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Abstract. This paper offers a stochastic model and a combined analysis of safe-

ty and security of the e-Motor, an ASIL D (ISO 26262) compliant device de-

signed for use with AUTOSAR CAN bus.  

The paper argues that in the absence of credible data on the likelihood and 

payload of cyber attacks on newly developed devices a sensible approach would 

be to separate the concerns: i) the payloads that may affect the device’s safety 

can be identified using standard hazard analysis techniques; ii) the difficulty 

with the parameterization of a stochastic model can be alleviated by applying 

sensitivity analysis for a plausible range of model parameter values. 

Keywords: Stochastic modeling, adversary, safe state, cyber attack, ISO 26262. 

1 Introduction 

Cyber security of industrial electronics is becoming increasingly important as the 

Internet of things is becoming a reality. High profile vulnerabilities of embedded safe-

ty critical devices have been revealed, e.g. of insulin pumps, of pacemakers, etc. Re-

searchers have developed exploits for these devices which demonstrate that patients’ 

safety can be compromised remotely via cyber attacks.  

Attention to cyber security has increased in automotive industry, too. Several 

demonstrations revealed that the CAN bus can be accessed remotely, e.g. via the en-

tertainment (Bluetooth) system. CAN bus was designed as part of a “trusted” envi-

ronment for which no authentication and authorization mechanisms were developed 

to protect the embedded devices connected to the CAN bus from malicious activities.  

The good news is that despite the demonstrated vulnerabilities of automotive de-

vices, the risk from exploiting these seems still relatively low and no significant acci-

dents caused by cyber attacks have been recorded. The chip manufacturers, however, 

are taking proactive measures to create chips with built-in capabilities for enhanced 

security, e.g. the chips for automotive applications by Infineon and Freescale are 

manufactured with built-in security processors. Security analysis is increasingly taken 

seriously by the car manufacturers, too. Several research projects in the USA and in 

Europe are looking at the issue and attempt to lay down sound principles for future 

cyber security standardization. For example, the forthcoming extension of ISO 26262 



is expected to at least acknowledge the importance of cyber security. Other safety 

standards, e.g. IEC/ISO 61508 (in v. 2010, clause 7.4.2.3), already acknowledge that 

cyber security must be an essential part of software safety analysis. 

Cyber security for industrial control systems (ICS) has been discussed in a number 

of reports from various standardization bodies both in the US and in Europe. There is 

an essential difference between how cyber security is dealt within the ICT and in ICS 

in that the reactive approach, which dominates the ICT (patch as soon as a noteworthy 

vulnerability is discovered), may be inappropriate in the ICS. High availability and 

real-time requirements make patching difficult to implement and in many cases - 

simply inadequate.  

Research effort has been allocated on demonstrating the benefits of proactive ap-

proaches to defending against cyber threats, e.g. using fault–tolerance, but this author 

is not aware of commercial solutions based on this approach.   

2 Problem Statement and Related Research 

Models of cyber attacks (including malicious software) have been proposed by many 

in the past. Cyber attacks broadly consist of a delivery mechanism, i.e. a mechanism 

of accessing the target, and a payload, the particular mechanism via which the attack-

er gains their rewards. These two can be seen as orthogonal: the same payload can be 

delivered via different mechanisms and the same delivery may be used to deploy dif-

ferent payloads. Conflicker worm, for examples used an aggressive delivery mecha-

nism, but no particular payload for it has been identified [1]. At the other extreme, 

there are examples of a complex set of delivery mechanisms contained in a single 

malware. Stuxnet, for instance, is known to include among the delivery mechanisms 4 

zero-day exploits and several different delivery mechanisms [1], some of which were 

known before Stuxnet, but have not been reported/fixed by the vendors.  

Probabilistic models of cyber attacks have been used in the past ranging from very 

detailed models of a particular attack to models which operate at a relatively high 

level of abstraction suitable for exploratory analysis. An example of the first approach 

is [2] which models Stuxnet. An example of abstract models is the ADVISE formal-

ism [3] and the various models of cyber economics. In between are models, which 

take a detailed look at the delivery mechanisms, e.g. [4] and make “pessimistic” as-

sumptions about the payload. The same approach is quite common in ICT when get-

ting an access to protected assets is seen as a “game over” event, as once the Adver-

sary gains an access to the target they can do anything they please. Concentrating on 

delivery mechanisms and assuming the “worst” for the payload has been applied in 

ICS, too. For instance, [5] studied the impact of cyber attacks on a sub-station of a 

power transmission network and assumed that once the Adversary passes a substation 

firewall (s)he would switch off all assets controlled by the sub-station: generators, 

loads and bus-bars.  

