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Abstract 
The paper provides a direct solution to the Determinantal Assignment Problem (DAP) which unifies 

all frequency assignment problems of Linear Control Theory. The current approach is based on the 

solvability of the exterior equation 
1 2

 
m

… zv v v      where  m

i
z v   ,  is an n

dimensional vector space over F which is an integral part of the solution of DAP. New criteria for 

existence of solution and their computation based on the properties of structured matrices referred 

to as Grassmann matrices. The solvability of this exterior equation is referred to as decomposability 

of z , and it is in turn characterised by the set of Quadratic Plücker Relations (QPR) describing the 

Grassmann variety of the corresponding projective space. Alternative new tests for decomposability 

of the multi-vector z are given in terms of the rank properties of the  Grassmann matrix, ( )m

n z of 

the vector z, which is constructed by the coordinates of mz .  It is shown that the exterior 

equation is solvable ( z  is decomposable), if and only if ( )m

ndim z m   where 

( ) = { ( )}m m

n r nz z ; the solution space for a decomposable z , is the space 

( ) {  }m

n z i
z sp i mv    . This provides an alternative linear algebra characterisation of the 

decomposability problem and  of the Grassmann variety to that defined by the QPRs. Further 

properties of the Grassmann matrices are explored by defining the Hodge-Grassmann matrix as the 

dual of the Grassmann matrix. The connections of the Hodge-Grassmann matrix to the solution of 

exterior equations is examined, and an alternative new characterisation of decomposability is given 

in terms of the dimension of its image space. The framework based on the Grassmann matrices 

provides the means for the development of a new computational method for the solutions of the 

exact DAP, (when such solutions exist), as well as computing approximate solutions, when exact 

solutions do not exist.  

1. Introduction 

The Determinantal Assignment Problem (DAP) has emerged as the abstract problem to which the 

study of pole, zero assignment of linear systems may be reduced [4], [5], [6], [8]. The multilinear 

nature of DAP suggests that the natural framework for its study is that of exterior algebra [1]. The 

study of DAP [4] may be reduced to a linear problem of zero assignment of polynomial combinants 

[17] and a standard problem of multilinear algebra, that is the decomposability of multivectors [1]. 

The solution of the linear subproblem, whenever it exists, defines a linear space in a projective 

space tP  whereas decomposability is characterised by the set of Quadratic Plücker Relations 

(QPR), which define the Grassmann variety of tP  [2]. Thus, solvability of DAP is reduced to a 

problem of finding real intersections between the linear variety and the Grassmann variety of tP . 

mailto:N.Karcanias@city.ac.uk
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The importance of tools and techniques of algebraic geometry for control theory problems has been 

demonstrated by the work in [9], [10], [4] etc. The approach adopted in [4], [5], [6], [8] differs from 

that in [9], [10] in the sense that the problem is studied in a projective, rather than an affine space 

setting; the former approach relies on exterior algebra and on the explicit description of the 

Grassmann variety, in terms of the QPRs, and has the advantage of being computational. The 

multilinear nature of DAP has been recently handled by a "blow up" type methodology, using the 

notion of degenerate solution and known as "Global Linearisation" [8]. Under certain conditions, 

this methodology allows the computation of solutions of the DAP problem.  

 

This paper introduces a new approach for the computation of exact solutions of DAP, whenever 

such solutions exist, as well as approximate solutions, when exact solutions do not exist based on 

some new results for the solution of exterior equations. This new approach is based on an 

alternative, linear algebra type, criterion for decomposability of multivectors to that defined by the 

QPRs [1], in terms of the properties of structured matrices, referred to as Grassmann matrices. Such 

matrices provide a new explicit matrix representation of abstract results on skew symmetric tensors 

[12], [13] relating to decomposability of multivectors [1]. The decomposability of the multivector 
mz   where  is a vector space, is equivalent to the solvability of the exterior equation 

1 2 m
… zv v v      with 

iv    The conditions for decomposability are given by the set of QPRs 

[1],[2] and the solution space { }z i
sp i mv    may be constructed as shown in [3]. The present 

approach handles simultaneously the question of decomposability and the reconstruction of 
z   For 

every mz  with Plücker coordinates { }m na Q      the Grassmann matrix ( )m

n z  of z  has 

been introduced in [14] as a structured matix based on the Plücker coordinates . The study of the 

properties of ( )m

n z  is the subject of this paper; it is shown, that { ( )}m

nrank z n m     for all 0z    

and z  is decomposable, if and only if, the equality sign holds. If { ( )}m

nrank z n m     then the 

solution space 
z
 is defined by  = { ( )}m

z r n z   The rank based test for decomposability is easier 

to handle than the QPRs and provides a simple method for the computation of 
z   This provides an 

alternative characterization of the Grassmann variety of a projective space in terms of the 

Grassmann matrices, which are structured matrices defined for every point of the projective apace, 

which have a fixed rank n-m.  

 

The development of the new computational framework requires the development of the properties 

of Grassmann matrices. These are further developed by using the Hodge duality [1] that leads to the 

definition of the Hodge-Grassmann matrix ( )n m

n z
 , which is defined as the Grassmann matrix of 

the Hodge dual of the multivector z, that is z*. The properties of ( )n m

n z
 are dual to those of the 

Grassmann matrix ( )m

n z . In fact decomposability turns out to be an image problem for the 

transpose of the Hodge-Grassmann matrix and the Quadratic Plucker Relations can be concretely 

written in terms of the Grassmann and Hodge-Grassmann matrices.  It is shown that the kernel of 

Grassmann matrix and the image of the transpose of the Hodge Grassmann matrix of a multivector 

define two fundamental spaces that determine a canonical representation of multivectors. The 

relation between those two spaces are established which leads to  new criteria for decomposability, 

as well as introducing a new metric for distance from decomposability, which provides new ways to 

compute approximate solutions . A number of interesting relationships between the singular values 

of ( )m

n z  and ( )n m

n z
  are established.It is shown that the two matrices have the same right 

singular vectors and the sum of squares of the corresponding singular values is equal to the squared 

norm of z. The approximate DAP is addressed is formulated as a distance problem from 
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decomposability, when the exact problem is not solvable. This is expressed as minimization of the  

the distance between the linear variety associated with the linear sub-problem of DAP and the 

Grassmann variety, characterizing the set of all decomposable vectors. The results on 

decomposability based on the Grassmann matrices provides an appropriate framework for 

computing solutions of the approximate DAP based on an optimization problem. 

 

The paper is organised as follows: Section 2 provides a brief review of DAP motivating the 

significance of the exterior equation in control problems, whereas Section 3 summarises known 

results on decomposability. The results on the properties of Grassmann matrices are given in 

Section 4. In Section 5 the Hodge-Grassmann matrix is defined and some results related to this 

operator are reported. In Section 6 some properties of the kernel of Grassmann matrix and the 

image of the transpose of the Hodge Grassmann matrix of a multivector are presented in relation to 

the decomposability problem. Finally, in Section 7 we use the Grassmann matrices framework to 

develop the computation of exact and approximate DAP as an optimizatrion problem. 

Throughout the paper the following notation is adopted: If F  is a field, or ring then m nF  denotes 

the set of m n  matrices over F  If H  is a map, then ( )  ( )  ( )r lH H H   denote the range, 

right, left nullspaces respectively. 
k nQ 

 denotes the set of lexicographically ordered, strictly 

increasing sequences of k  integers from the set  = {1 2 }n … n     If  is a vector space and 

1
{ }

ki i
…v v   are vectors of  then 11

 ( )ki ik
… i … iv v v         denotes their exterior product and 

r  the r  th exterior power of  [1]. If m nH F  and min{ }r m n    then ( )rC H  denotes the 

r  th compound matrix of H  [11]. In most of the following, we will assume that F = . 

