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Abstract— In this paper the authors study the problem of the
existence of multiple local operating points in control systems.
In particular, they consider a method of going from local to
global control, i.e. given a number of local, linearized systems,
from which global system do they come?, and, can global
controllers be determined in this case?.

I. INTRODUCTION

In many practical applications of the control of nonlinear
systems, the dynamics are usually linearised about
”operating points” (such as trim conditions in aircraft).
These local models are then used to design local controllers
and some gain scheduling procedure is used to switch
between the controllers at different operating points. In
fact, in many industrial plants or aerospace systems, only
a small number of operating conditions are known and
the global nonlinear dynamical system is not known. Gain
scheduling methods are widely used and are object of
many research papers, (see [1], [2], [3] and references
within as example). In this paper, the problem of going
from some known local models to a global one will be
considered. Furthermore, the obtained global model can
then be used instead of gain scheduling for control purposes.

The contains of this paper are as follows:Section II
recalls the basics of nonlinear systems linearisation
procedure, operating conditions and trackability properties.
Section III introduces an algebraic method that allows
the reconstruction of an unknown nonlinear system taking
as starting points its linear representations at some given
operating conditions.Section IV presents a global control
method that can be used instead of the well-known of gain
scheduling once the nonlinear system is known.Section V
tackles the problem of going from the local models to the
topology of the manifold on which the system is defined.
Section VIcontains a summary of the ideas here presented.

II. NONLINEAR SYSTEMS, OPERATING
CONDITIONS AND TRACKABILITY

Consider the following nonlinear system:

ẋ = f (x,u) (1)

defined onℜnxℜm. This is in fact, a kind of local model for
systems on manifolds - this point will be addressed later.

Intuitively, by an operating point it is understood a
pair (xd(t),ud(t)) ∈ ℜ consisting of an open loop control
and a functionxd(t) which satisfies equation (1) when the
control ud(t) is applied, i.e.:

ẋd(t) = f (xd(t),ud(t)) (2)

On the other hand, the desired functionxd(t) is trackableif
there exists a controlud(t) such that (2) holds.

If xd(t) is trackable for (1), the local variables around
the operating pointy(t) andv(t), are defined as:

y(t) = x(t)−xd(t)
v(t) = u(t)−ud(t)

(3)

Then by applying Taylor′s theorem:

ẏ(t) = ẋ(t)− ẋd(t) = f (x,u)− f (xd(t),ud(t))
∼= A(t)y(t)+B(t)v(t)

(4)

where

A(t) =
∂ f (xd(t),ud(t))

∂x
and

B(t) =
∂ f (xd(t),ud(t))

∂u
for ′small′ y(t) andv(t).

If (A(t),B(t)) is a controllable pair, then the control
of system (1) around the operating condition is achievable
by using the control:

u(t) = ud(t)+v(t) (5)



In general, there could be a numberi of these operating
points:

(

x(i)
d ,u(i)

d

)

∈C
(

[0,∞];ℜn+m
)

, 1≤ i ≤ K (6)

associated to a correspondent numberi of ′local models′ of
the nonlinear system (1):

ẏ(i)(t) = A(i)(t)y(i)(t)+B(i)(t)v(i)(t), (7)

The problem to be considered now is the inverse one: How to
go from a set ofi local models (7) to the global one (1)?. For
simplicity, it will be assumed that all the operating pointsare
constant, so that the local models are linear, time-invariant
systems of the form:

ẏ(i) = A(i)y(i)(t)+B(i)v(i)(t), 1≤ i ≤ K (8)

Also, in this case, (2) becomes an algebraic condition of the
form:

f (x(i)
d ,u(i)

d ) = 0 (9)

if the values ofx(i)
d are constant, 1≤ i ≤ K.

Having obtained a global model from thei local ones, a
global controller which will drive the system from one
operating point to another has to be determined. This
will involve an application of an iteration scheme [4]
which replaces a nonlinear (not necessarily quadratic)
optimal control problem which is linear (time-varying) and
quadratic, which can be solved by classical methods.

Finally, the authors will consider the tracking global
problem of determining (to some degree) the topology of
the manifold on which a nonlinear system is defined from
a knowledge of the local representatives assuming that the
local systems are complete in the sense that their defining
neighborhoods cover the manifold.

