetraining [Stumpf et al. 2008],
we observed that this behavior was frustrating to users because it made the algorithm
DSSHDU WR 3GLVREH\" WKH XVHUTV Ftalniog;wemMio@fed) 7KXV L
the naive Bayes implementation chu that corrections can be integrated in a
straightforward manner and, when the user modifies the weight of a word, the classifier
can set the new value to be close to the value specified by th&*@ser.
Being responsive to user corrections can belproatic because machine learning is
statistical and a single user correction may be such a small portion of data, the machine
FDQ DSSHDU WR LJQRUH LW :KHQ PDNLQJ WKH LQWHOOLJF
DSSO\LQJ WKH XVHU fd\entr@\sdisvardsthd skhist @ aspdet>of machine
OHDUQLQJ ZKLFK LV FRXQWHU WR RXU LQWHUHVW LQ LPE
discarding it). Naive Bayes can, however, make a slight modification to thessigned
weight by treating theiserspecified folder assignment for the curreanail as a new
training data point for the classifier. This alteration makes the classifier more sensitive to
user feedback in the interactive setting. Without it, changing the weight of one out of

thousands of available features (e.g. changing the weight on one word out of the

14

approximately 6,000 different words contained in our email messages) would have little

noticeable impact on classification.

3.4 End-User Debugging with Answers™ D2

From these desigchoices, the answers took the following form. Textual answers are
provided for all questions, giving highvel explanations about the logic of the assistant
and general suggestions about how to debug the program, but three questions are also
answered th R XJK GHWDLOHG YLVXDOL]DWLRQV RI WKH DVVLVW|
the debugging mechanism for the end user.

These answer visualizations are shown in Table **WhyAnswers. Similar to ExplainD
[Poulin et al. 2006], bars represent the importance afh efeature to a given
FODVVLILFDWLRQ +RZHYHU UDWKHU WKDQ XVLQJ EDU DU
WRZDUG WKH OHDUQLQJ V\VWHPYV SUHGLFWLRQ ZH LQGL
FKDQJLQJ D EDUYV ORFDWLRQ \Wt&Hn réhbnve X2UHFRUSZHLIKW FD
The choice of bars, as opposed to points or some other representation, was because their
large target size makes motsased interaction and visual discrimination easy. To
GHEXJ WKH DVVLVWDQWYV @b kessvansvérs) hyFmaXiputdtiny thieD Q FK D!
bars, which operate like sliders or faders, with the weight of evidence represented by each
bar being the midpoint of the bé&i2.16.

Providing the necessary interactive aspect for these bar visualizations required
supprt from the underlying machine learning algorithm. Before explaining how these
visualizations were implemented, we formally define the following properties of the
naive Bayes algorithm. Anr®DLO PHVVDJH LV UHSUHVHQWHG DV D 3E
BooleanvectorW = (W, « W,) in which W takes the valu¢rue if the ith word of a
vocabulary ofm words is present in the-raail message anéhlse otherwise. The
vocabulary in our experiment consists of the union of the words from the following parts
of all the emails: the message body, the subject line, afd@L O DGGUHVVHV LQ WK
MIURPY DQG p&&YT SbDuUwvV RI WKH PHVVDJH KHDGHU 6WRS ZlI
OLWWOH SUHGLFWLYH YDOXH VXFK DV 3D DQG 3SWKH" ZHU

3.4.1Answering: 3Why will this message be filed in <Folder>?and 3Why does
<Word> matter to <Folder ! " " **D2

1t

In previous work [Stumpf et al. 2007] we observed that end users understood how the
SUHVHQFH RI NH\ZRUGYV LQIOXHQFHG D PHVVDJHIV FODVVL
concept of how the absence of words influenced the same classification. We addressed
this difficulty in a novel way by showing the weight associated with each word in the
vocabulary via a bar positioned between the two extrem&eqtiredand Forbidden
shown in the leftmost images of Table *WhyAnswers. For fofdére weight of a war
is the probabilityP(W = true | F = f) whereW is the random variable for théh word
andF is the random variable for the folder. The closer the bar Retguired the more
important the presence of the word is to the prediction. If the top ofahéskat its
highest position, theR(W = true | F = f)=1.0. If the top of the bar is on the black line in
the middle, theP(W = true | F =f)=0.0. SinceP(W = false | F=f) = 1.0.P(W = true |
F = f), the position of the bottom of the bar can also be interpreted as the probability of
the absence of the word. If the bottom of the bar is at its lowest position, (i.e. closest to
Forbidden), thenP(W = true | F = f)= 0.0. In reality, although the end use able to set
the bars to its highest or lowest positions, the probaliifiyy | F=f) is never set to the
HIWUHPH YDOXHV RI RU GXH WR WKH QDwYH %D\HV D

smooth the probabilities. As a result, the probabilitiéls be an epsilon different from

Table **WhyAnswers: Visual explanations for three Why questions.

