

City, University of London Institutional Repository

Citation: Wong, W-K, Oberst, I., Das, S., Moore, T., Stumpf, S., McIntosh, K. & Burnett, M.

(2011). End-user feature labeling: a locally-weighted regression approach. In: Pu, P.,
Pazzani, M. J., André, E. & Riecken, D. (Eds.), Proceedings of the 16th international
conference on Intelligent user interfaces. (pp. 115-124). New York: ACM. ISBN 978-1-4503-
0419-1 doi: 10.1145/1943403.1943423

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/12415/

Link to published version: https://doi.org/10.1145/1943403.1943423

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

End-User Feature Labeling:
A Locally-Weighted Regression Approach

Weng-Keen Wong11, Ian Oberst11, Shubhomoy Das11, Travis Moore11,
Simone Stumpf22, Kevin McIntosh11, Margaret Burnett11

1Oregon State University

Corvallis, OR 97331 USA
{wong,obersti,dassh,moortrav,mcintoke,burnett}

@eecs.oregonstate.edu

2City University, London
London, UK

Simone.Stumpf.1@city.ac.uk

ABSTRACT
When intelligent interfaces, such as intelligent desktop as-
sistants, email classifiers, and recommender systems, cus-
tomize themselves to a particular end user, such customiza-
tions can decrease productivity and increase frustration due
to inaccurate predictions—especially in early stages, when
training data is limited. The end user can improve the learn-
ing algorithm by tediously labeling a substantial amount of
additional training data, but this takes time and is too ad hoc
to target a particular area of inaccuracy. To solve this prob-
lem, we propose a new learning algorithm based on locally
weighted regression for feature labeling by end users, ena-
bling them to point out which features are important for a
class, rather than provide new training instances. In our user
study, the first allowing ordinary end users to freely choose
features to label directly from text documents, our algo-
rithm was both more effective than others at leveraging end
users’ feature labels to improve the learning algorithm, and
more robust to real users’ noisy feature labels. These results
strongly suggest that allowing users to freely choose fea-
tures to label is a promising method for allowing end users
to improve learning algorithms effectively.

Author Keywords
Feature labeling, locally weighted logistic regression, ma-
chine learning, intelligent interfaces.

ACM Classification Keywords
I.2.6 Artificial Intelligence: Learning, H.1.2. User/Machine
Systems: Human factors.

General Terms
Algorithms, Human Factors.

1. INTRODUCTION
Many applications, powered by machine learning, custom-
ize themselves to a particular end user’s preferences. Such
applications include email classifiers, recommender sys-
tems, intelligent desktop assistants, and other intelligent
user interfaces. To accomplish this customization, the ap-
plication must learn from the particular end user—which
obviously cannot happen until after the system is deployed
and training data from that specific end user is obtained.

Customizing to the end user’s preferences is challenging,
especially when there is limited training data, such as when
the application is first deployed. The end user could select
additional training instances to label, or the learning algo-
rithm could ask the user to provide class labels for strategi-
cally chosen instances that would most inform the learning
algorithm, as is done in traditional active learning [3]. La-
beling instances, however, has its drawbacks. Firstly, label-
ing data instances is a tedious process and a substantial
number of instances must often be labeled before a change
to the learning algorithm is noticeable to an end user. Sec-
ondly, if a rare group of instances is incorrectly classified,
the learning algorithm cannot be “corrected” until the user
labels instances with this rare combination of attributes.
Since this group is rare, there could be a long wait for
enough of these data instances to arrive.

To overcome these problems, in this paper we investigate
the possibility of end-user feature labeling [18], namely
allowing end users to label features instead of instances.
The term feature refers to an attribute of a data instance that
is useful for predicting the class label. For example, rather
than labeling entire documents, an end user could point out
which words (features) in the document are most indicative
of certain class labels, such as in our formative research’s
user interface shown in Figure 1 [8], which allowed HCI
researchers to point out words that were predictive of that
transcript segment’s label. Raghavan et al. [15, 16] found
that labeling a feature took roughly a fifth of the time to
label than a document and the benefits of feature labeling
were greatest when the training set sizes were small. How-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI 2011, February 13-16, 2011, Palo Alto, California, USA.
Copyright 2011 ACM 978-1-4503-0419-1/11/02...$10.00..

ever, their work did not statistically evaluate feature label-
ing when performed by actual end users.

Allowing end users, who are not likely to be educated in
machine learning, to use feature labeling introduces new
challenges to learning algorithms. End users’ choices of
features may be noisy, inconsistent, and might vary greatly
in ability to improve the predictive power of the machine
learning algorithm. This paper therefore investigates algo-
rithms able to stand up to these challenges.

Our research contributions are as follows. First, we present
a new algorithm for taking end-user feature labels into ac-
count, based on Locally Weighted Logistic Regression.
Second, we present an empirical comparison on multiple
data sets under ideal conditions, using feature labels ob-
tained from an oracle. For these data sets, our algorithm
either outperformed or matched the performance of other
competitive algorithms. Third, we present the first user
study of its kind in this area, in which ordinary end users,
unfamiliar with machine learning, chose the feature labels
themselves—with no restrictions as to what they could se-
lect as features. Using these feature labels provided by or-
dinary end users, our algorithm again outperformed other
algorithms with feature labeling, and was also more robust
to poor quality feature labels. We also investigated the
characteristics of end users’ features to inform the design of
interactive feature labeling systems. Finally, we performed
a sensitivity analysis and showed that the performance of
our algorithm is more robust to different parameter settings
than other algorithms. Together, our results strongly sug-
gest that feature labeling by end users is both viable and an
effective solution for allowing end users to improve the
learning algorithm behind their customized user interface.

