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Land-use/cover change dynamics were investigated in a Mediterranean coastal

wetland. Change Vector Analysis (CVA) without and with image texture derived

from the co-occurrence matrix and variogram were evaluated for detecting land-

use/cover change. Three Landsat Thematic Mapper (TM) scenes recorded on July

1985, 1993 and 2005 were used, minimizing change detection error caused by

seasonal differences. Images were geometrically, atmospherically and radiometri-

cally corrected. CVA without and with texture measures were implemented and

assessed using reference images generated by object-based supervised classifica-

tion. These outputs were used for cross-classification to determine the ‘from–to’

change used to compare between techniques. The Landsat TM image bands

together with the variogram yielded the most accurate change detection results,

with Kappa statistics of 0.7619 and 0.7637 for the 1985–1993 and 1993–2005 image

pairs, respectively.

1. Introduction

Land-cover change is an important feature of global environmental change

(Dickinson 1995, Hall et al. 1995). Many of the world’s wetland systems are being

converted to agricultural or urban use and this change can be monitored using
remotely sensed data (Ringrose et al. 1988, Williams 1990, Mackey 1993, Markham

et al. 1993, Jensen et al. 1995, Haack 1996) recorded at different times (Singh 1989).

Each change detection method has its own merits and no method is optimal in all

cases (Singh 1989, Mouat et al. 1993, Deer 1995, Coppin and Bauer 1996, Serpico and

Bruzzone 1999). Examples include band differencing (Weismiller et al. 1977, Wink

and King 2006), transformed band differencing (Nelson 1983), ratioing (Howarth and

Wickware 1981), regression (Singh 1986), principal components analysis (PCA)

(Byrne et al. 1980, Liu et al. 2004) and change vector analysis (CVA) (Malila 1980,
Nackaerts et al. 2005). Support vector machine- (SVM-) based change detection also

has great potential (Nemmour and Chibani 2006) as it uses structural risk minimiza-

tion to solve two-class classification problems (Vapnik 1995).
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CVA is particularly attractive as it can: (1) concurrently process and analyse change

in all multi-spectral input data layers (as opposed to selected layers); (2) avoid

compounding spatial-spectral errors inherent in multi-date classifications; (3) detect

changes both in land cover and the condition of that land cover; and (4) separate the

multidimensional change vector components of change images as it facilitates change
interpretation and labelling (Johnson and Kasischke 1998).

Image texture is an important component of remotely sensed images. Texture refers

to spatial variation in digital image spectral brightness (e.g. radiance, reflectance,

digital number (DN)) and is due to spatial variation in one or a mix of the land

surface, atmosphere or sensor field-of-view. Land-cover classes may have different

textures in remotely sensed images and the similarity and differences between texture

and spectral brightness have great potential for the classification of remotely sensed

images (Lloyd et al. 2004, Berberoğlu et al. 2007).
The remote sensing of land cover can be complex in Mediterranean landscapes

because: (1) the large temporal variance in the spectral properties of major land covers

causes great within-class spectral variability; (2) the multiple spatial frequencies of land-

scape components result in complex scenes; and (3) the similar reflectance properties of

some land covers make spectral separation difficult (e.g. light-toned, often calcareous,

soils can have similar reflectance properties to urban areas and similar near-infrared

reflectance to a crop canopy) (Berberoğlu 1999). As a result, the monitoring of land-cover

change via remote sensing is difficult in Mediterranean regions. To minimize the impact
of these problems, this paper evaluates an approach in which the CVA technique, using

spectral data and texture measures (the grey level co-occurrence matrix (GLCM) and

variogram), was used to estimate land-cover change in a Mediterranean coastal wetland.

2. Methods

2.1 Change vector analysis

CVA is a multivariate change detection technique that processes the full spectral and

temporal dimensionality of image data and produces two outputs: change magnitude

and change direction by geographical location. In addition, the capability to display

some or all of the change information output from CVA relative to a background

image has been found to be useful. CVA accepts as input n bands, transforms, or

spectral features from each scene pair. These bands, therefore, comprise the axes of an

n-dimensional space and the algorithm is robust to both the nature and number of
these bands. Changed pixels should appear at two points in this measurement space,

whereas unchanged pixels should appear at one point (figure 1).

