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An exact spectral-dynamic stiffness method for free
flexural vibration analysis of orthotropic composite

plate assemblies - Part I: Theory

X. Liu∗, J.R. Banerjee
School of Mathematics, Computer Sciences and Engineering, City University London,

London EC1V 0HB, UK

Abstract

A spectral-dynamic stiffness method (S-DSM) for exact free vibration analysis
of general orthotropic composite plate-like structures is presented in the paper.
The method combines the advantages of the classical dynamic stiffness method
(DSM) with those of the spectral method, and it resembles the finite element and
the boundary element methods. The formulation is based on the exact general so-
lution of the governing differential equation, which provides complete flexibility
to describe any arbitrary boundary conditions. The dynamic stiffness formula-
tion is essentially accomplished through a mixed-variable approach in a symbolic
form with explicit expressions rendering physical meanings. Then a systematic
procedure for plate assemblies under arbitrary boundary constraints is described.
Finally, a set of novel techniques are proposed to enhance the Wittrick-Williams
algorithm by resolving the fully-clamped plate problem. The validation of the the-
ory and its applications to a wide range of engineering structures are demonstrated
in Part II of this two-part paper.

Keywords: Spectral-dynamic stiffness method (S-DSM), composite plate
assemblies, free vibration analysis, arbitrary boundary conditions, enhanced
Wittrick-Williams algorithm.

1. Introduction

Composite structures are increasingly being used in areas of aerospace, civil,
naval, automotive, electronic, and armoured engineering amongst others. In many
cases, complex engineering structures are modelled by composite plates and their
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assemblies subject to arbitrarily prescribed boundary conditions. In this respect,
free vibration analysis is an essential consideration in each stage of such structures
during design, manufacturing, operation and maintenance. Thus an accurate and
efficient method to compute natural frequencies and mode shapes of composite
structures is important. Furthermore, some areas like structural health monitor-
ing and active control of vibration and noise require accurate knowledge of free
vibration behaviour both in the low and high frequency range, warranting the de-
velopment of more accurate and robust methods. It should be noted that the finite
element method can becomes unreliable in vibration analysis at high frequency
ranges for example, cutting tools at ultrasonic frequencies.

Against this background, the first part of this paper is aimed at developing an
efficient and robust method for exact free vibration analysis of composite plate-
like structures for any arbitrary boundary conditions within any frequency range.
This method is termed as the spectral-dynamic stiffness method, abbreviated as S-
DSM. The S-DSM is mainly based on the methodology of both the dynamic stiff-
ness method (DSM) and the spectral method (SM). As a consequence, it has the
merits of both methods. Furthermore, the S-DSM shares some important advan-
tages of the finite element method (FEM) and boundary element method (BEM),
but does not have any of their disadvantages. Table 1 shows the main features of
the current S-DSM side by side to those of the conventional FEM and DSM. The
differences and similarities are self-explanatory in the table.

The current S-DSM inherits all the advantages of the classical DSM such as
high accuracy, computational efficiency and the certainty that no natural frequen-
cies of the structure is missed. Understandably the S-DSM and DSM have much
superior modelling capability over the FEM and other methods. This is mainly
due to three reasons: (i) The dynamic stiffness (DS) matrix is formulated from
the strong form solution of the governing differential equation (GDE) and bound-
ary conditions (BC). Therefore no discretisation is needed except when geometric
and/or material discontinuities in the structure occur. Consequently, the DSM and
S-DSM give exact solutions with high computational efficiency. This is in sharp
contrast to the usual FEM and BEM whose shape functions are generally approxi-
mate and both can be computationally expensive when higher natural frequencies
and/or better accuracies are required, (ii) The DSM and S-DSM are versatile be-
cause the DS matrix can be assembled in the same way as the FEM, (iii) Natural
frequencies are computed by applying the Wittrick-Williams algorithm on the DS
matrix. This algorithm is robust and it ensures that no natural frequency of the
structure is missed.

The DSM was pioneered by Kolous̆ek [2] in the 1940’s, but it was not until
the development of the Wittrick-Williams (WW) algorithm [3] in the seventies
when the DSM became popular and entered into a sustained period of prosperous
developments. In the past four decades numerous exact DS theories have been
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Table 1: Comparisons of the FEM and DSM with the current S-DSM for free vibration problems.
For notational convenience, some abbreviations are introduced: GDE - Governing differential
equation; BC - Boundary conditions; DOF - degree(s) of freedom; SF - shape function(s).

Conventional FEM DSM (SEM) S-DSM
Mathematical ba-
sis

Variation based Differentiation based (strong
form)

Differentiation based (strong
form)

Methodology Uses approximate shape func-
tions to describe the displace-
ment field; Relies on a varia-
tional formulation to derive the
elemental stiffness and mass
matrices; Assemble for the
whole structure; Apply BC and
solve

Obtain exact general solution
of GDE; Substitute it into BC
to form elemental DS matrix;
Assemble the DS matrices for
the whole structure; Apply BC
and solve

Obtain exact general solution
of GDE in spectral sense (both
in time and in space); Uses a
set of novel techniques to make
the method numerically stable
and efficient; The rest steps are
similar to DSM

h-refinement [1]
(finer mesh)

Fine mesh is needed, depend-
ing on the required accuracy
and/or for the highest natural
frequency

Extremely coarse mesh is ade-
quate for exact solutions unless
geometric and/or material dis-
continuities occur

Same as DSM

p-refinement [1]
(higher SF order)

Only low order polynomials
are adopted

N/A (only allows sinusoidal
deformation)

Space-wise spectral refine-
ment, SF order can be as high
as possible

Shape functions
(SF)

Approximate and frequency in-
dependent

Exact frequency dependent
(spectral in time only)

Exact frequency-wavenumber
dependent (spectral both in
time and in space)

Assembly Assemble directly to allow
complex geometries: compat-
ibility, continuity and equilib-
rium are generally satisfied

Assemble directly, but limited
to one-directional (prismatic)
assembly

Assemble directly to allow
complex geometry: the com-
patibility, continuity and equi-
librium are automatically satis-
fied

Arbitrary bound-
ary conditions
(BC)

Yes, approximately applied at
the boundary point nodes

No, limited to Levy type
plate with sinusoidally varied
boundary conditions

Yes, directly and accurately ap-
plied using linear transforma-
tion

Final eigenvalue
matrix(ces)

Two frequency-independent /
symmetric / sparse matrices for
mass and stiffness properties

One frequency-dependent /
symmetric / dense (sparse for
large assembly) DS matrix

Same as DSM

Solver Generally linear eigenvalue
solvers

The Wittrick-Williams algo-
rithm

The Wittrick-Williams algo-
rithm

Computational
cost

Expensive especially when
higher natural frequencies
and/or higher accuracies are
required

Inexpensive Inexpensive

Natural frequen-
cies

May miss some Impossible to miss Impossible to miss

High frequencies
computation

Difficult, if not impossible Possible but has been difficult
so far

No problem, robust and
efficient

proposed for a wide range of one-dimensional (1D) elements such as bars and
beams for which Banerjee et al. [4, 5, 6, 7, 8, 9] have been leading promoters.
However, when developing two dimensional (2D) DS elements like plates, two
serious limitations emerged for classical application of the DSM.

(i) First, the DSM was restricted to Levy-type rectangular plates with one pair
of opposite edges simply supported. Thus, it allowed only sinusoidal de-
formation in one direction (e.g., see [10, 11, 12, 13, 14, 15]) which brought
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two inevitable consequences. On the one hand, it is undoubtedly an obsta-
cle in applying more general boundary conditions. On the other hand, the
Levy-type solution restricted the application only to one-directional plate
assemblies and there was no clear possibility of assembling dissimilar ele-
ments like beams and bars. These are naturally serious restrictions because
engineering structures are modelled as plate and other elements assemblies
in a quite general manner.

(ii) Additionally, it should be emphasised that in almost all of the previous DSM
developments on plates [10, 11, 12, 13, 14, 15], one of the key issues in the
WW algorithm application was the evaluation of the natural frequencies of
fully-clamped plate elements, which can sometimes be very difficult.

The challenges encountered in solving the first aforementioned restriction lie
in obtaining a general solution of the plate differential equation in free vibration.
Such a general solution should not only satisfy the 2D GDE rigorously but also
must provide accurate representation for arbitrarily prescribed BC on the four
edges of the plate. This is resolved in this paper by using the concept of spectral
method (SM) [16, 17], which is indicated by the letter ‘S’ for the current method
S-DSM. It should be noted that the term spectral in the current S-DSM is used
in both time-wise and space-wise sense, which is somehow different from the
spectral element method (SEM) used by many, see Patera [18], Ostachowicz et
al. [19] and Lee [20] for examples. In [18, 19], spectral of SEM is used only for
spatial coordinates and the spectral in [20] by Lee is only for time coordinate. In
this paper, the time-wise Fourier transform (spectral) of the time coordinate will
be referred to as frequency whereas the space-wise Fourier transform (spectral) of
the spatial coordinates is denoted as wavenumber.

The second limitation mentioned above has been completely removed in the
research by an elegant technique inspired by the Gauss circle problem [21] in
conjunction with the use of a mixed-variable formulation for the DS matrix. This
methodology enhances the WW algorithm significantly and makes the current
S-DSM efficient and robust within any frequency range covering low to high fre-
quencies.

The methodology of S-DSM is somehow different from that of the FEM (see
Table 1) and some technical preliminaries are required to show the steps used in
the development of the S-DSM.

