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Abstract—To assess the quality of hospital care, national
databases of standard medical procedures are common. A widely
known example are national databases of births. If unique
personal identification numbers are available (as in Scandinavian
countries), the construction of such databases is trivial from a
computational point of view. However, due to privacy legislation,
such identifiers are not available in all countries. Given such
constraints, the construction of a national perinatal database has
to rely on other patient identifiers, such as names and dates of
birth. These kind of identifiers are prone to errors. Furthermore,
some jurisdictions require the encryption of personal identifiers.
The resulting problem is therefore an example of Privacy Pre-
serving Record Linkage (PPRL). This contribution describes the
design considerations for a national perinatal database using
data of about 600,000 births in about 1,000 hospitals. Based on
simulations, recommendations for parameter settings of Bloom
filter based PPRL are given for this real world application.

I. BACKGROUND

For the medical assessment of German hospitals, a federal
institution (GBA)1 is obliged by law to link administrative
records of more than 600,000 births yearly. The records are
scattered across about 1,000 independent perinatal and neona-
tal units. The linked data is used for monitoring hospital per-
formance and epidemiological analyses like spatial prevalence
of very low birth weights. Due to privacy regulations, patient
databases of hospitals are not linked by an electronic network.
The hospitals use different electronic medical record systems,
but have to use the same data exchange format. All details of
the data exchange are part of a mandatory regulation. Because
the German health insurance system has no common unique
personal identifier number, other patient identifiers have to be
used. Since the current regulations do not allow names in any
form, encrypted or not, current linkage is based on different
combinations of health insurance numbers, birth weight and
hospital identifiers. Given the described constraints, only about
80% of the records can be linked [1].

From a statistical point of view, non-linked records might
cause a missing data problem [2]. If the fact, that a true link
is missed, depends on variables of interest, this is referred
to as differential linkage error [3], [4]. This might result in
biased estimates of causal effects and population parameters
[5], [6]. Concerning our field of application, evidence of bias
caused by differences between linked and non-linked maternal
data sets has been published [7], [8]. The easiest way to

1For details, see www.english.g-ba.de.

reduce differential linkage bias is improving the linkage rate.
Therefore, using additional identifiers has been proposed to
the regulatory authority [9]. As previous research has shown
[10], using first and last names in combination with date of
birth would give acceptable results. However, in many legal
frameworks, names have to be encrypted before linkage across
different agencies is allowed. Since identifiers as names are
prone to errors [11], [12], standard cryptographic methods such
as keyed HMACs (Hash Message Authentication Code [13],
for example, SHA-256 or MD5) would result in missed links.
This problem has created the field of privacy preserving record
linkage (PPRL) [14].

For real-world medical applications, the most widely used
methods today are variants of statistical linkage keys based on
phonetic codes, such as Soundex or NYSIIS [15]. After the
phonetic encoding, the resulting codes are usually combined
with additional identifiers, such as date of birth and sex, which
are finally encrypted with keyed HMACs. Examples for these
kind of linkage keys are given by [16] and [17]. Statistical
linkage keys usually produce acceptable results and seem to
be safe against most cryptographic attacks.2 However, previous
research on the performance of statistical linkage keys [18]
showed very few false positive links, but also high levels of
missed links (larger number of false negative links).

Therefore, the search for better PPRL solutions in real-
world settings is a very active field of research. During the
last decade, an impressive list of PPRL methods have been
suggested [14]. However, very few of these techniques are
suitable for large scale linkage operations under the restrictions
described above [19].

One such method using Bloom filters [20] for error-tolerant
privacy preserving record linkage was proposed by [21]. This
method has been used internationally in several different
settings [22], [23], [24], [25] and is discussed extensively
in recent publications concerning privacy preserving record
linkage [26], [27], [28] [29], [30]. In this paper, we will
describe the design of a national perinatal database using
Bloom filters for PPRL.