If change has occurred, the relationship between the two points can be character-

ized by a change vector with a measurable magnitude and direction (Johnson and

Kasischke 1998) and this magnitude can be quantified using the Euclidean distance

between the vector end-points. Direction angles can be measured for vectors for each

pixel by trigonometry. Since vectors will be derived in polar coordinates, j is mea-

sured from the y axis towards the x axis.

j ¼ arctan
y2 � y1

x2 � x1

� �
(1)

The many ways to quantify the magnitude and direction of change vary in complex-
ity and thereby ease of implementation (Colwell et al. 1980).

2794 S. Berberoğlu et al.
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2.2 Texture

Image texture can be derived from first-order measures (e.g. standard deviation)

to more complicated measures (e.g. GLCM and variogram) and the utility of any

particular measure for image classification can be evaluated using error matrices.

In this study, texture was calculated on the first principal component of six

wavebands (bands 1–5 and 7 of Landsat Thematic Mapper (TM)) for input to

the CVA.

2.2.1 Grey level co-occurrence matrix. The GLCM measures the configuration of

grey levels (i.e. brightness levels) in an image (Sonka et al. 1999) and has been applied

in many remote sensing applications (Connors et al. 1984, Dreyer 1993, Augusteijn

et al. 1995, Dikshit 1996, Bruzzone et al. 1997).

The GLCM comprises estimates of the transition probabilities (P) from grey

level i to grey level j in two neighbouring pixels where neighbouring pixels are

defined by a transition vector. For an image I (x,y) (i.e. the grey level set), and
transition vector � ¼ (a,b)

P�ði; jÞ ¼ PðIðx; yÞ ¼ i; Iðxþ a; yþ bÞ ¼ jÞ (2)

The estimation is made by counting all occurrences of such transitions in the image

and dividing by the number of pixels in the image. Thus, the GLCM can provide a

statistical description of the relation between neighbouring pixels, which is an advan-

tage over first-order statistics (Sali and Wolfson 1992). These matrices provide at least

14 textural features for the analysis of texture (Haralick et al. 1973). Four of these
(contrast, angular second moment, dissimilarity, entropy) were found to be informa-

tive by Wood (1996) and so are used here.

(1) Contrast: X
i;j

i � jj j2Pði; jÞ (3)

D = √ (X2 – X1)
2 + (Y2 – Y1)

2 

X2:  X band at time 2            
Y2:  Y band at time 2 
X1:  X band at time 1             
Y1:    Y band at time 1  

XX1 X2 

Y

Z2

Change  
vector 

No-change 
pixel 

•Z1
•Z2

Z1: Time 1 
Z2: Time 2 Y1

Y2 
Change 
pixel

Z1

Figure 1. Change vector in two-band radiometric space and the equation for Euclidean
distance, D.

Image texture for land cover change, Mediterranean coastal wetlands 2795

D
ow

nl
oa

de
d 

by
 [

13
8.

40
.6

8.
78

] 
at

 0
1:

11
 1

5 
O

ct
ob

er
 2

01
5 



(2) Angular second moment: X
i;j

P2ði; jÞ (4)

(3) Dissimilarity:

X
i; j;i�j

Pði; jÞ
i � jj j2

(5)

(4) Entropy: X
i;j

Pði; jÞ log Pði; jÞ (6)

where i, j are the grey levels of paired pixels and P(i, j) are the probabilities of co-

occurrence.

Computer code written in FORTRAN 77 was used to compute the GLCM and the
four statistics (above) (hereafter called GLCM) on a per-pixel basis using 7�7 pixel

windows. GLCM was computed for four directions: 0�, 45�, 90� and 135� clockwise

from north and the statistics were derived from the average GLCM for all four

directions.

2.2.2 Variogram. The variogram, the primary spatial descriptor in geostatistics,

has been used to characterize spatial variability in remotely sensed imagery (Curran

1988, Ramsteın and Raffy 1989, Rubin 1990, Miranda and Carr 1994, Curran and

Atkinson 1998, Berberoğlu et al. 2007). The variogram is a measure of the spatial

dependence between pixel values, as it quantifies the dissimilarity of pixel values

separated by a given vector (lag). The variogram is based on the postulate that pixels

located further apart are less similar, or exhibit greater variance in their values, than
pixels located closer together (Isaaks and Srivastava 1989, Goovaerts 1997). For

continuous variables, such as reflectance in a given waveband, the experimental or

sample variogram is computed for the p(h) paired sample points or observations; z(xi),

z(xi þ h). Half the expected squared difference between paired sample points of

attribute z separated by lag h, z(x) and i ¼ 1, 2, . . ., p(h) is calculated. For remotely

sensed imagery the lag, h, is measured in units of one side of a pixel (Berberoğlu et al.