Why does L , Why won f this
<word> matter Why will this message be filed to message be filed
<folder>?
to <folder>? to <folder>?
Required
HHHHWHﬁMm m&lﬂmﬂj
Forbidden H H H H H J H—|
& 3 £ >

16

the extremes and the bar will be positioned slightly below / above the Required /
Forbidden level in the visualization.

Aside from the probability?(W | F), the naive Bayes classifier also uses the class
probability P(F). We chose not to displag(F) because the training set consisted of an

equal number of emails in each folder.

$QVZHULQJ 3:K\ ZRQYW WKLV PHVVDJH EH ILOHG LQ)R
The answer to this question is in the form of a <h&al view that allows # user to
compare and contrast the importance of words between the two folders, shown in the
right image of Table *WhyAnswers. The bars show the respective weights for the
currently predicted foldef, and the other foldet he useindicated where thepositions
of the bars correspond R{W = true | F =f)andP(W WU X H |, rgspedtively.
We can illustrate the degree thatalPdd LO SEHORQJV’ ™ VoRI ibgtkeHU IROGH
arrow, as shown at the top of Figure *DebuggingFeatures. The afgiee arrow
between the folders is based on the difference betvgeer) 1. _«)andP(F =
fIW. «). This also serves to reveal the execution state to the end user. Since the bars
allow weights associated with the two folddrand | fo be manipulated, changes to
individual words by the end user that resultdn) 19, «)>P(F=f|W «
W,) will be shown by the arrow moving to point to foldethstead

3.5 Debugging Scenario Using thBrototype **D2

Figure **Prototype shows how the debugging supports we have described are
EURXJKW WRJIJHWKHU LQ RXU HPDLO SURWRNIKLEENt7KH XVHU!
elements: a folder list (A), a list of headers in the current folder (B), and the current
message (C). laddition, it includes debugging panes that hold textual answers (D) and

interactive visualizations (E).

17

If at some point the user wants to know why the program is behaving in a particular
way, she can ask/hy questions either through the global menu bar or a coséesitive
menu and receive an answer which supports debugging. Consider the following scenario:
A user notices that her intelligent assistant thinks a message&ystem$elongs in the
Resures folder. In Figure **DebuggingFeatures, this user has just asked why the
message is not filed und8ystems 7KH NH\ZRUG EDU JUDSK VKRZV WKH \
of the importance of each word to tResumesolder (dark pink), which is the current
folder for this message, versus importance to 8ystemdolder (light blue). While
reviewing this explanation, the user quickly identifies a proBldrar assistant thinks the
ZRUG 3SOHDVH" LV HTXDOO\ LPSRUWDQW WR ERWK IROGHU
KHU LQWHOOLJHQW DVVLVWDQW WKDW VKH UDUHO\ VHHYV
Systemgroup. Thus, she drags the light blue bar lower (second from left); how much
ORZHU GHSHQGVY RQ KHU DVVHVVPHQW RI KBWtemBSRUWDQV
IROGHU 7KH GDUN EOXH EDU LQGLFDWHYV WKH RULJLQDO L

[£-mazing Email (Tutorial Mode)

Date gt 0 ect: or hanges within risk mansgement
2008:8:25 10855 e To: ami.choksh om, jule, meyers@enron.com,
oy (1
Ervon News (10) T ¥ access requ e <o J0088S 10855
Personal [10) : N orothy. " 208825 1046:54
Resumes [10) cosnisinieeneeeeeoeo- Farwarded by Yvette G Connevey/Corp/Enron on
: . 3 2008625 10554 R Y,
Systems (10) [Y S ——
: 4 2008825 10854

2008825 106154 Re ystes Chantebe villanueva@ECT
T, Jennifer deBoisblanc

fHOUJECT@ECT, Cathy De La
OUJECTEECT, Mary

ndez]HOU/ECT@ECT,

CT@ECT, Kimat

ON, Sandy TEECT, Jeffrey C

JECTECT, Hilary Mack/Corp[Enron@Enron, Gregory A&
CT@ECT, Kimberly 5 Olinger/HOU/ECT@ECT, Michelle