2. The General Determinantal Assignment Problem  

Let [ ]( ) [ ]   { ( )}m l

sM s s m l rank M s l     and consider the set of matrices 

[ ] = { ( ) ( ) [ ]  { ( )} }l m

sH s H s s rank H s l      the subset of   defined by all l mH   will be 

denoted by    Finding H   such that the polynomial  

 

 ( ) { ( ) ( )}Mf s H det H s M s                                                                              (1) 

 

has assigned zeros, is defined as the Determinantal Assignment Problem (DAP) [4]; if H    

then the corresponding problem is defined as the constant DAP ( DAP) [4]. By considering 

subsets of  made up from matrices with block diagonal structure such as 

{ ( )  }  [ { ( )  }]v i v p ibl diag H s i v I bl diag H s i v            the Decentralised-DAP (D-DAP) 

versions are defined in [5]. 

  

The different versions of DAP have been introduced as the abstract unifying descriptions of 

frequency assignment problems (pole, zero) that arise in linear systems theory. Thus pole 

assignment by state, constant output feedback [4], [6] and zero assignment by constant squaring 

down [4], [7] may be studied within the DAP framework, whereas the corresponding problems 

of decentralised control belong to the -D-DAP class [5]. The general case, DAP, covers the 

dynamic version of frequency assignment problems. If we require that ( )Mf s H  is an arbitrary 

Hurwitz polynomial, then different classes of Determinantal Stabilisation Problems (DSP) are 

defined. DAP is clearly multilinear, as far as the parameters in H   and thus the natural setting for 
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its study is that of exterior algebra [1]. Let  ( )  
t

i i
s i lh m    be the rows of H    columns of 

( )M s   Then,  

1

1 1
( ) [ ]  ( ( )) ( ) ( ) ( ) [ ]

t t t q q

l ll l

m

l
C H … s q C M s s … s m s sh h h m m

  
 
 

              

and by the Binet-Cauchy Theorem [11] we have  

 

              ( ) ( ) ( ( )) ( ) ( )
m n

M l l

Q

f s H C H C M s h m s h m s 
 

                             (2) 

where     denotes scalar product, 
1

( ) l ml
… Qi i      and ( )h m s   are the entries in 

 ( )h m s   respectively. Note that h  is the l l  minor of H   which corresponds to the   set of 

rows of H  and thus is a multilinear alternating function of the 
ijh  entries of H   DAP may be 

reduced to a linear and a standard multilinear subproblem as shown below [4]: 

  

 Linear Subproblem of DAP: Let ( ) ( ) [ ]qm s p s s     Investigate the existence of 

( ) [ ]qk s s  such that for some given ( ) [ ] ( )s s d deg s       

 

1

( ) ( ) ( ) ( ) ( ) ( ) ( )
q

tt

p i i d

i

f s k k s p s k s p s s se 


                         (3) 

where ( ) [1 ]d t

d
s s … se        

 Multilinear subproblem of DAP: Assume that for the given ( )s  part (i) is solvable and let 

( )  be the family of solutions. Determine whether there exists 
1

 [ ]t

l
H H …h h      such that  

 

 
1

 ( )
l

… k kh h                                                                            (4) 

 

( )pf s k   as defined by (3) for a given ( )p s   is called an [ ]s  polynomial combinant, [4], [17] if 

[ ]ik s   and as polynomial combinant, if ik   [4]. The solution of the exterior equation (4) 

is a standard problem of exterior algebra, known as decomposability of multivectors [1]. Multilinear 

algebra also plays an important role in the linear subproblem since ( )pf s k  is generated by the 

decomposable multivector ( ) ( )m s p s    The solvability of the linear subproblem is a standard 

problem of linear algebra; in fact, if [ ]ik s   is equivalent to solving a Diofantine equation over 

[ ]s   whereas if ik    it is reduced to the solution of a system of linear equations [4]. In the latter 

case, the solution of (3) defines a linear space ( )  of the projective space 1qP  [6]. The exterior 

equation (4) is central to the DAP approach and its solvability is characterised by the set of 

Quadratic Plücker Relations (QPR) [1], [2], which in turn describe the Grassmann variety ( )l m   

of 1qP  [2]. Thus, solvability of DAP is equivalent to finding real intersections between ( )  

and ( )l m    this clearly demonstrates the algebraic geometry context of DAP. The aim of this 

paper is to provide alternative criteria for solvability of (4), to those defined by the QPRs, as well as 

a simple procedure for reconstructing H   A summary of key notions and results from exterior 

algebra are summarised first. 
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3. Decomposability of Multi-vectors:  Background Results 

Let  be a vector space over a field F  and let ( )mG  be the Grassmannian (set of all m

dimensional subspaces of ). For every ( )m V G  the injection map  p p pf     is 

well defined and if p m   then 
m  is a 1-dimensional subspace of m  if { }

i
i mv    is a basis 

of   then 
m  is spanned by 

1 m
…v v    Let { }

i
B i nu   ,

1 1{   ( ) }
m

m

m m ni i
B … i … i Qu u u u 

              be a basis of  and  m  spaces 

respectively.  The general vector mz  may be expressed as  

 

m nQ

z a u 
 

                                                                             (5) 

where { }m na Q     are the coordinates of z  with respect to mB   A vector mz  is called 

decomposable, if there exist  
i

i mv     such that  

 

                                 
1 m
… zv v                                                                                             (6) 

 

The vector space  = { }z i
span i mv  F  is called the generating space of z  It is known that if 

 mz z   are nonzero and decomposable, then ( 0)z c z c    is equivalent to ( )z z m  G  

and z  is called a Grassmann Representative (GR) of 
z
. All GRs of ( )m G  differ by a 

0c c  F  and are denoted by ( )g   The coordinates of a decomposable vector 

 { }m

m nz a Q       are known as the Plücker coordinates (PC) of 
z   The lexicographically 

ordered set of PCs is completely determined by  to within c F  Note, that not every mz  

is necessarily decomposable; if { }m na Q     are the coordinates of mz  then z  is 

decomposable if and only if the following conditions hold true [2]:  

 

                             
1 1 1 1 1 1

1

1

( 1) 0
m k k k m

m
k

i …i j j … j j … j

k

a a
   



       



                                                                 (7) 

where 1 11 mi i n     and 1 2 11 mj j j n       The set of quadratics defined by (7) are 

known as Quadratic Plücker Relations (QPR) and describe an ( )n m m dimensional algebraic 

variety, ( )m n    of the projective space 1 m

n




  
  
 

 P  known as Grassmann variety [2]. The map 

defined by  ( )  in  m mm     G  expresses a natural injective correspondence 

between ( )mG U  and 1-dimensional subspaces of m . By associating to every 
m  the PCs 

{ }m na Q      the map 1( )m    G P  is defined, and it is known as the Plücker embedding 

[2] of ( )mG  in 1  P  the image of ( )mG  under   is ( )m n    The term decomposability of 

a multi-vector and the solution of the exterior equation (6) are equivalent terms. 

The notion of the GR is central in the study of DAP. For the rational vector space over 

( )   = ( ( ))Ms M s   a canonical polynomial ( [ ]s ) GR may be defined and through that a basis 

free invariant of M  the Plücker matrix MP  [4]; the rank properties of MP  define the solvability 

conditions of the linear subproblem of DAP. Using the set of QPRs for computation of 
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solutions of DAP is difficult. An alternative test for decomposability that also allows a more 

convenient framework for computations is considered next.  