III. FROM LOCAL TO GLOBAL

Suppose the set ofk unknown constant operating points:
(

x(i)
d ,u(i)

d

)

, 1≤ i ≤ k (10)

at which there existk linearisations of the form:

ẏ(i)(t) = A(i)y(i)(t)+B(i)v(i)(t), 1≤ i ≤ k (11)

of some unknown nonlinear system onℜn.

If the unknown system is of the form (1)

ẋ = f (x,u) (12)

then
∂ f (x(i)

d ,u(i)
d )

∂x
= A(i)

, (13)

∂ f (x(i)
d ,u(i)

d )

∂u
= B(i)

, (14)

for 1≤ i ≤ k, and moreover,f must satisfy:

f (x(i)
d ,u(i)

d ) = 0, 1≤ i ≤ k. (15)

Consider the equations:

0 = fp(x
(l)
d ,u(l)

d ) (16)

=
N1

∑
i1=0

· · ·
Nn

∑
in=0

· · ·
M1

∑
j1=0

· · ·
Mm

∑
jm=0

ap
i1...in, j1... jm

(x(l)
d )i(u(l)

d ) j

with

1≤ l ≤ k, 1≤ p≤ n. (17)

and

A(l)
pq = ∑N1

i1=0 · · ·∑
Nq
iq=1 · · ·

∑Nn
in=0 · · ·∑

M1
j1=0 · · ·∑

Mm
jm=0ap

i1...in, j1... jmiq(x
(l)
d )i−1q(u(l)

d ) j

(18)

B(l)
pq = ∑N1

i1=0 · · ·∑
Nu
in=0 · · ·

∑M1
j1=0 · · ·∑

Mq
jq=1 · · ·∑

Mm
jm=0ap

i1...in, j1... jm
jq(x

(l)
d )i(u(l)

d ) j−1q

(19)
where

i = (i1, · · · , in),

j = ( j1, · · · , jm)

and

1q = (0, · · · ,0, 1
︸︷︷︸

q

,0, · · · ,0)

in the ∏n
i=1(Ni +1)∏m

j=1(M j +1) variablesap
i, j , where f is

assumed to be able to be approximated by a polynomial
function. The number of equations is

(n+n2+nm)k (20)

and they can be written in the form:

LV = W (21)

whereL is a linear operator,V is a vector of the unknown pa-
rametersap

i, j andW contains the known local representations
A(i),B(i). L mapsℜα into ℜβ , where:

α = Π(Ni +1)Π(M j +1) (22)

and

β = (n+n2+nm)k (23)

The system (21) is:

• (i) Overdetermined ifα < β ,
• (ii) Determined ifα = β andL is invertible,
• (iii) Underdetermined ifα > β .

Therefore, according to the above classification, there will
be a unique solution in case (ii), a solution in case (i) ifW ∈
Range(L) and in case (iii) if Rank(L) = β .



IV. GLOBAL CONTROL

In the previous section, a way to find a global model
from the local models around some operating conditions
has been presented. Now, a′global′ controller which drives
the system from one operating condition to another is found.

Suppose the existence of two distinct operating points
(x(1)

,u(1)) and (x(2)
,u(2)), so that in the obtained global

model of the form:
ẋ = f (x,u) (24)

this will be,
f (x(i)

,u(i)) = 0, i = 1,2. (25)

Now the control objective is to drive the global nonlinear
system (24) fromx(1) to x(2), this is, to seek a desired
trajectoryxd(t) such that:

xd(0) = x(1)
, xd(t f ) = x(2)

Therefore, the question is: Does there exist a controlud(t)
so that:

ẋd(t) = f (xd(t),ud(t)) (26)

In order to answer this question, the notion ofprojection
field should be introduced: This is defined as a section of
the bundle of projection operators onℜn of rank m. Thus,
a projection field onℜn associates a projection operator
Px : ℜn → ℜm to each pointx ∈ ℜn such that the function
x→ Px is smooth. The main result can be summarized as:

Theorem: Given a desired trajectory xd : ℜ+ → ℜn,
there is a control ud : ℜ+ → ℜm satisfying (26), if there
exist a projection field x→ Px such that the function
g(x,u) = Px f (x,u) satisfies:

∂g(xd(t),ud(t))
∂u

6= 0

for each t∈ ℜ+ and ẋd(t) ∈ RPxd(t) for all t ∈ ℜ+, where
RP is the range of the projection P.