2. RELATED WORK
There are a variety of approaches to take feature labels into
account. Raghavan and Allen [16] present three methods to
deal with feedback on features. We will describe their first
two methods in detail since we evaluated our algorithm
against them. Method 1 scales features indicated as relevant
by the user by a constant a and the rest of the features by d
(where a ! d). In Method 2, the user indicates that the jth
feature is relevant for a class label l. For each feature-label
pair, Method 2 creates a pseudo-document consisting of a
value r in index j, zeroes elsewhere, and a class label of l.
The r parameter controls the influence of the support vec-
tors of the pseudo-documents on the separating hyperplane.

Another class of techniques for incorpo-
rating feature labels takes a semi-
supervised approach and leverages infor-
mation from a large pool of unlabeled
data. For instance, Method 3 of [16] soft-
labels an unlabeled pool of data using
feature-label pairs provided by the user.
These soft-labeled documents are associ-
ated with slack variables which are then
introduced into a modified SVM objective

function. Stumpf et al. [20] also use a soft-labeling ap-
proach to incorporating feature feedback through their user-
cotraining algorithm. In our work, we do not assume that
we have a large pool of unlabeled data. Instead, we want to
identify the gains from feature labeling when only the la-
beled instances in the training set are available.

Feature labeling can also be framed in terms of Generalized
Expectation (GE) [5], which is a framework for incorporat-
ing preferences about variable expectations during parame-
ter estimation. GE is a very general framework that encom-
passes a wide variety of methods including maximum en-
tropy models, semi-supervised learning and transfer learn-
ing [13]. The GE-based feature labeling algorithms in [5]
all leverage information from a pool of unlabeled data. Our
algorithm can be considered a special case of GE that is
different from the previous GE-based algorithms in [5].

Dual supervision [18] is a term used to describe the process
of labeling both instances and features. Raghavan and Allen
[16] combine their feature labeling with uncertainty sam-
pling for instance labeling in their tandem learning ap-
proach. Other dual supervision approaches include a graph-
based transduction algorithm [18] and an approach using
pooled multinomials [1]. The focus of these last two papers
is on active learning for dual supervision, which chooses
instances and labels for labeling. Our work differs in that it
is the end users, not the active learning algorithm, that
chooses the features for labeling. Furthermore, we are in-
vestigating the effects of labeling only features, not in-
stances, especially with an eye to the initial training period
when training data is limited.

All of the above methods deal with labeling existing fea-
tures. Roth and Small [17] allow users to create new fea-
tures by replacing features corresponding to semantically
related words with a Semantically Related Word List
(SWRL) feature. Their focus, however, was on creating
SWRLs to improve classifiers rather than feature labeling.
In our user study, we allow end users to construct new fea-
tures and label them.

Finally, almost all of the prior work in feature labeling
evaluates algorithms under ideal conditions, such as feature
labels obtained from an oracle [1, 15, 18]. Our study inves-
tigates both the use of ideal oracle feature labels and feature
labels provided by real end users.

Figure 1: The user is pointing out that the feature “let me look” is highly indicative
of the class “Seeking Info.” (This UI inspired the development of the algorithm we

present in this paper.)

3. ALGORITHM
Our approach, termed LWLR-FL, incorporates feature la-
beling into Locally Weighted Logistic Regression (LWLR).
To provide context for LWLR-FL. we first describe
(global) Logistic Regression and LWLR.

3.1 Background: Locally Weighted Logistic Regression
Logistic Regression (LR) [6] is a well-known method in
statistics for predicting a discrete class label yi given a data
instance xi=(xi

1,…,xi
D) with D features; we refer to the dth

feature, without reference to a specific data instance, using
the superscript notation ie. xd. LR models the conditional
probability P(yi|xi) by fitting a logistic function to the train-
ing data. Figure 2 (Left) illustrates the s-shaped logistic
function fit to training data from two classes (squares and
circles). Notice that the data is perfectly separable, in the
sense that data to the left of the bend in the “S” is classified
as a square and data to the right as a circle.

The conditional probability for an M-class problem is:

In the equation above, the notation cj refers to the jth class.
The parameters !! = (""0, …, ""D) are computed by maximiz-
ing the conditional log likelihood, which cannot be solved
in closed form but must be done numerically.

LR assumes that the parameters !! are the same across all
data points. Although this approach works reasonably well
when the classes are linearly well separated, it fails when
the actual decision boundaries are more complex and when
the data is noisy [4], which is often the case with real-world
data. For instance, Figure 2 (middle) illustrates a problem-
atic case for LR when the data is not cleanly separable by
the logistic function. Here, the s-shaped logistic function
fits the data poorly, resulting in the two squares on the right
to be classified as circles.

One solution for dealing with the difficult case in Figure 2
is to use Locally Weighted Logistic Regression (LWLR) [2,

4], in which the logistic function is fit locally to a small
neighborhood around a query point xq to be classified. Fig-
ure 2 (right) illustrates LWLR fit to the data points. Intui-
tively, LWLR gives more weight to training points that are
“closer” to the query point than those farther away. A
common distance function used to determine the closeness
of text documents is cosine similarity. Since we want the
distance to increase when a training instance xi is less simi-
lar than the query instance xq, we use cosim(xq,xi) = 1 –
cos(xq,xi) as the baseline distance function for LWLR.

