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located in seismic-prone areas. However, several important cable-stayed
bridges with dampers (e.g. Rion-Antirion in Greece or Stonecutters in China)
also allow some structural damage in the towers in order to reduce response
uncertainties under unexpectedly large earthquakes. On the other hand,
there are many cable-stayed bridges without seismic devices which are ex-
posed to large earthquakes and inelastic excursions. Considering these ex-
treme events, designers need appropriate methodologies to address if the
ductility demand along the towers is acceptable, and to verify the elastic
response of the deck.

Non-Linear Response History Analysis (NL-RHA) is undoubtedly the
most rigorous methodology to deal with inelasticity in dynamic studies, al-
lowing also the consideration of viscous dampers. However, several uncer-
tainties are introduced in the definition of the models and analysis, to the
point that there are seismic regulations which preclude this procedure [1]. In
this sense, nonlinear static pushover analysis is very appealing.

In recent years, pushover strategies have received a great deal of research,
especially since seismic design guidelines [2, 3] were published. Their main
goal is to estimate the nonlinear seismic response by means of static calcula-
tions, pushing the structure up to certain target displacement using load pat-
terns which try to represent the distribution of inertia forces. These method-
ologies are useful to uncover design weaknesses that could remain hidden in
an elastic analysis and yield good estimations of the nonlinear seismic perfor-
mance under certain conditions, drastically reducing the computational cost
[4]. For these reasons many design guidelines recommend the use of pushover
analysis to evaluate the inelastic seismic response [2, 5, 6], whereas the N2
pushover analysis [7] is adopted in Eurocode 8 [8]. However, the mathe-
matical basis of the procedure is far from accurate; it is assumed that the
nonlinear response of a multi degree-of-freedom structure can be related to
the response of an equivalent single degree-of-freedom model (SDOF), which
implies that the response is controlled by a single mode; furthermore it is
assumed that this modal shape remains constant through the analysis [4].
Although these assumptions are clearly incorrect, if the structure response
is dominated by the first mode of vibration the estimated results have been
found to be generally accurate compared with rigorous NL-RHA [4, 9, 10].
Different proposals have been made to overcome the aforementioned short-
comings, briefly described in the following lines.

Chopra and Goel [11] introduced the Modal Pushover Analysis (MPA) in
order to take into account the contributions of several important modes in
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the nonlinear dynamic response of the structure, neglecting the interaction
between modes in nonlinear range and studying their response independently
as it is performed in spectral analysis. This procedure, initially proposed
for buildings under one-directional ground shaking and included in FEMA-
440 [6], has been improved in order to include the effect of higher modes
through spectral analysis, considering their response completely elastic [12].
The modal contribution is finally combined with standard rules like CQC
(Complete Quadratic Combination) or SRSS (Square Root of the Sum of
Squares), based on elastic superposition principles unable to retain the sign
of the modal force distributions, which may introduce errors [13].

Several adaptive pushover methods have been developed in order to ‘up-
date’ the load distribution pattern along the structure as long as yielding
mechanisms are developed, they can be based on imposed load [14] or dis-
placements patterns [15]. Although the consideration of variable modal prop-
erties normally improves the accuracy of the procedure [13, 15], its difficulty
is inevitably increased and it is somewhat away from the initial objective of a
simplified yet accurate method. Moreover, Papanikolau et al [16] pointed out
the misleading results that adaptive pushover strategies could offer, and the
numerical difficulties involved in the extraction of vibration modes if large
inelastic deformations arise.

Another pitfall of pushover analysis is the difficulty in modelling three-
dimensional (3D) and torsional effects, as well as considering multi-directional
simultaneous seismic excitation, which in the present work are found to be
important in structures with strong mode coupling like cable-stayed bridges
[17]. In this direction, Lin and Tsai [18] proposed an extension of MPA,
substituting the SDOF by a three degree of freedom system which takes into
account the coupling between the two horizontal translations and the verti-
cal rotation, increasing the complexity of the procedure. More practically,
Huang and Gould [19] performed a simultaneous bi-directional pushover anal-
ysis considering two load patterns along both horizontal directions.

So far, most of the research is currently focused on buildings and few
works address the problem of the applicability of pushover analysis to bridges
[9, 10, 20]; the work of Paraskeva et al [21] proposed key issues to em-
ploy MPA to bridges, providing information about the selection of the con-
trol point (among other features), and applying the procedure to a strongly
curved bridge, where transverse modes present displacements also in longi-
tudinal direction. Nonetheless, no specific studies on this topic about cable-
stayed bridges have been found by the authors. On the other hand, bridges
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are usually more affected by higher modes and, therefore, proposing modal
pushover procedures for these structures is even more of a challenge than in
the case of buildings.

In this work, several considerations proposed for the applicability of MPA
in triaxially excited cable-stayed bridges are first included. Subsequently,
two new procedures are presented; the Extended Modal Pushover Analy-
sis (EMPA), which considers the 3D components of the accelerograms, and
the Coupled Nonlinear Static Pushover analysis (CNSP), which takes into
account the nonlinear coupling between the governing modes. The valida-
tion of these pushover methods is performed by comparing their results with
the extreme seismic response recorded in NL-RHA, considered as the ‘exact’
solution.