Given the wide range of delivery/payload combinations observed in cyber attacks 

and malware it is somewhat unclear how one should build useful stochastic models 

for security. My view is that attempts to model the delivery mechanisms in detail are 



unlikely to be useful. Models which rely on detailed knowledge of a particular com-

bination of delivery mechanisms, e.g. [2], provide a probabilistic explanation of what 

is already known, hardly a useful insight. One is usually, interested in studying the 

risk from attacks that have not been seen before. In my view modeling the delivery 

mechanisms should be done at a high level of abstraction, e.g. as a stochastic state 

machine with a small number of states which allow one to express the time (and ef-

fort) needed for a successful attack. The effect of the envisaged defense mechanisms 

on the likelihood of a successful attack must be modeled, too. A small number of 

parameters, characterizing the transitions between the states (that capture the possible 

multi-step paths of successful attacks) should allow a modeler to capture various sce-

narios and defense policies. This approach has been tried in the past [6].  

While the delivery mechanisms should be modeled at relatively high level of ab-

straction, modeling the payload should be as detailed as possible and tailored to the 

specifics of the particular system. For safety critical systems enumerating the perti-

nent “failure modes” which can be caused by cyber attacks seems an essential starting 

point. Such an enumeration is typically a result of a safety analysis, which will pro-

duce the important hazards specific for the modeled safety critical system.  

An essential problem for a useful probabilistic model is model parameterization. 

While with software reliability and safety putting in place a credible measurement 

program is usually sufficient for eliciting accurately the needed probabilistic parame-

ters, for cyber security the feasibility of a measurement program is questionable. The 

international effort in this regard, e.g. with honey pots, provides plenty of evidence. 

Some colleagues seriously consider rethinking the concept of cyber risk in the light of 

this difficulty. The very idea of probabilistic security analysis is in doubt. Indeed if I 

cannot credibly parameterize a model how can I trust the findings from such a model 

about the risk from an unknown attack? The issue here is what we expect to learn 

from a probabilistic model? If the expectation is that we will be able to make predic-

tions similar to those that we are able to make today about software reliability of a 

specific software system in its specific operational environment I do not believe that 

the problem can be solved! The issue is the Adversary profile, which can only be 

hypothesized, but is generally unknown and little can be learned from past observa-

tions about the next attack. Every new noteworthy attack looks like a “Black Swan” 

[7]. And yet, declaring that no meaningful probabilistic security analysis is possible 

will be in my opinion wrong, especially for those safety critical systems in which the 

primary concern is system availability and integrity. In such systems serious safety 

analysis is undertaken and the important hazards and failure modes are not merely 

identified but measures for error and failure detection, containment and recovery are 

provided. A good probabilistic security model will include two groups of parameters:  

- knowable, i.e. with low epistemic uncertainty. Examples of such parameters 

would be the parameters related to accidental failures, their repairs, of the cov-

erage of various detection mechanisms, etc., and  

- unknowable, i.e. with high epistemic uncertainty. The parameters related to the 

behavior of an Adversary and even the Adversary models themselves fall into 

this category. For these parameters, however, one might be able to identify a 

range, possibly a large one, of credible values.  