2000).

�̂ðhÞ ¼ 1

2pðhÞ
XpðhÞ
i¼1

fzðxiÞ � zðxi þ hÞg2 (7)

The sample variogram provides a set of discrete estimates of semi-variance at a set

of discrete lags {h ¼ 1, 2, . . ., [h]max} (Atkinson and Aplin 2004).

An algorithm based on the variogram computer code in the geostatistical software

library GSLIB (Deutsch and Journel 1992) was used to estimate both the variogram at
a lag of 1 unit (i.e. pixel) and variance for a moving window of 7�7 pixels.

Mediterranean land-cover units can be small and discontinuous and object mixing

limits the utility of large window sizes, hence this small window size (Berberoğlu et al.

2000). As the variogram at a lag of one pixel and variance are used together they will,

for convenience, be referred to simply as the variogram measure of texture.

2796 S. Berberoğlu et al.
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2.3 Accuracy assessment

Although many methods of accuracy assessment have been discussed in the remote

sensing literature (Kalkhan et al. 1997, Koukoulas and Blackburn 2001), the most

widely used method for assessing the accuracy of a classification is the error (or

confusion) matrix (Foody 2001). As a simple cross-tabulation of the mapped class

label against that observed on the ground or in reference data it provides an obvious

foundation for accuracy assessment. The ‘traditional’ error matrix with Kappa coef-

ficient has been used to assess change detection accuracy in multi-temporal compar-

ison studies (Congalton 1991), where Kappa is the difference between the observed
accuracy and the chance agreement divided by one minus that chance agreement

(Lillesand and Kiefer 1994). In addition to Kappa, a test of significance was computed

for each image pair to determine if an observed value of Kappa differed significantly

from a hypothesized value (i.e. ‘null hypothesis’). When the probability of obtaining a

Kappa value different to that in the null hypothesis is sufficiently low, then the

difference is statistically significant (Goodman 1999).

3. Study area and data

3.1 Study area

The study area is located on the southeastern Mediterranean coast of Turkey and is

called Cukurova Deltas. It comprises three deltas formed by the rivers Seyhan,

Ceyhan and Berdan and covers approximately 100 km by 15 km (figure 2). The
land cover includes sand dunes, sand dune vegetation, agricultural land, salty plain,

forest, wetland vegetation and water.

The land cover of the area is determined by agricultural, urban and tourism activities

and their interaction with the local geology, soil, climate, hydrology and vegetation.

These interactions are typical of this part of the Mediterranean coastal region and, as a

result, this area makes an ideal environment in which to detect changes in

Mediterranean coastal wetlands using remote sensing. These changes in land cover

are complex. For example, agricultural fields reclaimed from coastal sand dunes are
often abandoned after a few years of intensive use and this promotes further destruc-

tion. Extracted sand is laid routinely on agricultural fields as their salinity increases.

Conversion from land to water is a consequence of coastal erosion, which may have

resulted from decreased sediment supply following the construction of dams in the

upper basin of the Seyhan River. Clearance of semi-natural vegetation due to grazing

has resulted in seasonal changes, such as conversion to sand dunes and salty plains.

3.2 Dataset

The dataset comprised three Landsat TM images recorded on 7 July 1985, 27 July 1993

and 21 July 2005. The Mediterannean climate of the area is such that July is always

warm and dry. Other data used for training and accuracy assessment included 1: 5000-
scale State Hydraulics Department (DSI) maps and records of land cover for 1992; 1: 25

000-scale topographic maps; 57 class biotope maps for 1993 (Uzun et al. 1995) and 2005

(Altan et al. 2004, Akin 2007); various fine spatial resolution images, including 10 m

spatial resolution Advanced Land Observing Satellite (ALOS)-Advanced Visible and

Near Infrared Radiometer type 2 (AVNIR-2) imagery recorded in 2006; 4 m spatial

resolution aerial photographs for various dates, including 1985, and field survey records

and agricultural maps, together with expert knowledge.

Image texture for land cover change, Mediterranean coastal wetlands 2797
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4. Results

4.1 Pre-processing

Accurate image registration is essential for accurate change detection (Serra et al.

