
              

City, University of London Institutional Repository

Citation: Comuzzi, M. & Spanoudakis, G. (2009). A Framework for Hierarchical and 

Recursive Monitoring of Service Based Systems. In: Sasaki, H., Bellot, G. O., Ehmann, M. &
Dini, O. (Eds.), Fourth International Conference on Internet and Web Applications and 
Services, 2009. ICIW '09. (pp. 383-388). IEEE. ISBN 978-1-4244-3851-8 doi: 
10.1109/ICIW.2009.63 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/12613/

Link to published version: https://doi.org/10.1109/ICIW.2009.63

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


A Framework for Hierarchical and Recursive Monitoring of Service Based 
Systems1 

 
 

Marco Comuzzi and George Spanoudakis 
Department of Computing, City University 

Northampton Square, EC1V 0HB, London, UK 
{sbbd286, G.Spanoudakis}@soi.city.ac.uk 

 
 

                                                                    
1 The research has been supported by the European Community under the SLA@SOI FP7 Project (grant agreement n. 216556). 

Abstract 
 

Runtime monitoring of Service Based Systems (SBSs) 
usually relies on information derived from I/O messages 
exchanged within business processes implementing services. 
When service provisioning is regulated by complex Service 
Level Agreements (SLAs) between service requesters, 
(composed) services, and infrastructure providers, 
monitoring may require additional features, such as (i) 
coordination among events captured at different sources 
involved in service provisioning and (ii) delegation of 
properties monitoring to local sites. This paper discusses an 
architecture and engagement protocol supporting the two 
aforementioned requirements for monitoring complex SLA-
driven service provisioning.  
 
1. Introduction 
 

Runtime system monitoring, as opposed to static system 
analysis and testing is often the only meaningful way to 
perform verification of Service Based Systems (SBSs), in 
which both the involved software services and infrastructural 
elements may change dynamically according to contextual 
factors, such as the system load or the availability of new 
components. SBSs are dynamically evolving software 
systems comprising loosely coupled software services that 
may be substituted at runtime when they become unavailable 
or no longer satisfy non functional requirements, usually 
referred to as quality of service (QoS) properties [7]. 
Furthermore, the infrastructure on which the services of an 
SBS are executed may incorporate heterogeneous 
components and change dynamically. Services may, for 
example, be accessed over local area networks or through 
mobile devices, while service providers may change their 
service provisioning infrastructure (e.g web and hardware 
servers) according to the system loads they experience or 
adaptable quality profiles negotiated with service consumers. 

Usually, existing approaches on runtime monitoring of 
SBSs focus on monitoring workflow-based systems (i.e. 
systems in which a reference business process coordinates 
the constituent software services) through either the 
interception of I/O messages exchanged between the business 

workflow that coordinates the services of the system and 
these services [3] or the instrumentation of the workflow 
executable code with monitoring-related activities [2]. Thus, 
current approaches to SBS monitoring do not consider some 
basic features that may characterize a complex SBS. 

More specifically, it should first be noted that an SBS can 
be recursively defined, that is, a reference business process 
requiring monitoring may orchestrate local services which 
are recursively defined as a composition of other local 
services. In such cases, monitoring information may need to 
come from each of the services in the complex recursive 
service composition. Furthermore, SBS are hierarchically 
implemented. Required monitoring information may derive 
from business level Key Performance Indicator (KPIs) 
reported in an SLA established with the end-user. Such KPIs 
result in properties verifiable at the workflow or service 
interface and these can be then translated into properties of 
the infrastructure on which services are being are executed. 
Typical is the case of response time, usually an archetypical 
dimension defining service QoS in an SLA. A business KPI 
may specify constraints on the average response time of a 
service in a given time window. The KPI is translated on 
properties referring to the timestamps of service calls and 
responses that can be captured at the service interface. 
Eventually, further properties influencing the service 
response time, such as the length of required DB queries, 
server load, or network delay, can be captured from the 
infrastructure on which the service executes.  

