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Suppression of Burst Oscillations in Racing Motorcycles

Simos A. Evangelou, David J. N. Limebeer and Maria Tomas-Rodriguez

Abstract— Burst oscillations occurring at high speed and
under firm acceleration are suppressed with a mechanical
steering compensator. Burst instabilities in the subject racing
motorcycle are the result of interactions between the wobble and
weave modes under high-speed cornering and firm-acceleration
conditions. Under accelerating conditions the wobble-mode
frequency decreases, while the weave mode frequency increases
so that destabilizing interactions occur. The design analysis is
based on a time-separation principle, which assumes that burst-
ing occurs on time scales over which speed variations can be
neglected. Therefore, under braking and acceleration conditions
linear time-invariant models corresponding to constant-speed
operation can be utilized in the design process. The inertial
influences of braking and acceleration are modelled using
d’Alembert-type forces that are applied at the mass centres of
each of the model’s constituent bodies. The resulting steering
compensator is a simple mechanical network that comprises
a conventional steering damper in series with a linear spring.
This network is a mechanical lag compensator.

I. INTRODUCTION

High-speed steering oscillations are potentially dangerous
for racing motorcyclists. In the case of the motorcycle studied
here, measurement data reveals the presence of steering
oscillations under high-speed acceleration conditions. Fig-
ure 1 (a) shows the measured speed, acceleration, roll angle
and damper stroke velocity of the subject motorcycle on a
particular section of race track. Since the frequency of these
oscillations is of the order 28 rad/s, weave-type behaviouris
suspected. A short-period Fourier transform of the damper
velocity signal is displayed in Figure 1 (b). This plot confirms
that a steering oscillation of approximately 28 rad/s persists
for approximately 4 s. Our purpose is to investigate the
underlying causes of the bursting phenomenon illustrated in
Figure 1 (a) using a high-fidelity computer model, and then
find a means of damping these oscillations with a mechanical
steering compensator. Similar techniques have already been
used to improve the constant-speed dynamic performance of
a road-going sports machine [1]. A key difference between
the study in [1] and this one is the need to deal with variable
speeds. The predominant lateral oscillations in two-wheeled
vehicles are ‘wobble’ and ‘weave’. In straight running the
weave mode is well damped at moderate speeds, but becomes
less so at elevated speeds. The natural frequency rises from
zero at walking speeds to somewhere in the range 2-4Hz,
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Fig. 1. (a) Measured test data for the subject racing motorcycle. The
green trace shows the speed in m/s, the red trace shows the acceleration
(×10 m/s2), the black trace is the motorcycle’s roll angle (degs) and the
blue trace represents the damper velocity in mm/s. Oscillatorysteering
bursting is visible at 8 s and corresponds to a speed of approximately 70 m/s
under approximately 5 m/s2 of acceleration. The frequency of the bursting
is 28 rad/s and corresponds to a weave-type oscillation. (b)Short-period
Fourier Transform of the damper stroke rate signal illustrated in (a). A
weave-like burst oscillation occurs at approximately 8 s andpersists for
approximately 4 s; the signal amplitude is given in decibels.

depending on the mass and size of the machine; lower
frequencies corresponding to heavier motorcycles. Computer
studies indicate that the torsional stiffness of the motorcycle
frame at the steering head will determine if the machine is
prone to wobbling at medium or high speeds. In the case of
compliant frames of the type associated with older touring
motorcycles wobble oscillations tend to occur at modest
speeds. In the case of stiff-framed sports machines, wobble-
mode instabilities become a high-speed phenomenon [2], [3].
The frequency of the wobble mode is relatively insensitive to
speed, and is governed primarily by the mechanical trail, the
front tire cornering stiffness and the front frame steer inertia.
The frequency of the wobble mode is normally in the range
6-9Hz. Stiff framed machines, being prone to wobbling at
high speed, often depend on a steering damper for wobble-
mode damping. While having a stabilizing influence on the
wobble mode, a steering damper will usually destabilize the
weave mode at high-speed and a compromise between high
and low damper values has to be found. Acceleration is an
operating regime of central importance to the present study,
since it is under these conditions that the bursting oscillations
illustrated in Figure 1 (a) occur. Relatively little has been
written on the dynamics of two-wheeled road vehicles under
acceleration and braking. Reference [4] presents a study
of the accelerating straight-running bicycle, which extends
the fixed-speed study presented in [5]. Some early work
on the dynamics of accelerating motorcycles can be found
in [6]. This study makes use of a hand-derived model
confined to straight-running situations, but the equations



presented contain errors. In a later study the dynamics of
the straight-running accelerating motorcycle were revisited
[7], where a practical machine model is used that includes
a suspension system and realistic tire representations. Itwas
concluded that the motorcycle’s wobble mode is noticeably
destabilized when the machine descends an incline, or brakes
on a level surface. Conversely, the damping of the wobble
mode is increased when the machine ascends an incline, or
accelerates on a level surface. Except at very low speeds,
inclines and acceleration appear to have little effect on the
frequency or damping of the weave mode.