Epistemic uncertainty has been dealt with in the past, e.g. using the Bayesian anal-

ysis. Bayesian analysis asks for explicit quantification of epistemic uncertainty (in the 

form of a prior distribution), which may be problematic, and in the absence of a sig-

nificant number of observations, the significant epistemic uncertainty may produce 

predictions, which are “too imprecise” to be useful. A reasonable alternative to a 

Bayesian assessment would be sensitivity analysis on the model parameters of the 

modeled safety critical system. Such an analysis would allow one to explore the space 

of plausible parameter values (without stating explicitly the epistemic uncertainty 

over this space) and to determine the range, for which the modeled system behaves 

acceptably and those for which the system behaves unacceptably (i.e. the cyber risk is 

too high). Sensitivity analysis can also be extended to the parameters of the mecha-

nisms of cyber defense and help establish the parameter values, for which these 

mechanisms reduce the risk from cyber attacks to an acceptable level. Consider for 

example an intrusion detection/prevention system (IDS/IPS). In sensitivity analysis 

one can analyze the frequency of cyber attacks (subject to high epistemic uncertainty), 

for which cyber attacks pose too high a risk for the safety critical systems and “play” 

with IDS/IPS coverage to establish the coverage values, for which the risk from cyber 

attacks is reduced to a tolerable level. As a side effect “sensitivity analysis” may re-

veal that some (unknowable) parameters have low/negligible impact on system risk.  

In this paper sensitivity analysis is demonstrated on a non-trivial case study. 

3 The Model 

The e-Motor case study was developed in the SESAMO (Artemis JU) project [8], [9] 

and is intended to be an ASIL-D
1
 device. As a measure of safety assurance the device 

is designed to consist of two diverse software channels. The device is connected to the 

CAN bus of a car and is supplied by a torque request processed by the two channels 

independently. The control stimuli to the actual electric motor are provided by one of 

the two channels after adjudication of the outputs from the channels. The model pre-

sented in this paper is built under a number of assumptions about the architecture and 

the fault tolerant mechanisms used in the e-Motor, which are summarized below: 

1. Each of the two channels is self-checking, capable to detect its own failures with 

some probability (coverage); 

2. Each channel is provided with a safe state, e.g. a piece of code/data which can be 

used by the channel to move the device to a safe state, if instructed to do so by the 

“higher authority” (see below). 

3. Each of the channels can be in one of the following states: 

─ working correctly;  

─ failed detected, which is further split into: 

○ “safe failure state”, if the safe state for the device has not been compromised. 

While in a safe failure state the channel can on its own complete a transition 

                                                           
1 ASIL-D is the highest safety integrity level defined in ISO 26262 and requires the highest 

degree of rigor in development. 



of the entire device to a safe state, i.e. irrespective of whether the other chan-

nel works correctly or has failed.  

○ “Unsafe failure state 2” – if the safe state has been compromised. In this case, 

if the channel is instructed to move the device to a safe state, the device will 

find itself in an unsafe state. 

─ “Unsafe failure state” – if the channel has failed, but did not detect its failure.  

4. The decision about which of the two channels controls the electric motor and exe-

cutes a safe function (e.g. moves the device to a safe state) is taken by a “higher 

authority”, which is outside the e-Motor itself. We assume that the higher authority 

is acting always correctly, i.e. if there is a channel that can to perform a con-

trol/safety function correctly (e.g. to move the device to a safe state) such as chan-

nel is always selected to do so. The e-Motor is essentially a 1-out-of-2 system with 

self-checking channels and a perfect adjudicator.  

The system state is established from the channel states as follows: 

─ If at least one of the channels is OK, then the system is OK; 

─ If none of the channels is OK, but at least one is in “safe failure state”, then the 

system itself is in a safe failure state. If this situation occurs, the assumption is 

that the higher authority will instruct a channel in a “safe failure state” to move 

the e-Motor to a safe state. Further we assume that the transition to the safe sys-

tem state occurs instantaneously and once it is started it is always completed 

successfully. 

─ If both channels are neither in OK nor in “safe failure state”, then the system en-

ters (instantaneously) the unsafe system state. 

The initial idea for combined analysis of safety and security of the e-Motor is 

shown in Fig. 1 using the SAN formalism (Stochastic Activity Networks).  

 

Fig. 1. A simplified SAN model of a channel of the E-motor 

The “places” represent the states of the device: OK – represents the normal opera-

tion, CompromisedState – the state in which the safe state configuration is tampered 

with, SafeState – the state when proper reaction to a safety related event is taken, 

UnsafeState – represents a unsafe failure state (either the failure is not detected at all 

or it is detected but has been handled correctly) and the AdditionalUnsafeState (un-



safe operation due to calling upon the safe state, which in fact has become unsafe due 

to a successful tampering with of the safe state of the e-Motor device). The “stochas-

tic activities” model the distribution of time a transition between two states takes. For 

instance, the activity “OK_Compromised” represents a transition (and the probability 

distribution of the duration of this transition) from OK state to the CompromisedState. 