(i) The time-dependent plate vibration problem governed by the GDE is first
transformed into frequency dependent GDE by using harmonic oscillation
assumption (Section 2.1). Then the general solution is represented as a su-
perposition of two series solutions, which are deduced analytically based on
the idea of the spectral method [16, 17] applied in the spatial domain. The
general solution is then partitioned into four symmetric and antisymmetric

4



component cases (Section 2.2). Accordingly, the BC are partitioned into
four symmetric and antisymmetric components as described in Section 2.3.

(ii) Then in Section 3.1, a symbolic, but concise derivation is carried out through
a mixed-variable formulation with unified notations leading to DS compo-
nent matrices. (The formulation also facilitates the application of the en-
hanced WW algorithm introduced later.) In the light of the partitioning of
the BC, the analytically formulated DS component matrices are superposed
to form the DS matrix of the complete orthotropic composite plate element
for the general case (Section 3.2).

(iii) Following analogous procedure as used in the FEM, the overall DS matrix
of a plate assembly is modelled by assembling the DS matrices for each
individual plate elements (Section4.1).

(iv) The overall DS matrix now satisfies the GDE exactly in the whole domain,
which also allows the application of any arbitrary BC accurately, see Section
4.2.

(v) The natural frequencies of the plate structure are extracted through the ap-
plication of the WW algorithm enhanced significantly in this paper by using
novel techniques. Mode shapes are computed using a slightly different pro-
cedure when compared with that of the classical DSM, see Section 5.

It is now appropriate to review briefly some of other typical analytical and
semi-analytical attempts made for free vibration analysis of plates. These in-
clude the Rayleigh-Ritz method [22, 23, 24, 25], Fourier series-based analyt-
ical method [26, 27, 28, 29] and superposition method [30, 31, 32] amongst
others [33, 34, 35, 36]. The Rayleigh-Ritz method has been frequently used
[22, 23, 24, 25] because of its flexibility and conceptual simplicity [37]. However,
different admissible functions should be chosen for different boundary conditions
so that the formulation using the Rayleigh-Ritz method is not unique. Recently,
a Fourier-series based analytical method (FSA) was proposed by Li and his co-
authors [26, 27, 28, 29] for plates with general boundary supports. In the FSA,
a fictitious Fourier cosine series was used to satisfy first the elastic BC and then
the GDE to form the final eigenvalue system expressed in terms of separate stiff-
ness and mass matrices. However, when using this method, there is no guarantee
that no natural frequency of the structure will be missed and the method may be-
come computationally expensive and very difficult in achieving high accuracies,
particularly in the high frequency range. Besides, the assembly procedure in this
method seems to be quite tedious and cumbersome [28, 29]. The superposition
method on the other hand, pioneered by Lamé [38] and extensively used by Gor-
man in plate vibration problems (see his review paper [39]), has been shown to be
an accurate and efficient method. However, the method is not sufficiently general
since different BC require different formulation, and it is limited to a single plate
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[30, 31, 40, 41] or simple plate assemblies [42, 43]. Nevertheless, it should be
pointed out that the superposition method is an excellent idea which has partly
motivated the formulation of the current S-DSM. Accurate and efficient attributes
of the superposition method are preserved as well as further improvements are
made in the current S-DSM with the help of the enhanced WW algorithm. Fur-
thermore, the current S-DSM can be applied to arbitrarily prescribed boundary
conditions, which was not so easily possible in the superposition method.

The research described in this paper has no-doubt opened up novel possibil-
ities for solving complex plate and shell vibration and buckling problems in an
exact and efficient manner. In Part II of this two-part paper, an extensive numer-
ical results computation exercise is conducted to demonstrate the superiority of
the proposed method in terms of its exactness, efficiency and robustness over the
conventional FEM and other analytical and semi-analytical methods.

2. Governing differential equation, general solution and boundary condition

2.1. Governing differential equation
Consider a rectangular orthotropic composite Kirchhoff plate as shown in Fig.

1 occupying the region Ω × [−h/2, h/2], where Ω = [−a, a] × [−b, b] denotes
the midplane surface of the plate, and h is the total thickness. The composite

O x

yz

b

b

a a

h

φxW

Vx

Mxx

φy

W

Vy

Myy

Figure 1: Coordinate system and notations for displacements and forces for a thin laminated plate.

plate consists of Nl number of specially orthotropic layers that are symmetri-
cally aligned within Ω. If classical lamination theory [44] is applied, clearly the
bending and extensional deformations will be decoupled for any symmetric lam-
inate (in laminate notation: Bij = 0). In this paper, attention is focused only
on the transverse vibration of the plate. Using classical Kirchhoff theory, the
displacement fields of the plate can be expressed as: u(x, y, z, t) = −z∂w/∂x,
v(x, y, z, t) = −z∂w/∂y and w(x, y, z, t) = w. The governing differential equa-
tion (GDE) and the natural boundary conditions (BC) for the plate can be derived
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using Hamilton’s principle [44]. For symmetric and balanced cross ply laminates,
D16 = D26 = 0, therefore the GDE takes the form [44]

D11
∂4w

∂x4
+2(D12 +2D66)

∂4w

∂x2∂y2
+D22

∂4w

∂y4
+ I0

∂2w

∂t2
− I2

(
∂4w

∂x2∂t2
+

∂4w

∂y2∂t2

)
= 0 ,

(1)

where the bending stiffnesses Dij of the plate and the inertia parameters I0 and
I2 are given by

Dij =
1

3

Nl∑
k=1

C
(k)

ij (z3k − z3k−1) , [I0, I2] =

Nl∑
k=1

ρ(k)
[
(zk − zk−1),

1

3
(z3k − z3k−1)

]
(2)

and where ρ(k) is the mass density, C
(k)

ij is the material property matrix related to
constitutive laws in the laminate coordinate system of the k-th layer (see e.g., Ref.
[44]).

If harmonic oscillation assumption w(x, y, t) = W (x, y)eiωt is made and the
following notations are introduced

Γ =
D12 + 2D66

D11

, Λ =
D22

D11

, κ =
I0ω

2

D11

, χ =
I2ω

2

D11

, (3)

the GDE of Eq. (1) can then be transformed into the frequency domain as follows

∂4W

∂x4
+ 2Γ

∂4W

∂x2∂y2
+ Λ

∂4W

∂y4
+ χ

(
∂2W

∂x2
+

∂2W

∂y2

)
− κW = 0 . (4)

Also, Hamilton’s principle facilitates the generation of the natural boundary con-
ditions (BC) as a by-product. Following the sign convention illustrated in Fig. 1,
the natural BC along the boundaries x = ±a may be expressed as

δW : Vx = −D11

(
∂3W

∂x3
+ Γ∗ ∂3W

∂x∂y2
+ χ

∂W

∂x

)
, (5a)

δϕx = −δ
∂W

∂x
: Mxx = −D11

(
∂2W

∂x2
+ ν21

∂2W

∂y2

)
, (5b)

where Γ∗ = 2Γ− ν21. Similarly, the natural BC along y = ±b become

δW : Vy = −D11

(
Λ
∂3W

∂y3
+ Γ∗ ∂3W

∂y∂x2
+ χ

∂W

∂y

)
, (6a)

δϕy = −δ
∂W

∂y
: Myy = −D11

(
Λ
∂2W

∂y2
+ ν21

∂2W

∂x2

)
. (6b)

The notations ϕx in Eq. (5b) and ϕy in Eq. (6b) denote the rotations of the trans-
verse normal about the y- and x-axes respectively (see for example P.132 in Ref.
[44]). The next step will be to seek a general solution of Eq. (1).
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2.2. General solution
In this section, a general solution of Eq. (1) in an exact sense is derived by

superposing two sets of series solutions using the concept of the spectral method
(SM) [16, 17]. If the general solution is expressed as W (x, y) = X(x)Y (y) on the
basis of the separation of variables principle, then each series solution is derived
from first representing either X(x) or Y (y) in terms of modified Fourier series
and then solving for the other direction (either Y (y) or X(x)).

The task of seeking the general solution for Eq. (1) is difficult unless one
embarks on a Levy-type assumption. This is because the general solution must not
only be capable of representing any arbitrary displacement field W (x, y) which
satisfies the GDE of Eq. (1) in the domain Ω, but also it must provide the flexibility
to describe any arbitrary boundary conditions on the four plate boundaries. Owing
to the homogeneity and the linearity, the general solution of Eq. (4) can be sought
by using the method of separation of variables:

W (x, y) = X(x)Y (y) = Ceqx+py , (7)

where C is an arbitrary constant; q and p are the two wave parameters corre-
sponding to x and y. Substituting Eq. (7) into Eq. (4) leads to the following
characteristic equation

q4 + 2Γp2q2 + Λp4 + χ(q2 + p2)− κ = 0 , (8)

which gives the dispersion (spectrum) relation relating the frequency parameter κ
and the two wave parameters q and p. Therefore, any combination of the wave
parameters p, q and frequency parameter κ fulfilling Eq. (8) represents a solution
to the GDE of Eq. (4). So there are infinite number of possibilities of such com-
binations. Naturally, this becomes a formidable problem giving rise to difficulties
when obtaining the general solution. This is of course, very different from Levy-
type solutions (e.g., see Refs. [10, 11, 15]) in which the pair of simply-supported
opposite edges enable one to fix the wave parameter in one direction and the other
wave parameter can then be expressed easily, just like the 1D beam problem (e.g.,
see Refs. [4, 5, 6, 7, 8]). The general solution for the current S-DSM is, however,
resolved using the spectral method. In what follows a detailed description of the
procedure is given.