2003). The images were geometrically corrected and geocoded to the Universal
Transverse Mercator (UTM) coordinate system using a reference image and 17

regularly distributed ground control points (GCPs) selected from the three Landsat

TM images. Resampling used a nearest-neighbour algorithm (figure 3) and the

transformation had root mean square errors (RMSE) of between 0.2 and 0.4 pixels,

indicating that the images were located with an accuracy of less than a pixel.

Spatial and temporal variation in the amount of dust in the atmosphere can mask

real land-cover changes and suggest false land-cover changes. To help mitigate this

problem, atmospheric correction, using an image-based COS(TZ) or COST method
(Chavez 1996), was applied. This method uses the cosine of the solar zenith angle

which, to a first order, is an approximation of atmospheric transmittance. It incorpo-

rates the elements of the dark object subtraction (DOS) method and assumes that any

radiance received at the sensor from a dark object is due to atmospheric path radiance

(Chavez 1996). The pixels containing the smallest brightness values were selected from

the image and their value subtracted from the brightness values across the whole scene

to reduce the influence of scattering (Serpico and Bruzzone 1999).

Figure 2. Location of study area in southern Turkey.
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Following correction for geometry and scattering, the images were radiometrically

normalized to each other. Various techniques have been developed for use in the

Mediterranean region (Serrano et al. 2008) and the technique often used for this task is

simple regression (Du et al. 2002). It is assumed that pixels sampled at time 2 are linearly

related to pixels at the same locations at time 1. Pseudo-Invariant Features (PIFs), such

as airports, rocks, deep-water bodies, permanent forest areas and large construction sites,

were selected on the assumption that their reflectances are constant over time and the
accuracy of this radiometric normalization was assessed using PCA. The procedure was

applied to the three Landsat TM images and the linear correlation coefficients (r) for

PIFs from two images were calculated both to provide a quality control metric to aid in

the selection of PIFs and to assess the results of the normalization. If the linear correla-

tion coefficient was less than 0.9, the area was deemed inappropriate as a PIF.

Figure 3. Flow diagram of the methodology.
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The correlation between the images was greater after atmospheric correction,

indicating that atmospheric effects had been reduced. However, significant radio-

metric differences still existed between the images on each date due to the hetero-

geneous nature of the study area. Following radiometric normalization, r values

increased from 0.74 to 0.96 and from 0.79 to 0.96 for the years between 1985 and

1993 and 1993 and 2005, respectively (figure 4).

4.2 Creation of a reference dataset

The accuracy of change detection results using spectral data alone and together with

image texture derived from the co-occurrence matrix and variogram results is esti-
mated using a test area within the study site. Creation of the reference data involved

object-based supervised classification of 1985, 1993 and 2005 Landsat TM data using

the eCognition software. The land-cover classification maps of the test area were

corrected manually using the dataset described in section 3.2. Field survey records and

detailed biotope maps (Uzun et al. 1995, Altan et al. 2004, Akin 2007) coincided with

image acquisitions in 1993 and 2005. In addition to this dataset, some expert knowl-

edge was also utilized for the 1985 image classification. The object-based classification

Figure 4. (a), (c) Linear regression diagram for PCA of July 1985–1993 and 1993–2005. (b), (d)
The same image pairs following radiometric normalization results using PIFs.
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approach involved the integration of vector data and raster images within a geogra-

phical information system (GIS) and enabled the knowledge-free extraction of image

object primitives at different spatial resolutions, a so-called multi-resolution segmen-

tation. The segmentation operated as a heuristic optimization procedure which mini-
mized the average heterogeneity of image objects at a given spatial resolution for the

whole scene (Bian and Walsh 1992). The objective was to construct a hierarchical net

of image objects, in which fine-scale objects were sub-objects of coarser objects. Due

to the hierarchical structure, the image data were simultaneously represented at

different spatial resolutions. The defined local object-orientated context information

was then used together with other (spectral, form, texture) features of the image

objects for classification. The next stage involved a supervised per-field classification

with the nearest-neighbour algorithm and field boundary data generated as a result of
image segmentation. Each field was assigned to one of seven land-cover classes: sand

dunes, sand dune vegetation, agricultural, salty plain, forest, wetland vegetation and

water. The classification results were corrected manually, using ground data from the

biotope maps (Uzun et al. 1995, Altan et al. 2004), fine spatial resolution images and

field survey records. The change analysis results were masked out from the reference

data for the test area and then cross-tabulated in order to derive the ‘from–to’ change

data needed to calculate ‘class-by-class’ change.