The log-likelihood of data in LWLR is computed with re-
spect to the query instance xq as

The weight w(xq, xi) is a kernel function which decays with
the distance f(xq, xi). The parameter k is the kernel width,
which smoothes out more noise as the value of k increases.

Maximizing lw(!!) with respect to the parameters !! cannot
be done in closed form. In our experiments, we solve it us-
ing L-BFGS [14] for which we need to compute the partial
derivative of lw(!!) w.r.t "" parameters. The partial deriva-
tive below computes the gradient for the log-likelihood. In
the formula below, the expression [yi =cj] takes the value of
1 if the expression in the brackets is true, and 0 otherwise.

3.2 Adding Feature Labeling to Locally Weighted Logis-
tic Regression (LWLR-FL)
Our approach, termed LWLR-FL, incorporates feature la-
beling into LWLR by leveraging its ability to assign differ-

Figure 2: (Left) The Logistic Function fit to two classes: squares (y=0) and circles (y=1). (Middle) A non-separable case where
(global) Logistic Regression will have difficulty separating the circle class (y=1) from the square class (y=0), resulting in a poor fit.
Note that the square data points to the right will be classified as circles. (Right) A non-separable case where Locally Weighted Lo-

gistic Regression will be effective in separating the circle class from the square class.

ent weights to training instances. Intuitively, we use feature
labels provided by the end user to define the local neigh-
borhood surrounding the query point. Training instances
that are more similar to the query point according to the
feature label information are considered to be closer and
hence assigned higher weight. We modify the baseline co-
sim(xq, xi) distance function to incorporate feature labels.
Our modified distance function between xq and xi has two
distinct components – one based only on their features (sat-
isfied by the baseline distance cosim(xq, xi)), and the other
based on class labels. Since xq does not have an associated
class label, we use the class label of xi and the feature label
information for computing the label similarity.

The label similarity between xq and xi is based on the dif-
ference between the positive and negative feature contribu-
tions. A positive feature is a feature that is labeled with the
class label yi of instance xi as specified by the feature labels.
The positive feature contribution is the sum of the values of
all positive features in xq, where xq is represented as an L2-
normalized TFIDF vector. Similarly, a negative feature is a
feature that is labeled with a class label other than yi. The
negative feature contribution refers to the sum of values of
all negative features in xq.

We now define the user feature label matrix R as:

where rj(xd) = 1 if the dth feature is labeled to be important
for class label yi; 0 otherwise. Next, let yi = cj be the jth
class and let the (D ! 1) vector R(yi) be the jth column of R,
which corresponds to the feature labels which are associ-
ated with class label yi.

Let Ind(x) be an indicator function that is applied to vec-
tors. The ith entry of Ind(x) has a 1 if the ith entry of x is
greater than 0; otherwise the ith entry of the resulting vector
has a 0. Let 1 be a vector of size (M !1) having the value 1
in all rows. We define U = Ind(R 1) which is a (D ! 1) vec-
tor in which the ith row has a 1 if any feature labels in-
volved the ith feature.

On the basis of the above definitions, the difference be-
tween the positive and negative feature weights is computed
as:

In the equation above, the term R(yi)T xq corresponds to the
positive feature contribution i.e., the sum of feature values
of xq for those features which are associated with label yi.
The higher this value, the more similar xq will be to xi ac-
cording to the labeled features. The term (U – R(yi))T xq
corresponds to the negative feature contribution ie. the sum

of the feature values for xq for the features that are not asso-
ciated with label yi. The higher this value, the more dissimi-
lar xq will be to xi according to the labeled features. Since
we have (M-1) class labels excluding yi, we divide the nega-
tive feature contribution by (M – 1) to appropriately balance
the difference. Putting the two terms together combines the
effect of both the positive and the negative feature contribu-
tions.

The distance function needs to have smaller values for simi-
lar instances. Hence, we define the label similarity compo-
nent of the distance function as:

The complete distance function now becomes:

The above function could turn out negative in some cases.
Hence, we introduce a max term in the weight computation
to handle this scenario.

Putting these pieces together, we now have a distance func-
tion that incorporates the feature labels into LWLR.

4. EXPERIMENT AND ANALYSIS METHODOLOGIES
To evaluate the LWLR-FL algorithm, we applied it to three
real-world text data sets, with two kinds of studies. First, to
avoid the prohibitive expense of performing a separate user
study on each data set, we followed the usual machine
learning convention [15, 16, 18], and simulated end-user
feature labeling on multiple data sets using a feature oracle.
Second, we then performed a study with real users on one
particular data set to investigate the effectiveness of feature
labels from end users.

4.1 Oracle Study
In our oracle-based experiments, we used three common
text classification datasets: 20 Newsgroups [9], the Mo-
dapte split of the Reuters dataset [10], and the Reuters Cor-
pus Volume 1 (RCV1) dataset [11]. From the 20 News-
groups dataset, we used the four newsgroups:
comp.sys.ibm.pc.hardware, misc.forsale, sci.med, and
sci.space. Since we would also present articles from these
newsgroups to end users in our user study (Section 4.2), we
wanted to minimize the effects of concept drift by choosing
articles that fell within a relatively short date range that
included a large number of articles from these newsgroups.
As a result, we chose 2925 articles from these four news-
groups within the date range April 1, 1993-April 23, 1993.