In this context, we aim at designing a framework for 
event-based monitoring of SBS for complex SLA-driven 
service provisioning. On the one hand, the framework should 
be hierarchical, allowing the monitoring of properties at 
different layers of the SBS, such as service composition, i.e. 
the workflow execution environment, service invocation, and 
service execution, i.e. the set of resources on which each 
single service executes. On the other hand, the framework 
needs to be recursive, allowing the monitoring of properties 
of a workflow and, recursively, of all the (composed) 
services which constitute the workflow.  

The framework is constituted by the architecture of the 
monitor and an engagement protocol. The monitor is able to 
coordinate monitoring events coming from different elements 
composing the SBS and to delegate the monitoring of rules 



derived from SLAs to local monitors, such as the ones that 
may be deployed at the infrastructural level. The engagement 
protocol is required to set up at runtime the monitoring 
infrastructure in a transparent way.  

Besides addressing the recursive and hierarchical nature 
of SBS, the delegation of monitoring rules aims at (i) 
improving the scalability and performance of the monitoring 
process, avoiding a single centralized monitor and (ii) 
exploiting the specificity of local monitors designed for 
monitoring properties at different layers of an SBS. On the 
one hand, in fact, a centralized monitor may become a 
bottleneck for the monitoring process, since it needs to 
process monitoring information provided by several elements 
in the SBS. This becomes a paramount issue, for instance, if 
the SBS reference workflow is primarily hosted on a mobile 
device, with limited computing power and memory capacity. 
On the other hand, our monitor is also able to provide a 
coordination framework for delegating rule monitoring to 
local monitors attached, for instance, at the workflow 
interface or at specific infrastructural elements that need to 
be monitored.  

The paper is organized as follows. In Section 2, we 
introduce an example illustrating the need for the architecture 
we introduce in the paper. In Section 3, we describe the 
monitoring capabilities of services required by our 
monitoring framework. In Section 4, we present the 
architecture and usage scenarios of the monitoring 
framework. In Section 5, we discuss the interface through 
which services make their monitoring capabilities available 
to the framework and the engagement protocol to establish 
the monitoring process. In Section 6, we discuss related work 
and in Section 7 we present some basic concluding remarks 
for our approach. 

 
2. A Motivating Example 

As an example of the heterogeneity and complexity of 
SLA monitoring that our approach aims to address, consider 
a retail SBS supporting the management of purchases on a 
mobile e-commerce website. The coordinating business 
process of this SBS is called Purchase Business Process 
(PBP). As shown in Figure 1, PBP is executed locally on the 
customer’s mobile phone and implemented as the sequential 
composition of three different local services, namely 
ManageCart, Checkout, and BookSale. The customer is 
operating in an area covered by a mobile 3-G network 
managed by the generic Mobile Network Manager. Each 
service in PBP is offered by a different service provider, 
possibly on a heterogeneous set of service provisioning 
infrastructures. 
More specifically, the Checkout service (CP) is a composite 
service itself involving the services ExecutePayment and 
ConfirmPayment. The ExecutePayment service is 
implemented as a workflow, called Execute Payment Process 
(EPP), which is hosted and executed by a Financial Service 
Provider (e.g. a bank). In this process, the credit card number 
provided by the customer is first validated. Validation is 
performed by the ValidateCard service which issues a 
transaction ID. Then, EPP debits the total amount of the 
purchase to the cardholder’s account using the service 
DebitCard.  

Purchase Business 
Process (PBP)

ManageCart

Checkout

BookSale

AddItem

UpdateTotal

checkout?
YES

NO

Execute
Payment

Confirm
Payment

Manage Cart Process (MCP)

Checkout Process (CP)

ValidateCard

DebitCard

Execute Payment 
Process (EPP)

External Service Provider
Financial
Service 
Provider

Customer Mobile Device

Mobile Network Manager

External 
Service 
Provider

User

SLASLA

SLASLA

SLASLA

SLASLA

SLASLA

 
Figure 1 – A running example 

 
The provision of PBP to a specific consumer may be 

regulated by a set of different SLAs, established following 
negotiation among the service consumer, the service 
providers, and the mobile network manager (as shown in 
Figure 1). Furthermore, service providers may have internal 
SLAs between the different departments of their 
organizations that are in charge of the provision of different 
components necessary for the provision of a service. 

Starting from the functional description of a service and 
the guarantees expressed in the SLAs between it and its 
clients, we can create monitoring rules that during the 
execution of the service will be checked against events 
generated from it to assess whether the SLA has been 
violated. Examples of such rules are shown in Table 1. 
 