Based on the concept of spectral method, any arbitrary 1D function X(x) and
Y (y) defined in x ∈ [−a, a] and y ∈ [−b, b] can be represented by modified
Fourier series given in Eq. (A.1) of Appendix A as

X(x) =
∑
m∈N

k∈{0,1}

C̃kmTk(αkmx) , Y (y) =
∑
n∈N

j∈{0,1}

C̃jnTj(βjny) , (9)
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where N = {0, 1, 2, 3, · · · }, C̃km and C̃jn are unknown coefficients and Tk, Tj

denote complete orthogonal sets of Fourier basis functions with the wavenumbers
αkm and βjn taking the form

αkm =

{
mπ/a k = 0
(m+ 1/2)π/a k = 1

, βjn =

{
nπ/b j = 0
(n+ 1/2)π/b j = 1

(10)

where m,n ∈ N. This is a crucial step to be undertaken to obtain the general
solution. The adopted basis functions form an orthogonal complete set, in which
the wavenumbers αkm or βjn have been carefully chosen, see Eq. (10). Essentially
such a series is composed of cosine and sine series. The cosine series forms a
complete set to describe the symmetric component of X(x) or Y (y) whereas the
sine series represents the anti-symmetric component. The details are referred to
in Appendix A. Then for each wavenumber in one direction (αkm or βjn), one can
always obtain the analytical solution in the other direction based on the GDE. To
this end, adding up the above two infinite series and also based on Euler’s formula,
the general solution of the GDE can be written in an exact sense as

W (x, y) =
∑
m∈N

k∈{0,1}

Tk(αkmx)
[
Ckm1 cosh(p1kmy) + Ckm2 cosh(p2kmy)

+ Ckm3 sinh(p1kmy) + Ckm4 sinh(p2kmy)
]
+

∑
n∈N

j={0,1}

Tj(βjny)
[
Cjn1 cosh(q1jnx)

+ Cjn2 cosh(q2jnx) + Cjn3 sinh(q1jnx) + Cjn4 sinh(q2jnx)
]
. (11)

The wave parameters p1km, p2km and q1jn, q2jn are solved by substituting qkm =
iαkm and pjn = iβjn into the characteristic equation (8) to obtain

p1km =
1√
Λ

√
Γα2

km − χ

2
−

√
χ2

4
+ χ(Λ− Γ)α2

km + (Γ2 − Λ)α4
km + Λκ

p2km =
1√
Λ

√
Γα2

km − χ

2
+

√
χ2

4
+ χ(Λ− Γ)α2

km + (Γ2 − Λ)α4
km + Λκ

(12)

and 
q1jn =

√
Γβ2

jn − χ

2
−

√
χ2

4
+ χ(1− Γ)β2

jn + (Γ2 − Λ)β4
jn + κ

q2jn =

√
Γβ2

jn − χ

2
+

√
χ2

4
+ χ(1− Γ)β2

jn + (Γ2 − Λ)β4
jn + κ

. (13)
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It can be proved [16] that the general solution of Eq. (11) establishes a com-
plete solution space of Eq. (4). That is to say, the general solution of Eq. (11) not
only satisfies the GDE of Eq. (4) rigorously, but also provides complete flexibility
to describe any arbitrary boundary conditions on the four sides of the plate. As
pointed out by Doyle [45], the spectral idea always establishes a close relationship
between the structural dynamics and wave propagation problems. Here, the phys-
ical meaning of this general solution becomes self-explanatory if one looks from
a wave propagating point of view. For example, with a given q = iαkm, namely,
when the plate is assumed to move harmonically with the wavenumber αkm in the
x direction, there will be a pair of incident and reflected waves in the y direction
with wave parameters p1km and p2km, respectively and vice versa.

An inspection on Eq. (11) indicates that the general solution of Eq. (11) can be
partitioned into a sum of four component solutions in each of which the function
W kj(x, y) is either even or odd. Thus letting

W (x, y) =
∑

k,j∈{0,1}

W kj(x, y) = W 00 +W 01 +W 10 +W 11 , (14)

where the first index k denotes the symmetry relating to x and second index j de-
notes the symmetry relating to y. The index ‘0’ or ‘1’ denotes an even or odd func-
tion respectively. Therefore, the general solution W (x, y) defined in the region
Ω = [−a, a] × [−b, b] is represented by the four solution components W kj(x, y)
defined on the first quadrant of the midplane Ω1 = [0, a] × [0, b] based on their
symmetry or antisymmetry properties, e.g., W kj(−x, y) = (−1)kW kj(x, y) and
W kj(x,−y) = (−1)jW kj(x, y). According to Eq. (11), the four solution compo-
nents take the following unified form

W kj(x, y) =
∑
m∈N

[A1kmHj(p1kmy) + A2kmHj(p2kmy)] Tk(αkmx)

+
∑
n∈N

[B1jnHk(q1jnx) +B2jnHk(q2jnx)] Tj(βjny) , (15)

where A1km, A2km, B1jn and B2jn are unknown coefficients to be determined; T
stands for trigonometric functions defined in Eq. (A.1) and H represents hyper-
bolic functions with the following definitions

Hj(pikmy) =

{
cosh(pikmy) k = 0

sinh(pikmy) k = 1
, Hk(qijnx) =

{
cosh(qijnx) j = 0

sinh(qijnx) j = 1
(16)

where i = 1, 2. Both Hj(pikmy) and Hk(qijnx) can be denoted by the unified
notation below

Hl(Ξξ) =

{
Hj(pikmy) with l = j , Ξ = p1km or p2km , ξ = y

Hk(qijnx) with l = k , Ξ = q1jn or q2jn , ξ = x
. (17)
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Some useful properties of the above trigonometric T and hyperbolic H functions
will be introduced later. By using the notation

H∗
l (Ξξ) =

dHl(Ξξ)

Ξdξ
, (18)

the following relationships can be obtained based on the properties of hyperbolic
function

diHl(Ξξ)

dξi
=

{
ΞiHl(Ξξ) , i is even
ΞiH∗

l (Ξξ) , i is odd
. (19)

The properties of trigonometric function T based on differentiation rules is given
in Eq. (A.2). Also, a careful inspection on Eqs. (12) and (13) gives the following
identities which will be used in later formulations.

p21km + p22km = (2Γα2
km − χ)/Λ , p21kmp

2
2km = (α4

km − χα2
km − κ)/Λ , (20a)

q21jn + q22jn = 2Γβ2
jn − χ , q21jnq

2
2jn = Λβ4

jn − χβ2
jn − κ , (20b)

Λ(p21km + β2
jn)(p

2
2km + β2

jn) = (q21jn + α2
km)(q

2
2jn + α2

km) . (20c)

2.3. Boundary conditions
Previously, the general solution W (x, y) which is defined in the domain Ω

(Fig. 2(a)) has been partitioned into four components W kj(x, y) defined within
Ω1 (first quarter of Ω, see Fig. 2(b)) with different symmetric/antisymmetric prop-
erties, with kj taking four different combinations of ‘0’ and ‘1’. In this section,
the arbitrarily prescribed BC prescribed along the four boundaries B1 ∼ B4 (Fig.
2(a)) will be partitioned into four corresponding BC components imposed on the
two boundaries Ba and Bb of the plate quarter Ω1, see Fig. 2(b).

x

y

Ω

φ1

W1
V1

M1

φ2

W2

V2

M2

φ3
W3

V3

M3

φ4

W4

V4

M4

B1

B2

B3

B4

(a) BC applied to Ω

Ω1

x

y

O

φkj
a

W kj
a V kj

a

Mkj
a

φ
kj
b

W
kj
b

V
kj
b

M
kj
b

Ba

Bb

(b) BC applied to Ω1

Figure 2: Illustration of the arbitrarily prescribed boundary conditions applied on the entire plate
Ω in (a) which are partitioned into four kj BC components which are prescribed to the quarter
plate as in (b).
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Without loss of generality, any arbitrarily prescribed displacement and force
BC on the four plate edges of Ω can be written in vector form as

W1

ϕ1

W2

ϕ2

W3

ϕ3

W4

ϕ4


=



W (a, y)
ϕx(a, y)
W (x, b)
ϕy(x, b)
W (−a, y)
ϕx(−a, y)
W (x,−b)
ϕy(x,−b)


,



V1

M1

V2

M2

V3

M3

V4

M4


=



Vx(a, y)
Mxx(a, y)
Vy(x, b)
Myy(x, b)
−Vx(−a, y)
−Mxx(−a, y)
−Vy(x,−b)
−Myy(x,−b)


, (21)

where Wi, ϕi, Vi and Mi are introduced for the BC prescribed along boundary Bi

(i = 1, 2, 3, 4 as shown in Fig. 2(a)).
On substituting general solution of Eq. (14) into the general BC of Eqs. (5)

and (6), both the general force and displacement BC can be decomposed into four
kj components as below.

W kj
a

W kj
b

ϕkj
a

ϕkj
b

 =


W kj |x=a

W kj |y=b

−∂xW
kj |x=a

−∂yW
kj |y=b

 ,


V kj
a

V kj
b

Mkj
a

Mkj
b

 = D11


−
(
∂3
x + Γ∗∂x∂

2
y + χ∂x

)
W kj |x=a

−
(
Λ∂3

y + Γ∗∂y∂
2
x + χ∂y

)
W kj |y=b

−
(
∂2
x + ν21∂

2
y

)
W kj |x=a

−
(
Λ∂2

y + ν21∂
2
x

)
W kj |y=b

 , (22)

where ∂i
x and ∂i

y denote the differential operators ∂i
x = ∂i/∂xi and ∂i

y = ∂i/∂yi.
In Eq. (22), the terms labelled with the subscript a or b indicate the corresponding
boundary conditions applied along Ba and Bb of the quarter plate respectively, see
Fig. 2(b).