From the Modapte split of the Reuters corpus, we used
1092 documents overall from the earn, acq, negative_topic,
and money-fx classes. From the RCV1 dataset, we used
6500 documents from the C15, CCAT, ECAT, GCAT, and
MCAT classes. The text documents were converted into TF-
IDF representation then L2-normalized. We used a vocabu-
lary consisting of unigrams with stopwords removed.

We compared LWLR-FL against three SVM-based algo-
rithms from [16] which are competitive feature labeling
methods. Specifically, these SVM-based algorithms are
Method 1, Method 2 and a combination of both Methods 1
and 2. We abbreviate these variants as SVM-M1, SVM-
M2, and SVM-M1M2 respectively. For these SVM-based
methods, we tried linear, RBF and polynomial kernels and
found the linear kernel to give the best accuracy. As a re-
sult, we only report SVM results with linear kernels.

Since we were interested in the benefits due solely to fea-
ture labeling, we did not compare against methods such as
Tandem Learning [16] and dual supervision [1, 18] which
label both features and data instances. For the same reason,
we did not compare against any semi-supervised feature
labeling methods (e.g., Method 3 from [16] or the GE-based
methods in [5]) because such algorithms leverage informa-
tion from a pool of unlabeled data in addition to the infor-
mation in feature labels.

Each dataset was split into a training, validation and testing
set. Past work [16] has shown that feature labeling is most
effective when the training set sizes are small; we created
training sets consisting of six instances per class. In our
experiments, which deal with a multiclass classification
problem with four or five classes (rather than binary classi-
fication as in [16]), the total training set sizes were 24 for
20 Newsgroups, 24 for the Modapte split and 30 for RCV1.
The training set consisted of an equal number of data in-
stances from each class in order to avoid biases due to class
imbalance. The validation set, which was used to tune algo-
rithm parameters, was composed of 100 data points equally
distributed among all the classes. The testing set consisted
of the remaining data instances. For all datasets, we created
30 different randomly splits for training, validation and
testing. The results were averaged over these 30 splits.

To simulate end users for each dataset, the feature oracle
selected the ten most predictive features for each class by
computing a feature’s information gain over the entire cor-
pus, and then assigning its class label based on the most
frequent class in which it appeared. This resulted in 40, 40,
and 50 oracle feature labels for 20 Newsgroups, Modapte
and RCV1 respectively. We experimented with adding one
oracle feature label per class, two oracle feature labels per
class, and so on until a total of ten per class were added.
These oracle feature labels were added in the order of high-
est information gain. Therefore the oracle study provides
an optimistic estimate on the potential gains of using these
feature labeling algorithms by providing enough ideal fea-
ture labels to benefit the algorithm and by carefully tuning

the parameters of the feature labeling algorithms over a
large validation set.

4.2 User Study
The strength of oracle studies is the ability to evaluate a
variety of data sets, but their weakness is that they may not
be realistic as to the choices real users might make. There-
fore, for our second experiment, we conducted a user study
to harvest feature labels from actual end users on the same
20 Newsgroups classes as used in Section 4.1. We then
used the end users’ data to compare the performance of the
same algorithms as in our oracle study, but with smaller
validation sets of size 24 (six instances for each class) to
simulate a realistic scenario in which end users are able to
label only a limited amount of training instances for both a
training and a validation set.

A starting point for our experiment’s design was the user
study by Raghavan et al. [15]. However, an important dif-
ference was that we chose to remove constraints on features
end users were allowed to pick. Specifically, rather than
having end users select features from a pre-computed list,
we allowed them to identify features by freely highlighting
text directly in the documents. This gave our participants
complete freedom to choose any features that they thought
were predictive. Consequently, not only were these end
users allowed to select existing features in the algorithm’s
representation, but also to create and label new features,
such as through combinations of words or punctuation.

4.2.1 Participants and Procedures
Our user study had 43 participants: 24 males and 19 fe-
males. Of these participants, 39 were students currently
pursuing an undergraduate or masters degree in a variety of
majors. Computer science students and people with back-
ground in machine learning or human computer interaction
were not allowed to participate.

Participants attended the study in parallel, with up to five
participants to a session. At the start of a session, we famil-
iarized the participants with the application to create feature
labels, described in Section 4.2.2, through a brief, hands-on
tutorial and self-directed exploration. All participants used
the same document set during the tutorial, which was dif-
ferent from the main task data set (the training set). After
the session they filled out a post session questionnaire ask-
ing their thoughts and suggestions for the interface, for our
later use in follow-up research.

For the main experiment, the application displayed 24 pre-
viously labeled documents in four topics: Computers,
Things For Sale, Medicine, and Outer Space (corresponding
to the four newsgroups comp.sys.ibm.pc.hardware,
misc.forsale, sci.med, and sci.space, respectively). Each of
the four topics had six documents assigned to it, which
were randomly selected from a pool of 200 training in-
stances. The order of the documents was randomized for
each participant. Participants were asked to teach the ma-
chine “suggestions” by identifying features that they be-

lieved would help it label future documents. Within a time
limit of twelve minutes, participants were asked to provide
at least two suggestions per topic, with an emphasis placed
on selecting the best features for each newsgroup.