2. Implementation issues of MPA in cable-stayed bridges

The complex interactions among vibration modes, characteristic of cable-
stayed bridges [17], force the designer to consider the full 3D model in
pushover analysis. Furthermore, large differences in the stiffness of their
constitutive members (towers, deck and cable-system) favour significant con-
tributions of modes higher than the fundamental one, and typically among
the first twenty modes (see section 6.1), which clearly differentiate these
structures from buildings. Several special features about the implementation
of MPA in three-axially excited cable-stayed bridges have been proposed in
this study and are described in the following lines.

MPA has been conceived for structures under one-directional seismic ex-
citation, being its mathematical development included elsewhere [11]; if the
bridge is three-directionally excited, in-plane pushover analyses may be con-
ducted separately, deciding first which is the characteristic direction of the
nth mode (referred as DRn) and neglecting its contributions in the other
directions.

A previous study about the contributions of each mode below a reason-
able upper limit of fmax = 25 Hz (higher modes are neglected) should be
performed in order to select the governing horizontal modes in longitudinal
and transverse directions, i.e. the ones with larger contributions in the corre-
sponding response (see section 6.1). The inelastic demand is assumed to be
governed by the first vibration modes, consequently, it is proposed to include
in the nonlinear static analyses all the vibration modes below the limiting fre-
quency fgov, which is established as fgov = max(fnX , fnY ), where fnX and fnY
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are the frequencies associated with the longitudinal and transverse governing
modes respectively (section 6.1 is devoted to the identification of such values).
The modal responses obtained through pushover analysis are combined by
means of CQC rule to obtain the inelastic contribution. On the other hand,
all the modes between fgov and fmax = 25 Hz are considered merely elastic
and included by means of response spectrum analysis [12]. This elastic re-
sponse is combined with the inelastic one obtained previously by employing
the SRSS rule. Finally, frequencies above 25 Hz are directly neglected in
light of the characteristic dynamic response of cable-stayed bridges. Figure
1 aims to clarify the distinction of intervals in this proposal.

Figure 1: Scheme of mode selection in MPA and EMPA procedures (in this case nX > nY
but it could be reversed).

The nonlinear contribution of the first relevant modes is obtained with
pushover analysis, integrating for each one the resulting SDOF differential
equation in time-domain to obtain the modal displacement demand (the non-
linear spring cyclic behaviour is solved with the algorithm proposed by Simo
and Hughes [22]). This procedure is more rigorous than employing inelastic
spectra (as it is proposed in [7, 21]), since the contribution of modes in the
short-period range has been observed to be relevant in the response of cable-
stayed bridges (discussed in section 6.1), being the estimates of displacement
demand employing formulae based on the inelastic spectrum less accurate
for these modes [7].

The selection of the roof as the control point in buildings is straightfor-
ward because it is generally the level with extreme recorded displacements.
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However, when dealing with three-directionally excited cable-stayed bridges,
this point is not obvious. It is proposed here to establish the control point
as the point with maximum modal displacement in the specific studied mode
along its dominant direction (defined in section 6.1). Therefore, optimized
control points are considered by this proposal, which may be different from
one vibration mode to another.

In order to idealize the obtained ‘capacity curve’ (relating the base shear
and the displacement of the control point) into a bi-linear plot, a specific
‘Equal Area’ rule has been considered to represent more properly the actual
curves obtained in the towers of cable-stayed bridges. In light of an extensive
number of capacity curves extracted from these structures, the ideal elastic
stiffness has been established as 75% of the initial one in the recorded curve,
which presents a gradually decreasing slope caused by progressive develop-
ment of plastic hinges at different locations along the towers.

3. Extended Modal Pushover Analysis: EMPA

An Extended Modal Pushover Analysis (EMPA) is proposed here, in or-
der to fully take into account the multi-directional seismic excitation üT

g (t) =
(üXg , ü

Y
g , ü

Z
g ). Neglecting the contributions of one specific mode in directions

different than the characteristic one (like original MPA suggests) is reason-
able in regular buildings, where two well defined flexure planes are present,
but could be misleading in irregular buildings or in bridges with strong modal
coupling like cable-stayed bridges. Paraskeva et al [21] applied MPA to one
bridge with curved deck, considering also the longitudinal displacements in
transverse modes. Cable-stayed bridges, on the other hand, are also affected
by the vertical excitation in transverse modes; vibration modes with trans-
verse flexure of the towers and the deck present a characteristic interaction
with the girder torsion, and also with its vertical flexure in structures with
moderate to medium spans (below 500 m), due to the coupled response ex-
erted by the cable-system. Other modes with significant interactions are
present in cable-stayed bridges [17], and two or three accelerogram compo-
nents at the same time may contribute significantly to the response in these
modes, but original MPA would discard secondary sources of the seismic
response. EMPA has been designed as an attempt to incorporate these ef-
fects. Finishing with the motivation, note that although φn is the modal
displacement vector in a transverse, longitudinal or vertical mode, it could
have non-zero components in the other two directions, albeit typically much
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smaller than the dominating ones. Hence, the load distributions of vibration
modes are 3D, as it is schematically represented in figure 2(a), particularized
for a transverse mode (DRn = Y ).