Similarly, the activity “Compromised_OK” represents a transition to OK state from 

CompromisedState. 

“CompromisedState” state models the fact that, due to a data integrity violation, 

the safe state of an e-Motor channel has been altered. The safe state definition (code 

and data) is stored in safe state configuration file. One of the configuration files is 

active at a time and should the e-Motor fail to perform correctly, the active safe state 

will be invoked by the higher authority logic built in the e-Motor. An alteration of the 

e-Motor’s safe state will place the channel in a compromised state, i.e. will create a 

new hazard and will have no consequence until the device needs to enter its safe 

state. Should the safe state be called upon while the device is in the “compromised” 

state, then the e-Motor instead of entering the designated safe state will enter an un-

safe state (AdditionalUnsafeState), as shown in Fig. 1.  

If the incorrect (e.g. the tampered with) safe state configuration file is detected be-

fore a transition to the “safe” state is called upon and there is a mechanism to restore 

the correct configuration (i.e. the compromised state is ‘fixed’ by a return to the state 

OK), then the “compromised” state will have no effect on device safety. 

3.1 Simplifications Made 

Type of attacks. The model considers three types of attacks as listed below of which 

only the first type is discussed in detail in the paper
2
:  

1. A malicious alteration of the safe state configuration files. 

2. A malicious modification of the requested torque (information coming to the e-

Motor as an input, i.e. over the CAN Bus).  

3. A malicious modification of the channels’ control loop parameters. These do not 

affect immediately the device’s safe operation, but may cause a channel failure.  

Common cause accidental failures are modeled simplistically. It is based on the 

Marshall and Olkin model [10] of common stress. 

Limited knowledge about stochastic properties of the modeled cyber attacks. As 

discussed in the introduction this limitation is not specific to the e-Motor case study 

and applies to most attempts to model stochastically cyber attacks.  

Detection of attacks. The SAN model includes several techniques of attack detec-

tion: i) a generic attack detection capability (represented simply by a probability of 

detecting an attack), ii) plausibility checks on the values of torque requests. Plausibil-

ity checks are among the mechanisms considered by the vendors for the real e-Motor 

device, and iii) timing checks, e.g. torque requests should not occur more frequently 

than a predefined timing constraints. This paper, however, uses only the first of the 

three detection techniques. 

                                                           
2 This attack type was missed in the initial safety analysis. 



3.2 The SAN Model  

Model Description.  

The Mobius (SAN) project is shown in Fig. 2. 

 

 

The project consists of several 

atomic models: Adjudicator, Adver-

sary, Control_configuration_channel, 

SW_channel, T_config_channel and 

configuration_channel.  

The model also includes a com-

posed model, Div_SW.  

The Reward, Study and Solver 

components are parts of project, too.  

The model is solved via Monte 

Carlo simulation. 

Fig. 2. The SAN project, E-Motor_2014_D33.  

The Composed Model, Div_SW. 

Fig. 3 presents the composed model of the e-Motor. 

 

Fig. 3. The structure of the composed model, Div_SW 

It consists of a number of other models: 

 Channel 1 – represents the behavior of the first s/w channel; 

 Channel 2 – represents the behavior of the second s/w channel; 

 Adjudicator – offers the functionality, necessary to deal with the redundant chan-

nels. It implements a 1-out-of-2 architecture with two self-checking channels.  

 Adversary – models the behavior of an adversary who might attempt one of 3 pos-

sible attacks described above. The adversary model allows for implementing a sin-



gle attack or multiple attacks. 

Each of the software channels is represented by a Join in the composed model 

Div_SW. These are Channel_1 and Channel_2, respectively. Each of these, in turn, is 

a composition of three atomic models: 

 SW channel – models the behavior of a software channel with respect to accidental 

failures. This model is substantially similar to the model shown in Fig. 1. with var-

ious additions such as repair of the channel when it is in either safe or unsafe fail-

ure state provided the system is OK; 

 Configuration_channel_1/2 – models the possible alterations of the safe state con-

figurations (files) used by the respective s/w channel. The SW_channel and the re-

spective configuration have shared places (one of the Mobius mechanism used for 

linking various atomic/composed models) defined, so that when the configuration 

file is altered and the sw_channel is instructed by the higher authority to enter a 

safe state, it will instead enter an unsafe state.  

