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ABSTRACT  
When intelligent interfaces, such as intelligent desktop as-
sistants, email classifiers, and recommender systems, cus-
tomize themselves to a particular end user, such customiza-
tions can decrease productivity and increase frustration due 
to inaccurate predictions—especially in early stages, when 
training data is limited. The end user can improve the learn-
ing algorithm by tediously labeling a substantial amount of 
additional training data, but this takes time and is too ad hoc 
to target a particular area of inaccuracy. To solve this prob-
lem, we propose a new learning algorithm based on locally 
weighted regression for feature labeling by end users, ena-
bling them to point out which features are important for a 
class, rather than provide new training instances. In our user 
study, the first allowing ordinary end users to freely choose 
features to label directly from text documents, our algo-
rithm was both more effective than others at leveraging end 
users’ feature labels to improve the learning algorithm, and 
more robust to real users’ noisy feature labels. These results 
strongly suggest that allowing users to freely choose fea-
tures to label is a promising method for allowing end users 
to improve learning algorithms effectively.  

Author Keywords 
Feature labeling, locally weighted logistic regression, ma-
chine learning, intelligent interfaces. 

ACM Classification Keywords 
I.2.6 Artificial Intelligence: Learning, H.1.2. User/Machine 
Systems: Human factors. 
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1. INTRODUCTION  
Many applications, powered by machine learning, custom-
ize themselves to a particular end user’s preferences. Such 
applications include email classifiers, recommender sys-
tems, intelligent desktop assistants, and other intelligent 
user interfaces. To accomplish this customization, the ap-
plication must learn from the particular end user—which 
obviously cannot happen until after the system is deployed 
and training data from that specific end user is obtained. 

Customizing to the end user’s preferences is challenging, 
especially when there is limited training data, such as when 
the application is first deployed. The end user could select 
additional training instances to label, or the learning algo-
rithm could ask the user to provide class labels for strategi-
cally chosen instances that would most inform the learning 
algorithm, as is done in traditional active learning [3]. La-
beling instances, however, has its drawbacks. Firstly, label-
ing data instances is a tedious process and a substantial 
number of instances must often be labeled before a change 
to the learning algorithm is noticeable to an end user. Sec-
ondly, if a rare group of instances is incorrectly classified, 
the learning algorithm cannot be “corrected” until the user 
labels instances with this rare combination of attributes. 
Since this group is rare, there could be a long wait for 
enough of these data instances to arrive.  

To overcome these problems, in this paper we investigate 
the possibility of end-user feature labeling [18], namely 
allowing end users to label features instead of instances. 
The term feature refers to an attribute of a data instance that 
is useful for predicting the class label. For example, rather 
than labeling entire documents, an end user could point out 
which words (features) in the document are most indicative 
of certain class labels, such as in our formative research’s 
user interface shown in Figure 1 [8], which allowed HCI 
researchers to point out words that were predictive of that 
transcript segment’s label.  Raghavan et al. [15, 16] found 
that labeling a feature took roughly a fifth of the time to 
label than a document and the benefits of feature labeling 
were greatest when the training set sizes were small. How-
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ever, their work did not statistically evaluate feature label-
ing when performed by actual end users.    

Allowing end users, who are not likely to be educated in 
machine learning, to use feature labeling introduces new 
challenges to learning algorithms. End users’ choices of 
features may be noisy, inconsistent, and might vary greatly 
in ability to improve the predictive power of the machine 
learning algorithm. This paper therefore investigates algo-
rithms able to stand up to these challenges.  

Our research contributions are as follows. First, we present 
a new algorithm for taking end-user feature labels into ac-
count, based on Locally Weighted Logistic Regression. 
Second, we present an empirical comparison on multiple 
data sets under ideal conditions, using feature labels ob-
tained from an oracle.  For these data sets, our algorithm 
either outperformed or matched the performance of other 
competitive algorithms. Third, we present the first user 
study of its kind in this area, in which ordinary end users, 
unfamiliar with machine learning, chose the feature labels 
themselves—with no restrictions as to what they could se-
lect as features. Using these feature labels provided by or-
dinary end users, our algorithm again outperformed other 
algorithms with feature labeling, and was also more robust 
to poor quality feature labels. We also investigated the 
characteristics of end users’ features to inform the design of 
interactive feature labeling systems.  Finally, we performed 
a sensitivity analysis and showed that the performance of 
our algorithm is more robust to different parameter settings 
than other algorithms. Together, our results strongly sug-
gest that feature labeling by end users is both viable and an 
effective solution for allowing end users to improve the 
learning algorithm behind their customized user interface.   

2. RELATED WORK  
There are a variety of approaches to take feature labels into 
account. Raghavan and Allen [16] present three methods to 
deal with feedback on features.  We will describe their first 
two methods in detail since we evaluated our algorithm 
against them. Method 1 scales features indicated as relevant 
by the user by a constant a and the rest of the features by d 
(where a ! d). In Method 2, the user indicates that the jth 
feature is relevant for a class label l. For each feature-label 
pair, Method 2 creates a pseudo-document consisting of a 
value r in index j, zeroes elsewhere, and a class label of l. 
The r parameter controls the influence of the support vec-
tors of the pseudo-documents on the separating hyperplane.   