Therefore, the relationships between the arbitrarily prescribed boundary con-
ditions of Eq. (21) and its four components of Eq. (22) can be established. These
are recorded in Appendix B, which will be used later in the DS development.

3. Development of the dynamic stiffness matrix

In general, the dynamic stiffness (DS) matrix of a structure is formulated by
substituting the general solution into the displacement and the force BC and then
eliminating the unknowns coefficients from the general solution. Although more
or less the same idea applies for the current S-DSM development, there are how-
ever, still some differences when compared with that of the classical DSM devel-
opment.

In the current S-DSM, both the general solution and the arbitrarily prescribed
BC have been decomposed into four kj components with different symmetry /an-
tisymmetry properties, see Eqs. (14) and (22). Therefore, one can develop the DS
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component matrices Kkj corresponding to each kj components. Subsequently,
by considering the relationships between the BC of the whole plate and its four
BC components as given in Eqs. (B.2) and (B.3), these four DS component matri-
ces Kkj can be assembled to form effectively the DS matrix K for the entire plate
for the most general case. In doing so, the formulation is symbolically simplified
and thus computational cost is significantly reduced.

Moreover, due to the application of Fourier series, careful attention is to be
paid during the S-DSM development to ensure that the formulated DS matrices
are symmetric, so as to enable the application of the Wittrick-Williams algorithm.

Finally, the DS component matrix Kkj is generated through a mixed-variable
formulation which makes the current method efficient, accurate and numerically
stable when compared with the classical DS formulation. In the present method,
the unknown coefficients in the general solution are eliminated based on some, but
not all, of the boundary conditions. Then the remaining boundary conditions are
applied to form a mixed-variable algebraic system which is subsequently used to
formulate the DS component matrix Kkj . By contrast, if the classical DS formu-
lation was used, both the force f kj and the displacement boundary conditions dkj

would have be expressed in terms of unknown coefficient ckj , i.e., dkj = Dkjckj

and fkj = F kjckj and the DS matrix is given by Kkj = F kjDkj−1
. The inverse

of the matrix Dkj for the current case requires more computational resources and
may cause numerical ill-conditioning. This will generally be the case especially
when more terms are included in the Fourier series.

3.1. Formulation of the DS component matrix Kkj

The formulation of Kkj is accomplished in three steps: (i) The BC are repre-
sented by a modified Fourier series, (ii) The unknown coefficients A1km, A2km, B1jn

and B2jn appearing in the general solution are solved based on some of the BC
and (iii) Through a mixed-variable formulation procedure, the remaining BC lead
to an infinite system of mixed-variable form which is finally used to arrive at the
DS component matrix Kkj . Note that in what follows the procedure is valid for
all of the four symmetric/antisymmetric component cases by taking k and j in
turn with values either ‘0’ or ‘1’.

3.1.1. Formulation of boundary-condition components using modified Fourier se-
ries

In the last section, the BC components of Eq. (22) have been expressed by the
general solution and its derivatives. Alternatively, the BC components of Eq. (22)
can be represented by modified Fourier series of Eq. (A.3), which will be com-
bined with those expressions of Eq. (22) to finally formulate the DS component
matrix Kkj .
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Here the same set of Fourier basis functions of Eq. (A.1) is adopted as in Eq.
(9), but appropriate Fourier series formula should be chosen to keep the symplec-
ticity [46] of the formulated matrix system and therefore, ensuring the symmetry
of the resulting DS matrix. In this method, the modified Fourier series of Eq. (A.3)
in Appendix A is adopted, and hence the entries of the BC component vectors on
the left-hand sides of Eq. (22) can be alternatively expressed as

W kj
a

W kj
b

ϕkj
a

ϕkj
b


=



∑
n∈N

Wajn
Tj(βjny)√

ζjnb∑
m∈N

Wbkm
Tk(αkmx)√

ζkma∑
n∈N

ϕajn
Tj(βjny)√

ζjnb∑
m∈N

ϕbkm
Tk(αkmx)√

ζkma


,



V kj
a

V kj
b

Mkj
a

Mkj
b


= D11



∑
n∈N

Vajn
Tj(βjny)√

ζjnb∑
m∈N

Vbkm
Tk(αkmx)√

ζkma∑
n∈N

Majn
Tj(βjny)√

ζjnb∑
m∈N

Mbkm
Tk(αkmx)√

ζkma


(23)

where the superscripts kj for the Fourier coefficients such as Wajn and Vbkm are
omitted for notational convenience. The Fourier coefficients of the boundary con-
ditions (e.g. Wajn and Vbkm in Eq. (23) were obtained from Eq. (A.3) to give

Wajn =

∫ b

−b
W kj

a

Tj(βjny)√
ζjnb

dy , Vbkm =

∫ a

−a

V kj
b

D11

Tk(αkmx)√
ζkma

dx . (24)

The
√

ζjnb and
√
ζkma appearing in Eqs. (23), and (24) provide the symmetry of

the forward and inverse Fourier transformation to eliminate the dependence of the
length in the integral ranges [−b, b] or [−a, a]. Therefore, when a ̸= b the ensuing
DS component matrices Kkj will remain symmetric. This will become apparent
later.

3.1.2. The determination of unknown coefficients in the general solution
In view of Eqs. (A.2) and (19), the expressions for ϕkj

a and V kj
a given in Eqs.

(22) and (23) lead to

−∂xW
kj
∣∣
x=a

=
∑
n∈N

ϕajnTj(βjny)/
√
ζjnb , (25a)

− (∂3
x + Γ∗∂x∂

2
y + χ∂x)W

kj
∣∣
x=a

=
∑
n∈N

VajnTj(βjny)/
√
ζjnb , (25b)

which yield

− ϕajn/
√
ζjnb = q1jnH∗

k(q1jna)B1jn + q2jnH∗
k(q2jna)B2jn , (26a)

− Vajn/
√

ζjnb =
(
q21jn − Γ∗β2

jn + χ
)
q1jnH∗

k(q1jna)B1jn

+
(
q22jn − Γ∗β2

jn + χ
)
q2jnH∗

k(q2jna)B2jn (26b)
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for all n ∈ N. With the help of Eq. (20b), the unknowns coefficients B1jn and
B2jn can be determined from Eq. (26) for all n ∈ N to give

B1jn =
Vajn − (ν21β

2
jn − q21jn)ϕajn√

ζjnbq1jnH∗
k(q1jna)(q

2
2jn − q21jn)

, (27a)

B2jn = −
Vajn − (ν21β

2
jn − q22jn)ϕajn√

ζjnbq2jnH∗
k(q2jna)(q

2
2jn − q21jn)

. (27b)

Similarly, with the help of Eq. (20a), the expressions of ϕkj
b and V kj

b in Eqs. (22)
and (23) yield the unknowns A1km and A2km to be

A1km =
Vbkm − (ν21α

2
km − Λp21km)ϕbkm√

ζkmap1kmH∗
j (p1kmb)(p

2
2km − p21km)

, (28a)

A2km = − Vbkm − (ν21α
2
km − Λp22km)ϕbkm√

ζkmap2kmH∗
j (p2kmb)(p

2
2km − p21km)

. (28b)

3.1.3. Infinite system and the formulation of the DS component matrix Kkj

So far, all unknown coefficients A1km, A2km, B1jn and B2jn in the solution
component of Eq. (15) have been determined using the entries ϕkj

a , ϕkj
b , V kj

a and
V kj
b in the BC components of Eqs. (22) and (23). Subsequently, an infinite system

of algebraic equations is derived by substituting the above determined unknowns
into the remaining entries W kj

a ,W kj
b ,Mkj

a and Mkj
b in Eqs. (22) and (23), see

Appendix C for details. This infinite system can be rewritten in the following
mixed-variable matrix form as:[

W kj

M kj

]
=

[
Akj

WΦ Akj
WV

Akj
MΦ Akj

MV

] [
Φkj

V kj

]
. (29)

The explicit expressions of the four coefficient matrices Akj in Eq. (29) are given
in Appendix D, with each expression denoting a clear physical meaning. The
whole mixed-variable matrix in Eq. (29) exhibits a symplectic structure: Akj

WV =

Akj
WV

T
and Akj

MΦ = Akj
MΦ

T
are symmetric matrices, while Akj

WΦ = −Akj
MV

T
.

This is because the adoption of the modified Fourier series formula (A.3) keeps
the symplecticity of the Hamiltonian system. The symplecticity of this system
can be proved analytically based on the minimum potential energy through the
application of variational principle [46]. The sub-vectors in Eq. (29) are defined
as

V kj =

[
V kj

a

V kj
b

]
, M kj =

[
M kj

a

M kj
b

]
, W kj =

[
W kj

a

W kj
b

]
, Φkj =

[
Φkj

a

Φkj
b

]
(30)
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where

V kj
a = [Vaj0, Vaj1, · · · , Vajn, · · · ]T , V kj

b = [Vbk0, Vbk1, · · · , Vbkm, · · · ]T ,

M kj
a = [Maj0,Maj1, · · · ,Majn, · · · ]T , M kj

b = [Mbk0,Mbk1, · · · ,Mbkm, · · · ]T ,

W kj
a = [Waj0,Waj1, · · · ,Wajn, · · · ]T , W kj

b = [Wbk0,Wbk1, · · · ,Wbkm, · · · ]T ,

Φkj
a = [ϕaj0, ϕaj1, · · · , ϕajn, · · · ]T , Φkj

b = [ϕbk0, ϕbk1, · · · , ϕbkm, · · · ]T

are the vectors whose entries are the Fourier coefficients in Eq. (23). Each en-
try of the above vectors corresponds to a frequency-wavenumber dependent DOF.
Two particular boundary conditions need special mention. When the plate is com-
pletely free for all of its four edges, one has M kj = V kj = 0, the system of
Eq. (29) is reduced to the homogeneous system Akj

MΦΦ
kj = 0; whereas when

the plate is fully clamped all around its edges with W kj = Φkj = 0, the system
of Eq. (29) becomes Akj

WVV
kj = 0. Therefore, the natural frequencies in these

two special cases can be computed by applying the Wittrick-Williams algorithm
directly to Akj

MΦ and Akj
WV respectively.