Figure 5. GLCM texture for 1985, 1993 and 2005 Landsat TM images.
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4.3 Change vector analysis

All texture measures were extracted from the first principal component of six wave-

bands (bands 1–5 and 7) of the Landsat TM images (figures 5 and 6) to create texture

waveband(s), principal component transformation being one of the most widely used

methods for compressing multiband data into one image (Benediktsson and
Sveinsson 1997). Spectral and textural information were used separately and in

combination within the CVA. A comparison study by Berberoğlu and Akin (2008)

demonstrated that CVA was the most accurate change detection technique for this

region in comparison with other traditional techniques. For this reason CVA was

used within this study. Class-by-class texture information, including minimum, max-

imum and mean values, is given in tables 1 and 2.

The magnitude of change was computed using the spectral and textural informa-

tion separately and together for: (1) the six bands of the Landsat TM images (spec-
tral), (2) six bands of the Landsat TM images with GLCM output (spectral plus

GLCM), (3) six bands of the Landsat TM images with variogram output (spectral

plus variogram), (4) six bands of Landsat TM images with GLCM and variogram

output together (complete).

Figure 6. Variogram texture for 1985, 1993 and 2005 Landsat TM images.
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A logarithmic transformation was applied to the resulting images to produce an

approximately Gaussian distribution and the new mean and standard deviation

values were used to determine a range of thresholds for change detection. Standard

deviations of, 3s, 2.5s, 2s, 1.8s, 1.6s, 1.5s, 1.4s were evaluated using the various

types of ground data; 1.5s was selected as providing the most realistic breakpoint in

this dataset and the magnitude image reclassified. The value ‘0’ was assigned to no
change areas and ‘1’ for changed areas and, as a result, a new image was created for

each date. These change pixels were then masked out from the object-based classifica-

tion result to prepare a change matrix. This matrix determined ‘from–to’ change and

so enabled comparison of the accuracies achieved as a result of using different inputs

to the CVA.

Evaluation of the two texture measures, GLCM and variogram, was based on

change detection accuracy. Error matrices also provided information on confusion

between classes. Total changed and unchanged pixels were used within the accuracy
assessment. Change detection outputs resulting from different inputs were cross-

Table 2. Minimum, maximum and mean values of variogram for six land-cover classes
and water.

Land cover classes

Variogram matrix

1985 1993 2005

Min Max Mean Min Max Mean Min Max Mean

Sand dunes 0.31 2171 105.2 0.71 2775 161.1 0.64 1771 129.3
Sand dune vegetation 3.41 1859 136.5 2.44 2114 174.5 2.49 1107 109.5
Agricultural 0.53 3994 90.6 0.78 5741 125.6 0.44 2974 107.6
Salty plain 0.31 3806 114.2 1.7 3777 198.6 0.93 1955 153.5
Forest 0.47 2048 120.7 1.12 3143 174.1 0.68 1894 119.0
Wetland vegetation 0.72 2230 251.5 1.84 2587 201.7 0.58 2261 169.2
Water 0.06 2976 88.03 0.17 3309 106.4 0.13 2180 85.01

Table 1. Mean values of GLCM for six land-cover classes and water.

Land-cover
classes

GLCM

1985 1993 2005

a b c d a b c d a b c d

Sand dunes 8.06 0.54 1.59 2.29 11.1 0.50 1.93 2.43 7.31 0.55 1.54 2.25
Sand dune

vegetation
13.6 0.50 2.07 2.38 16.5 0.47 2.42 2.43 11.4 0.51 1.95 2.33

Agricultural 10.4 0.49 1.81 2.52 13.2 0.44 2.14 2.67 9.93 0.49 1.80 2.53
Salty plain 11.5 0.48 1.98 2.50 13.0 0.42 2.28 2.72 9.46 0.48 1.85 2.52
Forest 10.5 0.47 1.92 2.58 11.6 0.43 2.13 2.72 8.03 0.49 1.71 2.57
Wetland

vegetation
8.35 0.62 1.49 1.99 7.56 0.62 1.39 1.96 4.49 0.67 1.07 1.81

Water 10.3 0.71 1.45 1.71 11.6 0.68 1.51 1.72 7.76 0.70 1.30 1.69

a, contrast; b, angular second moment; c, dissimilarity; d, entropy.
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tabulated against ground data for image pairs 1985–1993 and 1993–2005 (figure 7).
Error matrices were used to assess the accuracy achieved both with and without the

addition of texture (table 3).