4. The Grassmann Matrix and Decomposability of Multivectors 

The Grassmann matrix of mz  [14] is introduced in this section and a number of its properties 

are examined. This matrix provides an alternative test for decomposability of z  which also allows 

the computation of the 
zV  solution space in an easy manner. We state first the following result.  

 

Proposition (1) [1]: Let  be an n dimensional vector space over F  and let 0 mz    Then, 

z  is decomposable, if and only if, there exists a set of linearly independent vectors { }
i
i mv    in  

such that  

                                0
i

z i mv                                                                                                 (8) 

  

This result is central in deriving the set of QPRs [1], as well as in deriving the alternative test that 

will be developed here . The coordinates of v z  in (8) may be computed as follows.   

 

Lemma (1): Let  = {  }
i

B i nu    be a basis of  {  }m

m nB Qu     U
 the corresponding basis 

of m  and let 
1

 
m n

m

t tt Q
v c z au u   
      Then,  

           

1

1
1

ˆ( ) ( )
1

  ( 1)
m n

m
k

k k
Q k

v z b b c au   
  




 

                                                                        (9) 

where ( )k  denotes the k  th element of 
1m nQ    and ˆ( )k  is the sequence 

( (1) ( 1) ( 1) ( 1)) m n… k k … m Q                  

 

Proof:   

                    

1 1

( ) ( )
m n m n

n n

t tt t

t Q t Q

v z c a c au u u u  
     

                                             (10) 

To compute b  for a fixed 
1m nQ    in v z  we argue as follows: A pair t   produces e   if and 

only if { } { } { }m mt I I     where { }mI   denotes the set of indices in   (not necessarily ordered). 

In other words, there exists {1 1}k … m     for which ˆ( )k   and ( )t k   Then,  

 

      
1

( ) (1) ( 1) ( 1) ( 1)
( 1)k

t k k k m
… …u u u u u u u u      



  
                                          (11) 

 

If { } { } { }m mt I I     then clearly 0b    By (10), (11) and the previous arguments the expression 

for b  in (9) readily follows. 

  

Notation: Let 
1 2 1 1( ) 1k m m nj j … j j Q m n              We denote by 1m mQ

   the subset of 
m nQ 

 

sequences with elements taken from the   set of integers. 1m mQ

   has 1m  elements and the 

sequences in it are defined from   by deleting an index in    Thus, we may write:  

  

        1 1 1 1 1
ˆ = { [ ] ( ) 1}m m k k mk

Q j … j j … j k mj


                                                                      (12) 
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Definition (1): Let { }m na Q     be the coordinates of mz  with respect to a basis mBU  of 

1 1 1 1  ( )m

k m m nm n j … j j Q             . We may define the function 

1{ 1 } { }m ni i … n Q            F  with 1 1 1 1 1
ˆ[ ] ( )k k m m mk

j … j j … j Qj


             by:  

 

        
ˆ[ ]

 = ( ) 0  if 

ˆ = ( ) ( [ ])  if 
k

i

i

k kjk

i i

i sign j a i jj


 

   

  

   

   


    

                                                                (13) 

where and ˆ( [ ])k k
sign j j  1 1 1 1( )k k k msign j j … j j … j           

  

With the above notation we may state the following result:  

Proposition (2): Let {  }  { }m

m ni
B i n B Qu u

       U U  be bases of  m    

1
0

n

i ii
v c U vu


      and   0   0

m n

m

Q
z a z v zu  
          if and only if  

                                    
1

1

0  for all 
n

i

i m n

i

c Q   



                                                                               (14) 

Proof: By Lemma (1), v u  is expressed as in (9). Given that the set 
1{  }m nQu      is a basis 

for 
1m

 U  then 0u z   and (9) imply  

                      

1
1

ˆ( ) 1( )
1

( 1) 0 for all
m

k

k m nk
k

c a Q 





 



                                                                            (15) 

For every 
1m nQ     the above summation may be extended to a summation from 1 to n  by using 

the   function. In fact, if ki j     then 1

ˆ( )
( ) ( 1)k

k k
j a 

    and 
( )ki j kc c c    whereas, if i    

then ( ) 0 0i ii c c      The sufficiency is obvious. 

  

If we denote by t  the elements of 
1m nQ  

 (assumed to be lexicographically ordered), 

1
1 2

n

m
t … 

 
 

 
       then (14) may be expressed in a matrix form as  

 

              

1 1 1 1

1 2 1

2

1 2

1 2

( )

0
t t t t

m
n

i n

i n

i

i n

n

z c

c
… …

c

… …
c

… …
c   

   

   

   

   

   

   

 
   
   
   
   
   
   
   
   
   
   
   
   
   
    

  



    

     

    

                                                                               (16) 

The matrix ( )m n

n z  F  is a structured matrix (has zeros in fixed positions), it is defined by the 

pair ( )m n  and the coordinates { }m na Q     of mz  and will be called the Grassmann matrix 
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(GM) of z  and it was originaly defined in [14]. We illustrate the canonical structure of GM by two 

examples.   

 

Example (1): Let 2 4m n    and 12 13 14 23 24 34{ }a a a a a a      be the coordinates of 

2  4z dim     with respect to some basis. Then,  

 

23 13 12 1

24 14 12 22

4

34 14 13 3

34 24 23 4

0 (1 2 3)

0 (1 2 4)
( )

0 (1 3 4)

0 (2 3 4)

                       

                1       2          3       4                      

a a a

a a a
z

a a a

a a a









     
 

    
  
     
 

     

   

  

                                              (17)   

 

Example (2): Let 2 5m n    and 12 13 14 15 23 24 25 34 35 45{ }a a a a a a a a a a          be the coordinates of 
2  5z dim     with respect to some basis. Then,  

         

23 13 12 1

24 14 12 2

25 15 12 3

34 14 13

35 15 132

5

45 15 14

34 24 23

35 25 23

45 25 24

45 35 34

0 0 (1 2 3)

0 0 (1 2 4)

0 0 (1 2 5)

0 0 (1 3 4)

0 0
( )

0 0

0 0

0 0

0 0

0 0

a a a

a a a

a a a

a a a

a a a
z

a a a

a a a

a a a

a a a

a a a







     
 

    
 
     
 

    
 

   
 

 
 

 
 
 
  

4

5

6

7

8

9

10

(1 3 5)
    

(1 4 5)

(2 3 4)

(2 3 5)

(2 4 5)

(3 4 5)

                           

                 1       2        3          4        5

















   

   

   

   

   

   

    

                                                   (18) 

  

The matrix ( )m

n z  is defined for every mz  and the decomposability property of z  is 

expressed by the following result.  

 

Theorem (1): Let  be an n dimensional vector space over  BF  a basis of  0  mz     

( )m

n z the GM of z  with respect to B  and let ( ) = { ( )}m m

n r nz z N N  Then,  

(i) ( )m

ndim z mN  and equality holds, if and only if z  is decomposable.  