On the basis of Eq. (29), the DS matrix for each kj component can be recon-
structed in the following form

fkj = Kkjdkj , (31)

where

f kj = D11

[
V kj

M kj

]
, dkj =

[
W kj

Φkj

]
,

Kkj = D11

[
Akj

WV

−1 −Akj
WV

−1
Akj

WΦ

Akj
MVA

kj
WV

−1
Akj

MΦ −Akj
MVA

kj
WV

−1
Akj

WΦ

]
.

3.2. Using the DS component matrix Kkj to form the DS matrix K for the entire
plate element

In this section, the previous DS component matrices Kkj defined in the do-
main Ω1 of the quarter plate are assembled to form the DS matrix K in the domain
Ω of the entire plate. This is achieved by considering the relationships of the BC
for the quarter plate and the entire plate (see Eqs. (B.2) and (B.3)).

As in Eq. (31), fkj and dkj are the Fourier coefficient vectors of the BC on
Ba,Bb of the quarter plate through the use of modified Fourier series of Eq. (A.3).
Similarly, by applying Eq. (A.3) to the force and displacement BC of the entire
plate (see Eq. (21)), one has the corresponding Fourier coefficient vectors

f = [f 1,f 2,f 3,f 4]
T , d = [d1,d2,d3,d4]

T , (32)
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in which

f i =
[
V 0

i ,V
1
i ,M

0
i ,M

1
i

]T
, di =

[
W 0

i ,W
1
i ,Φ

0
i ,Φ

1
i

]T (33)

and where the sub-vectors such as V 1
i and W 0

i are essentially the Fourier coeffi-
cient vectors of the BC on Bi of the entire plate given in Eq. (21), see Fig. 2. The
superscripts, being ‘0’ or ‘1’, stand for the Fourier cosine or sine transform of the
corresponding BC on boundary Bi. It should be kept in mind that every element
of f or d corresponds to a frequency-wavenumber dependent DOF (FWDOF) on
one boundary of the entire plate.

Now the relationships between f ,d and fkj,dkj can be established by con-
sidering the relationships given by Eqs. (B.2) and (B.3). Introducing the transfer
matrices T and T so that

f = T [f 00,f 01,f 10,f 11]T , d = T [d00,d01,d10,d11]T . (34)

T is the transfer matrix in the form

T =



In O O O O O O O In O O O O O O O

O O O O In O O O O O O O In O O O

O In O O O O O O O In O O O O O O

O O O O O In O O O O O O O In O O

O O Im O O O Im O O O O O O O O O

O O O O O O O O O O Im O O O Im O

O O O Im O O O Im O O O O O O O O

O O O O O O O O O O O Im O O O Im

−In O O O O O O O In O O O O O O O

O O O O −In O O O O O O O In O O O

O In O O O O O O O−In O O O O O O

O O O O O In O O O O O O O−In O O

O O−Im O O O Im O O O O O O O O O

O O O O O O O O O O −Im O O O Im O

O O O Im O O O −Im O O O O O O O O

O O O O O O O O O O O Im O O O −Im



, (35)

where In and Im are identity matrices of dimension n and m respectively, and
O represents null matrices. It is easily seen that T is the combination of certain
number of T τ as indicated in Eq. (B.3) (the number depends on the number of
terms included in the Fourier series). As expected, T has the inherent property
which is dependent on T τ , see Eq. (B.5), and consequently

T−1 = T T/2 , ∀M,N ∈ N. (36)
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Now returning to Eq. (34) one has

[d00,d01,d10,d11]T =
1

2
T Td . (37)

Finally, putting Eqs. (31), (32), (34) and (37) together yields the DS matrix for
the entire plate element as

f = Kd , (38)

where

K =
1

2
T


K00

O O O

O K01
O O

O O K10
O

O O O K11

T T (39)

is the DS matrix of the entire plate element, which relates the Fourier coefficient
vectors of the force f to that of the displacement d on the four edges of the plate.

Note that so far all the above formulation are exact since m,n ∈ [0,∞). How-
ever, for computational purposes, the infinite series/matrices need to be truncated
at certain point. It is worth highlighting that the size of the matrix in the cur-
rent S-DSM is significantly smaller than that of the conventional finite element
(FEM) or boundary element methods (BEM). This is mainly due to two reasons.
On the one hand, the small size of the DS matrix arises from the boundary for-
mulation, because the DS matrix relates the forces and displacements along the
plate boundaries in stead of in the plate domain. In this respect, the S-DSM shows
resemblance with the BEM. With m ∈ [0,M −1] and n ∈ [0, N −1] respectively,
the order of the matrices are: (M+N)×(M+N) for Akj , 2(M+N)×2(M+N)
for Kkj and 8(M +N) × 8(M +N) for K. That is to say, the order of the ma-
trices are linear with the sum of M and N (the numbers of FWDOF in x and y
coordinates) instead of being proportional to the product of M and N as in the
case of FEM for a M×N mesh. On the other hand, since the current S-DSM falls
into the spectral (both time- and spatial-wise) decomposition strategy rather than
spatial discretisation like the FEM and BEM, it is self-evident that much fewer
FWDOF are required in S-DSM, and yet an exact or almost exact description of
the deformation field can be achieved. Naturally the size of present DS matrix is
significantly smaller owing to its spectral properties.

4. Assembly procedure and the application of arbitrarily prescribed bound-
ary conditions

In this section, the dynamic stiffness (DS) matrices K developed above for
individual plate elements are assembled to form the overall DS matrix Kf of
the final structure. A single element can, of course, be considered as the final
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structure as a special case. The application procedure of any prescribed boundary
conditions for the final structure (i.e., f f and df ) is also discussed in this section.
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Figure 3: Illustration of the assembly procedure of a L-shaped plate assembly.

4.1. Assembly procedure
Like the classical DSM formulation, the assembly procedure for the current S-

DSM also resembles closely the finite element method (FEM) with the exception
that each plate element is connected through line nodes instead of point nodes.
There are however, some differences in the assembly procedure between the cur-
rent method and the classical DSM using a Levy-type solution. This is due to the
reason that each Levy-type plate element has only a pair of line nodes on opposite
edges, which limits its application to plate assemblies only in a one-directional
manner. In the current S-DSM, each plate element has four line nodes at disposal
for the assembly in a much more general manner. This flexibility contributes to the
versatility of the current S-DSM enormously. With such analytically formulated
DS elements, one can model complex structures accurately by plate assemblies.

For the sake of illustration, Fig. 3 shows the assembly procedure for a simple
L-shaped plate. The L-shaped plate is modelled using three plate elements 1⃝, 2⃝,
and 3⃝with ten line nodes numbered therein. The local DS matrices for the ele-
ments 1⃝, 2⃝and 3⃝are denoted by blue �, red ⃝ and black △ blocks respectively.
The assembly of the global DS matrix Kf of the final structure, which relates
the force f f to the displacement df Fourier coefficient vectors, is schematically
shown on the right hand side of Fig. 3. Note that the two overlapped symbols
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denote the two common line nodes 3 and 5. It can be easily seen from this illus-
trative example that the assembly procedure is as simple as that of the FEM. Thus
existing computer code available for FEM assembly can be used in the current
S-DSM method directly or maybe by making some minor modifications.

4.2. Application of arbitrarily prescribed boundary conditions
This section will show the implementation of arbitrarily prescribed boundary

conditions to a plate assembly (with a single plate as a special case).
The boundary conditions can be arbitrarily prescribed on plate edges, which

are directly transformed into vector form f f and df as in Eq. (32) by using the
modified Fourier series of Eq. (A.3). For instance, if the displacement boundary
condition Wi(ξ) is prescribed along the i-th boundary ξ ∈ [−L,L], by applying
the modified Fourier series formula of Eq. (A.3), one can write

Wi(ξ) =
∑
s∈N

l∈{0,1}

Wils ·
Tl(γlsξ)√

ζlsL
, Wils =

∫ L

−L

Wi(ξ)
Tl(γlsξ)√

ζlsL
dξ (40)

where the notations are defined in Table A.1 of Appendix A. By putting the
Fourier coefficients into vector form one will have the displacement vector as:
[W 0

i ,W
1
i ]

T = [Wi00,Wi01,Wi02, · · · ,Wi10,Wi11,Wi12, · · · ]T , with W 0
i and W 1

i

denoting respectively the symmetric and the antisymmetric components of dis-
placements Wi. In this way, any arbitrarily prescribed boundary conditions such
as line and/or point supports on the boundaries can be represented by the Fourier
coefficient vectors f f or df . Moreover, the present method also benefits the ap-
plication of elastic edge constraints which are another type of boundary condi-
tions encountered in many real applications. There are generally two types of
elastic edge constraints for the Kirchhoff plate theory, namely, the linear and the
rotational elastic constraints. These constraints usually can be expressed in the
following forms

KxW = Vx , Rxϕx = Mx , along boundary x = xB , (41a)
KyW = Vy , Ryϕy = My , along boundary y = yB . (41b)

Here, Kx and Ky are the linear spring constants along the corresponding bound-
aries, whereas Rx and Ry are the rotational spring constants. Expressing both
sides of Eq. (41) in terms of the modified Fourier series formula of Eq. (A.3)
will lead to the DS matrices of the spring constraints on the plate edges. The
DS matrices of elastic edge restraints are then superposed to the unmodified DS
matrix of the plate structure (i.e., without elastic constraints) to form the final DS
matrix of the elastically constrained structural system. Similarly, the above proce-
dure can be applied to model composite stiffened panels. A panel can be idealised
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into S-DS plate elements which are assembled at the location of stiffeners. The
stiffeners are modelled as beam elements whose displacement (rotation) and force
(moment), i.e., the related values for plate are W,ϕ, V and M , can be expressed
by the modified Fourier series such as in Eq. (40). Finally, the S-DS matrix for
the stiffener can be developed based on beam theories which can be directly su-
perposed to the unmodified DS matrix of the plate structure. This is quite similar
to the procedure for modelling elastic constraints given in Eq. (41).