2We are not aware of any published attack against encrypted statistical
linkage keys. However, since these codes result in unique bit patterns given
a combination of names, date of birth and sex all statistical linkage keys are
vulnerable for the most frequent names. An exploration of this problem is
subject of ongoing research by our group.



A. Outline of the paper

In our application setting, all national record linkage op-
erations in health research are based on the linkage protocol
used for the cancer registries [31], [32]. Because local legal
authorities consider this protocol as gold standard, as a first
step the current protocol will be described before we suggest
our modifications and extensions. The next section reports on
a simulation using records with error types and error rates
empirically observed in the intended field of application. The
suggested procedure is tested against several well-established
alternative procedures. Finally, we will discuss aspects of re-
identification risks and problems in real-world implementation
of the procedure.

II. METHODS

A. The current German standard for linking registries

Information is classified into three groups:

1) sensitive identifiers (including first and last name,
date of birth, date of diagnosis and date of death),

2) epidemiological data (sex, month and year of birth,
residential code, diagnosis),

3) linkage identifiers (a set of 22 fields of standardized3

identifiers and phonetically encoded identifiers).

Sensitive identifiers are encrypted by RSA [33], followed by
IDEA encryption [34]. Epidemiological data is stored unen-
crypted. Linkage identifiers are encrypted by MD5 followed by
IDEA encryption. The IDEA encryption is removed during the
linkage process. The details are described by [31], [32]. Due
to the federal organisation of registries, the number of records
in a registry is noticeable below the number of records in a
national registry. Cases are usually not linked across different
regional registries, therefore the number of cases within a block
(for example: a given day of birth) is small. To the best of our
knowledge, the resulting record linkage process has never been
evaluated independently using real data with known links.

B. The new proposal

The procedure described above was designed 20 years ago.
The only protection against errors is due to the phonetic encod-
ing (by a Soundex variant) of some linkage identifiers. For the
reasons given above, there is a demand for a revised procedure
for a number of different medical registries (National Death
Index, Neonatal Registry). However, in the case of the neonatal
registry considered here, neither names of children nor mothers
are currently available for linkage. Due to this lack of infor-
mation and the considerable amount of missing data in other
identifiers (see table I), currently about 20% of records can not
be linked, mostly due to the lack of discriminating information
for very similar records [1]. Therefore, the inclusion of first
names and surnames of mothers has been suggested [9]. Due
to the local privacy legislation, names have to be encrypted.
The form of the encryption is not regulated by law. In practice,
either phonetic codes or Bloom filter encodings might be used
for the encryption. For efficient blocking and linkage, keyed
HMACs for all numerical identifiers (hospital ID, state, sex,

3The standardization includes reformatting values, removal of special char-
acters, within-word punctuation and professional titles.

multifetal sequence number, date of birth and hour of birth)
might be considered. To summarize the proposal:

1) inclusion of first and last name of the mother,
2) encrypted phonetic codes and/or Bloom filter encod-

ing of names,
3) keyed HMACs for numerical identifiers.

A simulation study was conducted to clarify if the inclusion
of additional identifiers would resolve the problem of insuf-
ficient discriminating power between similar records and if
Bloom filters or phonetic codes would yield better results.

C. Simulation study

1) Databases: The perinatal registry is the result of the
linkage of a neonatal database with about 100,000 records and
a perinatal database with about 600,000 records. Each database
is the result of independent data deliveries due to separate
mandatory requirements. Both databases may contain different
hospital episodes of the same child, therefore there may be
valid multiple records for identical patients. We simulated two
corresponding data files of the mentioned size. The perinatal
data contains about 95% of the records included in the neonatal
data. To account for this reduced overlap, 5% of the neona-
tal records were replaced with additional simulated records.
To ensure the same real-world marginal distributions for all
identifiers of each data set, we used marginal distributions of
the real-world data set provided on request by the institute
commissioned for the national linkage of this data.4