The remainder of the paper is structured as follows:
Section II describes a high-fidelity model of the subject
racing motorcycle. Section III describes the control-theoretic
analysis framework used for the design of the steering
compensation system. The effect of acceleration and braking
on the subject motorcycle is studied in Section IV. Predicted
bursting phenomena under firm acceleration are presented
in Section IV-A. Analysis of the accelerating machine using
constant-speed models is introduced in Section IV-B. The
steering compensator design problem and outcomes are
presented in Section V. A comprehensive set of results is
presented in Section VI with the conclusions in Section VII.

II. M OTORCYCLEMODEL

The model of the subject motorcycle used here is an
evolution of prior computer models [8], [9], [10], [11], [12],
[13]. This model is based on the following kinematically
interconnected rigid bodies: the handlebars, upper and lower
front forks separated by a telescopic suspension, the front
wheel, the main frame comprising the engine, chassis and
rider, the swinging arm, the rear wheel and the engine
sprocket that rotates about a transverse axis. It involves
three translational and three rotational freedoms of the main
frame, a steering freedom associated with the rotation of
the front frame relative to the main frame and spinning
freedoms of the road wheels. The mathematical model em-
ployed here also accommodates front and rear suspension
freedoms, frame twisting, aerodynamic forces and moments.
The rider is rigidly attached to the main frame. The road
tires are treated as wide, flexible in compression, and care is
taken to track dynamically the migration of both ground-
contact points as the machine rolls, pitches and steers.
Both contact points, which are taken as the points closest
to the road surface, move laterally over the tires surface;
these points represent the center of the road-tire contact
patch. The front tire ground contact point will also move
circumferentially under combined rolling and steering. The
tire forces and moments are generated from the normal
load, the tires camber angle relative to the road and the
combined slip using modified Magic Formula models [14],
which describe the tire behaviour on smooth roads (road
obstacle wavelengths longer than the tire radius), and up
to frequencies of approximately 8 Hz [15]. This model is
applicable to motorcycle tires operating at roll angles of up to
60o. The lateral compliance of the tires’ carcass is modelled
using linear time-varying stretched-string type tire models.

Relaxation effects for the longitudinal tyre compliance are
similarly described. In combination, the relaxation effects
have a lagging influence on the generation of the tire forces
and moments. The suspension units are modelled as a parallel
combination of a nonlinear damper and a nonlinear spring
with limit stops. Aerodynamic drag/ lift forces and pitching
moment are proportional to the square of the machine’s
forward speed. The model of the chain system requires one to
track dynamically the upper and lower tangent points on the
gearbox and rear-wheel sprockets [13]. These points can be
described as functions of the swing arm angle. The chain
itself is treated as a parallel spring damper combination,
and the chain tension can be found with the aid of a chain
deflection calculation that converts the chain deflection into
a force. In order to maintain steady-state operating condi-
tions, and/or prescribed operating trajectories, the machine
simulation has been fitted with a number of simple control
systems, which in some sense mimic the rider’s control
behaviour. These systems control the throttle, the brakingand
braking distribution between the front and rear wheels, and
the vehicle’s steering. We refer the reader to [16] for a more
detailed description of the suspension system, aerodynamic
forces and the tires’ force and moments acting on motorcycle
model under study.

III. A NALYSIS FRAMEWORK

The steering compensation system will be designed and
analysed in the generalized regulator framework popularized
by the robust control community [17]. In Figure 2 (a), the
exogenous vertical-displacement road-forcing disturbances
are represented by the signald(s), the steering angle isδ (s)
and the steering-compensator-induced torque is given byt(s).
In the case of a steering damper,k(s) becomes a constant
gain feedback controllerk. The ‘generalized plant’,P(s) is a
linear time-invariant model of the subject motorcycle derived
from a small-perturbation analysis around an arbitrary trim
condition. While Figure 2 (a) shows a frequency-domain
model of the linearized system, a setup of this type is
equally applicable to nonlinear time-domain studies. IfP(s)
is partitioned as:

P(s) =

[

p11(s) p12(s)
p21(s) p22(s)