‘orp/Enron@ENRON, Chris Walker/HOUJE(

ENRON, Gabriel Monrt
Rodrigue HOUJECT@ECT, Dawn C Ker
Choate/HOUJECT, I
[T

fonvoy, 1@
nne/HOUECT@ECT,

Vvette G Connevey/Corp{Enron@ENRON,

€ this - Bryce

Why won't this 2] 0 of the emails you " Baxter/HOU/ECT@ECT, Katherine L Kelly HOU/ECT@ECT, Susan
message be filed to oush | HarrisonfHOL/ECT@ECT, Steve JacksonfHOUECT@ECT, Scott
Systems? r Syste Heal/HOUJECT@ECT,

Erent A PricejHOU{ECT@ECT, Kimberly Brown/HOUJECT@ECT
<

The message will be autos . € Orly show words not in this email
€ Show ol words Subject: Organizational Changes within Risk Management

Carefult 10 of the auire Assistants, please Forward on £ your groups.
emalls that were filed Effective in August, David Oliver usllbe leaving the East Desk Risk
ective in August, David Obver willbe leaving the East Desk Ri
correctly to these 8l Management team to take on a Risk Lead roke in the Enron London

folders are now in the office.
wrong location! Kyl Etter will be joining the East team as the new Lead and wil begin
transtionin into his new role over the next few weeks.

Please join the East Desk in congratulating both David and Kyle and

wishing
them well on ther new oppertunities,

forward

management

Figure **Prototype: Screenshot of the prototype.

18

Resumes | Systems _j

Important Words For: ||[REEEITES & Only show words in this email
" Only show words not in this email
" Show all words

Commit | Required
Reset |

Unimportant

Forbidden

managerment
forwarded

Figure **DebuggingFeatures: Closeup of the visualization/debugging features. Th
XVHU KDV MXVW GHFUHDVHG W Eystemihg RagyinD QRd-tlier
(light) bar downward, but the system still thinks the message belongs Resumes

to see her change and its magnitutig.2
User chages to each bar graph entry cause the system to immediately recalculate its
predictions for every message in the inbox, allowing users to instantly see the impact of
their manipulations. These changed folder predictions are shown through a change in
direcion of the arrow between the two folders for the currently viewed message. They
are also listed textually next to each message header in the inbox, highlighting headers
whose predictions have changed. For every manipulation, the user immediately sees how
both the source code (in terms of the importance of words), and the execution state (e.qg.,
WKH UHVXOWLQJ SURJUDPYV SUHGLFWLRQV KDYH FKDQJH

4. AddressingDebugging Barriers and Information Needs
using theWhy-Oriented Approach **D1

To investigate obstacles end users might encounter while correcting an intelligent
assistant using this new approach, we conducted an exploratory study using the prototype
we have just described. Our purpose was not a summative evaluation of the prototype,

but rather to investigate three questions to understand how our approach could be

19

extended to further support ender debuggingwhenand where enduser debuggers
encounter problem areas (barrienshat could help users when they encounter these
problem areas (information needs), atdw machine learning algorithms could help
address the barriers and information ne€dsther, éxce researchers have recently found
evidence of gender differences in debugging investigated gender as an aspect to

highlight design considerations that could differently impact subsets of end users.

4.1 Exploratory Study Design

4.1.1 User Study Design and Participants **D1

The study used a dialogiased thinkaloud design, in which pairs of users talked to
each other whilieFROODERUDWLQJ RQ D WDVN 7KH SDLU GHVLJQ
DORXG” E\ OHYHUDJLQJ WKH VRFLDO QRUPV WKDW HQFRXU
justifications for actions when working with a partner.

Six pairs of female and five pairs of maleidents participated. The pairs were evenly
distributed by gender across GPAs, years in university, amdileexperience. All
twentytwo participants were required to have previoumal experience and no
computer science background. In order to elin@ralack of familiarity with each other
as a potential confound, pairs were required to sign up together. Pairs also had to be
samegender, so that we could clearly identify any gender differences that might arise.