Proof:

Sinceẋd ∈ RPxd , then:

Pxd(t)ẋd = Pxd(t) f (xd(t),ud(t)) = g(xd(t),ud(t))

Hence,
ẋd −g(xd(t),ud(t)) = 0

and since
∂g(xd(t),ud(t))

∂u
6= 0

the results follow from the implicit function theorem.�

Suppose there exists a controlud(t) satisfying the above
theorem, then from (24) and (26), it can be written that:

x− ẋd = f (x,u)− f (xd,ud)
= f (x−xd +xd,u−ud +ud)− f (xd,ud)

= g(x−xd,u−ud,t)
(27)

whereg(0,0,t) = 0,∀t.

Hence, if y = x − xd and v = u− ud, then the system
(27) can be written as:

ẏ = g(y,v,t) (28)

therefore, the regulator problem forv can be solved, and then
write u = v+ud.
To solve this problem, a well established technique of linear,
time-varying approximations to the problem (see [4]) is
applied: It is assumed that the system (28) can be written
on the form:

ẏ(t) = A(y,t)y(t)+B(y,t)v(t), (29)

In the case the system is not affine in the control, nonlinear
control terms can be included inA(y,t) and B(y,t)). Now,
equation (29) is replaced by the following sequence of LTV
systems:

ẏ[i](t) = A(y[i−1](t))y[i](t)+B(y[i−1](t))v[i](t) (30)

and to each of the equations (30), the following quadratic
cost functional is applied:

J =
1
2

x[i]T(t f )Fx[i](t f )+
1
2

∫ t f

0

[

x[i]T(t)Qx[i](t)+u[i]T(t)Ru[i](t)
]

dt

(31)
The problems (30) and (31) can then be solved by standard
methods (see [5] or [7]).

EXAMPLE

Let (ξ10,ν10), (ξ20,ν20) ∈ ℜ2 be two points which
satisfy:

ν10 = ξ20−2ξ10+ ξ 3
10

ν20 = −ξ10+ ξ 3
20,

and suppose the two local systems:
(

ẋ1

ẋ2

)

=

(
1− ξ 2

i0 −1
−1 0

)

·

(
x1

x2

)

+

(
0
1

)

·u, i = 1,2.

(32)

These systems are local versions of:
(

ẋ1

ẋ2

)

=

(
1− ξ 2

10 −1
−1 0

)

·

(
x1

x2

)

+

(
0
1

)

·u (33)

and if:

x1d(t) = ξ10(1− t)+ ξ20(t)

x2d(t) = ẋ1d −x1d +x3
1d

Then the control:

ud = ẋ2d +x1d = −ẋ1d +3x2
1d · ẋ1d −x1d



will derive the system between the two points.

The system (28) becomes:
(

ẏ1

ẏ2

)

=

(
1 ((y1 +x1d)

2 +2(y1+x1d)x1d +x2
1d)

−1 0

)

·

(
y1

y2

)

+

(
0
1

)

·v

(34)
and this generates a closed-loop control so that the following
expression ofu(t),

u = v+ud, (35)

will regulate the system between the two given operating
values.

V. GLOBAL SYSTEMS ON MANIFOLDS

In this section, a more general problem is considered; that
of going from local models to the topology of the ambient
manifold on which the system is defined.

Hence, consider a compact n-dimensional differentiable
manifold M and let X(u) be a parameterized vector field
on M, where u ∈ ℜm. Let (φi ,Ui), 1 ≤ i ≤ K be a finite
covering of M by local parameters, where eachφi : Uiℜn is
a homeomorphism.