R1 The average response time of the Checkout service as seen at 
the side of PBP should be less than X seconds. 

R2 PBP should not allow purchases for which the total price is 
greater than £100 

R3 EPP should always be able to decrypt a card number provided 
to it by one of its clients 

R4 There should be at least 2 separate servers executing the 
instances of EPP during peak transaction hours (i.e., from 
9.00am to 5.00pm) 

R5 PBP should not issue a checkout request when the customer is 
involved in a phone call or when the remaining battery power 
of the handheld falls below a threshold X 

R6 PBP should issue checkout requests only when the customer 
is in a 3G-covered cell 

Table 1 – Examples of monitoring rules 
 

The rules in SLAs may be of different types depending 
on: (a) the types of information that their runtime check 
requires and (b) the type of the property they express. 

With respect to criterion (a), SLA monitoring rules are 
distinguished into rules that can be checked based on: (i)  
events captured only at the interface of services (i.e., the set 
of I/O messages exchanged between services and their 
environment) such as rule R1, (ii) information about the 
internal state of the service (e.g. rules R2 and R3), or (iii) 



information captured from the execution environment of the 
service (e.g., rule R6).  

With respect to criterion (b), rules can be distinguished 
into rules that express functional properties (e.g., R2, R5, and 
R6) and rules that express QoS properties (e.g., R1, R3, and 
R4). 

Finally, for some rules it is possible to exercise pre-
emptive control (i.e., block some operation or drop an inter-
service message when the rule is violated) whilst in other 
only post-mortem control actions are possible. Rules R1 and 
R6 in Table 1, for example, can trigger pre-emptive control 
actions whilst rule R3 in the table can only by associated 
with post-mortem control actions. 
 
3. Describing Monitoring Capabilities 

We argue that when a monitoring framework requires 
information about the services internal state or execution 
infrastructure, such information can only be made available 
by services through an interface.  

Services expose to the monitoring framework a set of 
monitoring capabilities. It should be noted that, in this 
context, the reference workflow can be considered as a 
service itself, which may expose monitoring capabilities to 
its own monitoring infrastructure. Monitoring capabilities 
can be distinguished in two basic types: Event Emission and 
Internal Monitoring capabilities (see Figure 2). 

 
 

InternalMonitoringCapability

-ruleTemplate

MonitoringResultEventType

EventEmissionCapability

InteractionEventType

MonitoringCapability

InternalEventType

EventType

 
Figure 2 – Monitoring Capabilities 
 

An Event Emission capability refers to the ability of a 
service to provide the monitoring infrastructure with basic 
events that may then be used for checking the violation of 
monitoring rules. An Internal Monitoring capability, on the 
other hand, signifies the ability of a service to monitor 
internally a given rule and notify violations of this rule to the 
monitoring infrastructure. To appreciate this distinction, 
consider the PBP process in Section 2 and a monitoring rule 
requiring the response time of the CP service to be less than 
N time units. CP may be able to notify to the monitoring 
infrastructure the timestamps of the calls and responses of its 
operations, thus enabling the evaluation of its response times 
and, consequently, the check of the monitoring rule. In this 
case, CP would have an event emission capability. 
Alternatively, CP may be able to monitor the response time 
monitoring rule internally (the BPEL process implementing 
CP, for example, could use an internal monitoring 
infrastructure to check the rule) and report cases where the 
rule does not hold to PBP. In this case CP would have an 
internal monitoring capability. 

The events related to monitoring can also be of three 
different types, namely Internal, Interaction or Monitoring 
Result events.  

Internal events provide information about the internal 
state of the execution of a service or the status of the 

infrastructure on which a service is being executed. In their 
simplest form, these may be represented by the values of 
variables involved in the internal execution of a service. In 
our example, the notification of the partial total amount made 
by the MCP workflow, required for monitoring rule R3, 
represents an internal event. When a model of the internal 
execution state of a service (e.g. a state transition machine or 
an algebraic specification [9]), is available, internal events 
may assume a more complex form, representing also states or 
state transitions. Examples of events providing information 
about the execution infrastructure of a service are the CPU or 
memory load of this infrastructure and the number of the 
different instances of a service that are being executed at a 
given time point. In the case of mobile services, such as the 
PBP service in our example, infrastructure events may be 
also provide information about the status of a mobile device. 
They may, for example,  indicate the remaining battery 
power of the device or the network which the device is 
connected to, currently. 