(a) Load distribution s∗n = mφn (b) Resulting control point dis-
placement ūrn

Figure 2: Schematic 3D features of EMPA in a transverse n-mode (DRn = Y ).

EMPA is based on the same principles as MPA, but considering the sys-
tem of dynamics under general 3D ground motions. The seismic excitation
vector (right part of the system of dynamics) is the sum of three terms, each
one corresponding to the three components of the accelerogram record:

mü + cu̇ + fS (u, u̇) = −sX üXg (t) − sY üYg (t) − sZ üZg (t) (1)

where, u(t) is the relative displacement vector, m and c are respectively
the mass and damping matrices of the structure, fS defines the relation-
ship between force and displacement vectors, üjg is the ground acceleration
in j-direction (j = X, Y, Z). Finally, considering a structure composed of
N degrees of freedom, sj [N × 1] is the spatial distribution of the seismic
excitation in j-direction:

sj = mιj =
N∑
i=1

sji =
N∑
i=1

Γj
imφi (2)
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Γj
i and φi being respectively the participation factor (scalar) in j-direction

and the mode shape vector associated with ith mode. It is worth noting that
both forces and bending moments are included in the expanded excitation
vector, since three displacements and three rotations (6 DOF) per node are
activated in the model and included in φi. On the other hand, ιj [N × 1]
is the displacement vector of the structure when the same unit movement is
imposed in all the foundations in direction j. The spatial variability of the
seismic action is not considered in this work and, hence, the displacements
prescribed at ground level are equal. Pre-multiplying each term of equa-
tion (2) by φT

n , and considering the orthogonality of the mass matrix, Γj
n is

obtained:

Γj
n =

φT
nmιj

Mn

; with j = X, Y, Z (3)

Introducing the expanded vectors sX , sY , sZ in expression (1) with (2),
pre-multiplying by φT

n and taking into account the orthogonality properties:

φT
nmü + φT

ncu̇ + φT
n fS(u, u̇) = −Mn

(
ΓX
n ü

X
g + ΓY

n ü
Y
g + ΓZ

n ü
Z
g

)︸ ︷︷ ︸
ü∗
g,n(t)

(4)

EMPA extends the original methodology to consider the 3D earthquake
excitation by means of an equivalent acceleration history ü∗g,n (t), defined in
(4) in terms of the modal properties besides the earthquake record itself. So
far the procedure is exact but, as it is assumed in MPA, the coupling between
modes in nonlinear range is neglected at this point and a set of J (J < N)
relevant modes is considered:

u(t) =
J∑

i=1

ui(t) ≈
J∑

i=1

φiq̄i (t) (5)

where q̄i is a generalized coordinate which takes into account the 3D
nature of the mode shape φi, being defined in expression (8b) below. The
uncoupled SDOF system from (4) and (5) is obtained as follows:

¨̄qn + 2ξnωn ˙̄qn +
F̄sn

Mn

= −ü∗g,n (t) (6)
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The procedure now takes into account the three components of the 3D
pushover analysis (figure 2) by means of F̄sn = φT

n fS(q̄n, ˙̄qn), without neglect-
ing the components different from the mode dominating direction (DRn).
The bar symbol over F̄sn is established in order to differentiate it from the
unidirectional pushover analysis in MPA. In fact, the capacity curve, which
defines the required relationship F̄sn/Mn, is obtained in a different way than
MPA, taking into account the aforementioned contributions of the excita-
tion vector in all available degrees of freedom. In order to do that, three
capacity curves are recorded in a single pushover analysis of each mode, as-
sociated with the longitudinal, transverse and vertical directions; (V X

bn −uXrn),
(V Y

bn − uYrn), (V Z
bn − uZrn), as it was depicted in figure 2, where V j

bn and ujrn are
respectively the total base shear and the displacement of the control point
in j-direction during the 3D static analysis of nth mode.

Once these projected 2D capacity plots are obtained, they are transformed
into coordinates Fsn/Mn − qn:

F j
sn

Mn

=
V j
bn

Lj
n

(7a)

qjn =
ujrn
φj
rn

(7b)

in which F j
sn and qjn represent the projection in j-direction (j = X,Y,Z)

of the 3D capacity curve associated with nth mode, whereas ujrn and φj
rn are

respectively the corresponding displacement and normalized modal displace-
ment at the control point, which is selected with the considerations proposed
in MPA, regardless of the direction where the peak modal displacement is
recorded. Finally Lj

n = φT
nmιj.

A so-called ‘modular capacity curve’ (F̄sn/Mn − q̄n) is suggested to in-
troduce the information of the three projected curves (F j

sn/Mn − qjn) in the
SDOF equation (6):

F̄sn

Mn

=

√(
FX
sn

Mn

)2

+

(
F Y
sn

Mn

)2

+

(
FZ
sn

Mn

)2

(8a)

q̄n =

√
(qXn )2 + (qYn )2 + (qZn )2 (8b)
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This modular capacity curve includes information of the longitudinal,
transverse and vertical capacity curves in the nth mode, and allows the def-
inition of the equivalent SDOF expressed in (6), which subjected to the
equivalent accelerogram ü∗g,n (t) and integrated in time domain, results in the
modular generalized displacement demand max

t
[q̄n(t)]. The modular target

displacement which marks the end of the 3D pushover analysis (see figure
2(b)) is then:

ūmax
rn = φ̄rn max

t
[q̄n (t)] (9)

where φ̄rn =
√

(φX
rn)2 + (φY

rn)2 + (φZ
rn)2.