]

,

then the generalized regulator configuration in this case is
defined by

[

δ (s)
sδ (s)

]

=

[

p11(s) p12(s)
sp11(s) sp12(s)

][

d(s)
t(s)

]

,

and t(s) = k(s)sδ (s), which gives δ (s) = (I −
sp12(s)k(s))−1p11(s)d(s). Repeated reference will be
made to the Nyquist criterion of the open-loop system
sk(s)p12(s), in which p12(s) maps the steering torquet(s)
into the steering angleδ (s). Figure 2(b) shows straight-
running root-loci for the subject motorcycle under open-
and closed-loop conditions as a function of the machine
speed. The open-loop machine characteristics are shown in
the + (red) plot, while those corresponding to the subject



Fig. 2. a) P(s) is a linearized motorcycle model, whilek(s) is the
steering compensator. ‘s’ is the Laplace transform variable. b) Constant-
speed straight-running root-loci for the subject motorcycle showing the
influence of the steering damper — speed is the swept parameter.The top
speed is marked with a star, while the lowest speed is marked with a square
symbol.

motorcycle fitted with a steering damper are given by the
× (blue) plot. The speed is varied from 10 m/s to 90 m/s in
steps of 2 m/s. As can be seen from this plot the open-loop
machine has an unstable wobble mode and a well damped
weave mode. Under feedback control, with a steering
damper (k(s) = k a constant), the wobble mode is stabilized,
but at the expense of a reduction in the weave mode
damping. In this work we design a steering compensator
k(s), which provides good damping characteristics under
constant-speed and accelerating and braking conditions.

IV. A CCELERATION INFLUENCES

A. Simulated Bursting

The study of the influence of acceleration on the dynamics
of the subject motorcycle begins by seeking to replicate
in the simulation model the measured bursting behaviour
illustrated in Figure 1. Bursting is a phenomenon associ-
ated with variable speed conditions. Figure 3 (a) shows the
output from the simulation model of the subject motor-
cycle under variable speed straight-running conditions. In
this simulation the speed reference isv = v0 + Asin(0.2t),
in which v0 =70 m/s andA =25 m/s. The machine speed
therefore varies sinusoidally between 45 and 95 m/s, while
the machine’s acceleration varies between±5 m/s2. A low-
amplitude steering torque disturbance, which represents road
disturbances, is introduced into the simulation. The discon-
tinuities in the acceleration signal derive from ‘snap’ in
the chain drive as it switches between driving and braking.
Under accelerating conditions burst oscillation of amplitude
almost 2 rad/s can be observed in the steering angular rate
signal — this oscillation is also visible in the machine’s
forward acceleration signal. The disturbance appears to begin
soon after the motorcycle reaches the peak acceleration of
5 m/s2. The spectral content of the steering velocity signal
is shown in Figure 3 (b). The data between 10 s and 20 s in
Figure 3 (a) was extracted for further analysis. The bursting
frequency increases from approximately 33 rad/s to approx-
imately 38 rad/s in sympathy with increases in the machine
speed. Referring to Figure 2 (b), it is noted that this range of
frequencies indicates that the burst oscillations correspond to
the machine’s weave mode.

Fig. 3. a) Simulated weave-mode burst oscillations in the subject
motorcycle under straight-running conditions. The speed isshown as the
solid (green) line, 10× the acceleration is shown as the dot-dashed (red)
line, while 10× the steering velocity is shown as the solid (blue) bursting
characteristic (in rad/s). (b) Short-Period Fourier Transform of the steering
velocity signal given in (a). Data between 10 s and 20 s was extracted for
analysis - bursting is apparent between 14 s and 18 s (a). The bursting
frequency increases from approximately 33 rad/s to approximately 38 rad/s
in sympathy with the speed increase on this time interval.

B. Acceleration Analysis

An analysis of the influence of acceleration on the machine
stability, which is based on prior bicycle work, is now
introduced. By way of background, we remind the reader
that a detailed first-principles study of the dynamics of
the constant-speed straight-running bicycle can be found in
the survey papers [5], [18], and the citations therein. The
accelerating bicycle has received scant attention, with [4]
representing a noteworthy exception. In the context of the
constant-speed straight-running bicycle small perturbations
can be described by a pair of coupled second-order constant-
coefficient ordinary differential equations in roll and steer
[5]. The introduction of acceleration in these equations pro-
duces three influences; Firstly, it causes a force redistribution
of the tire loading that can be computed using d’Alembert
force ideas and the notion of an ‘effective wheel mass’ that
recognises the moment required to accelerate the wheels’
spin inertia [19]. Secondly, acceleration introduces additional
terms in each of the momentum balance equations given
as (B1), (B2) and (B3) in [5]. And thirdly, acceleration-
related terms appear in the (nonholonomic) tire-road contact
constraint equations (B6) and (B7). In combination, these
three influences produce a third acceleration-related stiffness
matrix [4], [19]. Therefore, the extended model takes the
form:

Mq̈+ vCq̇+(gK0 +aK1 + v2K2)q = f , (1)

in which v is the forward speed,q = [ϕ δ ]′ and f = [Tϕ Tδ ]′.
The bicycle’s roll and steer angles are given byϕ and δ
respectively. The momentTϕ is an externally applied roll
moment andTδ is the steering torque, which acts on the
front frame and reacts on the rear frame. The constant 2×2
matricesM, C, K0 andK2 are defined in terms of the bicycle
parameters [5]. The stiffness matrixK1 introduces the effects
of an accelerationa in the bicyle’s longitudinal direction. The



four entries of theK1 matrix are

K1(1,1) = 0
K1(1,2) = −µSX +(IT xz/w+SF)cos(λ )
K1(2,1) = 0
K1(2,2) = −µSX sin(λ )−mAuAµ +((µITzz + IAλ z)/w
+SF µ(w+ c− rF tanλ )/rF −mAuA)cos(λ ),

(2)
in which

SX = mBzB +mHzH − rR

(

mR +
IRyy

r2
R

)

− rF

(

mF +
IFyy

r2
F

)

.

(3)
The quantity SX is used to calculate the acceleration-
related front wheel normal load variation, which is given by
(aSX )/w. The notation and intermediate variables given in
[5] have been adopted. For further details, a first-principles
derivation of theK1 matrix is given in Appendix A of [19].
Alternatively, one can refer to the analysis in [4] and adaptit
to the present context. For the purpose of studying bursting-
type instabilities, which occur on time scales over which
acceleration-related vehicle speed variations are relatively
unimportant, we will assume a constant machine speed. This
situation is closely related to the analysis of the constant-
speed machine on an inclined road surface [4], except that the
longitudinal acceleration-related forces are aligned with the
bicycle’s main frame rather than with the inertial reference
frame’s x-axis [19]. In the case of the machine ascending
or descending a hill, the machine yaw angle is a non-
cyclic coordinate and yaw-angle-related terms appear in the
equations of motion [4], [19]. If the acceleration-related
inertial forces act in the direction of the line of intersection
between the bicycle’s rear wheel and the ground plane, the
equations of motion become:

Mq̈+ vCq̇+(gK0 +aK̄1 + v2K2)q = f , (4)

in which (2) is replaced with

K̄1(1,1) = 0

K̄1(1,2) = −µSX

K̄1(2,1) = 0

K̄1(2,2) = −mAuA(µ +cosλ )−µSX sinλ . (5)

Since the machine is no longer accelerating, the real rather
than effective wheel masses dictate the normal load variation
on the front wheel and (3) is replaced withSX = mT zT .
Unlike (1), equation (4) is time-invariant. The frozen-time
eigenvalues predicted by (1) are very similar to those pre-
dicted by (4) [19]. The acceleration-related linear model used
here is more sophisticated than (4), but is based essentially
on the same ideas. If the subject motorcycle is accelerat-
ing at a m/s2, then inertial forces of the formFi = ami

are applied at the mass centres of each of the machine’s
six constituent masses in the corresponding longitudinal
directions. Figure 4 (a) shows constant-speed root loci for
the subject motorcycle under straight-running and cornering
conditions. As has been confirmed on the track, the subject
motorcycle has no high-speed wobble and weave instabilities

under constant-speed conditions. The high-speed wobble-
mode damping improves as the steady-state roll angle in-
creases, with these increases accompanied by increases in
the high-speed wobble-mode frequency. Increases in the roll
angle have only a marginal effect on the high-speed weave-
mode damping, which is accompanied by a reduction in
the high-speed weave-mode frequency. The main purpose of
Figure 4 (a) is to provide a reference that shows the effect
of the acceleration-related inertial forces that will now be
introduced. Figure 4 (b) illustrates the effect of accelerating