4.2.2 Environment
For the study, we created a software prototype allowing
participants to flexibly provide feature labels within a mes-
sage reader interface. The prototype window had two main
areas (Figure 3): the document display and the feature dis-
play. The document display area, which was the partici-
pants’ main interface for labeling features, showed the list
of documents, each with its newsgroup label, in a scrollable
panel. Participants could highlight portions of the docu-
ment text with the cursor (as in Figure 3) that they thought
were characteristic of the document’s newsgroup. Partici-
pants could create multiple suggestions for each document,
and could also delete or modify their suggestions. Partici-
pants were given great flexibility in identifying features:
they were allowed to highlight anything in the document
text, including single words, punctuation, continuous
phrases, and non-contiguous words or phrases.

The feature display at the bottom was a quick reference, to
remind participants of features they had already identified,
along with a clickable link to the context in which they
highlighted it. Participants’ selections of non-continuous
words or phrases were shown as blocks separated by
“with”.

4.2.3 Algorithm Evaluation
We used participant-provided feature labels to compare the
performance of LWLR-FL, SVM-M1, SVM-M2 and SVM-
M1M2. Participants could label features by highlighting

any text—they did not have to know whether their feature
existed before (recall that we used a vocabulary of uni-
grams with stopwords removed for the original representa-
tion). If a participant created a new feature, we added it to
the document representation used for that participant’s data
and created a corresponding feature label for it. Using these
data, we analyzed two variants of each algorithm: one vari-
ant used participants’ labels on existing features only, and
the other used all features that participants provided.

4.2.4 Feature Characteristics Analysis
In addition to information gain, we computed relatedness as
a measure for the features that participants provided. Infor-
mally, relatedness of a feature to a topic is how closely it
represents a topic’s subject matter.

We used ConceptNet to provide us with a measure of relat-
edness. ConceptNet [12] is a commonsense knowledgebase,
generated automatically from sentences entered by users of
the Open Mind Common Sense Project. ConceptNet can
support textual reasoning such as topic-jisting and analogy-
making by providing relationships between words and
phrases. AnalogySpace [19], which is based on Concept-
Net, provides a similarity score (-1 to 1) between two fea-
tures e.g. “horse” and “cow” are similar to a degree of 0.89
yet “pencil” and “cow” are not very related with a similarity
score of -0.01. We used this similarity score as a measure of
relatedness between features and topics.

To obtain similarity scores, we used the following process.
We excluded punctuation or symbols e.g. “$”, “?”, etc, as
ConceptNet does not contain information on punctuation.
We then normalized the features by using the in-built Con-
ceptNet function which takes a string and converts it into its
most “natural” state, removing modifiers, inflections, and
stop words. For example “asking”, when normalized, is
“ask”. If the function call produced no normalized output, it
was entered into ConceptNet in its unmodified form. For
non-continuous words, we calculated a similarity score for
each individual word, then we used the maximum score of
all words in the feature. When participants provided com-
pound words (e.g. “diet/exercise”) and phrases (e.g. “hard
disk”), we calculated a similarity score for each individual
word and the original given feature, again using the maxi-
mum as the final score.

5. RESULTS AND DISCUSSION
In this section, we present results on the effectiveness of the
LWLR-FL algorithm, first for simulated, ideal circum-
stances with features provided by a feature oracle, and, sec-
ond, when feature labels were provided by participants. In
order to improve interaction with systems using this ap-
proach in real settings, we also investigated the characteris-
tics of end-user features and the algorithm’s sensitivity to
parameter settings.

5.1 Oracle Feature Labels
Figure 4 presents the effects of incrementally adding the top
ten oracle feature labels per class over a variety of algo-

Figure 3: (Top): The document display allows highlighting
any text, e.g. “hard disk” in a message labeled Computers
(message label cropped off for space, would be to right of

text). (Bottom): The feature display shows suggestions enu-
merated below the message. The currently selected suggestion

is bolded in the feature panel at the bottom of the screen.

rithms and data sets. We evaluate the algorithms in terms of
the average macro-average F1 score (abbreviated to macro-
F1), where the average is computed over the 30 random
training/validation/testing splits. As more oracle feature
labels were added, the average macro-F1 scores generally
increased for all algorithms. To avoid clutter on the graphs,
we only show the top two algorithms for each dataset.

In order to evaluate the effectiveness of feature labels, we
compared against two baseline algorithms that do not take
feature labels into account (Figure 4, dashed and solid line
without markers). For comparison with LWLR-FL, we used
a LWLR that uses cosine similarity as a distance metric.
Likewise, a “plain” SVM can be considered as a baseline
algorithm for the SVM-based algorithms. The benefit of
incorporating feature labeling by using LWLR-FL and the
SVM-based algorithms can be expressed as the improve-
ment in macro-F1 score over their respective baselines; we
denote this improvement as #baseline. The average #baseline
over the 30 runs was significant for LWLR-FL in all cases,
and significant for the best SVM-based methods except for
one and two feature labels per class on the Modapte dataset
(Wilcoxon signed-rank test, p < 0.05). The highest #baseline
values were achieved by LWLR-FL on the Modapte data
with ten features per class, with a mean #baseline of 0.27 and
a max of 0.38. Thus, incorporating feature labels in general
is better than not taking feature labels into account. LWLR-
FL produced larger average #baseline scores than SVM-
M1M2 on the 20 Newsgroups and Modapte datasets, while
LWLR-FL and SVM-M2 had similar average #baseline scores
on the RCV1 dataset. Interestingly, on the Modapte dataset,
LWLR performed worse than SVM but once oracle feature
labels were provided, LWLR-FL was able to use the feature
labels more effectively than any of the SVM-based methods
and outperformed all the algorithms once more than five
feature labels were added.