The rest of the steps, combining modal maxima and considering higher
mode effects are the same as in MPA. The same distribution of the modal
range presented in MPA (figure 1) is employed, discerning among modes
which require pushover analysis, response spectrum analysis or ignored fre-
quencies.

4. Coupled Nonlinear Static Pushover analysis: CNSP

MPA neglects the interaction between the modes, superposing modal con-
tributions just as it is done in a modal elastic analysis. The proposed ex-
tension (EMPA), despite considering the contribution of vibration modes in
all directions, besides the associated effect under 3D seismic excitation, also
assumes the different modes uncoupled and pushover analysis is performed
separately for each mode. However, studying the longitudinal and trans-
verse flexure separately is conceptually wrong if material nonlinearities are
involved, because the damage exerted to the tower due to its longitudinal
flexure unavoidably affects the transverse response and vice versa. In order
to overcome this drawback, and to consider the nonlinear modal interaction,
the Coupled Nonlinear Static Pushover analysis (CNSP) is proposed here,
rooted in EMPA (presented above) and in the proposal of Huang and Gould
[19].

Like in other pushover strategies, first a modal analysis is carried out in
order to select the governing modes, but now only these dominant modes
are selected for the nonlinear static analysis; one in the transverse direction
(φnY ) and the other in the longitudinal one (φnX), as it is shown in figure
5. Once the governing modes have been selected, their load distribution is
obtained separately, retaining its 3D nature as it is done in EMPA:
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s∗nY = mφnY ; s∗nX = mφnX (10)

In order to obtain the coupled response in longitudinal and transverse
directions, a coupled load pattern (s∗C) results from the algebraic weighted
addition of both force distributions. These components are multiplied by the
factor Λ, which takes into account the difference in the spectral accelerations
associated with each governing mode [19]:

s∗C = ΛY s∗nY + ΛXs∗nX (11)

where Λj = Saj/max(SaY , SaX), with j = X, Y , whereas SaX and SaY

are respectively the spectral accelerations associated with the governing lon-
gitudinal (nX) and transverse (nY ) modes. Figure 3 illustrates the excitation
vectors of both modes, along with their algebraic combination, highlighting
the 3D components of the load patterns in the governing modes (s∗ jnX and
s∗ jnY , with j = X, Y, Z).

Figure 3: 3D coupled load distribution s∗C in CNSP.

An incremental static analysis of the structure subjected to the coupled
load pattern s∗C is conducted, which implies that only one nonlinear static
calculation is carried out in this coupled pushover analysis, whilst in MPA
(and EMPA) such calculation needs to be repeated as many times as the
number of modes below fgov (typically between 10 and 15 times in cable-
stayed bridges, see tables 1 and 2).
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The coupled capacity curve resulting from CNSP (right part of figure 3)
involves two vibration modes (i.e. two DOF). Unfortunately, pushover pro-
cedures presented so far deal only with one DOF. Several authors proposed
solutions for coupled capacity curves; Lin and Tsai [18] suggested a three
DOF system which inevitably increases the complexity of the pushover anal-
ysis; more practically, Huang and Gould [19] extracted the transverse and
longitudinal components of the coupled pushover analysis, and obtained the
corresponding displacement demands from the ‘capacity spectrum method’
included in ATC-40 [2].

The proposal of Huang and Gould [19], apart from being rooted in the
ATC-40 capacity spectrum method (which may yield misleading results [23]),
is not valid here; these authors considered only the characteristic dominant
direction of each governing mode and, therefore, the projections of the cou-
pled capacity curve along the principal axes were directly the contributions
of each mode. However, CNSP involves all the components in the excita-
tion vector of each governing mode, not only the dominant direction, which
somewhat complicates the picture. The following solution is proposed at this
point; the contribution of each dominant vibration mode to transverse and
longitudinal components of the coupled capacity curve are computed by mul-
tiplying the projection of the curve in j-direction (V j

bC −ujrC , see figure 3) by
a factor expressing the global weight of both modes in this direction, which
could be obtained through the comparison of their participation factors in j-
direction. The two-degree of freedom coupled problem is then dissociated in
two independent SDOF systems, one related to the transverse mode and the
other to the longitudinal one, but retaining the effect of flexure interaction
between both directions.

Summarizing the philosophy of CNSP, graphically illustrated in figure 4;
(i) the inertia forces associated with the governing modes are combined by
means of expression (11); (ii) with this load pattern, one coupled pushover
analysis is performed, obtaining the coupled capacity curve ( ¯̄VbC− ¯̄urC , where
¯̄VbC and ¯̄urC are respectively the resultant of the base-shear and control point
displacement in the 3D coupled pushover analysis, see figure 4) and its corre-
sponding projections in the principal directions (V j

bC − ujrC); (iii) considering
the weight of both modes in each direction, this curve is disaggregated, sub-
sequently obtaining the nonlinear spring behaviour of two SDOF systems
corresponding to the longitudinal and transverse responses. Each one of
these two SDOF systems is independent, but its definition was influenced
by the other SDOF through the nonlinear coupled effect. Subsequent steps
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made from this stage are analogous to EMPA, repeating the process of the
modular capacity curve only in both governing modes, obtaining at the end
their contribution to the global response (rnX and rnY ), which is combined
using CQC rule in order to obtain the inelastic response (rnl).