Fig. 4. (a) Root-loci for the subject motorcycle (with a steering damper
fitted) under constant-speed conditions. Speed is the sweptparameter for
roll angles of 0o (blue) ×, 15o (green)◦, 30o (red) + and 45o (black)
♦. The speed is varied from 9 m/s to 95 m/s in steps of 2 m/s. The highest
speed is marked with a⋆ and the lowest speed with a�. (b) Straight-running
root-loci showing the wobble- and weave-mode eigenvalues ofthe subject
motorcycle with the speed varied between 9 m/s and 95 m/s. A steering
damper is fitted. The curves show the effect of acceleration-related inertial
forces as follows: -4 m/s2 (pink) ▽, -2 m/s2 (black) ♦, 0 m/s2 (blue) ×,
2 m/s2 (green)◦ and 4 m/s2 (red +). The highest speed is marked with a⋆
and the lowest speed with a�.

and braking on the subject motorcycle’s straight-running
modal characteristics, and provides a first insight into the
causes of the bursting found in Figures 1 and 3. Using
the constant-speed plots as references, it is clear that brak-
ing causes the wobble-mode frequency to increase, while
acceleration causes it to decrease. It is also evident that
braking causes the weave-mode frequency to reduce, while
acceleration causes it to increase. What is important in the
context of the present research is the destabilizing interaction
that occurs between the wobble and weave modes at higher
speeds and under firm acceleration. This interaction causes
the wobble-mode damping to increase substantially, while at
the same time, the weave-mode damping reduces and even
becomes unstable over the 60 m/s to 93 m/s speed ranges.
These trends are counter to changes occurring under braking
and lower levels of acceleration. The design challenge is to
prevent these destabilizing interactions that occur underfirm
acceleration at elevated speeds. Figure 5 shows from a dif-
ferent perspective how acceleration produces a destabilizing
interaction between the wobble and weave modes at high
speed. Under braking, wobble frequency increases (relative
to the constant speed case) by as much as 10 rad/s, while
under acceleration it reduces by at least 10 rad/s in some
cases. At 90 m/s the imaginary part of the wobble-mode
eigenvalue varies from approximately 55 rad/s at -5 m/s2 to
approximately 32 rad/s at 5 m/s2. At the same time, the
imaginary part of the weave mode reduces in frequency under
braking, while it increases under acceleration. The resulting



destabilizing interaction is evident under firm acceleration
over the 60 m/s to 90 m/s speed range. In contrast to the
lower speeds illustrated, at 90 m/s the wobble-weave modal
interaction causes the wobble (rather than the weave) mode
to go unstable. Figure 6 shows the shape of the straight-
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Fig. 5. Root-loci showing the effect of acceleration-related d’Alembert
forces at five different speeds. The acceleration is swept over the inteval
±5 m/s2; the highest acceleration is marked with a⋆ and the lowest
acceleration with a�. The subject motorcycle is fitted with a steering
damper. The purple curve, annotated by∇, corresponds to a speed of 50 m/s.
The black curve,♦, corresponds to a speed of 60 m/s. The blue curve,×,
corresponds to a speed of 70 m/s. The green curve,◦, corresponds to a speed
of 80 m/s. The red curve,+, corresponds to a speed of 90 m/s. The light
blue curve,△, is a reference plot corresponding to the zero-acceleration
over the 10 m/s to 90 m/s speed range; the highest speed is marked with a
⋆ and the lowest speed with a�.

running weave mode eigenvector at 70 m/s and 80 m/s for
a range of acceleration and braking forces. It is evident that
firm acceleration causes a reduction in the relative magni-
tudes of the roll, yaw and lateral translation components
of the weave-mode eigenvector, thereby making it more
‘wobble-like’. Figure 7 shows the influence that acceleration
and braking have on the root loci illustrated in Figure 4.
These curves show that the straight-running influences of
braking and acceleration extend to the cornering case in that
braking tends to increase the wobble-mode frequency, while
also degrading the damping of this mode. It can also be seen
that braking reduces the weave-mode frequency, while also
improving slightly the damping of this mode. The interaction
between the wobble and weave modes, which occurs under
firm acceleration at high speed, extends to the case of low
roll angle cornering. As with straight running, the weave
and wobble modes interact with the result that the wobble-
mode damping increases significantly, while the weave-mode
damping reducing to the point that the machine becomes
unstable (at low roll angles). At 15o the machine will exhibit
burst-type instabilities as it passes through the 80 m/s speed
range. These predictions are aligned with Figures 1 and 3,
and support the claim that constant-speed models can be used
to predict acceleration-related bursting phenomena. Figure 8
investigates the bursting phenomenon from a frequency-
response perspective using open-loop Nyquist diagrams for
the steering damper loop in Figure 2 (a). The frequency
responses correspond to the open-loop transfer function map-