 The atomic models, T_Conf_channel and Control_conf_channel_1/2, model a 

torque attack and the attack on the control parameters of the respective s/w chan-

nels. Neither is discussed in detail in this paper. 

The many models listed above communicate with each other via the mechanism of 

shared places. The interested reader can get further details about the model from the 

author (including the SAN model itself). 

Using pairs of configuration files in the model (safe states and control_conf, re-

spectively) – one per channel – is dictated by the requirement in ISO 26262 to elimi-

nate any single point of failure in the e-Motor design.  

The Atomic Models 

SW_channel. The model is shown in Fig. 4.   

 

Fig. 4. Model of a SW channel 

This model includes a model of common failures, captured by the place 

CCF_active (a shared place for both SW_channel atomic models) and the activity 

CCF_propagate. The common failure is enabled only when both channels are OK 

(Input_Gate). The place CCF_active is shared with the respective place in the atomic 



model Adjudicator and triggers a common failure event. The intervals between the 

simultaneous failures are specified in the Adjudicator atomic model. More specifical-

ly, the model offers four distinct states for a software channel as defined in Fig. 1 

above: Channel_OK, Channel_failure, Safe_state – this is the state where the channel 

will end up, if the diagnosis determines successfully the need for a safe state AND the 

safe state at this moment in time is not compromised. If, however, the safe state is 

compromised, then the channel will end up in Unsafe_state_2; the decision logic 

which state to move to is captured by the output gate safe_vs_unsafe2_gate. The 

probabilities of successful diagnosis are defined explicitly as global variables. 

From Safe_state a channel can be returned back to Channel_OK. Similarly, a 

channel after unsafe failure (Unsafe_state or Unsafe_state_2) can be repaired. Both 

repairs are conditional on the system being in OK state, i.e. at least one of the chan-

nels is OK, achieved via the place System_OK and the input gate, Input_Gate_1. 

Adversary. This model is shown in Fig. 5.  

It consists of several places: Start, where one can place a number of tokens to 

simulate attacks. The number of tokens determines how many attacks will be simulat-

ed. Each attack (a token being passed from Start place to either 

ConfAttack_in_progress, Torque_attack_in_progress or Control_Attack_in_progress 

will trigger a scenario of an attack of one of the three types. For the attacks on the safe 

state the scenarios may involve attacking a single channel or attacking both channels. 

Which of the options will be used in a study is controlled by the token in Sin-

gle_both_enabler place (and the two input gates linked to this place). The other two 

attacks – on the torque and on the control loop parameters – are not discussed in this 

paper. 

 

Fig. 5. A SAN model of the adversary 

Configuration_channel. This model is shown in Fig. 6. A state model of a chan-

nel’s safe state configuration file. This model defines the states associated with the 



safe states as follows: 

 Correct (default) – the safe state is not tampered with.  

 Incorrect_1, Incorrect_2 – model two other states for the safe states, both valid as 

safe states for other contexts (i.e. modes of operation of a SW channel), but inade-

quate for the currently active mode of operation of the e-Motor. The use of two 

states to model the consequences of tampering with the safe state configuration file 

is motivated by the description of the device provided by the vendor in [8]. 

 

Fig. 6. A state model of a channel’s safe state configuration file. 

 The transitions between the states of the safe state configuration file are governed 

by the activities in this atomic model (Correct_Incorrect_1, etc. including restoring 

from incorrect states to the correct one, Restore_conf_1), which are enabled by the 

place Attack_in_progress enabler. The transitions between states (i.e. tokens be-

tween places) are only possible when Attack_in_progress place contains a token. 

This place is shared with the places, Channel1_attacked and Channel2_attacked, 

respectively, of the Adversary model. In other words, only when an attacker has 

chosen which channel to attack (the Adversary can choose to attack either a single 

channel or both simultaneously) is a transition of the respective configura-

tion_channel enabled.  