Figure 4: Summary of the CNSP philosophy.

Since expression (5) is employed beyond step (iii) in the preceding para-
graph, CNSP also assumes that only the nth mode is excited when its cor-
responding component of the excitation vector (s∗nüg(t)) is imposed to the
structure, which allows the independent definition of the longitudinal and
transverse SDOF. However, in CNSP this assumption is made only for the
two governing modes, whereas in MPA or EMPA it is repeated typically more
than 10 times in cable-stayed bridges.

The participation in the response of any mode different from the govern-
ing ones, and below 25 Hz, is deemed to be elastic and response spectrum
analysis is performed, obtaining the contribution of elastic modes to the
global response (rel), see figure 5. Considering the effect of modes different
than governing ones to be fully elastic falls on the safe side, since if this
hypothesis is not true, and any other mode causes nonlinear excursions, its
participation will be smaller than the corresponding elastic one considered
in CNSP.

Finally, the combination of elastic and inelastic modal contributions is
carried out with SRSS rule, hence considering both responses independent,
which is questionable in some cases where governing periods are close to
other modes judged elastic. This could be undoubtedly a source of errors
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Figure 5: Scheme of mode selection in the proposed CNSP (in this case nX > nY but it
could be reversed).

but it has to be highlighted that less combinations between modal responses,
sometimes inelastic and thus questionable, are needed in CNSP and the final
goal of simplicity in pushover analysis should not be forgotten.

5. Proposed structures and seismic action

The aforementioned pushover procedures have been implemented in six
cable-stayed bridges with central cable plane arrangement and two types of
inverted ‘Y’-shaped towers; with lower diamond (referred as ‘YD-CCP’) and
without this element (‘Y-CCP’). The foundation soil is soft (TD) or rocky
(TA) [8]. The main spans considered are LP = 200, 400 and 600 m. A
previous compilation of the dimensions of cable-stayed bridges built world-
wide has led to the establishment of both sections and proportions, which
completely define three dimensional finite element models with parameters
in terms of the main span (LP ). Figure 6 illustrates the schematic elevation
of the studied models. The tower inelastic response was simulated through a
rigorous beam-type ‘fiber-model’ [24], both in NL-RHA and pushover strate-
gies, defining at each node the position of each longitudinal rebar and con-
crete fiber. The hysteretic response of nonlinear SDOF systems in pushover
analysis is represented by a combined linear isotropic/kinematic hardening
rule [22], whereas, in NL-RHA, the cyclic behaviour of the section is directly
given by the realistic constitutive material properties in each fiber. Cyclic
stiffness degradation effects are not included.
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Figure 6: Schematic bridge elevation. Measurements in meters.

The seismic action consists of two groups of twelve synthetic accelero-
grams, each obtained fitting its acceleration spectrum to the elastic design
one proposed by Eurocode 8 (EC8) [8] for rocky soil (TA) and soft soil (TD),
both considering type 1 spectrum and ground acceleration ag = 0.5g (repre-
sentative of highly seismic areas worldwide). Damping ratio is 4% in order
to consider the reduced damping of cable-stayed bridges.

The minimum number of required records is usually three or four in seis-
mic codes [25], but researchers agree that this limit is too low; a sensitivity
analysis of the response of cable-stayed bridges under twenty four synthetic
signals has been performed here, concluding that the axial load along the
towers is specially sensitive to the number of records studied, but the devi-
ations are minimized and the solution is robust if the averaged response of
twelve accelerograms is obtained. The total duration of the accelerograms
is 20 s, and the strong pulse phase interval 4 s. The set of 12 records 3D
applied have been generated with an ad hoc algorithm described elsewhere
[26], satisfying Eurocode 8 provisions.

6. Discussion of the results

6.1. Selection of governing modes. Response spectrum analysis

The study about the contributions of each vibration mode to the global
response, considering the specific seismic action applied, is a paramount stage
prior to the pushover analysis. Before the identification of the governing
modes, the characteristic dominant direction of each mode (DR) should be
distinguished. It is proposed to assign DRn as the direction j (j = X, Y, Z)
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associated with the maximum value of the participation factor for the nth
mode in each direction (expression (3)), excluding the ones which are mainly
related to rotations.

The contribution of each mode to the global behaviour is addressed by
means of elastic response spectrum analysis, including only the considered
mode. The total response in this section, for comparison purposes, is as-
sumed as the result of response spectrum analysis involving all modes with
frequency lower than fmax = 25 Hz. The modes with larger contributions
to the longitudinal (VX) and transverse shear (VY ) seismic forces along the
tower height are considered respectively longitudinal and transverse govern-
ing modes.