 (ii)If ( )m

ndim z m N  then a representation of the solution space, 
z   of 

1 m
… zv v    with 

respect to B  is given by ( )m

n z N   
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Proof:  By Proposition (1), 0 mz   is decomposable, if and only if there exists an 

independent set of vectors { }
i
i mv    in   such that 0

i
zv     for all i m   By Proposition (2) 

and Eq. (16), it follows that such vectors 
iv  may be found, if  

                                          ( ) 0m

n z c                                                                                                 (19) 

has at least m  independent solutions, or equivalently ( )m

ndim z m   If ( )m

ndim zN  p n    then 

(19) defines p  independent vectors 
ic  and thus p  independent vectors 

iv  for which 0
i

zv     By 

Proposition (1), z  is decomposable and thus we may write 
1 m

z …v v     However, since 

0   1
j
z j m … pv          it follows that 

1
0

m j
…v v v     and thus the set 

1
{ }

m j
…v v v     

1j m … p     is linearly dependent, which is a contradiction. Thus, ( )m

ndim z mN  and 

decomposability holds when equality holds. The sufficiency of part ( )i  follows by reversing the 

steps. Note, that if { }
i
i mc    is a basis of ( )m

n z   when ( )m

ndim z m   then m  independent 

vectors 
iv  may be defined by 

1

n

jij ii
cv u


   where { }

i
B i nu    is a basis of   clearly, 

{ }z i
span i mv  F  and this establishes part ( )ii   

  

The above result provides an alternative characterisation for decomposability of multivectors,as 

well as a simple procedure for reconstruction of the solution space of the exterior equation. The 

matrix ( )m

n z  that corresponds to a decomposable z  will be referred to as canonical.   

 

Remark (1): Let ( )m

n z  be the canonical GR of mz  which has been defined with respect to 

the { }
i

B i nu    basis of   If { }
j

j mc    is a basis for ( )m

n z   then the space ( )z m G  

for which ( )zg  is defined by {  }z j
span j mv   F  where  

                     
1

1

  [ ]   
nj

n
t

ij j …cj i j

i

c c j mv u c  



                                                                                    (20)                                                                                                                                                                                

 

Corollary (1):  Let ( )m

n z  be the GR of   0mz z     Then,  

i) If 1m    then for all 1 ( )nn z   is always canonical; furthermore, if   3n         

       1 { ( )} 1F nrank z n     

(ii) If 1m n    then 1 1( )n n

n z F    and it is always canonical with 1{ ( )} 1n

F nrank z   . 

 (iii) If 1m n m     and 2    then for all  { ( )}m

F nz rank z n m      equality holds, if and 

only if ( )m

n z  is canonical.  

Proof: 

(i) If 11  m      and every z v   is decomposable. Given that ( )n z  has 
2

n
n

 
 
 

  

dimensions and the only vectors v  for which 0v z   are those written as v cz   it follows that 

( ) 1ndim z  N  For 
2

3  
n

n n
 
 
 

    and thus 1{ ( )}F nrank z   1n     

(ii) If 1m n    then 1( )n

n z  is 1 n  and since 10  ( ) 1n

nz dim z n m       thus, 1( )n

n z  is 

always canonical with rank 1.  
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(iii) If  1  2m n m         then 
1

n

m
n

 
 

 
   In fact ( )m

n z  is n n   if 2m n   and 
1

n

m
n

 
 

 
  

if 2m n   The condition, ( )m

ndim z m   for ( )m

n z  to be canonical clearly yields the result.  



Note that parts ( ) ( )i ii  of the above result express the well known result for decomposability of all 

vectors of 1 1 n    [1]. From part ( )iii  we also have:  

Corollary (2): Let 0  2  1  ( )m m

nz n m m z          is canonical, if and only if 

1{ ( )} 0m

n m nC z      

   

This result establishes the links between the new decomposability result based on ( )m

n z  and the 

set of QPRs. It may be readily shown that the quadratics in the compound matrix 
1{ ( )}m

n m nC z    are 

dependent on the set of RQPRs. Finally, it is worth pointing out that the new decomposability test 

also provides an alternative characterisation of the Grassmann variety ( )m n   of 1 n

m

   
 
 

  P    

 

Remark (2): Let  0mz z     and let ( )P z  be the point of 1 P  defined by the coordinates 

{ }m na Q     of   ( ) ( )z P z m n    if and only if the Grassmann matrix m

n  is canonical. 

   

We close this section by describing a systematic procedure for constructing ( )m

n z  and by making 

some final remarks on the relationship between ( )m

n z  and the QPRs.  

Procedure for construction of ( )m
n z  

 Given 
1

( )  
n

m
n m 

 
 

 
    we form a n   matrix, where the rows are indexed by the sequences 

1m nQ    lexicographically ordered, and the columns by i n   The elements of the 

1 2 1 1( )m m nj j … j Q         indexed row are defined for every i n  as follows:  

(a)If 1 1{ }mi j … j      then 0i

     

(b)If 1 1{ }k mi j j … j       then we define as 1 1 1 1{ }k k mj … j j … j          
m nQ   and 

( )i

ksign j a       

(c) The procedure is repeated for all i n  and for all 
1m nQ    indexed rows.  

 

Some interesting observations on the structure of ( )m

n z  are summarised below.   

 

Remark (3): For every 
m nQ   the coordinate a  appears only in n m  rows with indices 

1 2( )n mI i i … i      and in n m  columns with indices 1 2( )n mJ j j … j      of ( )m

n z   The  I J   

sets of indices are distinct and have the following properties: (i) ki I  is the index of 
1ki m nQ    

row for which all indices in   are contained in ;
ki

  (ii)  kj J is the index of the column which is 

not contained in   

    
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The above observations, together with the assumption that 0z   (and thus at least one 0a  ), 

verify the property that { ( )}m

F nrank z n m    and suggest an alternative procedure for deriving the 

set of QPRs from the ( )m

n z  matrix.  

 

Grassmann matrix procedure for deriving the QPRs  

Let 
m nQ   such that 0a   and denote by 

1 2( )n mJ j j … j      the column index of   (columns 

containing a ) and 1
ˆ ( )mk … kJ
    the complementary set of J  with respect to (1 )n … n    ( ik  

are the indices of columns not containing a ). If 
i

  denote the columns of ( )m

n z  and 

1 n mj j
…


  



     (


   by Remark 3), then the set of QPRs are defined by the nontrivial 

relations derived from  

 

                0     
ik

i m


                                                                                                                 (21) 

If { }
i n mj j

span …
 



   F  equations (21) are equivalent to  
ik

i m
        



Remark(4):For  0mz z    ( )m

n z  may be interpreted as the matrix representation of the right 

multiplication operator 
1:R m

z

   defined as: ( )R

z u u z    , for u  . 

                                                                                                                                            

5. The Hodge-Grassmann Matrix and the Decomposability of Multivectors 

The Hodge-Grassmann matrix is the Grassmann matrix of the Hodge dual of the multivector z and 

its properties are dual to those of the Grassmann matrix. In fact decomposability turns out to be an 

image problem for the transpose of the Hodge-Grassmann matrix and the Quadratic Plucker 

Relations can be expressed in terms of the Grassmann and Hodge-Grassmann matrices.This will 

provide additional criteria for decomposabilty that can be used for development of a new algorithm 

for the computation of solutions of DAP. We give first some background definitions.   

 

Definition(2) [1]: The Hodge *-operator, for a oriented n-dimensional vector space  equipped 

with an inner product <.,.>, is an operator defined as: *:  m n m   such that 

 ( *)=< , > a b a b w  where ,  a b , w n defines the orientation on  and m<n. 