 Channel_attacked_ID place is shared with the places AttackedID_X of the Adver-

sary model. The tokens in it are used in the predicates of the activities, which drive 

the transitions of tokens between the other places of this model. 

Adjudicator. The model is omitted here for lack of space, but is described in [11]. 

It implements the logic summarized above and uses the mechanisms of shared places.  

 Studies  

Sensitivity analysis was completed to establish how model behavior is affected by 

the values of model parameters documented in [11]. Here a small sample is presented 

to illustrate the work and comment on some outcomes which at first looked surpris-

ing.  



Sensitivity analysis has been applied to a number of parameters. In the model these 

parameters are defined as global variables. Global variables can be used for defining 

the properties of activities (e.g. the parameters of the probability distributions used) 

and to define the initial marking of the places used in the SAN models. SAN allows 

for defining “studies”. A study in SAN terms corresponds to a particular set of values 

assigned to global parameters. Further details are provided in [11].  

4 Findings  

A number of studies have been completed via Monte Carlo simulation. Full details are 

available from the author. The results consist of the probabilities of e-Motor (as a 

system) being in one of the 3 possible system states – “Success” (mission completed 

without a failure), “Safe failure” (device moved to safe state) and “Unsafe failure” 

(failure occurred, but the device failed to reach safe state) – at the end of missions of 

fixed lengths. The results are provided for missions of length in the range of 

1000...12000 hours (slightly over a month to more than an year). These were derived 

from simulation traces of length 200,000 hours, i.e. 22 years of operation, likely to 

exceed the typical lifetime of a car.  

An example of sensitivity analysis is provided in Table 1.  

Table 1. A sensitivity analysis example. 

Global variable name Exp 1 Exp 2 Exp 3 Exp 4 

AttackRate 0.001 

CC_failure_rate 1.00E-04 

Config_repair_success 0.6 

SS_repair_rate 36 360 3.6 36 

USF_repair_rate 36 36 36 360 

attack_CH1_success_pr 0.2 

attack_CH2_success_pr 0.1 

attack_count 10 

channel_failure_rate 0.001 

failure_coverage 0.8 

 

The four studies are parameterized identically except for the values of two parame-

ters, SS_repair_rate and USF_repair_rate, the rates of repair of a channel from 

safe and unsafe failure, respectively. Common accidental failure is allowed with rate 

an order of magnitude lower than the rate of channel failure. Accidental failures are 

assumed to have the same rate as the attacks on the safe state. All probabilities of 

success (of attacks, of repairs, restoring the safe state and of failure detection) used in 

the studies are provided in Table 1. 

The model behavior under the four parameterizations is summarized in Table 2 in 

which the probabilities of success, safe failure and unsafe failure at the end of mis-

sions of fixed length are computed.  

Note that the sum of the probabilities shown in Table 2 per selected mission dura-

tion equal to 1 as each individual mission will end up in one and only one of the three 



alternatives. 

Table 2. Effect of repair time rates on the probabilities of how missions of fixed length will end 

(Success, Safe failure or Unsafe failure). 

  Probability of mission Success/Safe fail-

ure/Unsafe failure 

Mission dura-

tion [hours]  

Probability of mission 

ending in 

Exp 1 Exp 2 Exp 3 Exp 4 

 

1000 

Success 0.999120 0.999245 0.999660 0.999175 

Safe failure 0.000880 0.000755 0.000340 0.000825 

Unsafe failure 0 0 0 0 

 

2000 

Success 0.998290 0.998415 0.009525 0.998405 

Safe failure 0.001710 0.001585 0.990475 0.001595 

Unsafe failure 0 0 0 0 

 

7000 

Success 0.994180 0.995060 0.008180 0.995015 

Safe failure 0.005815 0.004940 0.991820 0.004985 

Unsafe failure 5.00E-06 0 0 0 

 

8000 

Success 0.993410 0.019340 0.007930 0.019285 

Safe failure 0.006585 0.980660 0.992070 0.980715 

Unsafe failure 5.00E-06 0 0 0 

 

11,000 

Success 0.991455 0.017560 0.007290 0.017650 

Safe failure 0.008540 0.982440 0.992710 0.982350 

Unsafe failure 5.00E-06 0 0 0 

 