Figure 7 presents the total response and modal contributions to the trans-
verse shear along the tower in two models with and without lower diamond.
Mode No. 13 is clearly the governing one in transverse direction (nY = 13) in
the bridge considered in figure 7(a), but the decision in the case represented
in figure 7(b) is more questionable; looking at the seismic forces around the
foundation level, the mode No. 14 is the transverse governing one in this
bridge (nY = 14).

In some cases (e.g. figure 7(b)) the response is not clearly dominated by
one governing mode, instead, several modes may contribute significantly. In
order to assess the contribution level of the governing modes with respect
to the total corresponding response, it is proposed to average (for the whole
tower) the ratio between the contribution of each single governing mode to
their representative shear in a specific section k (V k

X,nX or V k
Y,nY ) and the

total response (V k
X,tot or V k

Y,tot, including all modes below 25 Hz).

V̂j,nj

V̂j,tot
=

Nnod∑
k=1

V k
j,nj

V k
j,tot

Nnod

; with j = X, Y (12)

where Nnod is the number of nodes along the tower height.
According to the theoretical description presented above, CNSP accu-

racy is expected to be increased if the contribution of the governing modes
is important, i.e. when the ratios proposed in expression (12) are close to
the unity. The results are collected in tables 1 and 2, extracting the fol-
lowing useful conclusions prior to any nonlinear seismic calculation; (1) the
transverse response is largely dominated by a single governing mode (nY )
whilst in the longitudinal direction this is not as clear, probably due to the
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(a) Extreme transverse seismic shear VY . Y-CCP model

(b) Extreme transverse seismic shear VY . YD-CCP model

Figure 7: Response spectrum analysis of modal contributions in two models. Extreme
transverse seismic shear VY . The main span (LP ) is 400 m. Soft soil class (TD).
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Model LP fgov [Hz] nX V̂X,nX/V̂X,tot nY V̂Y,nY /V̂Y,tot
Y-CCP 200 1.65 8 0.50 3 0.76

400 1.25 9 0.57 13 0.97
600 0.80 11 0.64 9 0.73

YD-CCP 200 2.0 13 0.65 3 0.93
400 1.39 12 0.50 14 0.63
600 0.83 10 0.46 4 0.67

Table 1: Governing longitudinal and transverse modes in all studied models, besides data
obtained from response spectrum analysis. Soft soil class (TD).

Model LP fgov [Hz] nX V̂X,nX/V̂X,tot nY V̂Y,nY /V̂Y,tot
Y-CCP 200 1.65 8 0.54 3 0.64

400 1.27 8 0.46 13 0.94
600 0.77 10 0.55 9 0.71

YD-CCP 200 2.1 13 0.56 3 0.84
400 1.3 12 0.38 6 0.49
600 1.2 17 0.35 4 0.62

Table 2: Governing longitudinal and transverse modes in all studied models, besides data
obtained from response spectrum analysis. Rocky soil class (TA).

deck-tower interaction exerted by the cable-system; (2) the order of the longi-
tudinal governing mode (nX) usually marks the end of the frequency interval
employed in MPA and EMPA (fgov); (3) the contribution of governing modes
to the overall response is generally lower if the foundation soil is rocky, due
to the reduction of spectral acceleration between 0.5 and 1.5 s; (4) towers
with lower diamond are stiffer than models without this element, which is
reflected in the increase of the limit frequency fgov, and typically also in the
number of modes inside the interval to be studied through nonlinear static
analysis in MPA and EMPA, if the main span is moderate (LP = 200 m)
these towers are strongly affected by modes with period T = 0.5 s, smaller
than the corner period TC = 0.6− 0.8 s given by Eurocode 8 [8] for soft soils
(type 1 spectra) and, hence, within the short-period range.

The significant contribution of modes between fgov and fmax = 25 Hz has
been verified (higher mode effect), especially in the transverse response of
cable-stayed bridge towers with lower diamond (achieving contributions up
to 20%), because the high transverse stiffness of this element can only be
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fully excited by high-order modes. The upper part of the towers, where the
cables are anchored, is sensitive to higher mode effect; analogous results have
been obtained elsewhere in the top stories of high-rise buildings [23].

6.2. Comparison of the extreme seismic response

The extreme seismic forces obtained with the presently described pushover
methodologies and the reference ‘exact’ result given by nonlinear dynamics
(NL-RHA) are compared in this section, excluding the effect of the gravity
loads (rG). The standard deviation of the twelve results required in NL-
RHA to compute the average is about 10% of such value in all the cases
(σ ≈ 0.1µ). The same twelve records have also been applied when solv-
ing expression (6) for pushover strategies, obtaining analogous dispersion of
the results. Only the mean values (µ) are presented in this section both in
NL-RHA and pushover analysis, which have been performed using ABAQUS
[27].

First, three strategies are compared in figure 8: (1) pushover analysis
proposed by different codes with two load patterns (‘Principal mode’ [8]
s∗n = mφn and ‘Uniform’ [5] s∗k = mk, where mk is the mass associated
with the node k), (2) advanced pushover methods (MPA, EMPA and CNSP)
and (3) rigorous NL-RHA. The improvement in the results obtained with
advanced pushover analysis is clear in comparison with the simplified strate-
gies proposed by codes, particularly employing the ‘Uniform’ load pattern,
because high-order modes are neglected and the distribution of inertia forces
may be unrealistic (e.g. the ‘Triangular pattern’, excluded here, does not take
into account possible sign reversals of the modal excitation vector). Code
pushover procedures typically lead to inadmissible under-predictions of the
seismic forces, ranging the errors from 10 to 90%, however, these methods
are not directly applicable to cable-stayed bridges due to the simplifications
involved.

