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Iterative Lead Compensation Control of

Nonlinear Marine Vessels Manoeuvring Models

Elı́as Revestido Herrero, M. Tomás-Rodrı́guez, and Francisco J. Velasco

González, Member, IEEE

Abstract

This paper addresses the problem of control design and implementation for a nonlinear marine

vessel manoeuvring model. The authors consider a highly nonlinear vessel 4 DOF model as the basis

of this work. The control algorithm here proposed consists of a combination of two methodologies:

i) an iteration technique that approximates the original nonlinear model by a sequence of linear time

varying equations whose solution converge to the solution of the original nonlinear problem and, ii) a

lead compensation design in which for each of the iterated linear time varying system generated, the

controller is optimized at each time on the interval for better tracking performance. The control designed

for the last iteration is then applied to the original nonlinear problem.

Simulations and results here presented show a good performance of the approximation methodology

and also an accurate tracking for certain manoeuvring cases under the control of the designed lead

controller. The main characteristic of the nonlinear system′s response are the reduction of the settling

time and the elimination of the steady state error and overshoot.
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I. INTRODUCTION

The design of autopilots based on proportional-integral-derivative (PID) methodologies has

been in use since 1920′s [1] with the help of gyrocompasses which measured the vehicle′s

heading angle for feedback purposes. The major challenges confronted in the design of ship

autopilots are mainly the existing surrounding environmental uncertainties such as waves, wind,

ocean currents and the high nonlinear ship dynamics. In addition to these, the rudder dynamics

also present saturation-type nonlinearities on its rate and deflection angle.

Several articles deal with the design and implementation of PID based autopilots, in which

linearizations for the vessel′s manoeuvring model are performed, see [1]–[6] as the most repre-

sentative. In the case of low speed applications, it is acceptable to neglect the nonlinear dynamics

on the ships manoeuvring model due to linear terms predomination. However, for high speed

applications, tight turns, large sideslip angles or in the presence of currents, nonlinear effects

become pronounced and thus neglecting them may degrade the controller′s performance and

robustness.

On the other hand, different nonlinear methods [1] have been presented for course-keeping

autopilots design such as state feedback linearization [7], nonlinear backstepping [8], [9], sliding

mode control [10], output feedback [11], H∞-control [12], particle swarm optimization [13],

genetic algorithms [10], fuzzy logic methods [14],... etc. For most of these type of applications,

nonlinear manoeuvring models in 1 degree of freedom (DOF) are considered, see [15] or [16]

as example, still in these contributions, the coupling existing between the various variables is

obviously not taken into account. Due to the complexity of some of the above cited nonlinear

methods, the implementation may be tedious and time consuming from the computational point

of view.

The aim of this article is to design a control method for a nonlinear marine vessel manoeuvring

model without performing any simplification in the model′s nonlinearities or variable′s cou-

plings. The authors propose a control strategy based on an optimized lead compensation control

methodology combined with an iteration technique used to approach the original nonlinear

system. This iteration technique was initially presented in [17], [18] and has been used to

solve various nonlinear control problems such as optimal control [19], observers design [20],

nonlinear optimal tracking [21],...etc. One of its advantages is the fact that it maintains the

December 24, 2012 DRAFT



3

inherent nonlinear characteristics of the system′s behaviour, providing the grounds for a robust

control implementation where modelling uncertainties are removed. The iteration technique is

applied to a 4 DOF nonlinear manoeuvring ship model. This opens the novel possibility of

course-keeping autopilot design based on lead compensation methodology applied to a nonlinear

model. This approach exist without the limitations of the linear models previously indicated, and

keeps the simplicity of the lead compensation design and implementation. Furthermore, based

on a preliminar study, the use of a lead controller instead of a conventional PID is justified. By

an appropriate optimization technique, a trade off between the overshoot and time response is

achieved without stationary state error.

The objective is to design a lead compensation controller for nonlinear systems of the form:

ẋ = f(x) = A(x)x(t) +B(x)uc(t, θc), x(0) = x0 (1)

where uc(t, θc) is the control action, θc is the set of controller′s parameters, x(t) is the state

vector, A(x), B(x) are matrices of appropriate dimensions and x(0) are the initial conditions.

Replacing the nonlinear system by a sequence of ”i” linear time varying (LTV) systems, a

sequence of corresponding feedback laws u(i)c (t, θc) is generated: for each of them, the closed-

loop response for the ith LTV system at each time of the time interval is controlled by the

designed lead controller u(i)c (t, θc). From the convergence of the sequence of LTV solutions

[17], the last iterated control law u
(i)
c (t, θc), (corresponding to the ith iteration), will provide lead

controller stability objectives satisfaction when it is applied to the nonlinear system.