We ran the study one pair at a time. lEa®ession started with the participants
completing a questionnaire that asked for background information and gathered standard
pre-session seléfficacy data [Compeau and Higgins 1995]. We then familiarized the pair
with the software and examples of cléissition through a 20ninute hand®n tutorial.
The tutorial taught participants about the filing and classification abilities of the
prototype, taught them how to ask the prototype questions, and gave an overview of the
WKH SURWRW\SHY{V dayeahot\anb@@. &K RZ WR

JRU WKH VWXG\YfV PDLQ WDVN SDUWLFLSWDokg¥sMnZHUH DVN
a corporate department at Enron. Their department included a shian&tl s&ccount to
provide easy access to work communications that affedted them. The premise was
that new email software, featuring the ability to learn from the users and automatically
classify messages into a set of existing folders, had recently been installed; their

supervisor then asked them to get messages fromltb& into the appropriate folders as

20

quickly as possible, doing so in a way that would help improve later classification.
%HFDXVH WKH SURWRW\SHYV FODVVLILHU GLG QRW WUDLQ
the participants manually dragged todiis, the task encouraged participants to debug
the system via the interactive explanati&fs2.

We used the publicly available Enrormail data set in our study. To simulate a
shared mailbox, we combined messages that three users {frik@minskiv, and
lokay-m) had originally filed into five folders (Bankruptcy, Enron News, Personal,
Resumes, and Systems). At the start of the session, each folder held 20 messages that
were used to initially train the classifier. Participants were given five miputasto the
main task to familiarize themselves with the existing categorization scheme, so that they
would have an idea of how new messages should be fil@®, **3.4. The Inbox
contained 50 more messages for the participants to work on. The ama@amiofy data
was small to simulate realorld situations in which users have not invested the time to
label hundreds of training examples.

The pair worked on the main task for 40 minutes, with participants switching control
of the mouse half way throughe session. We used Morae software to capture video and
audio of each user session, synchronized with their screen activity. Our prototype also
logged each user action. After completing the main task, participants individually filled
out a questionnaireathering feedback about the prototype and their-pession self
efficacy.

4.1.2 Analysis Methodology **D1

7R DQDO\]H WKH SDUWLFLSDQWVY YHUEDO SURWRFRO GX
sets (Table **BarrierCodes) to capture barriers and debuggitigiti?s. Ko et al.
identified six types of learning barriers experienced by novice programmers using a new
programming environment [Ko et al. 2004]; these barriers informed our investigation
because our participants, like theirs, were probdeiwing abait how to make programs
work correctly and were inexperienced with the provided facilities for debugging.
Because our debugging environment is substantially different than the traditional textual
programming environments studied [Ko et al. 2004], we atj Gt WKH GHILQLWLRQV R
barriers to map the higlevel problems each barrier describes to the problems

participants faced while debugging with our prototyfig2, **3.5:

21

x Design barriersare situations where the end user does not know what they
want thecomputer to do. When debugging an intelligent assistant, this means

the user doesn't have a clear idea of how to go about fixing the assistant.

X Selection barrier®ccur when the end user knows what they want the
computer to do, but does not know whiclhgnamming tools will accomplish
their goal. Our whyoriented approach's programming tool is the ability to
adjust the assistant's logic via feature modification, so we mapped selection

barriers to end user difficulties in selecting which feature to adjust.

x Coordination barriersare times when the user knows the programming tools
they want to use, but does not know how to make them work together. As
with selection barriers, our programming tool is the ability to modify the
features the assistant uses togifggstems; such feature adjustments may alter
multiple classifications. Thus, coordination barriers in this domain reflect the
difficulty of coordinating how changes to the assistant's logic are reflected in

updated classifications.

X Usebarriers are situéions where the end user knows which programming
tools they want to use, but does not krmwto use them properly. Our
approach's Ul affordance for feature modification is to drag a slider up (to
increase the importance of a feature's presence) or dowrcfease the
importance of a feature's absence). Trouble deciding in which direction and to

what extent to adjust this slider is our approach's version of use barriers.

x Understandingbarriers occur when end users thought they knew what to do,
but the rsults of their actions was surprising. This barrier very cleanly
mapped to situations where the end user was surprised by the assistant's
feedback.

The first five barrier names and examples of participant utterances assigned to each
code are in Table *% DUULHU&RGHYVY ‘H GLG QRW XVH .R HW DO fV
external validation), because problem solving in our study was based on facts internal to

our environment. Regarding debugging activities, previous research [Davies 1996, Ko

22

2008] identiied six common actions in fixing bugs in programming environments. We

applied the two of these not involving data structuring or writing new source code, and

also introduced a fault detection code. These codes are also given in Table

Table **BarrierCodes: Coding scheme used to analyze our data. The examples ar
from actual participant transcripts ¥*3.5.