Another class of techniques for incorpo-
rating feature labels takes a semi-
supervised approach and leverages infor-
mation from a large pool of unlabeled 
data. For instance, Method 3 of [16] soft-
labels an unlabeled pool of data using 
feature-label pairs provided by the user. 
These soft-labeled documents are associ-
ated with slack variables which are then 
introduced into a modified SVM objective 

function.  Stumpf et al. [20] also use a soft-labeling ap-
proach to incorporating feature feedback through their user-
cotraining algorithm. In our work, we do not assume that 
we have a large pool of unlabeled data. Instead, we want to 
identify the gains from feature labeling when only the la-
beled instances in the training set are available. 

Feature labeling can also be framed in terms of Generalized 
Expectation (GE) [5], which is a framework for incorporat-
ing preferences about variable expectations during parame-
ter estimation. GE is a very general framework that encom-
passes a wide variety of methods including maximum en-
tropy models, semi-supervised learning and transfer learn-
ing [13]. The GE-based feature labeling algorithms in [5] 
all leverage information from a pool of unlabeled data. Our 
algorithm can be considered a special case of GE that is 
different from the previous GE-based algorithms in [5]. 

Dual supervision [18] is a term used to describe the process 
of labeling both instances and features. Raghavan and Allen 
[16] combine their feature labeling with uncertainty sam-
pling for instance labeling in their tandem learning ap-
proach. Other dual supervision approaches include a graph-
based transduction algorithm [18] and an approach using 
pooled multinomials [1]. The focus of these last two papers 
is on active learning for dual supervision, which chooses 
instances and labels for labeling. Our work differs in that it 
is the end users, not the active learning algorithm, that 
chooses the features for labeling. Furthermore, we are in-
vestigating the effects of labeling only features, not in-
stances, especially with an eye to the initial training period 
when training data is limited.  

All of the above methods deal with labeling existing fea-
tures. Roth and Small [17] allow users to create new fea-
tures by replacing features corresponding to semantically 
related words with a Semantically Related Word List 
(SWRL) feature. Their focus, however, was on creating 
SWRLs to improve classifiers rather than feature labeling. 
In our user study, we allow end users to construct new fea-
tures and label them. 

Finally, almost all of the prior work in feature labeling 
evaluates algorithms under ideal conditions, such as feature 
labels obtained from an oracle [1, 15, 18].  Our study inves-
tigates both the use of ideal oracle feature labels and feature 
labels provided by real end users. 

 
Figure 1: The user is pointing out that the feature “let me look” is highly indicative 
of the class “Seeking Info.” (This UI inspired the development of the algorithm we 

present in this paper.) 



 

3. ALGORITHM  
Our approach, termed LWLR-FL, incorporates feature la-
beling into Locally Weighted Logistic Regression (LWLR). 
To provide context for LWLR-FL. we first describe 
(global) Logistic Regression and LWLR.  

3.1 Background: Locally Weighted Logistic Regression  
Logistic Regression (LR) [6] is a well-known method in 
statistics for predicting a discrete class label yi given a data 
instance xi=(xi

1,…,xi
D) with D features; we refer to the dth 

feature, without reference to a specific data instance, using 
the superscript notation ie. xd. LR models the conditional 
probability P(yi|xi) by fitting a logistic function to the train-
ing data. Figure 2 (Left) illustrates the s-shaped logistic 
function fit to training data from two classes (squares and 
circles). Notice that the data is perfectly separable, in the 
sense that data to the left of the bend in the “S” is classified 
as a square and data to the right as a circle.  

The conditional probability for an M-class problem is: 

 

In the equation above, the notation cj refers to the jth class. 
The parameters !!  = (""0, …, ""D) are computed by maximiz-
ing the conditional log likelihood, which cannot be solved 
in closed form but must be  done numerically. 

LR assumes that the parameters !!  are the same across all 
data points. Although this approach works reasonably well 
when the classes are linearly well separated, it fails when 
the actual decision boundaries are more complex and when 
the data is noisy [4], which is often the case with real-world 
data. For instance, Figure 2 (middle) illustrates a problem-
atic case for LR when the data is not cleanly separable by 
the logistic function. Here, the s-shaped logistic function 
fits the data poorly, resulting in the two squares on the right 
to be classified as circles. 

One solution for dealing with the difficult case in Figure 2 
is to use Locally Weighted Logistic Regression (LWLR) [2, 

4], in which the logistic function is fit locally to a small 
neighborhood around a query point xq to be classified. Fig-
ure 2 (right) illustrates LWLR fit to the data points. Intui-
tively, LWLR gives more weight to training points that are 
“closer” to the query point than those farther away. A 
common distance function used to determine the closeness 
of text documents is cosine similarity. Since we want the 
distance to increase when a training instance xi is less simi-
lar than the query instance xq, we use cosim(xq,xi) = 1 – 
cos(xq,xi) as the baseline distance function for LWLR. 