The structure of the article is as follows: Section II contains the detailed description of the

nonlinear model for the vessel under consideration. Details on the hydrodynamic, propulsion

and control forces are given. Section III provides details on the iteration technique and the

convergence theorem is stated. Section IV shows the application of this technique to the nonlinear

vessel model by using a 20◦-20◦ zig-zag manoeuvre example to illustrate the ideas. Section V

presents the control algorithm design and implementation. Section VI shows the performance of

the control methodology on the vessel′s nonlinear model. This section contains the simulations

carried out and a discussion on the results obtained. Conclusions and further research guidelines

are provided in section VII.
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II. THE MATHEMATICAL MODEL

The nonlinear dynamical model described in this section is classified as what is known as

manoeuvring. Manoeuvring deals with the ship′s motion in absence of waves excitation (calm

water) [22]. The motion results from the action of control devices such as control surfaces

(rudders, fins, T-foils) and propulsion units.

In manoeuvring theory, the motion of 4 DOF ship models requires from four independent

coordinates in order to fully determine the position and orientation of the vehicle, which is

considered to be a rigid body. These coordinates represent the longitudinal and lateral positions

and speeds as well as and their derivatives along the respective coordinate frames. The variables

describing the vessels′s dynamics are provided in table I and figure 1 following the notation

found in [23], which will be adopted for remaining of this article.

The four degrees of freedom under consideration in this work describe the ship′s motion (surge,

sway and yaw) on the horizontal plane and the roll in the vertical plane. Two coordinate frames

are used: the n coordinate system (earth-fixed), On, is used to define the ship position and the

system b, (body-fixed) Ob, helps to define the ship′s orientation [22] (see figure 1).

TABLE I

NOTATION FOR THE SHIP′S DISPLACEMENT VARIABLES.

Movement Force Linear Speed Position

Surge X u “b-frame” xn “n-frame”

Sway Y v “b-frame” yn “n-frame”

Rotation Moment Angular Speed Angle

Roll K p “b-frame” φ euler

Yaw N r “b-frame” ψ(heading) euler
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Fig. 1. Ship′s displacement variables and coordinate systems.

The rigid-body equations of motion of the 4 DOF model are given by [24]:

m[u̇− ybgṙ − vr − xbgr2 + zbgpr] = τX

m[v̇ − zbgṗ+ xbgṙ + ur − ybg(r2 + p2)] = τY

Ixxṗ−mzbgv̇ +m[ybgvp− zbgur] = τK

Izz ṙ +mxbgv̇ −mybgu̇+m[xbgur − ybgvr] = τN (2)

The subindex g refers to the center of gravity and the superindex b to the b-frame. Details of the

parameters included in equations (2) can be found in Appendix A. These equations of motion

are formulated about the b-frame, which is fixed to the point determined by the intersection of

the port-starboard plane of symmetry, the waterline plane and the transverse vertical plane at

Lpp/2 (see Appendix A for hull dimensions).

The force terms on the right hand side of equations (2) can be described as the total contribution

of the hydrodynamic, propulsion and control forces:

τ = τhyd + τp + τc (3)

These terms will be described next.
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A. Hydrodynamic Forces

The hydrodynamic forces considered in this section, τhyd, are those appearing due to the

motion of the vessel in calm water. The following equations correspond to the model established

by [25] that proposed a simplified version of the model in [26], preserving in this way the most

important hydrodynamic coefficients so that the model describes a wide variety of manoeuvring

regimes in spite of some minor simplifications. Hydrodynamic forces are mainly composed by

surge, sway, roll and yaw terms:

• Surge terms

τ bXhyd = Xu̇u̇+Xvrvr +Xu|u|u|u| (4)

• Sway terms

τ bY hyd = Yv̇v̇ + Yṙṙ + Yṗṗ+ Y|u|v|u|v + Yurur + Y|v|v|v|v + Y|v|r|v|r

+Y|r|v|r|v + Yφ|uv|φ|uv|+ Yφ|ur|φ|ur|+ Yφuuφu
2

(5)

• Roll terms

τ bKhyd = Kv̇v̇ −Kṗṗ+K|u|v|u|v +Kurur +K|v|v|v|v +K|v|r|v|r +K|r|v|r|v

+Kφ|uv|φ|uv|+Kφ|ur|φ|ur|+Kφ|uu|φu
2 +K|u|p|u|p+Kp|p|p|p|+Kpp

−Kφφφφ
3 + ρgOGMtφ

(6)

• Yaw terms

τ bNhyd = Nv̇v̇ +Nṙṙ +N|u|v|u|v +Nurur +N|v|v|v|v +N|v|r|v|r +N|r|v|r|v

+Nφ|uv|φ|uv|+Nφu|r|φu|r|+N|p|p|p|p+N|u|p|u|p+Nφu|u|φu|u|
(7)

Note that ψ̇ = r and φ̇ = p.