Interaction events provide information concerning service 
operation calls and responses. For atomic services, events are 
captured at the service container level, whereas for composed 
services events can be captured through the instrumentation 
of the workflow execution engine. Instrumentation may 
regard the definition of event captors which intercept and 
analyse SOAP messages exchanged by a service and external 
clients or the extraction of events from the workflow engine 
or service container log files.  

Monitoring result events are events that represent the 
results of the monitoring process, i.e. violations or 
verifications of the satisfaction of a given monitoring rule, 
and can be generated only by services that have Internal 
Monitoring capabilities. 

Events of different types may be transmitted from their 
source to their recipient under a push or pull communication 
policy. In push communication, local services and/or the 
reference workflow of an SBS pushes events proactively to 
the monitor. In pull communication, the monitor should 
periodically retrieve events from the local services or the 
reference workflow. 

 
4. The Architecture of the Monitoring 

Framework 
The general architecture of the Monitoring Framework 

that we propose in this paper is shown in Figure 3. The figure 
shows the design of the Monitoring Framework of the 
reference workflow, i.e.,  the PBP process in our example, 
and what instrumentation is required by this framework in 
the reference workflow and local services execution 
environment.   

Local services may be implemented as a workflow (e.g.,  
the MCP and CP services in our scenario), or they can be 
atomic services (e.g. the BookSale service) associated with 
local monitors and event captors. Event captors provide 
Interaction and Internal events captured at local services  that 
have Event Emission capabilities, whereas local monitors are 
capable of monitor rules internally (Internal Monitoring 
capabilities). Additional capabilities, required for running the 
engagement protocol for establishing the monitoring process, 
are exported by the Capability Manager module. The 



reference workflow and local services expose their 
monitoring capabilities through a Monitoring Interface. The 
purpose of a monitoring interface in our architecture is to 
standardize access to the monitoring capabilities of the 
reference workflow or the local services. 

The proposed monitoring framework does not impose any 
constraints on the local monitors that are associated with 
different services. Thus, it allows the different services to 
have monitors with different implementations and property 
checking capabilities whilst providing a framework for 
deploying them together and making use of their results.  
Similarly, the proposed framework does not impose any 
restriction on the monitoring framework at the reference 
workflow either. The only requirement imposed by the 
framework is that all the monitors and event captors that are 
associated with the services/workflow of an SBS must adhere 
to a common communication interface and be described 
according to the capability model adopted by the framework. 
Thus, different monitors and event captors may be plugged in 
the proposed architecture as long as they are able to perform 
monitoring using events and the monitoring capabilities of 
the workflow and local services of an SBS. 
  

Rule
Generator

Rule feasibility
verification

Event
ReceiverEvent

DB

Deviation
DB

Monitor

Monitoring Framework

Monitoring manager

Service
interface

Monitoring
Interface

Local
MonitorService

Implementation

CPU MEM

Event
Captors

Monitoring
Capabilities

Local
Atomic 
Service

Service
interface

Monitoring
Interface

Workflow
engine

Event
Captors

Monitoring
Capabilities

Reference
Workflow

Service
interface

Monitoring
Interface

Workflow
engine

Event
Captors

Monitoring
Capabilities

Local
Composed

Service

Local
Service

Local
Service

- Event Emission capabilities
- Internal Monitoring
capabilities

Local
Monitor

SBS
Monitoring Broker

Capability 
Manager

Capability 
Manager

Capability 
Manager

 
Figure 3 – The Monitoring Framework 
 

The functionality of each module in the Monitoring 
Framework of the reference workflow is as described below: 
Rule Generator. It automatically generates monitoring rules 
starting from the SLAs defined for the business process and 
its local services. The automated generation of monitoring 
rules from negotiated SLAs is out of scope in this paper. 
Rule verification. This module is in charge of checking 
whether the generated rules can be actually monitored 
according to the monitoring capabilities exported by the 
reference workflow and the component services (rules 
monitorabillity). Some rules generated from the SLA may 
not be monitored because required events are not exposed as 
Event Emission monitoring capabilities by the orchestrated 
services. Moreover, the monitoring of a subset of rules may 
be delegated to local services in case exposed Internal 
Monitoring capabilities match a subset of the rules generated 
from the SLAs.  