Fig. 6. Straight-running weave-mode eigenvector loci for the subject
motorcycle (steering damper fitted) with acceleration-related inertial force
the varied parameter for speeds of 70 m/s (blue)× and 80 m/s (green)
◦. The acceleration-related inertial forces are varied between -4 m/s2 and
4 m/s2. The 13 eigenvector components corresponding to the generalised
coordinates are shown; the eigenvectors are normalized so that the steer
angle component is +1. The largest acceleration-related inertial force
(4 m/s2) is marked with a⋆, while braking at -4 m/s2 is marked with a
�. As with the classical weave mode, the five dominant components are:
the machine’s lateral translation, and the yaw, roll, frame twist and steer
angles. The acceleration-related inertial forces reduce the amplitude of the
lateral translation, and the yaw, roll and twist angle components. Under
acceleration the weave mode of the subject motorcycle becomes ‘wobble
like’.

Fig. 7. Root-loci of the subject motorcycle with a steering damper fitted.
Speed is the varied parameter for roll angles of 0o (blue)×, 15o (green)◦,
30o (red)+ and 45o (black)♦. The speed is varied from 9 m/s to 95 m/s in
steps of 2 m/s. The highest speed is marked with a⋆ and the lowest speed
with a �. In (a) the braking-related acceleration is -4 m/s2, while in (b) the
acceleration is 4 m/s2.

ping t(s) to sδ (s) at 80 m/s with the damper gain included.
Referring to (the red plot) in Figure 2 (b), two anticlockwise
encirclements of the−1 point are required for closed-loop
stability. Figure 8 shows that a damper will stabilize the
machine at each illustrated value of acceleration and braking
save for the 4 m/s2 acceleration case when no damper will
work, because there is no point on the negative real axis that
is encircled twice. This leads to the conclusion that some
form of phase compensation is required.

V. COMPENSATORDESIGN

A. Performance Index

Following the approach taken in [1], a steering compen-
sator will be synthesized using robust frequency domain
optimization. The optimization of controllers for linear sys-
tems viaH∞ frequency-response performance measures is
now a well developed subject with most of the key ideas
available in [17]. The optimization criterion is motivatedby



Fig. 8. Nyquist diagrams of the steering compensation loop forthe straight-
running subject motorcycle at 80 m/s. Four acceleration-related inertial
forces are illustrated: -2 m/s2 (black) dotted line, 0 m/s2 (blue) solid line,
2 m/s2 (green) dashed line and 4 m/s2 (red) dash-dot line. Note that the
machine is unstable at 80 m/s and 4 m/s2 of acceleration for any value of
steering damper.

a need for robust stability, as well as by the role played by
road displacement forcing in triggering steer angle bursting
phenomena. The objective is to minimize the worst-case
closed-loop gain from road forcing disturbances to the steer-
ing angle for all operating conditions, while simultaneously
ensuring that the open-loop Nyquist diagram encircles the
−1 point the correct number of times (anticlockwise), while
not getting ‘too close’ to it. For each frequencyωi, the
distance between the Nyquist diagram and the−1 point
is given by |1− jωik( jωi)p12( jωi)|, which is the modulus
of the classical sensitivity function [17]. The multi-objective
H∞ index given in equation (6) will be used

J f = maxΩ

{

max
{

maxωi

∣

∣

∣

p11( jωi)
1− jωik( jωi)p12( jωi)

∣

∣

∣
,

maxωi

∣

∣

∣

γ
1− jωik( jωi)p12( jωi)

∣

∣

∣

}}

.
(6)

The first term in (6) is the closed-loop transfer function
between road forcing disturbances and the steering angle,
while the second is a fixed constantγ times the inverse of
the distance of closest approach between the Nyquist diagram
and the−1 point. The optimisation was carried out over
a three-dimension set,Ω, of operating conditions. The set
of linear models inΩ corresponded to: d’Alembert forces
corresponding to accelerations of -2, 0, 2 m/s2; roll angles of
0, 3, 6,. . ., 48 deg, and speeds over the range 9 m/s to 95 m/s
in steps of 2 m/s. The performance index (6) was evaluated
over a 100-point frequency list with the points equi-spaced
on a logarithmic scale that covers the range 100.78 to 101.85.
This frequency range was selected to include all the maxima
in the index (6). The weighting factor on the second term
was set by trial toγ = 16.