B. Propulsion Forces

The dynamics of the propulsion system are not included in the model as in [24]. Instead of

that, it is assumed that the propellers deliver a constant thrust T that compensates the resistance

on calm water:

T = −Xu|u|u
2
nom (8)

where unom is the service speed. The resultant propulsion forces vector is:

τp = [T, 0, 0, 0]T (9)

Consequently, the rudder′s and fin′s motion induce drag forces that contribute to slow down the

vessel.
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C. Control Forces: Rudder

The vessel under study in here is equipped with two rudders which together with the com-

manding machinery constitute the actuators of the system. In order to obtain the expression of

the control forces, some other concepts need to be introduced first.

Hydrofoil lift and drag forces [27], are given by the following expressions:

L = 1/2ρV 2
f Af C̄Lαe (10)

D = 1/2ρV 2
f Af (CD0 +

(C̄Lαe)
2

0.9πa
) (11)

where Vf is the local velocity at the foil, Af is the area of the foil, αe is the effective angle of

attack in radians, and a is the effective aspect ratio. We can use the following linear approximation

to represent the lift coefficient:

C̄L =
∂CL
∂αe
|αe=0 (12)

Once the stall angle of the hydrofoils is reached, the lift saturates in value. In order to calculate

the lift of the rudder, the effective angle of attack, αe, is approximated by the mechanical angle

of the rudder: αe ≈ δc, and the local flow velocity at the rudder is considered to be equal to the

vessel’s total horizontal speed, Vf =
√
u2 + v2. Then, a global correction for the lift and drag

can be applied [28]:

∆L = T

[
1 +

1

1 + CTh
sin(αe)

]
(13)

∆D = T

[
1 +

1

1 + CTh
(1− cos (αe))

]
(14)

where T is the propeller′s thrust, and CTh is the propeller′s loading coefficient given by:

CTh =
2T

ρV 2
f Ap

(15)

in which Ap is the propeller′s disc area.

The control forces, τc, generated by the rudder in the b-frame are:

τc ≈ [−D, L, zbCPL, xbCPL]T (16)

where xbCP and zbCP are the coordinates of the center of pressure of the rudder (CP) with respect

to the b-frame. The CP is assumed to be located at the rudder stock and in the middle of the

rudder span.
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The hydraulic machinery moving the rudder is implemented in this work following the model

of [29] that considers both a maximum rudder angle and rate. When working in the unsaturated

zone, the rudder′s dynamics can be represented by a first order system of the form:

δ̇(t) =
1

Tm
[δc(t)− δ(t)] (17)

where δ(t) is the actual rudder angle, δc(t) is the commanded rudder angle and Tm is the time

constant of the hydraulic machinery.

D. Kinematics

The kinematics cover the geometrical aspects of the vessel′s displacement without considering

mass and forces. The position of the ship is obtained by performing a transformation between

the body-fixed (b − frame) linear velocities and the time derivative of the positions in the

(n− frame), see figure 1. This can be expressed for a 6 DOF manoeuvring model as:
ẋn

ẏn

żn

 = Rn
b

u

v

w

, (18)

where u is the surge speed, v is the sway speed and w is the heave speed.

The linear-velocity transformation matrix Rn
b is [30], [31]:

Rn
b =


cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ

sψcθ cψcφcφ+ sφsθsψ −cψsφ+ sψcφsθ

−sθ cθsφ cθsφ

, (19)

where ψ is the yaw angle, φ is the roll angle, θ is the pitch angle, s ≡ sin(·) and c ≡ cos(·).

For the case of the 4 DOF manoeuvring model of this work, the movement in the z axe is not

considered and θ = 0, then, by taking this into account, equations (18) and (19) are simplified

as follows:

ẋn = u · cos(ψ)− v · sin(ψ)cos(φ)

ẏn = u · sin(ψ) + v · cos(ψ)cos(φ) (20)

Note that all the variables were previously defined in table I .
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III. ITERATION TECHNIQUE FOR NONLINEAR SYSTEMS

This section revises the implementation and convergence properties of a recently introduced

technique for solving nonlinear dynamical systems. In this methodology, the original nonlinear

problem is replaced by a sequence of linear time varying systems whose solutions converge in

the space of continuous functions to the solution of the nonlinear system under a mild Lipschitz

condition [17]. This section contains the basis on how this technique is implemented and its

convergence theorem.

Any nonlinear system given on the form:

ẋ(t) = f [x(t)] = A[x(t)]x(t) +B[x(t)]uc(t), x(0) = x0 ∈ Rn. (21)

where A[x(t)] ∈ Rnxn is locally Lipschitz, can be approximated by a sequence of linear time

varying equations where the vector of states x(t) ∈ Rn, inside the matrices A[x(t)] and B[x(t)]

are substituted at each iteration ”i” by the states obtained in the previous iteration x(i−1)(t):

ẋ(1)(t) = A[x(0)]x(1)(t) +B[x(0)]u
(1)
c (t), x(1)(0) = x(0)

...