Now it is appropriate to point out that the current S-DSM has also the ad-
vantages that are analogous to the boundary element method (BEM) [47, 48, 49],
but free from its shortcomings. In the BEM, the fundamental solution is derived
analytically or semi-analytically from the GDE which is then used to formulate
the boundary integral equation (BIE). As a result, any boundary conditions in
BEM can be applied and the BIE can be solved numerically. The current S-DSM
is, in this aspect, similar to that of BEM. The DS formulation satisfies the GDE
rigorously because it has been derived from the exact general solution. This for-
mulation also provides the flexibility to apply any arbitrary boundary conditions.
However, unlike the conceptual complexity and the need to solve the BIE numeri-
cally as in BEM, the current S-DSM describes arbitrarily prescribed BC accurately
and efficiently by modified Fourier series whose coefficients are related directly
by the DS matrix.

After describing the prescribed boundary conditions in their Fourier coeffi-
cient form, it should be noted that there will generally be some cases where the
displacement vectors of certain boundaries have zero vectors. A simple example
is the classical boundary conditions for which the displacement corresponding to
a certain plate edge can be zero. Therefore, the corresponding sub-vectors will be
null. Usually, there are two methods for the implementation of such zero displace-
ment boundary conditions. One is the penalty method and the other is condensa-
tion method, see for example [19]. In the former, a sufficiently large stiffness can
be added to the appropriate leading diagonal term to suppress the corresponding
displacements whereas in the latter the rows and columns relating to the zero dis-
placements are removed from the overall DS matrix of the complete structure.
Understandably, the condensation method is superior to the penalty method in
terms of accuracy and efficiency, but it involves some additional programming
efforts. A brief description of the two techniques is given below.

Penalty method [50] is widely used to satisfy essential boundary conditions
when finding eigenvalues of continuous systems. This has been proved to be a
stable and satisfactory method, particularly when applying the Wittrick-Williams
algorithm [11, 12, 14, 15, 51]. In the current S-DSM, the aforementioned elastic
edge constraints directly facilitate the application of the penalty method, with
the elastic constants Kx, Ky, Rx, Ry of Eq. (41) being the penalty parameters.
Therefore, a geometric constraint can be considered as an elastic constraint with
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Kx(Ky) or/and Rx(Ry) taking large enough value(s). The following boundary
conditions on the ith edge of a plate can be applied: (i) Free (F): no penalty is
applied, (ii) Simply supported (S): W i is penalised, (iii) Clamped (C): both W i

and Φi are penalised. Although the penalty method is quite reliable and fairly
straightforward to apply, it has some shortcomings. The first drawback lies in the
difficulty to determine a suitable magnitude for the penalty parameters: too small
will lead to accuracy loss; too large may cause ill-conditioning or large round off
errors [50]. Additionally, this technique does not reduce the size of the overall DS
matrix and is therefore, not expected to reduce the computation cost.

The other technique is based on condensing the DS matrix. The rows and
columns of the DS matrix corresponding to the DOF with zero displacement are
removed in this method. Suppose that the displacement vector df can be parti-
tioned into two sub-vectors da and db such that the displacement sub-vector db

(corresponding to f b) and the force sub-vector fa (corresponding to da) are zero
for the prescribed boundary conditions, then Eq. (38) can be recast in the follow-
ing form [

0
f b

]
=

[
Kaa Kab

Kba Kbb

] [
da

0

]
(42)

where Kab = KT
ba. In such cases, Eq. (42) is condensed to

Kaada = 0 . (43)

Thus the natural frequencies can be computed by applying the WW algorithm to
the above condensed DS matrix Kaa. Even though this condensation technique
is not as easy as the penalty method, it certainly avoids any possible loss of ac-
curacy. More importantly, it condenses the DS matrix and therefore reduces the
computational cost. Therefore, in the current S-DSM, the condensation method is
applied in stead of the penalty method.

Having applied the prescribed boundary conditions to formulate the overall
DS matrix Kf , the natural frequencies and mode shapes computation of the plate
structure follows from the application of the Wittrick-Williams algorithm [3],
which is explained in the next section.

5. The Wittrick-Williams algorithm enhancement and mode shape compu-
tation

The overall dynamic stiffness (DS) matrix Kf for the final structure with pre-
scribed constraints is essentially used for an accurate and efficient free vibration
analysis. A reliable method to achieve this is to apply the well-known Wittrick-
Williams (WW) algorithm [3]. The algorithm monitors the Sturm sequence prop-
erties of Kf in such a way that there is no possibility of missing any natural
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frequency of the structure. This is, of course, impossible in most analytical and
approximate methods. It should be emphasised that some difficulties may arise
in the WW algorithm application, but for the current problem potential stumbling
blocks have been removed so as to make the current S-DSM reliable, computa-
tionally efficient and accurate.

5.1. Basic features and enhancement
Suppose that ω denotes the circular (or angular) frequency of a vibrating struc-

ture, then according to the WW algorithm, as ω is increased from zero to ω∗, the
number of natural frequencies passed (J) is given by

J = J0 + s{Kf} , (44)

where Kf , the overall DS matrix of the final structure whose elements depend
on ω is evaluated at ω = ω∗; s{Kf} is the number of negative elements on
the leading diagonal of K△

f , and K△
f is the upper triangular matrix obtained by

applying the usual form of Gauss elimination to Kf , and J0 is the number of
natural frequencies of the structure still lying between ω = 0 and ω = ω∗ when
the displacement components to which Kf corresponds are all zeros. Thus

J0 =
∑

Jm , (45)

where Jm is the number of natural frequencies between ω = 0 and ω = ω∗ for an
individual component member with its boundaries fully clamped, while the sum-
mation extends over all structural members. Thus, with the knowledge of Eqs.
(44) and (45), one can ascertain how many natural frequencies of a structure lie
below an arbitrarily chosen trial frequency ω∗. This simple feature of the algo-
rithm can be used to converge upon any required natural frequency to any desired
accuracy.

Clearly, J0 count is an essential part of the algorithm. However, the evalu-
ation of J0 count can sometimes be a difficult task and may become a potential
drawback when applying the algorithm. In the literature, most of the previous DS
methods on plates [11, 12, 15] use a sufficiently fine mesh to avoid J0 computa-
tion i.e., to ensure that J0 ≡ 0 for the entire frequency range of interest. However,
this will no doubt increase the computational time. This is particularly true for
the current S-DSM because a finer mesh will increase the number of DOFs much
more significantly than that in a Levy-type plate DS theory. To meet this chal-
lenge, an efficient and reliable strategy is applied which is based on applying the
WW algorithm in reverse to obtain Jm of Eq. (45) such that

Jm = JS − s(KS) , (46)
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where JS is the overall sign count of a plate with all edges simply supported and
s(KS) is the sign count of its formulated DS matrix KS . The technique in Eq.
(46) has been successfully applied to beam elements [52, 53]. However, when it
comes to plate problems it becomes quite complicated and has not been applied
in previous publications [11, 12, 15] with the lone exception of Ref. [10] (in
which the JS was formulated easily because the matrix KS was a 2 × 2 matrix
only). In the present method, the strategy based on Eq. (46) has been successfully
implemented through several novel techniques.