Overall, LWLR-FL outperforms other feature labeling algo-
rithms on 20 Newsgroups and on Modapte when above five
features per class are added. LWLR-FL performed similar
to SVM-M2 on RCV1. Table 1 summarizes the macro-F1
scores for the different algorithms over the three datasets
when ten oracle feature labels per class were added. In Ta-
ble 1, LWLR-FL produced the highest mean macro-F1
score or matched it on all three datasets; its effectiveness

was significantly better than SVM-M1M2 on the 20 News-
groups dataset (Wilcoxon signed-rank test, p < 0.05).

5.2 End User Features
The results in Section 5.1 indicate that with ideal feature
labels, incorporating feature label information can improve
the classifier, especially when the LWLR-FL algorithm is
used. We now turn our attention to the effects of feature
labels provided by actual end users, which we expected to
have less of a gain than the idealized oracle feature labels.
Figure 5 illustrates the performance of the feature labeling
algorithms. (In our analysis, SVM-M1M2 consistently out-
performed SVM-M1 and SVM-M2. Therefore, to avoid
clutter in the graphs, we only show results for SVM-
M1M2.) For reference, the leftmost group duplicates the
eight oracle feature labels per class results from Section 5.1.
We chose eight oracle feature labels per class as a reference
because on average, participants provided this many feature
labels per class. The middle group presents results when
only feature labels on existing features were considered
(feature labels on features created by participants were ig-
nored). Finally, the rightmost group of results illustrates the
macro-F1 scores when all feature labels are considered,
including the new features created by the participant.

As we expected, these gains did not match those of the ora-
cle feature labels. This points out the importance of includ-
ing evaluations with real end users for this type of problem.
Evaluations in idealized conditions produce results about an
algorithm’s potential, and hence are overly optimistic, as

Figure 4: Average Macro-F1 after adding oracle feature labels on (left) 20 Newsgroups, (middle) Modapte, and (right) RCV1.

Macro F1, Adding 10 Oracle Features per class
Algorithm 20 Newsgroups Modapte RCV1

SVM 0.635 0.608 0.559
LWLR 0.652 0.545 0.554
SVM-M1 0.667* 0.649* 0.573*
SVM-M2 0.745* 0.802* 0.660*
SVM-M1M2 0.749* 0.797* 0.656*
LWLR-FL 0.777* 0.824* 0.660*
Table 1: Results of adding 10 oracle features per class
for all three datasets. * denotes values that are signifi-
cantly greater than baseline algorithms, bolded values
are significantly greater than all other algorithms at the
0.05 level (Wilcoxon signed-rank test, p < 0.05).

seen by comparing Figure 5’s leftmost bars with the bars to
the right.

Participants were able to provide useful feature labels in our
experiments, as can be seen in Figure 5. Both algorithms
outperformed their baselines by a statistically significant
margin (Wilcoxon signed-rank test, p < 0.05) for the “all”
features case, but only LWLR-FL was significantly better
with “existing” features (Wilcoxon signed-rank test, p <
0.05)1. LWLR-FL was significantly better than
SVM.M1M2 (Wilcoxon signed-rank test, p < 0.05) for both
existing and all features. Feature labels were useful when
labels were incorporated for existing features only (Figure 5
middle) and also when labels were incorporated for all fea-
tures, including those created by end users (Figure 5 right).
In fact, there is a slight increase in average macro-F1 when
features created by end users are added, indicating that end
users can indeed create predictive features. This result is
encouraging for the deployment of feature labeling algo-
rithms with ordinary end users and for future work in end-
user feature engineering.

LWLR-FL was also more robust to lower quality feature
labels supplied by end users than SVM.M1M2. Figure 6
plots the values of #baseline in decreasing order for all 43
participants; note that the order of participants is not the
same on the graphs. The #baseline values for LWLR-FL are
shown at the top while those for SVM-M1M2 are at the
bottom. These graphs show that more participants had posi-
tive #baseline scores with LWLR-FL than with SVM-M1M2.
In fact, SVM-M1M2 produced larger negative #baseline
scores than LWLR-FL.

1We also ran participant data using 100 instances for valida-
tion. Here, both algorithms performed significantly better
than their baselines with LWLR-FL still significantly out-
performing SVM-M1M2.

5.2.1 Characteristics of End User Features
Our results show that features provided by end users can
improve the accuracy of feature labeling algorithms. To
understand what kinds of features an algorithm should ex-
pect from end users, we investigated the types of features
our participants provided, the amount of gain each type
contributed, and a possible basis on which participants may
have chosen these features.

Table 2 shows the frequencies of the types of features par-
ticipants chose. The most common type, accounting for
about 60% of the features, was features that the algorithm
already knew existed, in the form of unigrams (row 1 in the
table). Some of these had information gains comparable to
features chosen by the oracle (for example, 10 of the 43
participants chose the top oracle feature “sale”), although
overall, participants’ features had a somewhat lower aver-
age information gain (0.035) than the oracle’s (0.078).