The log-likelihood of data in LWLR is computed with re-
spect to the query instance xq as 

 

The weight w(xq, xi) is a kernel function which decays with 
the distance f(xq, xi). The parameter k is the kernel width, 
which smoothes out more noise as the value of k increases.  

Maximizing lw(!!) with respect to the parameters !!   cannot 
be done in closed form. In our experiments, we solve it us-
ing L-BFGS [14] for which we need to compute the partial 
derivative of lw(!!) w.r.t ""  parameters.  The partial deriva-
tive below computes the gradient for the log-likelihood. In 
the formula below, the expression [yi =cj] takes the value of 
1 if the expression in the brackets is true, and 0 otherwise. 

 

3.2 Adding Feature Labeling to Locally Weighted Logis-
tic Regression  (LWLR-FL)  
Our approach, termed LWLR-FL, incorporates feature la-
beling into LWLR by leveraging its ability to assign differ-

   

Figure 2: (Left) The Logistic Function fit to two classes: squares (y=0) and circles (y=1). (Middle) A non-separable case where 
(global) Logistic Regression will have difficulty separating the circle class (y=1) from the square class (y=0), resulting in a poor fit. 
Note that the square data points to the right will be classified as circles. (Right) A non-separable case where Locally Weighted Lo-

gistic Regression will be effective in separating the circle class from the square class. 



 

 

 

ent weights to training instances. Intuitively, we use feature 
labels provided by the end user to define the local neigh-
borhood surrounding the query point. Training instances 
that are more similar to the query point according to the 
feature label information are considered to be closer and 
hence assigned higher weight. We modify the baseline co-
sim(xq, xi) distance function to incorporate feature labels. 
Our modified distance function between xq and xi has two 
distinct components – one based only on their features (sat-
isfied by the baseline distance cosim(xq, xi)), and the other 
based on class labels. Since xq does not have an associated 
class label, we use the class label of xi and the feature label 
information for computing the label similarity.  

The label similarity between xq and xi is based on the dif-
ference between the positive and negative feature contribu-
tions. A positive feature is a feature that is labeled with the 
class label yi of instance xi as specified by the feature labels. 
The positive feature contribution is the sum of the values of 
all positive features in xq, where xq is represented as an L2- 
normalized TFIDF vector. Similarly, a negative feature is a 
feature that is labeled with a class label other than yi. The 
negative feature contribution refers to the sum of values of 
all negative features in xq.  

We now define the user feature label matrix R as: 

 

where rj(xd) = 1 if the dth feature is labeled to be important 
for class label yi; 0 otherwise. Next, let yi = cj be the jth 
class and let the (D ! 1) vector R(yi) be the jth column of R, 
which corresponds to the feature labels which are associ-
ated with class label yi. 

Let Ind(x) be an indicator function that is applied to vec-
tors. The ith entry of Ind(x) has a 1 if the ith entry of x is 
greater than 0; otherwise the ith entry of the resulting vector 
has a 0. Let 1 be a vector of size (M !1) having the value 1 
in all rows. We define U = Ind(R 1) which is a (D ! 1) vec-
tor in which the ith row has a 1 if any feature labels in-
volved the ith feature.  

On the basis of the above definitions, the difference be-
tween the positive and negative feature weights is computed 
as: 

 

In the equation above, the term R(yi)T xq corresponds to the 
positive feature contribution i.e., the sum of feature values 
of xq for those features which are associated with label yi. 
The higher this value, the more similar xq will be to xi ac-
cording to the labeled features. The term (U – R(yi))T xq 
corresponds to the negative feature contribution ie. the sum 

of the feature values for xq for the features that are not asso-
ciated with label yi. The higher this value, the more dissimi-
lar xq will be to xi according to the labeled features. Since 
we have (M-1) class labels excluding yi, we divide the nega-
tive feature contribution by (M – 1) to appropriately balance 
the difference. Putting the two terms together combines the 
effect of both the positive and the negative feature contribu-
tions. 

The distance function needs to have smaller values for simi-
lar instances. Hence, we define the label similarity compo-
nent of the distance function as: 

 

The complete distance function now becomes: 

 

The above function could turn out negative in some cases. 
Hence, we introduce a max term in the weight computation 
to handle this scenario. 

 

Putting these pieces together, we now have a distance func-
tion that incorporates the feature labels into LWLR. 

4. EXPERIMENT AND ANALYSIS METHODOLOGIES 
To evaluate the LWLR-FL algorithm, we applied it to three 
real-world text data sets, with two kinds of studies. First, to 
avoid the prohibitive expense of performing a separate user 
study on each data set, we followed the usual machine 
learning convention [15, 16, 18], and simulated end-user 
feature labeling on multiple data sets using a feature oracle. 
Second, we then performed a study with real users on one 
particular data set to investigate the effectiveness of feature 
labels from end users. 