ẋ(i)(t) = A[x(i−1)(t)]x(i)(t) +B[x(i−1)(t)]u
(i)
c (t), x(i)(0) = x(0)

(22)

for i ≥ 1 and ∀t ∈ [0, τ ]. The solutions of this sequence of linear time varying equations, x(i)(t)

converge to the solution of the nonlinear system x(t) given in (21):

Limi→∞
[
x(i)(t)

]
→ x(t) (23)

The convergence of this sequence is stated in the following theorem:

Theorem I: Suppose that the nonlinear equation (21) has a unique solution on the time interval

t ∈ [0, τ ] denoted by x(t) and assume that the system′s matrix A[x(t)] : Rn → Rn is locally

Lipschitz. Then, the sequence of solutions defined in (23) converges uniformly on t ∈ [0, τ ] to

the solution x(t).

The convergence proof of Theorem I can be found in [17] where global convergence is extended

to time intervals t ∈ [0,∞], the reader is referred to this cite for a detailed mathematical derivation

of the proof.
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Fig. 2. The sequence of linear time varying solutions defined in (23) converges uniformly on t ∈ [0, τ ] to the solution x(t) of

the nonlinear problem.

The application of this technique provides an accurate representation of the nonlinear solution

after just a few iterations. Nonlinear systems of the form (21), satisfying the local Lipschitz

requirement can be now approached by classic linear methods. This is a very mild assumption

since it is an already assumed condition for the uniqueness of solution in Theorem I .

IV. APPROXIMATION TO THE VESSEL′S NONLINEAR EQUATIONS

In this section the authors show how to apply the iteration technique presented in section III

to approximate the vessel′s nonlinear model given in section II for the particular case of a full

scale coastal patrol. The set of parameters and the main characteristics of the coastal patrol are

included in Appendix A. The coastal patrol is equipped with two rudders and its service speed

is unom = 15 knots (7.71m/s). The simulations were carried out using Matlab/Simulink and the

GNC toolbox [32]. The simulation time was tf = 200 secs and the integration step size was set

to be h = 0.1. As a rule of thumb, the sampling period h is chosen to be in the range of 20-40

samples within the rise time of the fastest degree of freedom.

The equations of motion of this system, (2)-(20), are highly nonlinear and can be written on the

form:

ẋ(t) = A[x(t)]x(t) +B[x(t)]uc(t), x(0) = x0 ∈ R9. (24)

where the systems matrix A[x(t)] ∈ R9x9, B[x(t)] ∈ R9x2, uc(t) is the control signal and x(t) is

the state vector, x(t) = [u v p r φ ψ δ x y]T . u is the surge (longitudinal speed), v is the sway,
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this is the lateral speed, p is the angular speed of roll, r is the angular speed on yaw, φ is the

angular displacement in roll, ψ is the angular displacement in yaw, δ is the rudder displacement

for direction management purposes and xn, yn are the corresponding coordinates for longitudinal

and lateral positions expressed in the n-frame.

A standard 20◦-20◦ zig-zag manoeuvre (see [27]) is simulated, the reason for choosing such

a large amplitude is to excite the vessel′s high nonlinear dynamics and to show the good fit

of the iteration technique to the nonlinear original system. The control vector to carry out this

manoeuvre is uc(t) = [δc T ]T , where T was previously defined in (8) and δc is the rudder′s

deflection that must follow the zig-zag manoeuvre phases as shown in figure 3. Despite there

is no control methodology design, the zig-zag manoeuvre is in closed loop as the actual value

of ψ(t) is measured and until it reaches a determined value the rudder does not change from

starboard to port or viceversa (see 2nd, 3rd, 4th, and 5th phase points where the rudder angle

of deflection is changed in figure 3). The zig-zag manoeuvre should be completed with at least

five phases.

Fig. 3. 20◦-20◦ zig-zag manoeuvre phases and corresponding values of the heading angle ψ(t) represented in solid blue line

and the rudder′s deflection δc(t) represented by dashed black line.

The initial conditions, x0 = [unom 0 0 0 0 0 0 0 0]T , substitute the states on the first approximated

December 24, 2012 DRAFT
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linear system′s matrices, A[x0], B[x0] and, subsequently, the iteration technique results in a

sequence of linear time varying (LTV) systems where 20 iterations were needed to approach the

original nonlinear system.