The largest change detection accuracy of 0.76 (i.e. 76%) was achieved using spectral

data with the variogram texture measure for the 1985–1993 image pair. While the use

Figure 7. CVA outputs for the study area: spectral (a) 1985–1993, (e) 1993–2005; spectral with
GLCM (b) 1985–1993, (f) 1993–2005; spectral with variogram (c) 1985–1993, (g) 1993–2005;
spectral with variogram and GLCM (d) 1985–1993, (h) 1993–2005.
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Table 3. Comparison of change detection accuracy (Kappa) for four
change detection procedures.

Dates Spectral GLCM Variogram Complete

1985–1993 0.5516 0.6681 0.7619 0.7409
1993–2005 0.58 0.6134 0.7637 0.7639

Figure 8. Comparison of CVA results for spectral bands of Landsat TM data with and
without variogram outputs.
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of the GLCM in addition to the variogram did not increase the change detection

accuracy for the 1985–1993 image pair, it did increase change detection accuracy

slightly for the 1993–2005 image pair (figure 8). The GLCM and variogram over-

emphasized the field boundaries. In addition to boundaries, it also revealed useful

information about the texture structures within land-cover classes.
Tests of significance yielded similar results to those of the Kappa analysis alone.

Spectral data and variogram texture measures were correlated for both image pairs

(tables 4 and 5). The significance values were 1.54�10-23, indicating that the correla-

tion is statistically significant.

In addition to the error matrix and significance test, the area of change was

calculated for each class and compared with ground data. The spatial distribution

of the error for each method was mapped (figure 9). It was clear that the similar

reflectance properties of sand dune vegetation and agriculture reduced change detec-
tion accuracy (figure 10).

5. Discussion

For most land covers the spectral separation was subtle but the spatial patterns were

distinct. For example, semi-natural vegetation comprises indistinct boundaries,

whereas agricultural land cover is separated often by linear boundaries. Patches of

semi-natural vegetation are so small that they typically form a distinctive texture (i.e.
high frequency spatial variation) within regions as a whole. This fine spatial variation

was captured by the variogram. As a result, change detection accuracy of sand dune

vegetation and agriculture increased markedly with the addition of information from

the variogram. However, GLCM statistics (except contrast), were not a useful dis-

criminator for any individual classes.

Over 20 years, dramatic land-cover changes have occurred in these coastal wet-

lands. In the study area, approximately 906 ha of sand dunes, 460 ha of sand dune

Table 4. Test of significance results for 1985–1993 image pairs.

Paired samples correlations (1985–1993)
n Correlation Significance

Pair 1 ref & spect 212 083 0.75 0.00
Pair 2 ref & cooc 212 083 0.78 0.00
Pair 3 ref & semi-variogram 212 083 0.85 0.00
Pair 4 ref & complete 212 083 0.85 0.00

Table 5. Test of significance results for 1993–2005 image pairs.

Paired samples correlations (1993–2005)
n Correlation Significance

Pair 1 ref & spect 212 084 0.78 0.00
Pair 2 ref & cooc 212 084 0.81 0.00
Pair 3 ref & semi 212 084 0.88 0.00
Pair 4 ref & complete 212 084 0.88 0.00

Sig* 1.54�10-23.
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Masked-out agriculture 
No change 
Inaccurate (change pixels were not detected)
Accurate  

(a) 

(b) 

(c) 

(d) 

(e) 

(f)

(g) 

(h) 

Figure 9. Spatial distribution of error; spectral (a) 1985–1993, (e) 1993–2005; spectral with
GLCM (b) 1985–1993, (f) 1993–2005; spectral with variogram (c) 1985–1993, (g) 1993–2005;
spectral with GLCM and variogram (d) 1985–1993, (h) 1993–2005.
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Figure 11. Change ratios for 1985–1993 and 1993–2005 for: (1) sand dunes, (2) sand dune
vegetation, (3) agriculture, (4) salty plain, (5) forest, (6) wetland vegetation and (7) water.
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vegetation and 246 ha of wetland vegetation were converted primarily to agriculture

and the total coverage of the seven land-cover classes decreased by 7061 ha (figure 11).