4.1 Oracle Study 
In our oracle-based experiments, we used three common 
text classification datasets: 20 Newsgroups [9], the Mo-
dapte split of the Reuters dataset [10], and the Reuters Cor-
pus Volume 1 (RCV1) dataset [11].  From the 20 News-
groups dataset, we used the four newsgroups: 
comp.sys.ibm.pc.hardware, misc.forsale, sci.med, and 
sci.space.  Since we would also present articles from these 
newsgroups to end users in our user study (Section 4.2), we 
wanted to minimize the effects of concept drift by choosing 
articles that fell within a relatively short date range that 
included a large number of articles from these newsgroups. 
As a result, we chose 2925 articles from these four news-
groups within the date range April 1, 1993-April 23, 1993.  



 

From the Modapte split of the Reuters corpus, we used 
1092 documents overall from the earn, acq, negative_topic, 
and money-fx classes. From the RCV1 dataset, we used 
6500 documents from the C15, CCAT, ECAT, GCAT, and 
MCAT classes. The text documents were converted into TF-
IDF representation then L2-normalized. We used a vocabu-
lary consisting of unigrams with stopwords removed. 

We compared LWLR-FL against three SVM-based algo-
rithms from [16] which are competitive feature labeling 
methods. Specifically, these SVM-based algorithms are 
Method 1, Method 2 and a combination of both Methods 1 
and 2.  We abbreviate these variants as SVM-M1, SVM-
M2, and SVM-M1M2 respectively. For these SVM-based 
methods, we tried linear, RBF and polynomial kernels and 
found the linear kernel to give the best accuracy. As a re-
sult, we only report SVM results with linear kernels. 

Since we were interested in the benefits due solely to fea-
ture labeling, we did not compare against methods such as 
Tandem Learning [16] and dual supervision [1, 18] which 
label both features and data instances. For the same reason, 
we did not compare against any semi-supervised feature 
labeling methods (e.g., Method 3 from [16] or the GE-based 
methods in [5]) because such algorithms leverage informa-
tion from a pool of unlabeled data in addition to the infor-
mation in feature labels.  

Each dataset was split into a training, validation and testing 
set. Past work [16] has shown that feature labeling is most 
effective when the training set sizes are small; we created 
training sets consisting of six instances per class. In our 
experiments, which deal with a multiclass classification 
problem with four or five classes (rather than binary classi-
fication as in [16]), the total training set sizes were 24 for 
20 Newsgroups, 24 for the Modapte split and 30 for RCV1. 
The training set consisted of an equal number of data in-
stances from each class in order to avoid biases due to class 
imbalance. The validation set, which was used to tune algo-
rithm parameters, was composed of 100 data points equally 
distributed among all the classes. The testing set consisted 
of the remaining data instances. For all datasets, we created 
30 different randomly splits for training, validation and 
testing. The results were averaged over these 30 splits.  

To simulate end users for each dataset, the feature oracle 
selected the ten most predictive features for each class by 
computing a feature’s information gain over the entire cor-
pus, and then assigning its class label based on the most 
frequent class in which it appeared. This resulted in 40, 40, 
and 50 oracle feature labels for 20 Newsgroups, Modapte 
and RCV1 respectively. We experimented with adding one 
oracle feature label per class, two oracle feature labels per 
class, and so on until a total of ten per class were added. 
These oracle feature labels were added in the order of high-
est information gain.  Therefore the oracle study provides 
an optimistic estimate on the potential gains of using these 
feature labeling algorithms by providing enough ideal fea-
ture labels to benefit the algorithm and by carefully tuning 

the parameters of the feature labeling algorithms over a 
large validation set. 

4.2 User Study 
The strength of oracle studies is the ability to evaluate a 
variety of data sets, but their weakness is that they may not 
be realistic as to the choices real users might make. There-
fore, for our second experiment, we conducted a user study 
to harvest feature labels from actual end users on the same 
20 Newsgroups classes as used in Section 4.1.  We then 
used the end users’ data to compare the performance of the 
same algorithms as in our oracle study, but with smaller 
validation sets of size 24 (six instances for each class) to 
simulate a realistic scenario in which end users are able to 
label only a limited amount of training instances for both a 
training and a validation set. 

A starting point for our experiment’s design was the user 
study by Raghavan et al. [15].   However, an important dif-
ference was that we chose to remove constraints on features 
end users were allowed to pick.  Specifically, rather than 
having end users select features from a pre-computed list, 
we allowed them to identify features by freely highlighting 
text directly in the documents. This gave our participants 
complete freedom to choose any features that they thought 
were predictive.  Consequently, not only were these end 
users allowed to select existing features in the algorithm’s 
representation, but also to create and label new features, 
such as through combinations of words or punctuation.  