First the computation of JS in Eq. (46) is accomplished in an analytical man-
ner by using the number theory. It is well-known that the exact solution for the
natural frequency of an all-round simply supported cross-ply laminated Kirch-
hoff plate follows from the well-established Navier solution [44]. The natural
frequency ωm̂n̂ for this case can be expressed analytically in the following form

(2a)4I0ω
2
m̂n̂

π4D11

=
m̂4 +Π1m̂

2n̂2 +Π2n̂
4

1 +Π3(m̂2 + η2n̂2)
, m̂, n̂ ∈ {1, 2, 3, ...} , (47)

where the left hand side of the equation is nondimensionalised and

η =
a

b
, Π1 = 2Γη2 , Π2 = Λη4 , Π3 =

I2
I0

( π

2a

)2

. (48)

Thus, JS , the number of natural frequencies lying below a trial natural frequency
ω∗, is essentially the number of pairs of m̂ and n̂ such that the left-hand side of
Eq. (47) with ωm̂n̂ = ω∗ is greater than the right-hand side. Obviously, this can be
obtained from a numerical search which may be computationally expensive and
the procedure may miss some of the natural frequencies. However, there exists
an analytical expression for JS if one recognises that this problem is essentially
an extension of the analytical number theory problem called Gauss circle problem
[21] according to which

JS =

⌊Π4⌋∑
m̂=1

⌊n̂∗(m̂, ω∗)⌋ , (49)

where

Π4 =
2a

π
4

√
I0ω∗2

D11

, n̂∗(m̂, ω∗) =

√√
Π2

5 − 4Π2Π6 −Π5

2Π2

,

Π5 = Π1m̂
2 −Π3Π

4
4η

2 , Π6 = m̂2(m̂2 −Π3Π
4
4 )

and ‘⌊·⌋’ is the floor function denoting the largest integer not greater than ‘·’.
The detailed mathematical proof of the above expression is not given here due to
brevity.
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Next, the computation of s(KS) in Eq. (46) is achieved in an elegant way by
taking advantage of the mixed-variable formulation explained earlier in Section
3.1. It is well-known that when a geometrically symmetric structure is subject
to symmetric constraints, the displacement field will be either symmetric or anti-
symmetric. Therefore, in the present case where a rectangular plate is subjected to
all round simple supports, the four symmetric/antisymmetric DS matrices are de-
coupled to describe the deformation with corresponding symmetric/antisymmetric
properties in the frequency domain. Hence, s(KS) =

∑
k,j∈{0,1} s(K

kj
S ) . Now

recalling Eq. (31), the case with fully simple supports becomes equivalent to let-
ting M kj = W kj = 0, such that s(Kkj

S ) = s(Akj
MΦ − Akj

MVA
kj
WV

−1
Akj

WΦ). In
this way, one has

s(KS) =
∑

k,j∈{0,1}

s(Akj
MΦ −Akj

MVA
kj
WV

−1
Akj

WΦ) . (50)

The above technique of computing JS and s(KS) resolves completely the prob-
lem of determining J0 in a highly efficient, accurate and reliable manner.

5.2. Mode shape computation
The mode shape computation in the current S-DSM is somehow different from

the classical DSM approach due to the application of the condensation method
when applying the BC. Here the following steps are used.

(1) Substitute the computed eigenvalues in the condensed matrix for the whole
system Kaa of Eq. (43) and then assign an arbitrary value to a chosen DOF
of da to determine the rest of the values in the displacement vector in terms
of the chosen one by solving the algebraic system.

(2) Collect the condensed displacement vector da and the zero displacement vec-
tor together, which is essentially an inverse procedure of the condensation
method as evident from Eq. (42).

(3) Decompose the displacement vector df of the whole structure into that of
plate element d following an inverse step of the assembly procedure described
in Section 4.1.

(4) For each plate element, the displacement vectors dkj can be obtained from
d according to Eq. (37) following which Kkj and f kj are computed from
Eq.(31) .

(5) The unknown coefficients Akm and Bjn for each kj component are calculated
using Eqs. (27) and (28) which are substituted into Eq. (15) and finally into
Eq. (14) to recover the mode shapes.

25



6. Conclusions

In this Part I of the two-part paper, a novel spectral-dynamic stiffness method
(S-DSM) has been developed for free flexural vibration analysis of orthotropic
composite plates and their assemblies with arbitrary boundary conditions. This
research has removed previous restrictions on DS theories of plate structures. The
other related main contributions made in this paper are: (i) Some important math-
ematical techniques such as modified Fourier series are utilised to keep the sym-
plecticity of the DS formulation of the Hamiltonian system, (ii) With the aid of
spectral idea, the ensuing DS matrix has been shown to have complete flexibility to
accommodate arbitrarily prescribed boundary conditions, (iii) The assembly pro-
cedure of composite plate assemblies has been developed and fully explained, (iv)
The DS matrix was formulated through an intensively symbolic and yet simplified
way with clear physical interpretation, which is capable of handling complex plate
structures and (v) Several novel techniques have been proposed, which have re-
solved the sign count of a fully-clamped plate leading to the well-known J0 term.
This is a significant enhancement to the Wittrick-Williams algorithm to make it
robust and efficient within all frequency range covering low to high values.

In the second part of this paper [54], the current S-DSM is applied to a wide
range of plated structures made of composite materials. The results obtained are
compared with the results from other analytical methods as well as those com-
puted by the commercial finite element package ABAQUS. It is demonstrated that
the S-DSM is superior to any other analytical or numerical known methods in
terms of the exactness, efficiency and versatility.
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Appendix A. Modified Fourier basis function and the corresponding modi-
fied Fourier series

The set of modified Fourier basis functions adopted in the formulation to rep-
resent any arbitrary continuous 1D function is of the form

Tl(γlsξ) =

{
cos( sπ

L
ξ) l = 0

sin
(
(s+ 1

2
) π
L
ξ
)

l = 1
, ξ ∈ [−L,L] , s ∈ N , (A.1)

where N = {0, 1, 2, ...} is the non-negative integer set. It can be proved that the
above basis functions form a complete orthogonal set. Note that the wave number
γls of the cosine/sine basis functions are to be carefully chosen to provide the
flexibility to describe any arbitrary 1D function with arbitrary boundary conditions
at its boundaries ξ = ±L. This is illustrated in Table A.1, where the first four
cosine/sine functions are shown. Furthermore, due to the wavenumber adopted

Table A.1: The first four trigonometric functions. When applied to Eq. (9), the notations are
adopted as either ξ = x, l = k, s = m, γls = αkm, L = a or ξ = y, l = j, s = n, γls = βjn,
L = b.

Tl(γlsξ) l s = 0 s = 1 s = 2 s = 3

cos γlsξ 0 −L L

−L L

−L L

−L L

sin γlsξ 1
−L

L −L

L −L

L −L

L

in Eq. (A.1), one has

diTl(γlsξ)

dξi

∣∣∣∣
ξ=L

=

{
(−1)s+i/2γi

ls i is even
0 i is odd

. (A.2)

There are different adaptations of Fourier series in common use, see for ex-
ample Ref. [55]. In this paper, the following modified Fourier series related to
the basis functions defined in Eq. (A.1) is utilised in which the dependence on the
length of the integral range [−L,L] is eliminated. For any arbitrary displacement
or force boundary condition f(ξ) along a plate edge ξ ∈ [−L,L], one can write

f(ξ) =
∑
s∈N

l∈{0,1}

Fls ·
Tl(γlsξ)√

ζlsL
, Fls =

∫ L

−L

f(ξ)
Tl(γlsξ)√

ζlsL
dξ , (A.3)

27



where s ∈ N and

ζls =

{
2 l = 0 and s = 0

1 l = 1 or s ≥ 1
. (A.4)

Note that
√
ζlsL appearing in Eq. (A.3) provides the symmetry of the forward

and inverse Fourier transformation. The above technique is for the purpose of
retaining the symplecticity of the formulated system.

Based on Eq. (A.3), the hyperbolic functions in Eq. (16) can be transformed
into Fourier series as follows:

Hj(py) =
∑
n∈N

2(−1)npH∗
j (pb)√

ζjnb(p2 + β2
jn)

· Tj(βjny)√
ζjnb

(A.5a)

Hk(qx) =
∑
m∈N

2(−1)mqH∗
k(qa)√

ζkma(q2 + α2
km)

· Tk(αkmx)√
ζkma

, (A.5b)

where p and q stand for p1km, p2km and q1jn, q2jn, respectively, and ζjn, ζkm and
H∗

j (pb),H∗
k(qa) follow the definitions given in Eqs. (A.4) and (18) receptively.
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Appendix B. The relationship between arbitrary boundary conditions and
their kj components

Considering the symmetry/antisymmetry of W kj of Eq. (15) and its deriva-
tives, the relationships between the boundary conditions (BC) in Eq. (21) and
their four components in Eq. (22) are as follows

W1

ϕ1

W2

ϕ2

W3

ϕ3

W4

ϕ4


=



W 00
a +W 01

a +W 10
a +W 11

a

ϕ00
a + ϕ01

a + ϕ10
a + ϕ11

a

W 00
b +W 01

b +W 10
b +W 11

b

ϕ00
b + ϕ01

b + ϕ10
b + ϕ11

b

W 00
a +W 01

a −W 10
a −W 11

a

−ϕ00
a − ϕ01

a + ϕ10
a + ϕ11

a

W 00
b −W 01

b +W 10
b −W 11

b

−ϕ00
b + ϕ01

b − ϕ10
b + ϕ11

b


,



V1

M1

V2

M2

V3

M3

V4

M4


=



V 00
a + V 01

a + V 10
a + V 11

a

M00
a +M01

a +M10
a +M11

a

V 00
b + V 01

b + V 10
b + V 11

b

M00
b +M01

b +M10
b +M11

b

V 00
a + V 01

a − V 10
a − V 11

a

−M00
a −M01

a +M10
a +M11

a

V 00
b − V 01

b + V 10
b − V 11

b

−M00
b +M01

b −M10
b +M11

b


. (B.1)

It should be noted that any prescribed BC on the left-hand sides of Eq. (B.1) can
be decomposed into a symmetric and an antisymmetric components, e.g., Wi =
W 0

i + W 1
i and Vi = V 0

i + V 1
i with subscript ‘0’ or ‘1’ denoting the symmetric

or the antisymmetric component respectively. If the decomposition is applied
to all the entries on the left-hand side vectors in Eq. (B.1) and equated to the
symmetric/antisymmetric components of both sides of Eq. (B.1) separately, the
following relationships for the displacement BC of the quarter plate and the entire
plate can be obtained. Thus

[W 0
1 ,W

1
1 ,W

0
3 ,W

1
3 ]