Next, some results of the comparison among the extreme seismic forces
obtained with NL-RHA and advanced pushover procedures are presented in
figures 9 to 12. The most important aspect to note is the good correlation
between both strategies, typically ranging the errors from 10 to 20% and
many times on the safe side, which is an outstanding result taking into ac-
count that the deviation of the reference NL-RHA forces rounds 10%. This
means that the main assumptions made in the mathematical approach of
advanced pushover analysis are reasonable, i.e.; (1) modal properties remain
mainly unchanged (no adaptive pushover analysis is required) and; (2) the
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Figure 8: Extreme seismic transverse shear VY obtained with code pushover analysis,
advanced pushover analysis (MPA, EMPA, CNSP) and reference NL-RHA. Model ‘Y-
CCP’ with main span LP = 400 m. Soft soil class (TD).

nth component of the excitation vector mainly activates the nth vibration
mode. It is worth noting, however, that the accuracy of these assumptions
may be compromised by higher levels of inelastic demand, which is the rea-
son behind the deterioration of the results obtained with advanced pushover
strategies in models with lower diamond and short spans (see figures 11(a)
and 11(b)). The effect of the main span and the foundation soil in pushover
analysis accuracy is not clear.

The estimation of the tower axial loads in bridges with main span below
500 m is generally more accurate employing EMPA than the original MPA
(figure 9), probably due to the full consideration of the 3D excitation in
relevant transverse modes coupled with torsion and vertical deck flexure.
However, the seismic shear forces and bending moments offered by MPA are
usually very close to the results of EMPA, because the contributions of the
first vibration modes in directions different than the characteristic one are
normally reduced (with the aforementioned exception). Two reasons cause
this effect from the mathematical point of view; (i) the participation factor
in the dominant direction (DR) is typically much larger than in the others
and, consequently, the equivalent accelerogram defined in (4) is close to the

20



component associated with the dominant direction (u∗g,n (t) ≈ ΓDRn
n üDRn

g );
(ii) the components of the excitation vector in directions different than the
dominant one are usually small, leading to a modular capacity curve in (8)
which is similar to the bidimensional record obtained in MPA (F̄sn/Mn ≈
FDRn
sn /Mn and q̄n ≈ qDRn

n ).

Figure 9: Extreme seismic axial load N along the height of the tower. Comparison between
‘exact’ NL-RHA and advanced pushover analysis (MPA, EMPA, CNSP). Model ‘Y-CCP’
with main span LP = 400 m. Rocky soil class (TA).

As it was expected, CNSP generally yields larger seismic forces than
MPA and EMPA, because the contribution of first modes different from the
governing ones is assumed merely elastic. However, the ability of CNSP to
consider the nonlinear interaction between the transverse and longitudinal
flexure of the tower improves the accuracy in many cases (see figures 8, 10
and 12), which are closely related to the structures strongly dominated by
the governing modes presented in tables 1 and 2; this situation is ideal for
CNSP. On the contrary, if vibration modes different from the governing ones
contribute with significant nonlinear response, CNSP may over-predict the
response to the same extent, which is typical in the lower diamond of towers
with this member (figure 11). The same phenomenon is behind the improved
CNSP accuracy in the prediction of the forces associated with the transverse
tower response (VY and N), in comparison with the longitudinal one (VX ,
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which was expected from section 6.1). Nonetheless, CNSP is usually better
than MPA and EMPA predicting the longitudinal shear (see figure 12) and
bending moment (MY Y ).

Dealing with the applicability of advanced pushover analysis more in
depth, it should be remarked that these nonlinear static procedures are able
to take into account the effect of seismic dissipative devices (e.g. yielding
metallic dampers), since their contribution to the inelastic response is cap-
tured in the pushover analysis, and the hysteretic damping is included by
means of the numerical integration of the equivalent SDOF in time-domain.
However, they are not recommended when velocity-dependent devices are in-
corporated (e.g. viscous fluid dampers), since such effects are not covered in
the static pushing of the structure. Currently there are attempts in seismic
guidelines (e.g. FEMA-356 [5]) in order to study structures with velocity-
dependent dampers by means of static equivalent pushover analysis, but in
a very simplistic manner.

Figure 10: Extreme seismic transverse shear force VY along the height of the tower. Com-
parison between ‘exact’ NL-RHA and advanced pushover analysis (MPA, EMPA, CNSP)
for different main spans (LP ). Model ‘Y-CCP’. Soft soil class (TD).
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Figure 11: Extreme seismic transverse shear force VY along the height of the tower. Com-
parison between ‘exact’ NL-RHA and advanced pushover analysis (MPA, EMPA, CNSP)
for different main spans (LP ). Model ‘YD-CCP’. Soft soil class (TD).