4.2.1 Participants and Procedures 
Our user study had 43 participants: 24 males and 19 fe-
males. Of these participants, 39 were students currently 
pursuing an undergraduate or masters degree in a variety of 
majors. Computer science students and people with back-
ground in machine learning or human computer interaction 
were not allowed to participate.   

Participants attended the study in parallel, with up to five 
participants to a session. At the start of a session, we famil-
iarized the participants with the application to create feature 
labels, described in Section 4.2.2, through a brief, hands-on 
tutorial and self-directed exploration.  All participants used 
the same document set during the tutorial, which was dif-
ferent from the main task data set (the training set). After 
the session they filled out a post session questionnaire ask-
ing their thoughts and suggestions for the interface, for our 
later use in follow-up research.  

For the main experiment, the application displayed 24 pre-
viously labeled documents in four topics: Computers, 
Things For Sale, Medicine, and Outer Space (corresponding 
to the four newsgroups comp.sys.ibm.pc.hardware, 
misc.forsale, sci.med, and sci.space, respectively). Each of 
the four topics had six documents assigned to it, which 
were randomly selected from a pool of 200 training in-
stances. The order of the documents was randomized for 
each participant. Participants were asked to teach the ma-
chine “suggestions” by identifying features that they be-



 

 

 

lieved would help it label future documents.  Within a time 
limit of twelve minutes, participants were asked to provide 
at least two suggestions per topic, with an emphasis placed 
on selecting the best features for each newsgroup.  

4.2.2 Environment 
For the study, we created a software prototype allowing 
participants to flexibly provide feature labels within a mes-
sage reader interface. The prototype window had two main 
areas (Figure 3): the document display and the feature dis-
play. The document display area, which was the partici-
pants’ main interface for labeling features, showed the list 
of documents, each with its newsgroup label, in a scrollable 
panel.  Participants could highlight portions of the docu-
ment text with the cursor (as in Figure 3) that they thought 
were characteristic of the document’s newsgroup. Partici-
pants could create multiple suggestions for each document, 
and could also delete or modify their suggestions. Partici-
pants were given great flexibility in identifying features: 
they were allowed to highlight anything in the document 
text, including single words, punctuation, continuous 
phrases, and non-contiguous words or phrases.   

The feature display at the bottom was a quick reference, to 
remind participants of features they had already identified, 
along with a clickable link to the context in which they 
highlighted it. Participants’ selections of non-continuous 
words or phrases were shown as blocks separated by 
“with”. 

4.2.3 Algorithm Evaluation 
We used participant-provided feature labels to compare the 
performance of LWLR-FL, SVM-M1, SVM-M2 and SVM-
M1M2. Participants could label features by highlighting 

any text—they did not have to know whether their feature 
existed before (recall that we used a vocabulary of uni-
grams with stopwords removed for the original representa-
tion). If a participant created a new feature, we added it to 
the document representation used for that participant’s data 
and created a corresponding feature label for it. Using these 
data, we analyzed two variants of each algorithm: one vari-
ant used participants’ labels on existing features only, and 
the other used all features that participants provided. 

4.2.4 Feature Characteristics Analysis 
In addition to information gain, we computed relatedness as 
a measure for the features that participants provided. Infor-
mally, relatedness of a feature to a topic is how closely it 
represents a topic’s subject matter.  

We used ConceptNet to provide us with a measure of relat-
edness. ConceptNet [12] is a commonsense knowledgebase, 
generated automatically from sentences entered by users of 
the Open Mind Common Sense Project. ConceptNet can 
support textual reasoning such as topic-jisting and analogy-
making by providing relationships between words and 
phrases. AnalogySpace [19], which is based on Concept-
Net, provides a similarity score (-1 to 1) between two fea-
tures e.g. “horse” and “cow” are similar to a degree of 0.89 
yet “pencil” and “cow” are not very related with a similarity 
score of -0.01. We used this similarity score as a measure of 
relatedness between features and topics. 

To obtain similarity scores, we used the following process. 
We excluded punctuation or symbols e.g. “$”, “?”, etc, as 
ConceptNet does not contain information on punctuation. 
We then normalized the features by using the in-built Con-
ceptNet function which takes a string and converts it into its 
most “natural” state, removing modifiers, inflections, and 
stop words.  For example “asking”, when normalized, is 
“ask”. If the function call produced no normalized output, it 
was entered into ConceptNet in its unmodified form. For 
non-continuous words, we calculated a similarity score for 
each individual word, then we used the maximum score of 
all words in the feature. When participants provided com-
pound words (e.g. “diet/exercise”) and phrases (e.g. “hard 
disk”), we calculated a similarity score for each individual 
word and the original given feature, again using the maxi-
mum as the final score. 

5. RESULTS AND DISCUSSION 
In this section, we present results on the effectiveness of the 
LWLR-FL algorithm, first for simulated, ideal circum-
stances with features provided by a feature oracle, and, sec-
ond, when feature labels were provided by participants. In 
order to improve interaction with systems using this ap-
proach in real settings, we also investigated the characteris-
tics of end-user features and the algorithm’s sensitivity to 
parameter settings. 