However, quite often participants’ choices were different
from the oracle’s, across all feature types. For example, the
top oracle choice for the Medicine topic (high information
gain) was “writes”. This feature was never chosen by a par-
ticipant. To understand the difference between participants’
feature choices and the oracle’s, we turned to ConceptNet,
computing relatedness as described in Section 4.2.4.

These computations showed that participants chose features
with higher relatedness (average 0.308) than those chosen
by the oracle (average 0.231). In general, the participants’
choices of features with high relatedness helped as related-
ness has a relationship with information gain (linear regres-
sion, R2=0.04, p<0.001). This suggests possible directions
for IUI designers to use in encouraging end users to use-
fully label features. For example, relatedness could be used
to suggest relevant predictive features for end users to label,
thereby helping them overcome their known difficulty of
knowing where to look when trying to provide guidance to

Figure 5: Average macro-F1 scores for incorporating end user
feature labels to the 20 Newsgroups dataset: (Left)

incorporating 8 oracle feature labels per class from Section
5.1, (Middle) incorporating end-user feature labels only for
existing features, (Right) incorporating all end-user feature

labels.

Figure 6: !!bbaasseelliinnee scores sorted in decreasing order for
LWLR-FL (Top) and SVM-M1M2 (Bottom). Note that

the order of the participants is not the same in the
graphs.

the system (e.g., “What kind of words should we tell the
computer [relating] to Systems?” [7]).

Finally, 40% of participants’ feature choices were not
known to the algorithm previously, as rows 2-5 in the table
show. Some of these features, such as stopwords and punc-
tuation, had previously been removed from the vocabulary
but were partially reintroduced by participants. Features
such as multiple word phrases (n-grams) and non-
continuous words (feature combinations) cannot be ad-
dressed by simply adding all possibilities (e.g., all n-grams)
as features to the learning algorithm, because doing so
would explode the feature representation, making learning
infeasible. Also, for applications that customize themselves
to the end user, these specific features may be unique to
those end users and thus not foreseeable by the algorithm
designer prior to deployment. Thus, allowing end users to
provide features not originally in the learning algorithm’s
data representation is an important benefit, which we have
only begun to investigate in end-user feature labeling.

5.2.2 Sensitivity Analysis
Most of the algorithms that incorporate feature labels are
sensitive to key parameters that control the influence of the
feature labels, but these parameters are difficult to set prior
to deployment due to the uniqueness of each end user’s data
distribution. Therefore, some algorithms that performed
well in idealized situations may perform poorly in real-
world circumstances. Although the user could label more
data for a more representative validation set, this could re-
quire an unrealistic time investment by the user. Ideally
then, the algorithm’s performance should not be overly sen-
sitive to the values of these parameters. We performed a
sensitivity analysis to investigate the robustness of LWLR-
FL and the SVM-based methods to their parameter settings.

The sensitivity of LWLR-FL depends only on the kernel

width k, which defines the neighborhood around a query
point. The best k2 for a training set was found using grid
search in the range 0.1 - 1.0 (values larger than 1.0 gener-
ally reduced macro-F1). Figure 7 (top) illustrates the varia-
tion in macro-F1 score for LWLR-FL for three participants.

The participants were chosen to represent extreme condi-
tions, one having highest, one having average, and one hav-
ing lowest gains in macro-F1. The macro-F1 score is com-
puted on each participant’s holdout test set.

As described in Section 2, SVM-M1M2 needs to tune pa-
rameters a, d, and r. All these parameters were tuned on the
validation set using a multi-dimensional grid search. Figure
7 (bottom) illustrates the variation of macro-F1 scores on
the same three participants when we vary the r parameter
for the SVM-M1M2 method, which was the most sensitive
parameter. In this graph, we hold the a and d parameters
fixed to their values tuned on the validation set.

Although the scales of the parameters are difficult to com-
pare head-to-head, Figures 7 (top) and (bottom) show that
SVM-M1M2 is more sensitive to the r parameter than
LWLR-FL is with the k parameter. Even within a small
radius around the tuned value, the variation in macro-F1 for
SVM-M1M2 covers a larger range. For LWLR-FL, the
variation of macro-F1 scores is smooth with varying k and
tends to be within a narrower range. In addition, LWLR-FL
also has fewer parameters to tune than SVM-M1M2. (We
found empirically that a “default” value of

Feature Types
(Examples from

Participants’ Data)

Mean
number per
participant

Mean
information

gain

Mean
ConceptNet
similarity

Existing feature
(“sale”)

19.419 0.040 0.280

Reintroduced
stopword (“ask-
ing”)

0.140 0.036 0.412

Continuous phrase
(“space shuttle”)

5.977 0.048 0.394

Non-continuous
words (“cold” with
“flu”)

4.116 0.011 0.359

Features involving
punctuation (“for
sale” with “$”)

2.651 0.056 0.243

Means overall 32.302 0.035 0.308
Table 2: Labeled features per participant by type. All
types are disjoint. Only 6 of the 43 users re-introduced
removed stopwords, and each re-introduced only one.

Figure 7: Variation of macro-F1 with k for LWLR-FL (Top)
and with r for SVM-M1M2 (Bottom). Data is plotted for the
same three participants. The parameter value chosen after
tuning on a validation set of size 24 (as described in Section

4.2) is shown for each participant in brackets in the plot
l d

yielded reasonably good macro-F1 scores.) These results
suggest that LWLR-FL is robust to changes in the k pa-
rameter and suitable for real-world deployments in which a
large number of training instances may not be available.