B. Side Constraints

In order to define the optimization problem associated
with (6) a number of side conditions must now be specified.
Firstly, it is clear from Figure 8 that phase-lag compensation
is required in the 4 m/s2 acceleration case. For that reason
the networks illustrated in Figure 9 will be studied, with

Fig. 9. Steering compensation networks. The conventional scheme is
the pure damper shown in diagram (A), while the spring-damper lag
compensator, which comprises a series-connected spring and damper com-
bination is shown in diagram (B). The optimal damper value was found
to be c1 = 8.06 Nms/rad, while the optimized spring-damper values are
k = 921.6 Nm/rad and c2 = 7.30 Nms/rad.

the damper serving as a reference. Suppose the network
admittance functionk(s), which is the controller in Figure 2
(a), maps the network terminal velocitysδ (s) into the cor-
responding torquet(s). Then the admittance function for the
damper-only network isk(s) = c1, while that of the spring-
damper network isk(s) = k/(s + k

c2
). In order to maintain

network realizability, the component values are constrained
to be positive. Secondly, a closed-loop stability constraint
must be imposed. Recognizing that the low-frequency sta-
bility of the machine will be ensured by the rider, and not
the compensation network, the stability constraint used here
allows unstable low-frequency modes. This is achieved via
the requirement that only closed-loop eigenvalues with an
imaginary part greater than 0.45j must be confined to the left-
half of the complex plane. No attempt is made to stabilize
the marginally unstable capsize mode whose eigenvalue(s)
is/are either real, or has/have a very small imaginary part.
The optimization calculations make use of the MATLAB
sequential quadratic programming algorithmfmincon [20].

VI. COMPENSATORPERFORMANCE

Two optimization calculations were performed. The first
was for the (A) configuration in Figure 9 and the second for
the (B) configuration. The optimal damper value for the (A)
configuration was found to be c1 = 8.06 Nms/rad, which is
only slightly lower than that found on the subject motorcycle.
When a series spring is included in the compensation net-
work the optimal damper value reduces to c2 = 7.30 Nms/rad,
while the optimal spring stiffness is k = 921.6 Nm/rad. From
these figures we conclude that the compensation network
is simply a ‘slightly smaller damper in series with a stiff
spring’, and so gross changes in behaviour are not to be
expected. Figure 10 shows a Nyquist diagram of the com-
pensated machine under high-speed straight-running condi-
tions, where firm-acceleration-related bursting is the problem
identified in Figure 8. As has already been shown, bursting
under firm acceleration cannot be prevented using a steering
damper alone, but it can be prevented using a spring-damper
phase compensating lag network. The stabilizing influence
of the network results from its ability to maintain two anti-
clockwise encirclements under firm acceleration conditions.
The amplitude of the steering velocity burst is 1.835 rad/s
when the optimized damper is installed (see Figure 3). This
figure reduces to 1.58×10−4 rad/s when the optimized
compensator is installed (with no other changes). Figure 11
illustrates the operation of the steering compensator under a
range of high-speed straight-running braking and accelerat-



Fig. 10. Nyquist diagram for the cases when the machine is fitted with a
steering damper (blue solid line), and the machine fitted with the steering
compensator (green dashed line). The machine’s speed is 80 m/s,the roll
angle is 0o and the acceleration-related inertial force is 4 m/s2. This diagram
illustrates the improvement of the stability margins brought about by a
steering compensator at high speed and high acceleration.

ing conditions. The influence of the lag compensator under
firm acceleration is visible. In conventional terms, the closed-
loop is operating with degraded stability margins, however
concepts such as ‘stability’ and ‘stability margins’ should be
used with care under short-period non-steady-state conditions
such as those of interest here. Figure 12 shows the effect of

Fig. 11. Nyquist diagrams for the case of the subject motorcycle fitted
with an optimized steering compensator. The acceleration-related inertial
forces are: -2 m/s2 (black) dotted line, 0 m/s2 (blue) solid line, 2 m/s2 (green)
dashed line and 4 m/s2 (red) dash-dot line. The machine speed is 80 m/s and
its roll angle is 0o.

the steering compensator at low speed under moderate brak-
ing. When braking under straight-running, low-speed condi-
tions the optimized damper has superior stability margins as
compared with the optimized compensator. This observation
motivates the need for braking-related models in the design
optimization model set. If these models were not included,
the resulting network would perform poorly under these
conditions. Figure 13 is the steering compensated counterpart
of Figure 4 (b). When the subject motorcycle is fitted with
the steering compensator, rather than the optimized steering
damper, the machine’s wobble mode frequency increases,
which reduces the interaction between this mode and the
weave mode. Indeed, at 4 m/s2, the compensator has suc-
ceeded in stabilizing the high-speed weave mode in the sense
of the constant-speed model augmented with acceleration-
related forces of inertia. Although the steering compensator
has a destabilizing effect on the wobble mode under low-