5.1 Oracle Feature Labels 
Figure 4 presents the effects of incrementally adding the top 
ten oracle feature labels per class over a variety of algo-

 
Figure 3: (Top): The document display allows highlighting 
any text, e.g. “hard disk” in a message labeled Computers 
(message label cropped off for space, would be to right of 

text). (Bottom): The feature display shows suggestions enu-
merated below the message. The currently selected suggestion 

is bolded in the feature panel at the bottom of the screen. 



 

rithms and data sets. We evaluate the algorithms in terms of 
the average macro-average F1 score (abbreviated to macro-
F1), where the average is computed over the 30 random 
training/validation/testing splits.  As more oracle feature 
labels were added, the average macro-F1 scores generally 
increased for all algorithms.  To avoid clutter on the graphs, 
we only show the top two algorithms for each dataset. 

In order to evaluate the effectiveness of feature labels, we 
compared against two baseline algorithms that do not take 
feature labels into account (Figure 4, dashed and solid line 
without markers). For comparison with LWLR-FL, we used 
a LWLR that uses cosine similarity as a distance metric. 
Likewise, a “plain” SVM can be considered as a baseline 
algorithm for the SVM-based algorithms. The benefit of 
incorporating feature labeling by using LWLR-FL and the 
SVM-based algorithms can be expressed as the improve-
ment in macro-F1 score over their respective baselines; we 
denote this improvement as #baseline.  The average #baseline 
over the 30 runs was significant for LWLR-FL in all cases, 
and significant for the best SVM-based methods except for 
one and two feature labels per class on the Modapte dataset 
(Wilcoxon signed-rank test, p < 0.05).  The highest #baseline 
values were achieved by LWLR-FL on the Modapte data 
with ten features per class, with a mean #baseline of 0.27 and 
a max of 0.38.  Thus, incorporating feature labels in general 
is better than not taking feature labels into account. LWLR-
FL produced larger average #baseline scores than SVM-
M1M2 on the 20 Newsgroups and Modapte datasets, while 
LWLR-FL and SVM-M2 had similar average #baseline scores 
on the RCV1 dataset. Interestingly, on the Modapte dataset, 
LWLR performed worse than SVM but once oracle feature 
labels were provided, LWLR-FL was able to use the feature 
labels more effectively than any of the SVM-based methods 
and outperformed all the algorithms once more than five 
feature labels were added. 

Overall, LWLR-FL outperforms other feature labeling algo-
rithms on 20 Newsgroups and on Modapte when above five 
features per class are added. LWLR-FL performed similar 
to SVM-M2 on RCV1. Table 1 summarizes the macro-F1 
scores for the different algorithms over the three datasets 
when ten oracle feature labels per class were added. In Ta-
ble 1, LWLR-FL produced the highest mean macro-F1 
score or matched it on all three datasets; its effectiveness 

was significantly better than SVM-M1M2 on the 20 News-
groups dataset (Wilcoxon signed-rank test, p < 0.05).  

5.2 End User Features 
The results in Section 5.1 indicate that with ideal feature 
labels, incorporating feature label information can improve 
the classifier, especially when the LWLR-FL algorithm is 
used. We now turn our attention to the effects of feature 
labels provided by actual end users, which we expected to 
have less of a gain than the idealized oracle feature labels. 
Figure 5 illustrates the performance of the feature labeling 
algorithms. (In our analysis, SVM-M1M2 consistently out-
performed SVM-M1 and SVM-M2. Therefore, to avoid 
clutter in the graphs, we only show results for SVM-
M1M2.) For reference, the leftmost group duplicates the 
eight oracle feature labels per class results from Section 5.1. 
We chose eight oracle feature labels per class as a reference 
because on average, participants provided this many feature 
labels per class. The middle group presents results when 
only feature labels on existing features were considered 
(feature labels on features created by participants were ig-
nored). Finally, the rightmost group of results illustrates the 
macro-F1 scores when all feature labels are considered, 
including the new features created by the participant.  

As we expected, these gains did not match those of the ora-
cle feature labels. This points out the importance of includ-
ing evaluations with real end users for this type of problem. 
Evaluations in idealized conditions produce results about an 
algorithm’s potential, and hence are overly optimistic, as 

 

Figure 4: Average Macro-F1 after adding oracle feature labels on (left) 20 Newsgroups, (middle) Modapte, and (right) RCV1.   

Macro F1, Adding 10 Oracle Features per class 
Algorithm 20 Newsgroups Modapte RCV1 

SVM 0.635 0.608 0.559 
LWLR 0.652 0.545 0.554 
SVM-M1  0.667*  0.649*  0.573* 
SVM-M2  0.745*  0.802*  0.660* 
SVM-M1M2  0.749*  0.797*  0.656* 
LWLR-FL  0.777*  0.824*  0.660* 
Table 1: Results of adding 10 oracle features per class 
for all three datasets.  * denotes values that are signifi-
cantly greater than baseline algorithms, bolded values 
are significantly greater than all other algorithms at the 
0.05 level (Wilcoxon signed-rank test, p < 0.05). 