Event Receiver. This module communicates with the 
services’ monitoring interfaces during the SBS execution. 
The communication may involve receiving events from 
Event Emission monitoring capabilities or being notified of 
rule violations for Rule Type monitoring capabilities (push 
communication policy). Events and information concerning 
rule violations may also be queried by the Event Receiver on 
monitoring capabilities (pull communication policy). Events 
are stored in the Event DB, whereas rule violations are 
directly stored in the Deviation DB.  
Monitor. This is the monitoring engine, which checks 
monitoring rules (expressed, for instance, as Event Calculus 
formulas in [5, 3]) against events stored in the Event DB. 
When a violation of a monitoring rule is detected, this is 
stored in the Deviation DB. 
Monitoring Broker. The services in the SBS register to this 
registry the end point references of their monitoring 
interfaces. This is required to establish the engagement 
protocol between the Monitoring Framework and the SBS in 
order to start the monitoring process. Details on such an 
engagement protocol are discussed later in Section 5.1. 

 
5. The Monitoring Interface 
 

The paradigm of service oriented computing decouples 
the functional description of the service interface (i.e. 
exposed operations and format of input and output 
messages), from the actual implementation of the service. 
Hence, the service interface represents a contract stating how 
external applications need to interact with a service. This 
approach has also been adopted in our monitoring 
framework, where the monitoring interface provides access 
service monitoring capabilities at local sites in a contract-
based design approach. 

The monitoring interface enriches the functional interface 
of a service by exposing standard monitoring-related 
operations that external entities can invoke in a service of an 
SBS. These standard operations are: 
• void setLocalCapability (MonitoringCapability localCapability) − 

This operation allows a local service to submit a 
Monitoring Capability at the reference workflow 
monitoring interface. A capability reports the End Point 
Reference (EPR) of the monitoring interface at the local 
service; 

• Capability getCapability ( ) − This operation allows the Rule 
Verification module in the Monitoring Framework to 
retrieve a capability at the reference workflow. The 
reference workflow is in fact in charge of assembling a 
global capability including also the capabilities declared 
by local services. Such a global capability is processed 
by the Rule Verification module to assess the  
monitorability of rules. This functionality is implemented 
by the reference workflow Capability Manager; 

• void setMonitorableCapability(Capability monitorableCap) − This 
operation allows an external client, i.e. the Rule 
Verification or the reference workflow, to deploy the list 
of monitorable rules at a given monitoring interface; 

• void setEventReceiverEPR(EPR er_epr) − This operation 
allows an external client to set the EPR of the Event 
Receiver. In the case of the reference workflow, this is 



done by the Event Receiver, whereas the reference 
workflow monitoring interface acts as a client of local 
services’ interfaces to set the EPR of the Event Receiver; 
and 

• Event getEvent(Event e) − This operation allows the Event 
Receiver to pull en event from a local monitoring 
interface, in case the rule verification process has 
established the need for a pull communication policy. As 
per the description of monitoring capabilities (see Section 
2), rule violations and interaction event events are 
defined as subtypes of the generic type Event, and, 
therefore, retrieved by the Event Receiver through this 
operation.  
 

5.1 The Monitoring Engagement Protocol 
The sequence diagram in Figure 4 specifies the 

engagement protocol between the monitoring framework, i.e. 
Rule Verification, Monitor, Event Receiver, and Monitoring 
Broker, and the SBS for establishing the monitoring process. 