Figures (4)-(7) show the time history of various states during the 20◦-20◦ zig zag manoeuvre for

some of the iterations and as well the evolution in time of the states in the nonlinear case (red

line), this is done in order to illustrate the convergence of this method. It is shown how the 20th

solution is a good representation of the nonlinear system solution, also the 40th solution is shown

in order to demonstrate the convergence of the states. After the 20th iterated solution, x(20)(t),

the convergence to the nonlinear solution x(t) is clear and also it is shown how the consequent

iterations, i.e., x(40)(t) show little variation with respect to it, this is,
∥∥x(40)(t)− x(20)(t)∥∥ → 0

when t→∞.

Fig. 4. Convergence of u(t) and v(t) states on a 20◦-20◦ zig-zag manoeuvre. Red line represents the movement of the original

nonlinear system. The pink line represents the 20th iterated linear time varying approximation and the black line is the 40th

iteration.

Figure 7.b shows the vessel′s position on the plane (xn, yn) along this manoeuvre; it is clear

to see how the 20th iteration (pink line) gives an accurate approximation to the behavior of

the original nonlinear system (red line). From the previous figures, it is clear to conclude that

when the iteration technique is implemented, after a short number of iterations, the original

nonlinear expression for the vessel′s dynamics gets a good representation by the last of the

linear approximations, 20 in this particular case.
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Fig. 5. Convergence of p(t) and r(t) states on a 20◦-20◦ zig-zag manoeuvre. Red line represents the movement of the original

nonlinear system. The pink line represents the 20th iterated linear time varying approximation and the black line is the 40th

iteration.

Fig. 6. Convergence of φ(t) and ψ(t) states on a 20◦-20◦ zig-zag manoeuvre. Red line represents the movement of the original

nonlinear system. The pink line represents the 20th iterated linear time varying approximation and the black line is the 40th

iteration.

V. CONTROL OF THE VESSEL′S NONLINEAR DYNAMICS

A. Controller design

An automatic pilot must fulfil two functions: course-keeping and change of course. In the first

case, the control objective is to maintain the trajectory of the vessel following a desired constant

heading, ψd. In the second case, the objective is to perform heading changes without introducing
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Fig. 7. (a) Convergence of δ(t) state on a 20◦-20◦ zig-zag manoeuvre. Red line represents the movement of the original

nonlinear system. The pink line represents the 20th iterated linear time varying approximation and the black line is the 40th

iteration. (b) Vessel′s position on the plane (xn, yn) along this manoeuvre

large response oscillations and within a minimum time. In both cases, the adequate functioning

of the system must be independent from the disturbances produced by existing external factors

such as wind, waves and currents.

The heading trajectory followed by the vessel, ψ(t), can be obtained by means of a second order

reference model:

ψ̈(t) + 2ζwnψ̇(t) + w2
nψ(t) = w2

nψd (25)

where wn is the natural frequency and ζ is the desired damping ratio of the closed loop system. ζ

is typically chosen to lie within the interval values (0.8 ≤ ζ ≤ 1) in order to account for security

issues [33]. In restricted waters and for collision avoidance, the course-changing manoeuvre

should have a clear start, in order to warn nearby ships of the intention of the manoeuvre and,

for that reason, that manoeuvre should preferably be completed with no overshoot.

The following PID control schema is conventionally used for the heading control implementation:

Uc(s) =
δc
E

(s) =

[
kp +

ki
s

+
kds

αTds+ 1

]
(26)

where kd = Tdkp and ki = kp/Ti being Td the derivative time, Ti the integral time, δc(s) the

Laplace transform of the rudder position and E(s) the Laplace transform of the error, e(t) =

ψd− ψ(t) and Uc(s) is the Laplace transform of the control signal, uc(t, θc). The ψ(t) vector is
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extracted from the states, being x(t) = [u v p r φ ψ δ x y]T and x(6)(t) = ψ(t).

The noise levels of the onboard standard instrumentation may cause derivative model noise

amplification problems. The PID schema (26), in which the derivative action is filtered by a first

order system 1
αTds+1

, avoids this problem of noise amplification.

It is highly likely that the rudder’s deflection angle and rate saturations provoque the windup

phenomenon (see [34] for more details) when PID methodology is applied. This is, the PID

integral term, (ki
s

), may become large and as a consequence, the heading response may show

high levels of oscillation. There exist several anti-windup schemes in the literature (see [34] and

references therein), but instead of applying one of them, this would make the designed controller

more complex, a simpler method is chosen: a modified control structure such as the following

first order network controller is proposed, note that the integral action has been omitted:

Uc(s) =
δc
E

(s) = K

[
s+ z

s+ p

]
(27)

where K > 0 and p > z.

The expression (27) represents a lead compensation controller [35] that has a zero located nearer

to the s-plane origin than the pole. This dominant zero improves the stability of the system, which

is desirable in order to satisfy the objective of obtaining a heading response without overshoot.

Note that equations (26) and (27) become equal to each other if the integral term Kp/(Tis)

is zero, being equivalent to a PD controller transfer function.