To compute the Hodge star of a multivector in m  we follow the procedure: Let  1 2, ,..., nu u u
 
be 

an orthonormal basis for then an element of mz  can be written as
 

m nQ

z a u 
 

  and the 

Hodge star of z may be calculated as: 

( )
m nQ

z a u 
 

 



   

Therefore it suffices to calculate the Hodge star of all the elements of the basis m  ie of the set 

 
m n

m

Q
B u  

  . Let 
1 2

...
m

m

i i iu u u B     where 1 21 ... mi i i n     . Then: 

1 2 1 2
( ... ) ( ) ...

m n mi i i j j ju u u sign u u u


        
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Where jk are the n-m complementary to the ik indices considered in ascending order and σ is the 

permutation: 1 2 1 2( , ,..., , , ,..., )m n mi i i j j j  . 

 

Example(3): Let  
2 4

12 1 2 13 1 3 14 1 4 23 2 3 24 2 4 34 3 4z a u u a u u a u u a u u a u u a u u            

 Then applying the previously mentioned computational procedure we get: 

12 1 2 13 1 3 14 1 4 23 2 3 24 2 4 34 3 4

12 3 4 13 2 4 14 2 3 23 1 4 24 1 3 34 1 2

( ) ( ) ( ) ( ) ( ) ( )z a u u a u u a u u a u u a u u a u u

a u u a u u a u u a u u a u u a u u

                  

           
 

Which in terms of coordinates it is: 

12 13 14 23 24 34 34 24 23 14 13 12, , , , , ) , , , , , )( (a a a a a a a a a a a a   

 

Remark(5): The relation of the * operator with the inner product that demonstrates the involutive 

nature of the operator is: < ,  >a b = * *(  ( *)) =(  ( *))b a a b  , ( )** ( 1)m n ma a   



Definition(3): The Hodge-Grassmann matrix of a multivector z,  0mz z    is defined as the 

Grassmann matrix of the Hodge dual of z, z
*
 , ie it is the matrix ( )n m

n z
  representing the linear 

map
 

1:R n m

z


    defined as the representation of: 

( )R

z
u u z


   ,  for u   



A number of properties of the Hodge-Grassmann matrix of a multivector z are considered next. 

 

Proposition(3): For any mz  the following are equivalent: 

1. z is decomposable 

2. z
*
 is decomposable 

Proof: 

(1→2) Let mz  be decomposable, then z can be written as 
1 m

z …u u    where the vectors 

1
, ,

m
…u u  are orthonormal. We extend this set to a positively oriented orthonormal basis [1], 

1 1
, , , ,...,

m m n
…u u u u

, of . Then 

1m n
z …u u


    

which establishes that z
*
 is decomposable. 

(2→1) Immediate from the previous part of the proof and the fact that ( )** ( 1)m n mz z   



Proposition(4): The following statements hold true: 

a) { ( )}n m

r ndim z n m
    equality holding,  iff z is decomposable. 

b) { ( )}n m

ndim rowspan z m
   equality holding,  iff z is decomposable. 

 

Proof 

a) immediate from theorem(1) and Proposition(1) 

b) immediate from a) 
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

Proposition(5): For  0mz z     the matrix ( )m T

n z  is the representation of the map 

1:T R m

z

    given by: 

1(y) ( 1) ( y )T R n

z z
     , where 1y m

 
Proof: 

 
1Assuming      mu , y  

 

1 1

( ) , ( ) , ( ) ,

( ) ( 1) ( ( ) ) , ( 1) ( )    

T m T m R

n n z

n n

u z y y z u y u y u z

u z y u z y u z y
      

       

          
 

Proving
 
that

 
( )m T

n z
 
is the matrix representation of ( )T R

z y   



Corollary(3): The matrix ( )n m T

n z
  is the representation of the map 

1:T R n m

z


     given 

by: 
1(y)) ( 1) ( y )T R n

z
z

       , where 1y n m 
 



The above results lead to a new test for decomposability in terms of relations based on the 

Grassmann and Hodge-Grassmann matrices (for an abstract formulation see also [12,13]): 

 

Theorem(2): For any mz  the following are equivalent: 

 

1. z is decomposable 

2. 1 1
( )( ( )) 0

n n

m n mm n m T

n nz z

   
   

            

Proof 

(1→2) Let mz  be decomposable, then z can be written as 
1 m

z …u u    where the vectors 

1
, ,

m
…u u  are orthonormal. We extend this set to a positively oriented orthonormal basis, 

1 1
, , , ,...,

m m n
…u u u u

, of . Then to prove 2 is equivalent to proving that  

1 1( (y)) ( 1) ( y ) 0,   yR T R n n m

z z
z z

              

Let 
1

y
m nQ

a u 
  





   then  

1

1

1

( y ) ( )
m n

m

im n i

Q i

z … a ru u u u 



 

  



 

         

Implying that: 

1

1

( y ) ( ) ( ) 0
m

i i m

i

z z r …u u u
 



        

(2→1) Assume that z is not decomposable and 2 holds. Then 

 

dim { ( )} dim row ( )}m n m

r n nm z span z m
    {

 
which is a contradiction. Note that the matrices 
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( ) ,  ( ( ))m n m T

n nz z
 

 
are linear in z, and making their product equal to zero leads to the quadratic relations defining 

decomposability. 


 

Example(4): Here we will derive the Quadratic Plucker relations for multivectors z in 
 
 

2 4 . 

For this case we calculate the Grassmann and Hodge Grassmann Matrices for this space. Thus, we 

have:
  

 

23 13 12

24 1214

2

144 34 13

34 24 23

0

0

0( )

0

a a a

a a a

a a az

a a a

 
 
 
 
 
 
 
 
 
 
 





 


 ,  

14 24 34

13 3423

2

234 12 24

12 13 14

0

0

0( )

0

a a a

a a a

a a az

a a a

 
 
 
 
 
 
 
 
 
 
 

 

    

According to Theorem(2) the Quadratic Relations defining decomposability are given by the 

product: 

2 2

4 4 12 34 13 24 14 23

1 0 0 0

0 1 0 0
( )( ( )) ( ).

0 0 1 0

0 0 0 1

Tz z a a a a a a


 
 
     
 
 
 

 

 

Which is the single quadratic Plucker relation defining the decomposable vectors in 2 4R  


 

Example(5): Next we will derive the Quadratic Plucker relations for multivectors  z (2,5) in 
2 5 . For this case, the QPRs are given by: 

 

1 12 34 13 24 14 23 2 12 35 13 25 15 23 3 12 45 14 25 15 24

4 13 45 14 35 15 34 5 23 45 24 35 25 34

,   ,   ,

,   

q a a a a a a q a a a a a a q a a a a a a

q a a a a a a q a a a a a a

        

     
 

 

We may verify the derivation of QPRs  using Theorem(2). In fact it may be verified that using the 

above result we have that the Grassmann and Hodge Grassmann matrices for this space are:
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23 13 12

24 1214

25 1215

1434 13

35 15 13

2

155 45 14

34 24 23

35 2325

45 25 24

45 35 34

0 0

0 0

0 0

0 0

0 0

0 0( )

0 0

0 0

0 0

0 0

a a a

a a a

a a a

a a a

a a a

a a az

a a a

a a a

a a a

a a a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  











 









 , 

15 25 35 45

14 24 34 45

3

5 13 23 34 35

12 23 24 25

12 13 14 15

0

0

( ) 0

0

0

a a a a

a a a a

z a a a a

a a a a

a a a a



    
 


 
    
 

   
    

We calculate 
 

2 3

5 5 1 2 3

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0
( )( ( )) . . .

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Tz z q q q


   
   

   
   
   
   
   

       
   
   
   
   
   
   
   
   

4 5

0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0
. .