Fig. 12. Influence of a steering compensator at low speed and moderate
braking. The Nyquist diagram for the case when the machine is fitted
with the steering damper (blue) solid line and the compensator(green)
dashed line. The machine’s speed is 30 m/s, the roll angle is 0o and
the acceleration-related inertial force is -4 m/s2. This figure illustrates the
detrimental influence of the steering compensator at low speeds and firm
braking.

speed braking conditions, no further negative effects have
been noticed. Figure 14 shows the effect of the steering

Fig. 13. Straight-running root-loci with speed the varied paremeter for
acceleration-related inertial force of−4 m/s2 (pink ▽), −2 m/s2 (black♦),
0 m/s2 (blue ×), 2 m/s2 (green◦) and 4 m/s2 (red +). The compensator
is fitted. The speed is varied from 9 m/s to 95 m/s in steps of 2 m/s. The
highest speed is marked with a⋆ and the lowest speed with a�.

compensator under straight-running braking and accelerating
conditions. It is clear from the (a) part of the figure that
the steering compensator has no impact on the weave mode
under braking conditions. It is also evident that the steering
compensator tends to increase the wobble-mode frequency
under braking conditions, while simultaneously reducing its
damping. As is evident from the (b) part of the figure, that
under firm acceleration, the steering compensator reduces
the wobble-mode damping while simultaneously inhibiting
high-speed weave-mode bursting.

VII. CONCLUSIONS

Burst oscillations arising in racing motorcycles at high
speeds and under firm acceleration are investigated. The
bursting phenomenon occurs at weave-mode frequencies
under conditions that cause the classical wobble and weave
modes to interact. Under race conditions this phenomenon
can undermine rider confidence, and is consequently detri-
mental to lap times and potentially to rider safety. Curative



Fig. 14. Straight-running root-loci comparing the behaviour of the subject
motorcycle fitted with a damper and a steering compensator. The speed is
varied from 9 m/s to 95 m/s in steps of 2 m/s; the highest speed is marked
with a ⋆ and the lowest speed with a�. The response corresponding to
the damper-equipped machine is shown as the (blue)× plot, while the
compensator-equipped vehicle is shown as the (green)◦ plot. The (a) plot
corresponds to -4 m/s2, while the (b) plot corresponds to 4 m/s2.

measures that make use of a simple mechanical steering
compensator are proposed and tested on a high-fidelity
simulation model. The proposed compensator introduces lag
compensation into the steering-damper loop, and is con-
structed from a series combination of a conventional steering
damper and a stiff spring. The mathematical model utilized
here is a combination of conventional multibody mechanics,
measurement-based suspension models, a high-fidelity chain
drive representation and a modified Magic Formula based
tire models. Unlike conventional Magic Formula based tire
models, a ‘wide tire’ representation is used that allows
the tire contact forces to move away from the wheels’
centre plane. As a result, elements of the tire moments
are generated geometrically rather than by empirical for-
mula. The steering dampers or more generally, steering
compensators, are analysed in a robust control feedback
system framework. There is novelty in the use of constant-
speed models, in combination with d’Alembert-type inertial
forces to study the machine dynamics under braking and
accelerating conditions. This approach is justified by multiple
time scales ideas. The strong advantage gained from this
approach is the ability to study an inherently time-varying
problem in a time-invariant framework, which facilitates the
use of classical frequency response and robust control ideas.
The motorcycle studied here has wobble- and weave-mode
frequencies that are separated by approximately 1.6 Hz at
high constant speed. When the machine accelerates at high
speed this frequency separation disappears and the wobble
and weave modes interact thereby producing an unstable
weave-like mode that produces bursting oscillations. When
the machine speed reduces under braking, the wobble and
weave mode frequencies separate and no modal interaction
occurs. Nyquist diagrams show that the modal interaction
phenomenon results from a lack of phase compensation in
the steering damper loop, and that once this is introduced,
the bursting phenomena are strongly attenuated to a level
that is no longer noticeable. The machine’s tolerance to lag
compensation in the steering loop is restricted by the fact
that excessive lag compensation leads to poor handling under
braking at low speeds. A good compromise has been struck

by the parameter optimization. The general issue of the prac-
tical implementation of passive mechanical compensators is
the subject of continuing investigation. This includes the
fabrication of general integrated mechanical networks. Due
to the extreme simplicity of the network required here, the
current fabrication problem is easily solved. Other steering
compensation problems may be more challenging.
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