B. Tuning the controller

The tuning task is performed by following the schema on figure 8, in which the optimization

algorithm takes data from the output (vessel′s heading angle ψ(t)) and from the input (desired

heading ψd). In the selection of the optimization method the aims of the heading control were

taken into account: To minimize both the response′s overshoot and the settling time without

steady state error. For these reasons, the authors chose the minimax optimization technique, as

it minimizes the maximum value of the output. In this way, when the maximum value of the

output is reduced, the heading′s overshoot is minimized too.

The application of the minimax problem to the heading control, consist on minimizing the

maximum value of the output, ψ(t), over the simulation time interval [t0, tf ]. The following
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Fig. 8. Closeloop diagram for the optimization process.

constrain is imposed such that ψ(t) is always less or equal than the constant input value ψd,

ψ(t) ≤ ψd, tr ≤ t ≤ tf (28)

being tr the rise time of the system. By imposing this restriction, a flat response with no overshoot

and no stationary error is expected. The value of tr is determined based on a prior knowledge

of the system response. Then, the Minimax problem is applied [36], [37]:

min

θ
(i)
c

max
j {ψj(θ(i)c )} ≡

ψ(t) ≤ ψd, tr ≤ t ≤ tf

lb ≤ θ
(i)
c ≤ ub

where ψ(t) is the heading angle, θ(i)c are the controller’s parameters for the corresponding ith

linear time varying approximation to be optimized , lb is the lower bound of the parameters,

ub is the upper bound of the parameters and the subindex j represents one set of multivariable

functions.

C. Implementation Procedure

Based on the theory previously presented, the heading control implementation process can be

summarized according to the following steps:

Initialization

• Set initial values for the constants and variables involved in the process:

lb, ub, x(0), θ
(0)
c , t0, tf , tr, ψd, h, tolx, tolθc .

Step (1)
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• The first step to solve system (31) is to approximate it by solving the following

linear time invariant system:

ẋ(1)(t) = A[x0]x
(1)(t) +B[x0]u

(1)
c (t, θ

(1)
c ), x(1)(0) = x0.

This system represents a linear model and it differs from the nonlinear behaviour,

not being a good representation; that is the reason why the heading control is not

optimized at this step, then we made θ(1)c = θ
(0)
c .

Step (2)

1) Optimize the heading control loop:

min

θ
(2)
c

max
j {ψj(θ(2)c )} ≡

ψ(t) ≤ ψd, tr ≤ t ≤ tf

lb ≤ θ
(2)
c ≤ ub

for j = 1, 2, . . . tf/h. The optimization stops when ‖θ(2)c − θ(1)c ‖ < tolθc is true.

2) With the obtained parameters θ(2)c , the following linear time varying system is

solved for x(2)(t) by using the designed control action u(2)c (t, θ
(2)
c ):

ẋ(2)(t) = A[x(1)]x(2)(t) +B[x(1)]u
(2)
c (t, θ

(2)
c ), x(2)(0) = x(0).

If ‖x(2) − x(1)‖ < tolx is true the algorithm stops here, if not go to step 3.
...

Step (i)

1) Optimize the heading control loop by:

min

θ
(i)
c

max
j {ψj(θ(i)c )} ≡

ψ(t) ≤ ψd, tr ≤ t ≤ tf

lb ≤ θ
(i)
c ≤ ub

for j = 1, 2, . . . tf/h. The optimization stops when ‖θ(i)c − θ(i−1)c ‖ < tolθc is true.

2) With the obtained parameters θ(i)c , the next step is to solve the following linear

time varying system:

ẋ(i)(t) = A[x(i−1)]x(i)(t) +B[x(i−1)]u
(i)
c (t, θ

(i)
c ), x(i)(0) = x(0).

If ‖x(i) − x(i−1)‖ < tolx is true the algorithm stops here, if not go to step i+ 1.
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Note that in the optimization process, in order to obtain the set of functions {ψj(θ(i)c )} it is

necessary to solve the corresponding linear time varying approximation:

ẋ(i)(t) = A[x(i−1)]x(i)(t) +B[x(i−1)]u(i)c (t, θ(i)c ), x(i)(0) = x(0) (30)

to obtain x(i), as much as needed by the optimization algorithm. The control output u(i)c (t, θ
(i)
c )

at each iteration is given by the control structure defined in section V-A.

D. Iteration technique approximation for control purposes

In this section, the methodology previously introduced is applied to the case of heading control

of the vessel model. The equations of motion of this system are highly nonlinear and can be

written on the form:

ẋ(t) = A[x(t)]x(t) +B[x(t)]uc(t, θc), x(0) = x0 ∈ Rn. (31)

where A[x(t)] ∈ Rnxn, B[x(t)] ∈ Rnxm, x(t) is the state′s vector and the control uc(t, θc) is de-

signed by using the methodology presented in section V-A. The system (31) can be approximated

by the following sequence of linear time varying systems:

ẋ(1)(t) = A[x(0)]x(1)(t) +B[x(0)]u
(1)
c (t, θ

(1)
c ), x(1)(0) = x(0)

...