T = T 1[W
00
a ,W 01

a ,W 10
a ,W 11

a ]T (B.2a)

[W 0
2 ,W

1
2 ,W

0
4 ,W

1
4 ]

T = T 2[W
00
b ,W 01

b ,W 10
b ,W 11

b ]T (B.2b)

[ϕ0
1, ϕ

1
1, ϕ

0
3, ϕ

1
3]

T = T 3[ϕ
00
a , ϕ01

a , ϕ10
a , ϕ11

a ]T (B.2c)

[ϕ0
2, ϕ

1
2, ϕ

0
4, ϕ

1
4]

T = T 4[ϕ
00
b , ϕ01

b , ϕ10
b , ϕ11

b ]T . (B.2d)

The relationships between the corresponding force BC are

[V 0
1 , V

1
1 , V

0
3 , V

1
3 ]

T = T 1[V
00
a , V 01

a , V 10
a , V 11

a ]T (B.3a)

[V 0
2 , V

1
2 , V

0
4 , V

1
4 ]

T = T 2[V
00
b , V 01

b , V 10
b , V 11

b ]T (B.3b)

[M0
1 ,M

1
1 ,M

0
3 ,M

1
3 ]

T = T 3[M
00
a ,M01

a ,M10
a ,M11

a ]T (B.3c)

[M0
2 ,M

1
2 ,M

0
4 ,M

1
4 ]

T = T 4[M
00
b ,M01

b ,M10
b ,M11

b ]T . (B.3d)
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In Eqs. (B.2) and (B.3), T τ (τ = 1, 2, 3, 4) are transfer matrices defined as

T 1 =


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 , T 2 =


1 1 0 0
0 0 1 1
1 −1 0 0
0 0 1 −1

 , (B.4a)

T 3 =


1 0 1 0
0 1 0 1
−1 0 1 0
0 −1 0 1

 , T 4 =


1 1 0 0
0 0 1 1
−1 1 0 0
0 0 −1 1

 . (B.4b)

Interestingly, it can be shown that

T−1
τ = T T

τ /2 . (B.5)

It is therefore straightforward to represent the vectors on the right-hand side of
Eqs. (B.2) and (B.3) by the left-hand side vectors. For example

[W 00
a ,W 01

a ,W 10
a ,W 11

a ]T = T T
1 [W

0
1 ,W

1
1 ,W

0
3 ,W

1
3 ]

T/2 . (B.6)
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Appendix C. Infinite system of algebraic equations stemming from W kj
a ,W kj

b ,Mkj
a

and Mkj
b of Eqs. (22)

By equating the expressions of W kj
a ,W kj

b in Eqs. (22) and (23), the following
two relationships are obtained

W kj
∣∣
x=a

=
∑
m∈N

(−1)m [A1kmHj(p1kmy) +A2kmHj(p2kmy)] +
∑
n∈N

[
B1jnHk(q1jna)

+B2jnHk(q2jna)
]
Tj(βjny) =

∑
n∈N

WajnTj(βjny)/
√
ζjnb (C.1a)

W kj
∣∣
y=b

=
∑
n∈N

(−1)n [B1jnHk(q1jnx) +B2jnHk(q2jnx)] +
∑
m∈N

[
A1kmHj(p1kmb)

+A2kmHj(p2kmb)
]
Tk(αkmx) =

∑
m∈N

WbkmTk(αkmx)/
√
ζkma . (C.1b)

Substituting Eqs. (27) and (28) into Eq. (C.1), applying the Fourier series Eq.
(A.5) to the hyperbolic functions Hj(p1kmy),Hj(p2kmy),Hk(q1jnx) and Hk(q2jnx),
and eliminating the common terms Tj(βjny)/

√
ζjnb or Tk(αkmx)/

√
ζkma from

both sides, the following infinite algebraic system arises

Wajn =
∑
m∈N

2(−1)m+n
[
Vbkm −

(
ν21α

2
km + Λβ2

jn

)
ϕbkm

]√
ζkmζjnabΛ(p21km + β2

jn)(p
2
2km + β2

jn)

+
1

q22jn − q21jn

{ [
Vajn −

(
ν21β

2
jn − q21jn

)
ϕajn

] T Hk(q1jna)

q1jn

−
[
Vajn −

(
ν21β

2
jn − q22jn

)
ϕajn

] T Hk(q2jna)

q2jn

}
(C.2)

Wbkm =
1

Λ(p22km − p21km)

{ [
Vbkm −

(
ν21α

2
km − Λp21km

)
ϕbkm

] T Hj(p1kmb)

p1km

−
[
Vbkm −

(
ν21α

2
km − Λp22km

)
ϕbkm

] T Hj(p2kmb)

p2km

}
+

∑
n∈N

2(−1)m+n
[
Vajn −

(
α2
km + ν21β

2
jn

)
ϕajn

]√
ζkmζjnab(q21jn + α2

km)(q22jn + α2
km)

, (C.3)

where the notation T Hl(Ξ) = Hl(Ξ)/H∗
l (Ξ) has been used. Similarly, when

the already determined unknowns of Eqs. (27) and (28) and the Fourier series
of Eq. (A.5) are substituted into the expressions of Mkj

a ,Mkj
b in Eqs. (22) and

(23), another set of infinite algebraic system can be obtained using an analogous
procedure.
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Appendix D. Expressions of the coefficient matrices in the mixed-variable
formulation of Eq. (29)

The analytical expressions for the coefficient matrices in Eq. (29) are given in
this appendix. After symbolic manipulation, the four coefficient matrices Akj

WΦ,
Akj

WV , Akj
MΦ and Akj

MV can be expressed in an extremely concise form. The fol-
lowing expressions are the only analytical expressions required to model complex
composite plate-like structures.

Akj
WΦ = −

[
diagn[(Σ1Υ1 − Σ2Υ2)/Σ5] [Σ7Σ9]n,m

[Σ8Σ10]m,n diagm[(Σ3Υ3 − Σ4Υ4)/Σ6]

]
(D.1a)

Akj
WV =

[
diagn[(Υ1 − Υ2)/Σ5] [Σ7]n,m

[Σ8]m,n diagm[(Υ3 − Υ4)/Σ6]

]
(D.1b)

Akj
MΦ = −

[
diagn[(Υ1 − Υ2)/Σ5] [Σ7]n,m

[Σ8]m,n diagm[(Υ3 − Υ4)/Σ6]

]
(D.1c)

Akj
MV =

[
diagn[(Σ1Υ1 − Σ2Υ2)/Σ5] [Σ7Σ10]n,m

[Σ8Σ9]m,n diagm[(Σ3Υ3 − Σ4Υ4)/Σ6]

]
(D.1d)

where

Υ1 = Hk(q1jna)/(H∗
k(q1jna)q1jn) , Υ2 = Hk(q2jna)/(H∗

k(q2jna)q2jn) ,

Υ3 = Hj(p1kmb)/(H∗
j (p1kmb)p1km) , Υ4 = Hj(p2kmb)/(H∗

j (p2kmb)p1km) ,

Σ1 = ν21β
2
jn − q21jn , Σ2 = ν21β

2
jn − q22jn ,

Σ3 = ν21α
2
km − Λp21km , Σ4 = ν21α

2
km − Λp22km ,

Σ5 = q22jn − q21jn , Σ6 = Λ(p22km − p21km) ,

Σ7 = 2(−1)m+n/
[
Λ
√

ζkmζjnab(p
2
1km + β2

jn)(p
2
2km + β2

jn)
]
,

Σ8 = 2(−1)m+n/
[√

ζkmζjnab(q
2
1jn+ α2

km)(q22jn + α2
km)

]
,

Σ9 = ν21α
2
km + Λβ2

jn , Σ10 = α2
km + ν21β

2
jn ,

Σ11 = α2
kmβ2

jn(Λ− 2ν21Γ + ν221) + ν21
[
κ+ χ(α2

km + β2
jn)

]
.

where the hyperbolic functions H and H∗ were defined in Eqs. (16) and (18)
respectively. In Eq. (D.1), ‘diagn[·]’ represents a diagonal matrix whose diago-
nal terms are expressed by ‘·’ with the subscript n varying from 0 to ∞, whereas
‘[·]n,m’ stands for a matrix whose entries are ‘·’ with n (row number) and m (col-
umn number) taking from 0 to ∞. Similarly, it is easy to understand the notations
‘diagm[·]’ and ‘[·]m,n’. If the series expansion is truncated with n ∈ [0, N − 1]
and m ∈ [0,M − 1], then all of the four matrices in Eq. (D.1) are of size
(M + N) × (M + N). Note that the notation (·)kj with kj taking the values
‘00’,‘01’,‘10’ and ‘11’, implies that these definitions are for all of the four sym-
metric/antisymmetric components.
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Clearly, the above analytical expressions carry physical meanings. For in-
stance, Γ∗,Λ and ν21 are material parameters, χ is the rotatory inertia parameter
(Note that χ = 0 when rotatory inertia is ignored); αkm, βjn are the wavenumbers
and p1km, p2km, q1jn and q2jn are the frequency-dependent wave parameters. It is
interesting to note that the two sub-matrices in the diagonal position for all of the
four matrices in Eq. (D.1) are diagonal matrices. This is due to the fact that all of
the frequency-wavenumber dependent DOF in one direction (for the correspond-
ing displacements or forces) are orthogonal to each other. Also, it can be deduced
from Eq. (20) that Σ7 = Σ8 = 2(−1)m+n/

{√
ζkmζjnab[α

2
km(α

2
km + 2Γβ2

jn) +

β2
jn(Λβ

2
jn − χ)− κ]

}
.
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