6. CONCLUSION
Our paper has shown the viability of feature labeling in real
circumstances, with end users freely choosing features to
label directly from text documents. Our new LWLR-FL
algorithm expands LWLR to take feature labeling into ac-
count. Our results show that LWLR-FL outperformed or
matched SVM-based methods under ideal conditions in an
oracle study. In our user study, we allowed ordinary end
users to select any features for labeling directly from text
documents. LWLR-FL significantly outperformed the
SVM-based methods in this more realistic setting. Further,
our results showed that LWLR-FL is less sensitive to its
parameter settings than SVM-M1M2.

As to the end-user labels themselves, we showed that real
end users’ feature labels helped on average for both LWLR-
FL and SVM-M1M2, with the features end users chose for
labeling to be conceptually related to the class labels, al-
though with moderately lower information gains compared
to those of the oracle’s. These results are promising, as they
show that end users who know nothing about machine
learning can use feature labeling to significantly improve
machine learning algorithms trained on small data sets.

Finally, our results point to promising future research: first,
extending the LWLR-FL algorithm to a semi-supervised
setting and second, designing suitable user interfaces to
help end users choose and create features to label.

Taken together, these results suggest that flexible feature
labeling by end users is an effective solution for allowing
end users to improve the learning algorithm behind their
intelligent user interface.

ACKNOWLEDGMENTS
This work was supported in part by NSF grant 0803487.

REFERENCES
1. Attenberg, J., Melville, P., and Provost, F. A unified

approach to active dual supervision for labeling features
and examples, in Proc. European Conf. Machine Learn-
ing (2010).

2. Cleveland, W., and Devlin, S. Locally-weighted regres-
sion: An approach to regression analysis by local fitting.
J. American Statistical Assn. 83, 403 (1988), 596–610.

3. Cohn D. A., Ghahramani, Z., and Jordan, M. I. Active
learning with statistical models. J. Artificial Intelligence
Research, 4 (1996), 129-145.

4. Deng, K. Omega: On-line Memory-Based General Pur-
pose System Classifier (PhD Dissertation). Carnegie
Mellon University, Pittsburgh, PA, 1998.

5. Druck, G., Mann, G., and McCallum, A. Learning from
labeled features using generalized expectation criteria,

in Proc. SIGIR (2008), ACM, 595-602.
6. Hastie, T., Tibshirani, R., and Friedman, J. H. The Ele-

ments of Statistical Learning. Springer, 2003.
7. Kulesza, T., Wong, W.-K., Stumpf, S., Perona, S.,

White, S., Burnett, M., Oberst, I. Ko, A. Fixing the pro-
gram my computer learned: Barriers for end users, chal-
lenges for the machine, in Proc. IUI (2009), ACM, 187-
196.

8. Kulesza, T., Stumpf, S., Burnett, M., Wong, W.-K.,
Riche, Y., Moore, T., Oberst, I., Shinsel, A., McIntosh,
K., Explanatory debugging: supporting end-user debug-
ging of machine-learned programs, in Proc. IEEE Symp.
Visual Languages and Human-Centric Computing
(2010), IEEE, 41-48.

9. Lang, K. Newsweeder: Learning to filter netnews, in
Proc. ICML (1995), 331-339.

10. Lewis, D. Reuters-21578. Available at http://www.
daviddlewis.com/resoursce/testcollections/reuters21578.

11. Lewis, D. D., Yang, Y., Rose, T., Li, F. RCV1: A new
benchmark collection for text categorization research.
JMLR, 5 (2004), 361-397. http://www.jmlr.org/papers/
volume5/lewis04a/lewis04a.pdf.

12. Liu, H., and Singh, P. ConceptNet—a practical com-
monsense reasoning tool-kit. BT Technology Journal 22,
4 (2004), 211-226.

13. McCallum, A., Mann, G., and Druck, G. Generalized
Expectation Criteria (Technical Report UM-CS-2007-
60). University of Massachusetts, Amherst, 2007.

14. Nocedal, J. Updating quasi-Newton matrices with lim-
ited storage. Mathematics of Computation, 35 (1980),
773-782.

15. Raghavan, H., Madani, O., and Jones, R. Active Learn-
ing with Feedback on Both Features and Instances.
JMLR 7 (2006), 1655-1686.

16. Raghavan, H. and Allan, J. An interactive algorithm for
asking and incorporating feature feedback into support
vector machines, in Proc. SIGIR (2007), ACM, 79-86.

17. Roth, D. and Small, K. Interactive feature space con-
struction using semantic information, in Proc. CoNLL
(2009), 66-74.

18. Sindhwani, V., Melville, P., and Lawrence, R. Uncer-
tainty sampling and transductive experimental design
for active dual supervision. Int. Conf. Machine Learning
(2009), 953-960.

19. Speer, R., Havasi, C., and Lieberman, H. AnalogySpace:
Reducing the dimensionality of common sense knowl-
edge, in Proc. AAAI (2008).

20. Stumpf, S. Rajaram, V., Li, L., Wong, W.-K., Burnett,
M., Dietterich, T., Sullivan, E., and Herlocker J. Inter-
acting meaningfully with machine learning systems:
Three experiments. Int. J. Human-Computer Studies 67,
8 (2009), 639-662.