Code Meaning Example
Design| Uncertainty regarding 3&DQ ZH MXVW FO
overall debugging strategy
(i.e., designing a solution to
the problem).

Selection| Knows what to do, but is 3:KDW NLQG RI ZR
having trouble selecting tell the computer to [file this]
which object to change. WR 6\VWHPV""~

(%]

E Coordination | 'RHVQIW XQGHUY 3:K\ ZK\ LW ZRQ'
S changes affect the restofth SHUVRQDO ~

@ system.

Use | Trouble determining 36R LV >WKLV ZRU
appropriate weightstouse | U XQLPSRUWDQW{T"
with the source code
visualization.

Understanding| 'RHVQITW XQGHUY\ 3:K\ LV uZHEY PRU
V\VWHPTV IHHGE| IRU >WKH@ 6\VWH
0 Fault Detection | Detecting an incorrect S, WTV JRLQJ WR >
2 prediction by the system. | [folder]; we do not want
% 6\WVWHPV ~
< oo]
> Diagnosing | Diagnosing the specific S:HOOGPRPHOY QHHG
.% cause of a detected fault. KLJKHU ~
g Hypothesizing | Hypothesizing a general S/IHWYV PRYH VRP}
2 solution for a detected fault; DQG WKHQ PD\EH
ePDLO@ WR 6\VWE

**BarrierCodes.

We DSSOLHG WKH FRGHV WR
participant until his or her partner next spoke. Speech by one participant that contained a

SWXUQV’

$ WXUQ FRQVLV!

significant pause was segmented into two turns. If the same barrier spanned multiple

23

turns for example, if one person was interrupted by the other), only the first occurrence
of the barrier was coded. Only one code could be applied per turn.

Coding iteratively, two researchers independently codedrantite random section
of a transcript. We calllated similarity of coding by calculating the Jaccard index,
dividing the size of the intersection of codes by the size of the union for each turn, and
then averaging over all turns. Disagreements led to refinements in coding rules that were
tested in te next coding iteration. Agreement eventually reached 82% for anfivete
transcript section, followed by an agreement of 81% for a completeidifte transcript.
Given this acceptable level of reliability, the two researchers divided the coding of the
remaining transcripts between themselves. A-tmioute section of a coded transcript is
include in Table **CodedTranscript to illustrate the application of our final code set.

Table *CodedTranscript: Example of our code set applied to a participant
transcript #3.5.

Time | Participant Utterance Code
And then... [looking at another ema
11 P1 should this be in Personal? It'll be all rig Coordination

EOL...distdist-distributions? How com
everything is going to Personal?

Because we filed t®ersonal last time. Th
system learned from other email. [clicks _
11 P2 'windows 2000/outlook delay] But th Selection
email should go to...systems. So would
have to change every single one?

12 P1 Did we do something wrong in th Design
beginning?
12 P2 | think this one can go to Personal.
Do we have to change the same thing ag
12 P1 Can we drag? If we drag we have to d(¢
for every one.
12 P2 Do we need to make them learn everythin Design
12 P1 But | don't want to have to do it evetiyne
so like in next 10 minutes.
12 P2 So you adjust every single message. Hypothesizing
12 P1 Or maybe just this one. Maybe it W Hynothesizing

learn...l don't know.

[ask 'why won't this message be filed _ .
13 P2 systems' and sorts wordalphabetically. Diagnosing
Finds 'windows'] Oh look it should 4

24

important but it's not. [drags 'windows'

to increase importance] But | don't thi
we'll need that one that long. So can you
back?

13 P1 Are you sure it's enough? Use

4.2 Results:Debugging Barriers (Whenand Where

4.2.1 Barriers Encountered **D1

2XU SDUWLFLSDQWVY DWWHPSWV WR GHEXJ UDQ LQWR
average of 29 barriers during the-dlnute study (with a range from 7 to 66). The
number of barriers encoterted can be contrasted with the number of messages
participants actually filed (mean=16.1, SD=8.3); participants were less likely to
encounter a situation where they felt comfortable filing a message than they were to
encounter an obstacle while attemptthat task*3.4. These barriers were equally likely
to be encountered at the beginning and end of the study, but were unequally encountered
between participants: a strong relationship existed between participagsffiealdy and
the number of barrierdi¢y encountered (normalized for the number of utterances each
participant made) (linear regression, F(1,9)