Initially, the local services submit their monitoring 
capabilities to the reference workflow interface (message 1), 
in order to enable the Capability Manager of the reference 
workflow to assemble and configure an SBS-wide 
monitoring capability. It should be noted that this part of the 
engagement may be defined recursively. For example, a 
composite local service may first assemble the monitoring 
capabilities of its internal local services and then submit it to 
the reference workflow. Consequently, at the level of the 
workflow the assembled capabilities become visible through 
the capability associated with the particular local service. In 
our earlier scenario, this would be the case with the CP and 
EPP workflows. More specifically, EPP will first register its 
capability at CP monitoring interface. CP will then assemble 
a capability to be registered by calling the PBP (reference 
workflow) monitoring interface. After having assembled the 
global capability, the reference workflow can register the 
EPRs of all involved monitoring interfaces to the Monitoring 
Broker (2). At this stage, the reference workflow is ready to 
be monitored by a generic monitor. 

 
 

12.1 notifyEvent()

Rule
Verification Monitor Event

Receiver
Reference
Workflow

Local 
Service 1

Monitoring Framework SBS

2 registerMonitoringIfEPR()

3 getWorkflowEPR()

Monitoring
Broker

1.1 setMonitorableCapability()Assemble
Capability
Document

4 getCapability()

Verify
Rules

5 deployRuleList()
6 setMonitorableCapability()

Process
Capability 7 setMonitorableCapability()

8 setEventReceiverEPR() 9 setEventReceiverEPR()

10 getLocalServiceEPR()

11 setServicesEPR()

12.2 setEvent()

12.4 getEvent()

12.5 setEvent()

12.3 setEvent()

…

Engagement
protocol

Additional 
Engagement
required for pull
communication 
of events

Monitoring
Process

 
Figure 4 – Engagement Protocol 
 

When the Monitoring Framework needs to monitor rules 
associated with the reference workflow and its related service 
landscape, the Rule Verification module retrieves the EPR of 
the reference workflow monitoring interface from the 
Monitoring Broker (3) and, consequently, the global 
capability from the reference workflow (4). After having 
verified the monitorability of rules, the Rule Verification 
deploys the list of monitorable rules in the Monitor (5) and to 
the reference workflow (6), which, in turn, processes the 
received document to send required capabilities to the local 
services (7). This last phase of the engagement protocol may 
also be recursive, that is, a composed local service may 
process the received document in order to generate required 
capabilities for its local services. When the list of required 
capabilities has been processed by the SBS, the Rule 
Verification sends to the reference workflows the EPR of the 
Event Receiver (8), which forwards this information to local 
services (9).  

At the current stage, the engagement protocol is set up for 
monitoring rules that require only pull communication of 
events by the SBS. An additional engagement phase is 
required when some of the events required for monitoring 
need to be requested by the Event Receiver according to the 
pull communication policy. In this case, the Rule Verification 
retrieves the EPRs of the local services’ monitoring interface 
from which the Event Receiver needs to pull events (10) and 
register such EPRs to the Event Receiver (11). This optional 
last phase ends the engagement phase, allowing the monitor 
process to start (12). In Fig. 5, we represent the case in 
which, during service execution, events are notified 
proactively by the SBS (12.1-3) and the case in which events 
are pulled from the SBS (12.4-5). 

The proposed engagement protocol is built on the 
assumption that the Monitoring Framework should not be 
aware of which local services are involved in the reference 
workflow it is bound to monitor. This is required because 
local services may be provided by different organizations, 
they may change over time, and they can be complex, i.e. 
defined recursively as workflows that may orchestrate other 
local services. With the proposed engagement protocol, the 
Monitoring Framework only calls operation exposed at the 
reference workflow monitoring interface, but, at the same 
time, it can receive events (push communication) from all the 
local services involved in such a workflow. The Monitoring 
Framework requires knowledge of the EPRs of local services 
only in case pull communication events is needed. This is 
accommodated through additional engagement messages. 
 
6. Related Work 
 

The need for establishing clear and machine-readable 
SLAs between service providers and consumers has been 
widely recognised in industry and academia [2, 4, 8]. For 
what concerns runtime monitoring, intrusive monitoring 
relies on the instrumentation of the process or service 
executable code in order to perform monitoring [2]. 
Executable code for monitoring is interleaved with the 
process or service executable code and generated 
automatically starting from annotations made at design time. 
On the one hand, such approaches do not require the design 



and deployment of external components dedicated to 
monitoring, since monitoring is executed directly by the SBS 
execution environment, e.g. the BPEL engine. However, on 
the other hand, with intrusive monitoring it becomes harder 
to achieve separation of concerns between the business and 
monitoring logic of a service. Moreover, monitoring depends 
on the reliability and performance of the BPEL engine, i.e. if 
the BPEL engine fails or becomes unavailable, also the 
monitoring infrastructure fails.  