0 0 1 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

q q

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  
 

 
 
 
 
 
 
 

0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 
 
 
 
 
 
 
 
 
 
 

 
 


 
  

 

which provides an alternative way for computing the five quadratic Plucker relations defining 

decomposable vectors in 2 5 . 


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6. The Grassmann and  Hodge-Grassmann Matrices and the Canonical 

Representation of Multivectors 

The kernel of the Grassmann matrix and the image of the transpose of the Hodge Grassmann matrix 

of a multivector define two fundamental spaces that determine a canonical representation of 

multivectors. The relation between those two spaces is demonstrated by the following result. 

 

Theorem(3): Let mz  then the following holds true: 

{ ( )} { ( )} { ( ) }m n m n m T

r n n nz RowSpan z z
      

 

Proof: 

1 1Let us consider { ( )} with 1,  then  m

r nu z u   1 0   and thusu z      11z u z 
 
for some 

λ>0 and 
1

1 1 1mz z  , . We will prove that such a 1u belongs to the image of the  transpose 

of the Hodge Grassmann matrix ( ( ))n m T

n z
 . To establish this we will calculate first the expression 

* *

1 11(( ) )u z z  . First we consider 
1
, ,

n
…u u  an oriented orthonormal basis of U with 1u  as its first 

element. Then 
 

1

1

,1m nQ

z z u 
   

   

Hence 

1 1

1 1 1 1

1 1

1 1 1 1

* * * *

1 11 1

,1 ,1

* *

1

,1 ,1

(( ) ) (( ) )

(( ) ( ))

m n m n

m n m n

Q Q

Q Q

u z z u z zu u

z z u u u

  
   

   
   

   

   

   

   

       

    

 

   

The only nonzero terms of the above expression are those that ω=ω1 hence: 

 

1

* * 2 * *

1 11 1

,1

(( ) ) (( ) ( ))                           (22)
m nQ

u z z z u u u  
   

        

Now we also have that: 

 
* * 1 * *

1 1

1 * * 1 1

1 1 11

, (( ) ( )) ( 1) ( ( ) ( ))

( 1) ( 1) (( ) ( ) ) ( 1) ( 1) ), ( ) ( 1) ( 1)

n

i i

n nm n nm n nm

i i i

u u u uu u u u

u u u u uu u u u

   

   




  

            

                  
 

 

Proving that: 
* * 1

1 1(( ) ( )) ( 1) ( 1)n nmu uu u 

      
 

 

Which combined with (22) implies: 

 

1

* * ` 2 1

1 11 1 1

,1

(( ) ) ( 1) ( 1) ( ) =(-1) ( 1)                           (23)
m n

n nm n nm

Q

u z z z u u
  

 

 

       

Equation (23) can be rewritten as: 

*1 *

1 1

( 1)
(-1) ( ( )) =

nm
n z z u



 


 

Which by Corollary(3) implies that 1 Im( ( ) )n m T

nu z
   proving the result. 


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We consider now the two fundamental spaces associated with the multivector z: 

 

1 1

2 2

1 2 1 2

( ) ( ( ))  with  ( ) dim ( ( ))

( ) ( ( ) )   with  ( ) dim ( ( ) )   

{0} ( ) ( ) ,  where  0 ( ) ( )   

m m

r n r n

n m T n m T

n n

z z d z z

z z d z z

z z d z d z m

  

   

   

     
 

 

We may now establish the following result: 

Theorem(4): The following properties hold true for a mz  

 

a. Let 
11

{ , , }
d

…u u  be a basis for  1( )z  then z can be written as   
1

11 d
z … zu u    . 

b. 
2( )mz z   

Proof: 

a. This part of the proof follows from the fact that if 0
i

zu    then 
iu is a factor of z . 

b. Consider now the orthogonal decompositions: 

2 2

2 2

( ) ( )

( ) ( ( ))m m m

z z

z z





 

    
   

 

It is easy to see that the elements that span 
2( ( ))m z   are of the form 1u ww    where 

2( ( ))u z  . It suffices to prove that  , 0z w   for all elements w spanning the space 

2( ( ))m z  . Indeed: 

* * 1 * * 1 * *

1 1 1 1, ( ) ( 1) ,( )   , ( 1) ( )  0n nz u w u w z u w z u w z                  

since  
 2u ( ( ))z   1 * *

1 2and ( 1) ( ) ( )n w z z    and this proves the result. 

 
 
 

Corollary(4): If  
11

{ , , }
d

…u u  a basis for  1( )z , then the multivector z can be represented as:  

1
11 d

z … zu u   
 

where 1

31
( )

m d
zz


 , where 3( )z  is the orthogonal complement of 1( )z  in 2 ( )z . 



Example (6): Consider Multivectors z in 3 6 for which d1=1 and d2=4 and let 1 2 3 4
{ , , , }u u u u be a 

basis for 2 ( )z  by extending the basis 
1

{ }u of 1( )z . Then, the canonical representation of z is: 

3 31 2 2 4 3 4 1 2 1 2 4 1 3 4
( )z a u b c a u b cu u u u u u u u u u u u u u               

 



Finnaly, we present a result that establishes some fundamental relationships between the singular 

vectors and the singular values of the Grassmann and Hodge-Grassmann matrices. This is deduced 

by the following theorem that describes a relationship between these two matrices: 

 

Theorem(5): For any m nz  the following holds true: 

 
2

( ) ( ) ( ) ( )m T m n m T n m

n n n n nz z z z z I
      
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Proof: 

The above relation is equivalent to proving that the bilinear form  

2* *
( , ) , , ,             (24)Q u w u z w z u z w z z u w             

is equal to zero , nu w  . To this end it is equivalent to ptove that a) 1 1 1 1( , ) 0,  : 1Q u u u u    

and b) 1 2 1 2 1 21 1( , ) 0,  , : 1 and , 0Q u u u u u u u u      .  To prove a), we consider 
1
, ,

n
…u u  an 

oriented orthonormal basis of 
n

with 1u  as its first element. Then  

2

1 1 1 1

,1 ,1 ,1

, ,
m n m n m nQ Q Q

u z u z z u z u zu u   
            

            

* * * * 2

1 1 1 1

,1 ,1 ,1

, ( ) , ( )
m n m n m nQ Q Q

u z u z z u z u zu u   
            

            

Therefore: 
2 2 22 2

1 1

,1 ,1

( , ) 0
m n m nQ Q

Q u u z z z z z 
       

        

To prove b), we consider 
1
, ,

n
…u u  an oriented orthonormal basis of 

n
with 1 2,u u  as its first two 

elements. Then  

1 11 1

1 1 1 1 1 1

1

1 1 1

1 2 1 2

,1 ,2

1 2

,1 ,2 ,2 ,1

1 2 2 12, 1,

,1,2 ,1,2

2, 1,

,1,2

, ,

,

,

m n m n

m n m n

m n m n

m n

Q Q

Q Q

Q Q

Q

u z u z z u z uu u

z u z uu u

z u u z u uu u

z z

  
   

  
     

  
   

 
 

 

 

   

 

   

     

   

 

        

     

       

 

 

 

 

 1

 

Also 

1 11 1

1 1 1 1 1 1

* * * *

1 2 1 2

,1 ,2

* *

1 2

,1 ,2 ,2 ,1

1 *

1 2 2 11, 2,

,1,2 ,1,2

, ( ) , ( )

( ) , ( )

( 1) ( ) , ( 1) (

m n m n

m n m n

m n m n

Q Q

Q Q

m m

Q Q

u z u z z u z uu u

z u z uu u

z u u z u uu u

  
   

  
     

  
   

 

 

   

   

     



   

        

     

        

 

 

 

1 1

1 1 1

*

1, 2,

,1,2

)

m nQ

z z 
   



 

 

Therefore 

1 1 1 1

1 1 1 1 1 1

2

1 2 1 22, 1, 2, 1,

,1,2 ,1,2

( , ) , 0
m n m nQ Q

Q u u z z z z z u u   
         

        

 

And this establishes the result. 