 

 

 

seen by comparing Figure 5’s leftmost bars with the bars to 
the right.  

Participants were able to provide useful feature labels in our 
experiments, as can be seen in Figure 5. Both algorithms 
outperformed their baselines by a statistically significant 
margin (Wilcoxon signed-rank test, p < 0.05) for the “all” 
features case, but only LWLR-FL was significantly better 
with “existing” features (Wilcoxon signed-rank test, p < 
0.05)1. LWLR-FL was significantly better than 
SVM.M1M2 (Wilcoxon signed-rank test, p < 0.05) for both 
existing and all features.  Feature labels were useful when 
labels were incorporated for existing features only (Figure 5 
middle) and also when labels were incorporated for all fea-
tures, including those created by end users (Figure 5 right). 
In fact, there is a slight increase in average macro-F1 when 
features created by end users are added, indicating that end 
users can indeed create predictive features. This result is 
encouraging for the deployment of feature labeling algo-
rithms with ordinary end users and for future work in end-
user feature engineering. 

LWLR-FL was also more robust to lower quality feature 
labels supplied by end users than SVM.M1M2. Figure 6 
plots the values of #baseline in decreasing order for all 43 
participants; note that the order of participants is not the 
same on the graphs. The #baseline values for LWLR-FL are 
shown at the top while those for SVM-M1M2 are at the 
bottom. These graphs show that more participants had posi-
tive #baseline scores with LWLR-FL than with SVM-M1M2. 
In fact, SVM-M1M2 produced larger negative #baseline 
scores than LWLR-FL.         
                                                           
1We also ran participant data using 100 instances for valida-
tion.  Here, both algorithms performed significantly better 
than their baselines with LWLR-FL still significantly out-
performing SVM-M1M2.  

5.2.1 Characteristics of End User Features 
Our results show that features provided by end users can 
improve the accuracy of feature labeling algorithms. To 
understand what kinds of features an algorithm should ex-
pect from end users, we investigated the types of features 
our participants provided, the amount of gain each type 
contributed, and a possible basis on which participants may 
have chosen these features.  

Table 2 shows the frequencies of the types of features par-
ticipants chose. The most common type, accounting for 
about 60% of the features, was features that the algorithm 
already knew existed, in the form of unigrams (row 1 in the 
table). Some of these had information gains comparable to 
features chosen by the oracle (for example, 10 of the 43 
participants chose the top oracle feature “sale”), although 
overall, participants’ features had a somewhat lower aver-
age information gain (0.035) than the oracle’s (0.078).  

However, quite often participants’ choices were different 
from the oracle’s, across all feature types. For example, the 
top oracle choice for the Medicine topic (high information 
gain) was “writes”. This feature was never chosen by a par-
ticipant. To understand the difference between participants’ 
feature choices and the oracle’s, we turned to ConceptNet, 
computing relatedness as described in Section 4.2.4.  

These computations showed that participants chose features 
with higher relatedness (average 0.308) than those chosen 
by the oracle (average 0.231). In general, the participants’ 
choices of features with high relatedness helped as related-
ness has a relationship with information gain (linear regres-
sion, R2=0.04, p<0.001). This suggests possible directions 
for IUI designers to use in encouraging end users to use-
fully label features. For example, relatedness could be used 
to suggest relevant predictive features for end users to label, 
thereby helping them overcome their known difficulty of 
knowing where to look when trying to provide guidance to 

 

Figure 5: Average macro-F1 scores for incorporating end user 
feature labels to the 20 Newsgroups dataset: (Left)  

incorporating 8 oracle feature labels per class from Section 
5.1, (Middle)  incorporating end-user feature labels only for 
existing features, (Right) incorporating all end-user feature 

labels.  

 

 
Figure 6: !!bbaasseelliinnee  scores sorted in decreasing order for 
LWLR-FL (Top) and SVM-M1M2 (Bottom). Note that 

the order of the participants is not the same in the 
graphs.  



 

the system (e.g., “What kind of words should we tell the 
computer [relating] to Systems?” [7]).  

Finally, 40% of participants’ feature choices were not 
known to the algorithm previously, as rows 2-5 in the table 
show. Some of these features, such as stopwords and punc-
tuation, had previously been removed from the vocabulary 
but were partially reintroduced by participants. Features 
such as multiple word phrases (n-grams) and non-
continuous words (feature combinations) cannot be ad-
dressed by simply adding all possibilities (e.g., all n-grams) 
as features to the learning algorithm, because doing so 
would explode the feature representation, making learning 
infeasible. Also, for applications that customize themselves 
to the end user, these specific features may be unique to 
those end users and thus not foreseeable by the algorithm 
designer prior to deployment. Thus, allowing end users to 
provide features not originally in the learning algorithm’s 
data representation is an important benefit, which we have 
only begun to investigate in end-user feature labeling. 