Non-intrusive monitoring [5, 3, 6, 1, 4] requires the 
establishment of mechanisms for capturing runtime 
information on service execution, e.g. service operation calls 
and responses. In this way, the business logic of the SBS 
process and the monitoring logic remain separate. Moreover, 
non-intrusive monitoring decouples the monitor 
infrastructure reliability from the reliability of the SBS 
execution environment. The monitoring infrastructure may 
indeed detect the failure of the BPEL engine as long as 
events that indicate such a failure can be captured. Non-
intrusive monitoring introduces a computational overhead in 
the SBS execution environment, arising from the cost of 
capturing and communicating events between the SBS 
execution environment and the monitoring infrastructure. 
This may affect the performance of the SBS if  the SBS and 
the monitor are executed on the same infrastructure. A 
different approach to non-intrusive monitoring is proposed in 
[10], where monitoring is delegated to service clients and 
regulated by an incentive mechanism that guarantees truthful 
reporting of monitoring information from the service 
provider side. 
 
7. Conclusions and Future Work 
 

The paper has presented an innovative approach to 
hierarchical and recursive monitoring of complex SBS. In 
particular, the proposed monitoring framework can 
conceptually be adopted with runtime monitors that adopt 
different techniques, as long as these monitor are able to 
process monitoring information in the format required by the 
monitoring interface attached to services in the SBS. 

Future work concerns the implementation of the proposed 
framework. We plan to include in the framework several 
different monitors, implemented according to different 
techniques, in order to demonstrate the flexibility of our 
approach.  

Furthermore, the monitoring rule verification algorithm 
will be designed with a twofold objective. From the 
monitoring framework side, the verification algorithm has the 
objective of detecting which rule can actually be monitored 
according to exposed monitoring capabilities and which 
policies must be satisfied in order to perform monitoring. 
From the service side, the analysis of the rules that can be 
monitored according to the exposed capabilities and policies 
may be exploited to build a metric regarding the 
monitorability of a service in an SBS. Such a metric could 
then be used as a further criterion to enhance common 
approaches to SLA-driven service discovery. 
 
References 
 
1. F. Barbon, P. Traverso, M. Pistore, M. Trainotti, Run-
Time Monitoring of Instances and Classes of Web Service 
Compositions, Proc. IEEE ICWS 2006. 
2. L. Baresi and S. Guinea. Towards Dynamic Monitoring of 
WS-BPEL Processes, Proc. ICSOC 2005. 
3. Mahbub K., Spanoudakis G.: Monitoring WS Agreements: 
An Event Calculus Based Approach, Test and Analysis of 
Service Oriented Systems, (eds) L. Baresi, E. di Nitto, 
Springer Verlag, 2007. 
4. O. Moser, F. Rosenberg, and S. Dustdar, Non-intrusive 
monitoring and service adaptation for WS-BPEL, Proc. 
WWW 2008. 
5. Spanoudakis G., Mahbub K.: Non Intrusive Monitoring of 
Service Based Systems, International Journal of Cooperative 
Information Systems, 15 (3), pp. 325-358, 2006. 
6. W.M.P. Van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, 
and E. Verbeek, Conformance checking of Service Behavior, 
ACM TOIT, 8 (3), May 2008. 
7. Papazoglou, M., Traverso, P., Dustdar, S., and Leymann, 
F. 2007. Service-Oriented Computing: State of the art and 
research challenges. IEEE Computer 11, 38–45. 
8. Keller, A. and Ludwig, H. 2004. The WSLA Framework: 
Specifying and Monitoring Service Level Agreements for 
Web Services. Journal of Network and Systems 
Management, 11(1), 57-81. 
9. D. Bianculli and C. Ghezzi. Monitoring Conversational 
Web Services. Proc. IW-SOSWE’07 Workshop, pp. 15-21. 
10. Jurca, R., Binder, W., and Faltings, B. Reliable QoS 
Monitoring Based on Client Feedback, in WWW2007, pp. 
1003-1011.

 