ẋ(i)(t) = A[x(i−1)(t)]x(i)(t) +B[x(i−1)]u
(i)
c (t, θ

(i)
c ), x(i)(0) = x(0)

(32)

For each of these ”i” linear time varying iterations, a control action signal u(i)c (t, θc)) is designed.

Once last iteration is obtained, the sequence of solutions converges to the nonlinear solution,

Limi→∞
[
x(i)(t)

]
→ x(t). The last designed control signal will be applied to the original

nonlinear problem, achieving control of the states:

ẋ(t) = A[x(t)]x(t) +B[x(t)]u(i)c (t, θ(i)c ), x(0) = x0 ∈ Rn. (33)
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Fig. 9. Diagram of the optimization algorithm connected to the iteration technique.

VI. SIMULATIONS AND RESULTS

The simulation scenario is based on the coastal patrol full-scale vessel data used in section

III. A course keeping manoeuvre of ψd=20◦ degrees will validate and test the iterative controller

design implemented following the steps given in section V-C. The manoeuvre should be com-

pleted satisfying the objectives stated in section V-A.

The vessel′s model defined in section II is rearranged on the form ẋ = A(x)x(t) +B(x)uc(t, θc)

where x(t, θc) = [u v p r φ ψ δ x y]T and the control vector is uc(t, θc) = [δc T ]T . The initial

conditions are taken from [22] as: x0 = [unom 0 0 0 0 0 0 0 0]T .

In previous results for the 20◦ course-keeping manoeuvre case, a PID controller (26) was applied

and a high value of Ti was obtained by the optimization method. As explained in section V-A, the

optimization technique applied for the tuning, in an attempt to reduce the oscillation caused by

the integral windup problem, provides a high value of Ti and therefore reduces to the minimum

the influence of the integral term. This suggest that the contribution of the integral term ki/s

in the PID controller (26) (being ki = kp/T i) can be neglected. For all of this reasons, a

lead compensation controller (27) without integral action is used instead. The constrains of the

controller parameters were set to lb = 0 and ub = ∞, in order to avoid unstable controller

behaviour. The lead compensation controller initial parameters were selected taking into account

that this type of controller must have a dominant zero near to the s-plane origin.

Figures 10 and 11 show the results for a course keeping 20◦ (0.349 rad) manoeuvre for each
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iteration ”i”. After the 5th iteration, the algorithm converges, the corresponding control param-

eters θc and the heading response ψ(t) remain almost unchanged. The zoom made for the yaw

variable ψ(t) on the top part of Figure 10 for the iterations 5-8 shows that the difference between

iterations i and i−1, is within the order of 1
100

of degree, illustrating the convergence properties

of the presented algorithm. Figures 10 and 11 clearly show an accurate approximation for the 5th

iteration to the nonlinear model (compare iteration 5 with the simulated data generated with the

original nonlinear system and the controller parameters θ(5)c ). At this stage, (i=5), the overshoot

is reduced in the heading response ψ(t) and the settling time is reduced with respect to the

previous iterations. Furthermore, the steady state error (e(t) = ψd−ψ(t)) converges to zero after

only 30 seconds. The bottom part of figure 10 shows the actuator′s displacement, δ(t), which

represents the actual value of the rudder′s angle of deflection. There is saturation present in the

actuator for the 5th iteration, but with the selected lead compensation controller the windup

problem is avoided obtaining a response without overshoot. The lead compensation controller is

a simpler solution that an anti-windup scheme for the PID controller.

VII. CONCLUSIONS

In this work, the authors proposed a control strategy based on an optimized lead compensation

controller methodology combined with an iteration technique based on linear time varying

approximations to approach the nonlinear dynamics of a ship. The theory here presented has

been implemented in Matlab/Simulink and applied to the particular example of a full scale

coastal patrol vessel under two different scenarios: firstly, a standard 20◦-20◦zig-zag manoeuvre

is considered in order to show the convergence of the iteration methodology presented in the

theory and secondly, a 20◦ course-keeping manoeuvre is presented to show the accuracy of the

tracking capabilities of the designed controller when applied to the last of iterated linear time

varying systems.