5.2.2 Sensitivity Analysis 
Most of the algorithms that incorporate feature labels are 
sensitive to key parameters that control the influence of the 
feature labels, but these parameters are difficult to set prior 
to deployment due to the uniqueness of each end user’s data 
distribution. Therefore, some algorithms that performed 
well in idealized situations may perform poorly in real-
world circumstances. Although the user could label more 
data for a more representative validation set, this could re-
quire an unrealistic time investment by the user. Ideally 
then, the algorithm’s performance should not be overly sen-
sitive to the values of these parameters. We performed a 
sensitivity analysis to investigate the robustness of LWLR-
FL and the SVM-based methods to their parameter settings. 

The sensitivity of LWLR-FL depends only on the kernel 

width k, which defines the neighborhood around a query 
point. The best k2 for a training set was found using grid 
search in the range 0.1 - 1.0 (values larger than 1.0 gener-
ally reduced macro-F1). Figure 7 (top) illustrates the varia-
tion in macro-F1 score for LWLR-FL for three participants. 

The participants were chosen to represent extreme condi-
tions, one having highest, one having average, and one hav-
ing lowest gains in macro-F1. The macro-F1 score is com-
puted on each participant’s holdout test set.   

As described in Section 2, SVM-M1M2 needs to tune pa-
rameters a, d, and r. All these parameters were tuned on the 
validation set using a multi-dimensional grid search. Figure 
7 (bottom) illustrates the variation of macro-F1 scores on 
the same three participants when we vary the r parameter 
for the SVM-M1M2 method, which was the most sensitive 
parameter. In this graph, we hold the a and d parameters 
fixed to their values tuned on the validation set. 

Although the scales of the parameters are difficult to com-
pare head-to-head, Figures 7 (top) and (bottom) show that 
SVM-M1M2 is more sensitive to the r parameter than 
LWLR-FL is with the k parameter. Even within a small 
radius around the tuned value, the variation in macro-F1 for 
SVM-M1M2 covers a larger range. For LWLR-FL, the 
variation of macro-F1 scores is smooth with varying k and 
tends to be within a narrower range. In addition, LWLR-FL 
also has fewer parameters to tune than SVM-M1M2. (We 
found empirically that a “default” value of  

Feature Types  
(Examples from 

Participants’ Data) 

Mean 
number per 
participant  

Mean  
information 

gain 

Mean  
ConceptNet 
similarity  

Existing feature 
(“sale”) 

19.419 0.040 0.280 

Reintroduced 
stopword (“ask-
ing”) 

0.140 0.036 0.412 

Continuous phrase 
(“space shuttle”)  

5.977 0.048 0.394 

Non-continuous 
words (“cold” with 
“flu”) 

4.116 0.011 0.359 

Features involving 
punctuation (“for 
sale” with “$”)  

2.651 0.056 0.243 

Means overall 32.302 0.035 0.308 
Table 2: Labeled features per participant by type.  All 
types are disjoint.  Only 6 of the 43 users re-introduced 
removed stopwords, and each re-introduced only one.   

 

 
Figure 7: Variation of macro-F1 with k for LWLR-FL (Top) 
and with r for SVM-M1M2 (Bottom). Data is plotted for the 
same three participants.  The parameter value chosen after 
tuning on a validation set of size 24 (as described in Section 

4.2) is shown for each participant in brackets in the plot 
l d  



 

 

 

yielded reasonably good macro-F1 scores.) These results 
suggest that LWLR-FL is robust to changes in the k pa-
rameter and suitable for real-world deployments in which a 
large number of training instances may not be available.  

6. CONCLUSION 
Our paper has shown the viability of feature labeling in real 
circumstances, with end users freely choosing features to 
label directly from text documents. Our new LWLR-FL 
algorithm expands LWLR to take feature labeling into ac-
count. Our results show that LWLR-FL outperformed or 
matched SVM-based methods under ideal conditions in an 
oracle study. In our user study, we allowed ordinary end 
users to select any features for labeling directly from text 
documents. LWLR-FL significantly outperformed the 
SVM-based methods in this more realistic setting. Further, 
our results showed that LWLR-FL is less sensitive to its 
parameter settings than SVM-M1M2.  

As to the end-user labels themselves, we showed that real 
end users’ feature labels helped on average for both LWLR-
FL and SVM-M1M2, with the features end users chose for 
labeling to be conceptually related to the class labels, al-
though with moderately lower information gains compared 
to those of the oracle’s. These results are promising, as they 
show that end users who know nothing about machine 
learning can use feature labeling to significantly improve 
machine learning algorithms trained on small data sets. 

Finally, our results point to promising future research: first, 
extending the LWLR-FL algorithm to a semi-supervised 
setting and second, designing suitable user interfaces to 
help end users choose and create features to label. 

Taken together, these results suggest that flexible feature 
labeling by end users is an effective solution for allowing 
end users to improve the learning algorithm behind their 
intelligent user interface. 
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