In each coordinate neighborhood, the local form of
the dynamical system corresponding to the vector field
X(u)‖ui can be written as:

ẋi = f (i)(x(i)
,u(i)). (36)

It will be assumed that, in each neighborhoodUi there is an
operating pointx(i)

d ∈ φ(i)(Ui). This, as before, means that

there is a (constant) open loop controlu(i)
d such that

f (i)(x(i)
d ,u(i)

d ) = 0 (37)

Then the new local coordinates are defined,

y(i) = x(i)−x(i)
d (38)

and the new control

v(i) = u(i)−u(i)
d y (39)

so the′local model′ is of the form:

y(i) = g(i)(y(i)
,v(i)

d ) (40)

where

g(i)(y(i)
,v(i)

d ) = f (i)(y(i) +x(i)
d ,v(i) +u(i)

d )

Note thatg(0,0) = 0.

The question is now: Knowing the local models (40)
and the operating points(x(i)

d ,u(i)
d ), what can be said about

the topology ofM?.
It is assumed that complete information is known, in the
sense that the coordinate patches on which the local systems
are defined cover the (unknown) ambient manifold. So the

problem is, how do they fit together?. Taking zero controls
from (40):

ẏ(i) = g(i)(y(i)
,0), 1≤ i ≤ K

each of these systems is defined on some regionVi, say of
ℜn.
Now, it is said that two local systems

ẏ(i) = g(i)(y(i)
,0), ẏ( j) = g( j)(y( j)

,0) (41)

are compatibleif there exist a diffeomorphismφi j : V̂(i)V̂( j)

from some nonempty subsetV̂(i) of Vi onto some subset̂V( j)

of Vj such that the system is a topologically conjugate onV̂j ,
i.e. φi j maps trajectories of systems(i) on those of system
( j). Note that, if these two systems are compatible, then

y(i)(t) = φi j (y
(i)(t))

and so

ẏ( j) =
∂φi j

∂y(i)
ẏ(i)

i.e.,

g( j)(y(i)
,0) =

∂φi j

∂y(i)
g(i)(y(i)

,0).

Hence the matrices
∂φi j

∂y(i) g(i) from the transmition matrices for
this tangent bundle of a manifold. The transition matrices are
denoted by

γ(i j ) =
∂φi j

∂y(i)
(y(i))

Note that they obey the standard cocycle conditions:

γi j − γ jk = γik on Ui ∩U j ∩Uk,
γii = I ,
γi j · γ ji = I on Ui ∩U j .

For example, for a sphereS2, regarded asS2 = C∪{∞}:

g∞0 : U0∩U∞ → GL(I ,C)

where g∞0(z) = 1
zn for each integern and U0, U∞ are

neighborhoods of 0 and∞ respectively. This defines a
complex line bundle onS2, usually denoted byHn.

A connectionon the vector bundle defined by transition
functionsγi j is a collection of differential operatorsd + wi

defined onUi such thatwi = γi j dγ−1
i j + γi j wj γ−1

i j on Ui ∩U j

where d is the exterior derivative. These glue together to
give a global map:

dA : Ω0(E) → Ω1(E) (42)

for a bundleE.

The curvature of dA is (d2
A) and is represented locally

by a matrixKi of two-forms for which

Ki = γi j K jγ−1
i j (43)

The Kth characteristic class of the bundle is defined by

τk(E) = [τk(A)] ∈ H2k(M;ℜ) (44)



where τ(A) =trace
[
( i

2π K j )
k
]
. The first Chem class

c1(E) = τ1(E).

Then, < c1(τM), [M] >= 1
2π

∫

M KdA = X(M) by the
Gauss-Bonnet theorem, so the Chem class states if the
system is trivial or not.

EXAMPLE

The systems:
(

ẋ1

ẋ2

)

=

(
−1 0
−1 0

)

·

(
x1

x2

)

+

(
0
1

)

·u (45)

(
ẏ1

ẏ2

)

=

(
−1 0
−1 0

)

·

(
y1

y2

)

+

(
0
1

)

·u (46)

Generate a system inS2, since the transition functions look
like g∞0(z) = 1

z in local coordinates. It can be seen that<

c,(τM), [M] >= 2 = X(M)

VI. CONCLUSIONS

In this paper the authors have considered the problem of
piecing together a set of given local systems to form a global
one on some manifold. If the information is incomplete
(as in most practical cases) interpolation methods can be
used and if it is complete, then topological manifold theory
will be used to describe the ambient manifold. Using an
approximation method for the obtained nonlinear system,
global controllers can be now designed in order to drive the
system from one local operating point to another.
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