Figure 12: Extreme seismic longitudinal shear force VX along the height of the tower.
Comparison between ‘exact’ NL-RHA and advanced pushover analysis (MPA, EMPA,
CNSP) for different main spans (LP ). Model ‘Y-CCP’. Rocky soil class (TA).
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CPU time
Model Soil NL-RHA MPA/EMPA CNSP
Y-CCP TA 5.80 0.30 0.05

TD 34.47 0.75 0.08
YD-CCP TA 18.52 0.50 0.06

TD 47.76 0.77 0.11

Table 3: CPU time required to complete the 12 analyses of the set of synthetic records,
expressed in hours, for NL-RHA and pushover analysis. Bridges with main span of 200 m.

6.3. Computational cost

Finally, the calculation time (CPU time) employed by both advanced
pushover analysis and NL-RHA to complete the 12 analyses required to ob-
tain the average response is presented in table 3, using a standard computer
which could be available in any engineering office (3 GB RAM, 2.40 GHz pro-
cessor). NL-RHA employs a variable time step in the Hilber Hughes Taylor
(HHT) algorithm [28] for implicit dynamics, which is reduced if the recorded
damage increases [27] (minimum time step recorded 2.9E-5 s, maximum al-
lowed 0.01 s). It is worth noting that no parallelization techniques have been
employed when using NL-RHA, which could reduce the large computational
cost observed. Values are qualitative since they depend on the software,
furthermore, part of the CPU time is independent of the analysis method.

The reduction in the required CPU time using pushover analysis is dra-
matic, whilst the results are generally precise with the aforementioned ex-
ceptions. As long as the inelastic demand is larger in the towers (i.e. for
soft soils or lower diamond configurations [26]), the CPU time is larger, but
advanced pushover strategies are less influenced since the capacity curves al-
ways reach the collapse, regardless of the seismic intensity. The reduction of
the CPU time in CNSP is remarkable, since it only performs one nonlinear
static analysis, whereas MPA and EMPA need to repeat this process (which
is sometimes demanding) for all the modes below the maximum governing
frequency fgov, requiring between 8 and 17 static analyses (see tables 1 and
2) performed consecutively, leading to CPU times around 6-9 times higher.

7. Conclusions

The contribution of this work in advanced pushover analysis is three-
fold: (i) the broadly accepted modal pushover analysis (MPA) [11] in build-
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ing structures is adapted to three-axially excited cable-stayed bridges, (ii)
an extension of MPA, referred as EMPA, is suggested to fully consider the
three-dimensional effects of the vibration modes and the seismic excitation,
and (iii) a procedure named CNSP is proposed in order to take into ac-
count the nonlinear coupling between governing longitudinal and transverse
modes. The mathematical background of the advanced pushover procedures
proposed in this work has been presented with generality and, hence, they
could be applied to any structure, either bridge or building. The following
conclusions are drawn from this study about 3D pushover procedures in large
cable-stayed bridges:

• If the response of a cable-stayed bridge under unexpectedly large earth-
quakes needs to be explored, nonlinear dynamics (NL-RHA) is the most
rigorous methodology, but the computational time associated is dis-
couraging at the early stages of the structure project, where several
details are often changed. Taking into account the reduced calcula-
tion time of advanced pushover analysis, and their generally accurate
results (errors are typically below 20%), these methodologies are recom-
mended. The final design of the structure should be verified by means
of NL-RHA, especially if inelastic displacement demands obtained in
the pushover analysis reveal strong nonlinearities (which could the case
of bridges with lower diamond and reduced spans), or if special-purpose
seismic devices are incorporated, in agreement with Eurocode 8-2 [8].

• The applicability of MPA to cable-stayed bridges has been addressed,
suggesting criteria for the selection of the control point, the dominant
modes or the idealization of the capacity curve. Nonetheless, the pre-
diction of the tower axial load may be significantly improved by the
proposed extension of the original modal pushover analysis (EMPA) in
bridges with main span below 500 m, due to the simultaneous participa-
tion of several accelerogram components in the excitation of significant
coupled modes. However, EMPA is typically close to MPA in terms of
shear and bending moments, which is explained by the reduced effect of
the most contributing vibration modes for these measures in directions
different from the dominating one.

• The proposed coupled pushover analysis (CNSP) is generally on the safe
side with respect to MPA, EMPA and normally also in comparison with
NL-RHA, which is an advantage in the design of any structure. Another
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advantage of CNSP, apart from the minimum calculation time required,
is the reduction in the number of superpositions of nonlinear modal
responses by means of combination rules built upon elastic principles,
which are far from rigorous. However, the over-prediction may be too
large in bridges with lower diamond and moderate spans, since high-
order modes are required to excite this stiff member and some of them,
assumed elastic, actually introduce nonlinear response.

• The contribution of higher modes (between approximately 1 Hz and
25 Hz) is important and, therefore, pushover analysis should include
this effect considering their purely elastic contribution by means of
response spectrum analysis. The important weight of several modes
in the seismic response is the main reason behind the unacceptable
under-predictions observed in simplified pushover methods proposed by
seismic codes or guidelines, which are not recommended in the analysis
of cable-stayed bridges. In fact, these structures are not strictly covered
by the pushover analysis specified in Eurocode 8-2 [8].
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