□ 

Corollary(5): The matrices ( )m

n z and 
*

( )n m

n z  have the same right singular vectors ix and the 

corresponding singular values ,i i   obey the identity 
22 2  1,...,i i z i n     . 

□ 

The above, leads to a result demonstrating the relationship between decomposability and the 

singular values of the Grassmann matrix. 
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Corollary(6): The vector m nz  is decomposable, iff the matrix ( )m

n z has k singular values 

equal to 0 and n-k singular values equal to z . 

Proof 

From Theorem 2 and Corollary 6 we have: 

22 2( - ) 0 1,...,i iz i n      

Therefore all singular values of the Grassmann matrix are either 0 or z . The proof then follows 

immediately by Proposition 4. 

□ 

The dual result of the above is the following corollary: 

Corollary(7): The vector m nz  is decomposable iff the matrix 
*

( )n m

n z has n-k singular 

values equal to 0 and k singular values equal to z . 

The above lead to the following result: 

Corollary(8): The vector m nz  is decomposable iff  

1{ ( )} ( ) } ( ,..., )m n m T

r n n mz col span z span x x
   {  

Where 1,..., mx x  are the right singular vectors of the Grassmann matrix corresponding to its 0 

singular value or the right singular vectors of the Hodge-Grassmann matrix corresponding to its  

singular value that equals to z . 

□ 

The properties of the Grassman matrices provide the means for developing a new approach for the 

direct computation of exact, or approximate solutions of DAP in a direct way, without resorting to 

the use of methods based on  Global Linearization [8]. 

 

7. The Solution of the Exact and Approximate DAP 

As described in section 2, the Determinantal Assignment Problem can be decomposed into a linear 

and a multi-linear problem defined as: 

Linear problem: given by equations (3) which can be rewritten as 

    t tk P a                                                       (26) 

where tk  is an unknown l vector, P is a ( 1)q d   matrix, known as the Plucker matrix of the 

problem [4] and a  is 1d   coefficient vector of a d  degree polynomial ( )a s . 

Multi-linear problem: given by equations (4) which express the fact that the l vector tk  is 

decomposable.  

 

The exact DAP is to find a decomposable l vector tk  that satisfies (26) and is an intersection 

problem between a linear variety and the Grassmann variety. The approximate DAP is addressed 

when the exact problem is not solvable. In that case we try to minimize the distance between the 

linear variety given by (25) and the Grassmann variety of all decomposable vectors. 
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Since we are interested to place the roots of the polynomial ( ) ( ),   ( )  = [1, s,...., s ] t t da s a e s e s , where 

d is the degree of the polynomial to be assigned.  Let A be a right annihilator matrix of the vector ta  

(i.e. 0ta A  ), then (25) may be expressed as  

0tk PA   

If V is an orthonormal basis matrix for the left kernel of PA , then tk  equals to 
t tk x V , p qV   where p  being the dimension of the left kernel of PA . 

 

Thus for tk  to be decomposable, or to be the closest to decomposability, we require that either 

(a) The QPRs are exactly zero, that is 
*

( ) ( ) 0l l T

m m lk k    

     or 

(b) The square norm of the QPRs  is minimum,  that is minimize 
*

( ) ( )l l T

m m lk k    

Therefore for both exact and approximate DAP we have to solve the following optimization problem 

Problem:  
*

min ( ) ( )l l T

m m lk k    subject to   t tk x V  and 1x   

 

We may express the objective function of this problem as 

 

   
2

* * * * *
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )l l T l l T l l T l T l l T l

m m m m m m m m m mk k tr k k k k tr k k k k             

 

Substituting now, 
* *

( ) ( )l T l

m mk k   by 
2

( ) ( )l T l

m m mk I k k  , we get 

 

   
2 222 4*

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )l l T l T l l T l l T l

m m m m m m m mk k tr k k k k k m l k tr k k                

 

Hence, the optimization problem (26) may be written as 

 

 
2

max  ( ) ( ) ,   subject to 1
t tl T l

m mtr x V x V x                                                         (27) 

The objective function of the new optimization problem is a homogeneous polynomial in p  variables 

 1 2, , , px x x x  under the constraint 1x  . This is a nonlinear maximization problem which can be 

solved using usual optimization methods and algorithms.  

 

Remark (6): It is known [8], [21] that this problem is similar to the zero assignment by squaring 

down and thus it  has generically real solutions when l(m-l)>d. When l(m-l)=d the existence of real 

solutions depends on the degree of the corresponding Grassmannian [20]; in these cases the 

optimization algorithm may provide exact solutions. In the case where l(m-l)<d the problem of 

exact DAP is not generically solvable and then the algorithm provides approximate solutions. 

□ 

Iterative Method for Computing Solutions: Here we will propose an iterative method resembling 

the power method [18], [19] for finding the largest modulus eigenvalue and its corresponding 

eigenvector of a matrix that solves the above problem.  
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We define by   the matrix matrix 

 ( ) ( ) ( )
t tl l T

m m ijx V x V x

 
 

     
 
 

 

where ( )
t

ij ijx x A x   a quadratic function in x , then the objective function  is  
2 2

, 1

( )
m

ij

i j

tr x


   and 

the Lagrangian of the problem is given by 

 22

, 1

( , ) ( ) 1
m

ij

i j

L x x x  


                                                                             (28)                           

It is readily shown that the first order conditions are given by 

, 1

4 ( ) 2 0
m

ij ij

i j

x A x x 


   

If we now define by ( )A x  the p p  matrix defined by 

, 1

( ) ( )
m

ij ij

i j

A x x A


  

the first order conditions can be rewritten as a nonlinear eigenvalue problem defined by 

( )
2

A x x x


  

The solution of the problem is that x  that correspond to the maximum eigenvalue of the above. Thus 

can be found by applying the iteration that resembles the power method: 

1 ( ) / ( )n n n n nx A x x A x x 
       (29)

 

The stopping criteria can be of the form  1n nx x    . We have an exact solution to DAP wherever 

the objective function takes the value m l . The method can be summarized as follows: 

Computational Procedure 

1. Calculate the solution of the linear problem parametrised in the form 
t

x V : 

2. Calculate the parametrised Grassmann matrix ( )
tl

m x V  and the matrix Φ. 

3. Calculate hence the matrix 
, 1

( ) ( )
m

ij ij

i j

A x x A


  

4. Apply the iteration (29) until some stopping criteria are met. The vector nx  of the last iteration 

gives rise to the multivector 
tt

nk x V  which is closer to the Grassmannian representing the set of 

acceptable solutions for DAP. 

5. Calculate the decomposable  vector and hence a solution of approximate DAP, that best 

approximates tk  

Remark (7): Such multilinear eigenvalue eigenvector problems has been studied in the literature 

[18,19] for symmetric tensors and similar power methods are employed for their solution. The main 

problem for these methods is that convergence is not always guaranteed as in the static matrix case. 

For this, a shifted power methods has to be employed employed [18]. 