Despite such a loss, these coastal dunes, with a length of over 100 km, cover an area of

9591 ha, which is the largest area of coastal dunes in Europe. Similar large land-cover

changes have taken place in other parts of the Mediterranean Basin and have been
detected using multi-temporal and multi-spectral satellite sensor data (Türker and

San 2003, Zoran and Anderson 2006) and aerial photographs (Kadmon and Kremer

1999, D’Angelo et al. 2000). The majority of these studies utilized traditional techni-

ques, such as image differencing and post-classification of spectral data using the

standard band settings. Although this region has much spatial variability, the use of

spatial information to discriminate between land covers in both space and time has

not been utilized to date.

Both measures of texture (GLCM and variogram) provided information that
increased land-cover change detection accuracy over that for spectral data alone

and this was true for both images pairs. The GLCM was used satisfactorily with

spectral data to detect changes. However, incorporating the variogram resulted in the

most accurate land-cover change detection with CVA. The addition of variogram

texture information to the six bands of Landsat TM data increased by 21% and 18%

the change detection accuracy compared with that achieved by spectral data alone.

Changes within small and patchy land covers were detected accurately using just

spectral data and the variogram. In particular, changes from sand dune vegetation
and wetland vegetation to agriculture were detected in both image pairs. The land

cover with a large area and continuous coverage, such as water and salty plains, was

detected using all combinations (spectral, variogram and GLCM) with reasonable

accuracy (table 6).

As a result of class mixing, spectral data and CVA alone resulted in low change

detection accuracies for small land-cover parcels. The two texture measures empha-

sized class boundaries where the variance was large. Therefore, using the texture

measures of the GLCM and variogram together did not result in any further increase
in accuracy. The GLCM when used with spectral data for the large land-cover parcels

(e.g. agricultural, water) also provided information on within-class variation.

However, GLCM texture measures did not result in a significant increase in overall

accuracy with either of the image pairs. This indicated that the variogram may

provide useful additional information in a CVA for change detection in complex

environments like the Mediterranean.

6. Conclusions

This paper aimed to assess the effectiveness of incorporating GLCM and variogram

texture measures into CVA for change detection of a Mediterranean coastal wetland

using multi-temporal remotely sensed data. Spectral and spatial information (in the

form of various GLCM and variogram measures) were integrated with the aim of

increasing the accuracy with which Landsat TM data and CVA could be used to

detect Mediterranean coastal land-cover change. The textural information included

the GLCM and variogram. The variogram texture measure (variogram at a lag of one
pixel and variance), enabled more accurate change detection than using spectral data

alone. Each texture measure increased the change detection accuracy for both image

pairs. However, using the texture measures of the GLCM and variogram together did

not result in further increases in accuracy. It is difficult to define a suitable texture
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measure to incorporate into the remote sensing of Mediterranean land-cover change.

However, the following findings are important and provide some guidance for future

research.

l Mediterranean land cover has considerable temporal and spatial variability, but

relatively little spectral variability. Texture, as a measure of spatial variation,

provided valuable information that enabled types of change to be quantified.

GLCM and variogram texture measures resulted in an increase in accuracy for

all classes over the use of Landsat TM spectral data alone.

l The accuracy of change detection using the GLCM and variogram depends on
the size of objects in the image in relation to the spatial resolution of the imagery.

Since the dominant land covers in an image are expected to occur in large parcels

(e.g. fields), it may be anticipated that changes in these land covers can be

detected most easily using texture information (i.e. GLCM and variogram).

l The variogram measure of texture provided greater change detection accuracy

than the GLCM texture measures (angular second moment, contrast, dissim-

ilarity and entropy) when used in combination with spectral data as an input to

CVA.
l An advantage of the variogram over other texture measures is the capability to

compute texture on a lag-by-lag basis. Only one lag could be analysed in this

study due to the small and diverse land-cover objects, whereas generally the

number of lags is limited only by the dimensions of the image. This was the main

limitation to the use of the variogram for Landsat TM data in the Mediterranean

environment. This limitation could be overcome using remotely sensed data with

a finer spatial resolution.

l CVA was an effective approach as it can describe (1) change magnitude and (2)
change direction. However, three disadvantages are the difficulty in identifying

the change direction, the requirement for radiometric normalization and thresh-

old selection.

This study reported the effectiveness and accuracy of using spectral data and

texture (GLCM and variogram) for the remote sensing of Mediterranean land-

cover change. This study has shown that the variogram is a promising tool and can

be utilized for change detection. This novel approach can be applied to other delta and

estuarine ecosystems in the Mediterranean where land-cover changes are rapid and

pervasive.
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