On the first case, the results show that the approximation to the vessel’s nonlinear dynamical

equations in the 20◦− 20◦ zig-zag manoeuvre is a good approximation after only a few number

of iterations, 20 in this case. By generating this sequence of linear time varying equations that

approximate the original nonlinear dynamics, now linear control techniques can be applied to

the last of these iterations. This is a good advantage since linear control methods are usually

simpler and computationally cheaper to implement.
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Fig. 10. Convergence results of the controlled variable ψ(t) and the actuator′s variable, the rudder deflection, δ(t), for the

coastal patrol vessel on a course keeping 20◦ manoeuvre.

On the other hand, for the 20◦ course-keeping manoeuvre, the proposed control strategy and

reference tracking methodology is tested. A high value of Ti obtained with the proposed control

strategy in preliminar results, indicates that the rudder′s saturation provoques the integral windup

problem when PID control is applied. Therefore, it is advisable to use a controller without integral

term such as the lead compensation controller. The presented results with the lead compensation

controller meet the stated objectives in the heading response: the elimination of the existing

overshoot, the reduction of the settling time and the elimination of the steady state error. In

addition to this, the lead compensation controller constitutes a simpler solution than an anti-

windup scheme for a PID controller.
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Fig. 11. Position convergence results for the coastal patrol vessel for a course keeping 20◦ manoeuvre.

The authors are currently investigating further within this area. The control strategy here proposed

will be extended to the multivariable control case in order to develop a trajectory control system.

APPENDIX

For the Coastal patrol [22], [24] the main hull data and load condition are given in table II

and figure 12. The hydrodynamic coefficients of the manoeuvring model are included in table

V and the data corresponding to the propulsion system are in tables IV and III. The vessel is

equipped with two rudders.

Fig. 12. Main particulars and reference frames.

Note that og is the geometrical coordinate origin, see [22] for more details.
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TABLE II

PRINCIPAL SHIP DIMENSIONS AND LOAD CONDITION.

Quantity Symbol Full Load

Length between perpendiculars Lpp 51.5 m

Beam B 8.6m

Mass m 364.78×103Kg

Centre of gravity CG -

Lateral Centre of Gravity from AP LCG 19.82 m

Vertical Centre of Gravity from MBL V CG 3.36 m

Stern perpendicular AP -

Bow perpendicular FP -

Draft at Lpp/2 T 2.29 m

Design water line DWL -

Base line BL -

Displacement ∇ 355.88 m
3

Nominal speed (service speed) unom 15 kt

Inertia roll moment Ixx 3.4263×103Kgm2

Inertia yaw moment z Izz 3.3818× 103Kgm2

Distance in the x axes from CG to Ob xG -3.38 m

Distance in the z axes from CG to Ob zG -1.06 m

Transverse Metacentric Height GMt 3.34 m

TABLE III

FREE STREAM DATA FOR RUDDER AND FIN PROFILES (SEE [27]).

Profile Tip a(eff) ∂CL
∂αe

CLmax CD0 αstall

NACA15 SQUARE 3 0.054 1.25 0.0065 23

NACA15 SQUARE 2 0.046 1.33 0.0065 28.8
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TABLE IV

RUDDER DATA.

Quantity Symbol Measure

Area Af 2×1.5m2

Span sp 1.5 m

Mean cord c̄ 1 m

Eff. aspect ratio a 3

Max. angle δmax 40 deg

Max. rate δ̇max 20 deg/s

Prop. band δpb 4 deg

Vert. Dist. Ob − CP zbCP 2.61 m

Horiz. Dist. Ob − CP xbCP 1.5 m

TABLE V

HYDRODYNAMIC COEFFICIENTS FOR THE MANOEUVRING MODEL.

X-Coefficients Y-Coefficients K-Coefficients N-Coefficients

Xu̇=-17400 Yv̇=-393000 Kv̇=296000 Nv̇ = 538000

X|u|u=-1960 Yṙ=-1.4×106 Kṙ=0 Nṙ = −4.395 +×107

Xvr=0.33m Yṗ=-0.296×106 Kṗ=-0.674×106 Nṗ = 0

Y|u|v=-11800 K|u|v=9260 N|u|v = −92000

Yur=-13100 Kur=-102000 Nur = −4.71× 106

Y|v|v=-3700 K|v|v=29300 N|v|v = 0

Y|r|r=0 K|r|r=0 N|r|r = −202× 106

Y|r|v=-0.794×106 K|r|v=0.621×106 N|r|v = 0

Y|v|r=-0.182×106 K|v|r=0.142×106 N|v|r = −15.6× 106

Yφ|uv|=10800×106 Kφ|uv|=-8400 Nφ|uv| = −0.124× 106

Yφu|r|=0.251×106 Kφu|r|=-0.196×106 Nφu|r| = −4.98× 106

Yφuu=-74 Kφ|uu|=-1180 Nφu|u| = −8000× 106

K|u|p=-15500 N|u|p = 0

K|p|p=-0.416×106 N|p|p = 0

Kp=-0.5×106

Kφφφ=0
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