□ 
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Remark (8):A major application of DAP is the pole placement problem where the polynomial 

matrix M(s) is the composite MFD of a linear system the degree of which equals to the number of 

states n of the system. The unknown matrix [Ip,K] has dimensions p×(p+m) where p is the number 

of inputs and m is the number of outputs of the system and finally the polynomial a(s) correspond to 

the closed loop pole polynomial which has degree n. The generic solvability conditions for real 

solutions now become mp≥n whereas when mp<n the problem cannot generically solved.  

□ 

Here we present two examples for DAP corresponding to the pole placement problem one that we 

can find exact solutions and one for approximate solutions. 

 

Example (7): Consider the system of 3 inputs, 3 outputs and 7 states with transfer function which 

 has the following composite MFD: 

3 2

2 2

2

1 1 1
( )

( ) 0 1 2 2 1 1
( )

0 0 1 3 1

T

T

s s s s
D s

M s s s s s s
N s

s s s

 
   

        
     

 

 

The system has 5 poles at 0 and 2 poles at j , it is therefore not BIBO stable. We would like to 

place its poles at positions 1, 2, , 7   and we are seeking an output feedback 3 7K   such that 

          
( )

det , ( 1)( 2) ( 7) ( )
( )

D s
I K s s s a s

N s

  
      

  
 

By applying the Binet-Cauchy theorem we get  

ttk P a , with 20tk  , 20 8P   

where 
t

a  is the coefficient vector of the polynomial ( )a s . Note that for the exact problem to be 

solvable tk  has to be decomposable. The solution of the linear problem is of the form  

t tk x V , where 13tx   and 13 20V   

 

The optimization problem (27) has as an objective function a 4
th

 order homogeneous polynomial in 

13 variables, i.e.  1 2 13, , ,x x x x . The matrix ( )A x  is a 13 13  matrix of the form 
6

1, 1

( ) ( )ij ij

i j

A x x A
 

   

where ( )ij x  are 36 quadratics in 13 variables whose representation matrix is ijA . Starting from an 

appropriate selected vector 13

0x  , we apply the iteration  

1 ( ) / ( )n n n n nx A x x A x x   

and after a sufficiently large number of iterations we stopped when the value of the objective 

function becomes 6 3 3m l     in which case we have exact pole placement.  

 

The solution 1

t

nk x V  is given by 

(-0.000345, -0.198335, 0.271311, -0.0244774, 0.0826322,-0.112460, 0.0100429, 0.327394,-0.0891579, 

0.330639, 0.0815575,-0.451625, 0.0404264, 0.363256, -0.210901, 0.243668, 0.394281, -0.0607202, 0.03

tk 

47231, 0.184841)
 



 23 

this is a decomposable vector which gives rise to the feedback controller  

958.381 1309.17 117.214

239.588 326.091 29.119

576.064 786.652 70.971

K

  
 

 
 
  

 

                                                                                                                                         □ 
The previous example demonstrated the case where an exact solution exists. We give now an 

example for the case where the generic solvability conditions are not satisfied, The proposed 

algorithm in that case provides an approximate solution.
 

 

Example(8): Let the system of 2-inputs, 4-outputs and 9-states given by the following MFD 

T
5 4 3 2

3 3 2

(s 3) s s s 1 s 1 1
M(s)

0 s(s 2) s s 2 2s 1 s 1

   
  

    
 

This system is unstable having one pole at s 0 . We seek to place its poles at s 1, 2, 3, , 9      

by static output feedback and thus to stabilize it. We form the matrix 

  15 9

2 2 2P C (M( 1)) C (M( 2)) C (M( 9))       and let 
6 15V   an orthonormal basis 

matrix for the left kernel of P . Then, a representative z  of the linear problem satisfies:
6z xV,    x  . To find the best decomposable vector we consider the matrix 2

6
(x)= (xV) and 

the 4
th

 order homogeneous polynomial 
2

Tp(x)=tr (x) (x)  

We solve the maximization problem:    maxp(x)    s.t.  x 1  and hence we find, 

x 0.0286776,  0.781733,  0.48096,  0.196208,  0.331037,  0.0930859  

which gives rise to  

z xV (0.0000703886,  0.00168933,  0.0111918,  0.125527,  0.0986488,  

0.00523094,  0.0146791,  0.150223,  0.118616,  0.0519013,  

0.656751,  0.514066,  0.375565,  0.283407,  0.133626)

 



   

 

the best decomposable approximation for z  is  

 

z (0.00053719,  0.00190004,  0.0110096,  0.125537,  0.0986499,  

0.00508362,  0.014781,  0.150217,  0.118615,  0.0519128,  

0.656751,  0.514066,  0.375565,  0.283407,  0.133626)

 



   

 

which gives rise to the controller: 

9.46425 27.5179 279.661 220.828
K

3.53733 20.4968 233.715 183.658
 

Using this controller the closed loop pole polynomial is calculated via  

2
det I ,  K M(s) p (s)  
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and the roots of p (s)  are: 

6,12657, 4.01 2.17818j, 2.60657 0.787584j

1.93878, 1.12736 4.99248j, 0.984124
 

 

Clearly, all of them have negative real part and thus p (s)  is stable. Therefore, the solution of the 

approximate DAP of the above defined pole placement problem guarantees stability (but not exact 

pole placement).  

                                                                                                                                          □
 

8. Conclusions
 

A new method for computing solutions of the DAP problem has been presented based on some new 

criteria  for the solution of exterior equations, or for the decomposability of multivectors mz  . 

These new criteria have been given in terms of the rank properties of the structured Grassmann 

matrix ( )m

n z  and its Hodge dual 
*

( )n m

n z defined for every mz  . The new tests are simpler in 

nature to that given by the QPRs and they have the extra advantage that allow the reconstruction of 

the solution space 
z
 of the 

1 m
… zv v    equation, by computing the right null space of ( )m

n z   

The new framework based on Grassman matrices provide an alternative formulation for investigation 

of existence, as well as computation of solutions of DAP that is reduced to an optimization. It is 

known [7], that for a given assignable polynomial ( )s  the solution space of the linear subproblem 

of DAP may be parametrically expressed as ( )t   where t  is a free parameter vector; by 

substituting into the GM, the ( )m

n t   GM is obtained with its entries being linear functions of ( )t  

vectors. Solvability of DAP is thus reduced to finding  the t  vectors such that the rank condition 

is satisfied. In comparison to the algebraic geometry framework (real intersections of ( )  and 

( )m n  ), this alternative formulation has the advantage that it may tackle nongeneric cases and 

whenever a solution exists, their computation is straightforward.  

The nature of the control problem may impose restrictions on the matrix H  of DAP, which may 

be expressed either as fixed values, or as inequality constraints on certain entries of H   The algebraic 

geometry framework, although useful for establishing existence of solutions in generic cases, may be 

difficult, or almost impossible to use. The alternative approach, based on the structured Grassmann 

matrix, is more suitable; in fact, fewer free parameters in ( )m

n z  make the investigation of its rank 

properties simpler, rather than more difficult. By combining the power of algebraic geometry 

methods (in establishing conditions for generic solvability) with the concreteness of the GM 

framework (tackling specific cases, as well as computations), an integrated powerful approach will 

emerge for the study of DAP.  This new method transforms the exact or approximate DAP to a 

nonlinear eigenvalue-eigenvector problem which can be solved efficiently using appropriate 

numerical methods. A main feature of this approach is the convergence of the method that it is 

apparent experimentally but it has to be rigorously proven. Similar power methods for symmetric 

tensors have been addressed in [18,19]  and convergence has been proven for appropriate 

modifications called shifted power methods. 
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