12,000 

Success 0.020310 0.017005 0.007100 0.017070 

Safe failure 0.979685 0.982995 0.992900 0.982930 

Unsafe failure 5.00E-06 0 0 0 

5 Discussion 

The studies have been chosen so that one can systematically trace the impact of a 

single parameter on the behavior of the model. It is somewhat surprising that when 

the rates of repair from both safe state and unsafe state of a channel are the same (Exp 

1) the mission is likely to survive longest without a failure. The probability of failure 

of the mission is very low until missions of 12,000 hours. Increasing one of the repair 

rates by an order of magnitude (Exp 2 or Exp 4, respectively) does not improve the 

chances of mission survival. For these two experiments the probability of a mission 

failure drops dramatically at around 8,000 hours. At first this may seem counterintui-

tive. Fast recovery must be a good thing. But somehow the improvement of the repair 

rates asymmetrically does not improve the mission chances to survive without a fail-

ure. The good news is that this drop is due to safe failures, which one would consider 

acceptable, although availability is reduced.  

Looking at the probability of unsafe failure, we notice that for both Exp 2 and Exp 

4 the probability of unsafe system failure the first 12,000 hours is 0. In fact after in-



specting the entire distribution (up to the simulated 200,000 hours per simulation run) 

we observed that no unsafe failure was recorded for Exp 4 at all. For Exp 2 the first 

mission length for which unsafe system failure was recorded was 24,000 hours
3
. For 

Exp 1, on the other hand, we did observed unsafe system failures starting from mis-

sion duration of 5,000 hours. In other words, the improvement of the repairs seems to 

indicate that the chances of unsafe failures are reduced, which is what one would 

expect/want.  

Exp 3 is not surprising. Reducing the repair rate for channels in safe failed state 

does reduce the chances of a mission survival. Missions without a failure are very 

unlikely for missions longer than 2000 hours. On the other hand, unsafe failures were 

first recorded for missions of 13,000 hours. This is better than for Exp 1, but the con-

fidence in the computed probabilities is very low for us to draw any conclusions.  

The dependent accidental failures of the two channels are modeled using the model 

of common stress of Marshal and Olkin [10]. It is worth pointing out, that while the 

adequacy of the model for software failure may be questioned, it clearly models ade-

quately hardware failures – both channels are executed on the same hardware. The 

model of common mode can be replaced by suitable alternatives, e.g. [12], [13] or 

[14] and may impact availability . 

6 Conclusions and Future Work 

In this paper an approach to stochastic modeling of a safety critical device is present-

ed which accounts for both – accidental failures and cyber attacks affecting safety. 

The study is centered upon one particular attack type: an attack which may lead to 

eliminating the safe state of the device. The device being specified as an ASIL-D 

device must be built using design diversity and the model accounts for the two-

channel architecture of the device. 

The paper demonstrates that probabilistic modeling may be useful in quantifying 

the risk from cyber attacks. The approach advocated in the paper is that a probabilistic 

model should be detailed enough to account for all hazards identified in the safety 

analysis (in the presented model three hazards have been included and one of them 

studied in detail) while the epistemic uncertainty with model parameters (i.e. in decid-

ing the values of the parameters related to the attacks) should be addressed by sensi-

tivity analysis exploring the space of plausible parameters.  

For lack of space the paper could not demonstrate sensitivity analysis more exten-

sively, e.g. varying the rates and probabilities of success of the attacks; the impact of 

these on model behavior will be studied in the future: 

─ The model of accidental dependent failures is simplistic, possibly unrealistic and in 

the future will be replaced with alternatives; 

─ In the particular context of AUTOSAR an interesting design trade-off exists be-

tween protecting the individual devices against cyber attacks specific to a device 

                                                           
3 For all probabilities lower that 10-4 the relative confidence in the particular number was lower 

than 10%. Thus, for small probabilities (including values of 0) the numbers should be treat-

ed as statistically insignificant. 



vs. using a generic intrusion detection/protection system (IDS). Probabilistic mod-

eling seems particularly suitable for addressing this problem and we intend to study 

the trade-off it in the future. 
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