2) Simulated identifiers: The number of births per hospital
was simulated according to the empirical distribution, resulting
in a hospital ID per simulated record. The federal state of
residence of the mother was simulated using the marginal
distribution of residents according to Official Statistics. Date
(day, month, year) and time (hour and minute) of birth, sex
and multifetal sequence number5 of the child were generated
according to the empirical distribution in the neonatal database.
Last names were sampled proportional to their counts in the
national social security database. We used the same adminis-
trative database for the first names. Sampling of first names
was stratified by maternal year of birth to reflect changing
cohort preferences in name selection. With this exception, all
other identifiers were simulated independently.

3) Missing identifiers: Missing identifiers were generated
according to the observed distribution (see table I). Since the
documentation of the date of birth is currently not legally
required in all states, it is missing in about 23% of the cases.
Because the neonatal database does currently not contain any
names, we used the proportions of missing names supplied
by the data generation module of Febrl [35]6. The local legal
framework on neonatal data is currently under revision. One
of the most likely results of this revision will be a reduction
in the amount of missing identifers. Therefore, additional data
sets with reduced proportions (50% of the currently observed
proportion) of missing identifiers were created. To study the

4https://www.aqua-institut.de/en/home/
5The multifetal sequence number is always one for singleton births, while

multifetal gestation usually requires a numbering according to sequence of
births.

6Febrl can be used to generate and link data and is freely available from
http://sourceforge.net/projects/febrl/.



TABLE I. PROPORTION OF SIMULATED MISSING IDENTIFIERS

Identifier Missing (%)

First/Last Names (Mother) 2
Hospital ID 0
Multifetal gestation 0
Multifetal sequence number 0
Sex of the child 0
Date of birth 23.41
Time (Hour/Minute) of birth 0.43
Birth weight 1.3·10−5

effects of varying proportions of missing identifiers, additional
data sets assuming an increase (200% of the currently observed
proportions) were generated.

4) Errors in identifiers: Different types of errors (for
deletions, insertions and character swapping) were applied to
simulated first as well as last names. Error probabilities were
taken from Febrl. Error levels were set in 5% steps between
0% to 25%.

D. PPRL methods

To test the newly proposed protocol, different PPRL meth-
ods were used.

1) Anonymous Linking Codes: Previous work [18] sug-
gested at least two widely used and suitable encryption meth-
ods for privacy preserving record linkage in the given context:
The Swiss Anonymous Linking Code (Swiss ALC [16]) and the
Encrypted Statistical Linkage Key (Australian ALC [17]). The
Swiss ALC concatenates the Soundex codes of first and last
name, sex and date of birth. The resulting string is encrypted
with MD5. The Australian ALC uses a string consisting of the
second and third character of the first name and the second,
third and fifth character of the last name, sex and date of birth.
Again, the resulting string is encrypted with MD5.

2) Bloom filters combined with exact encodings of numer-
ical identifiers: The newly suggested protocol (denoted as
GBA) uses single field Bloom filter encryptions for the name
fields, as described in [21]. First and last names were each
mapped to separate Bloom filters with a length of l = 1000 bits
using k = 10 (GBA k=10), k = 20 (GBA k=20) and k = 30
(GBA k=30) hash functions for mapping bigrams to Bloom
filters. Testing for an optimal number of hash functions is
recommended, since the linkage quality is directly affected by
this choice. Automatic choice of optimal parameters is subject
of ongoing research.

All other identifiers (hospital ID, state, sex, multifetal
sequence number, date of birth, hour of birth) were initially
coded numerically and then encrypted with a keyed MD5 hash
function.7

3) Cryptographic Long-term Keys: The final type of en-
cryption methods are combinations of separate Bloom filters
resulting in a single bit array called Cryptographic Long-term

7Although MD5 was used in the simulations, replacing MD5 with a different
HMAC will have no impact on precision and recall. Different hash functions
will generate different bit patterns, but the distribution of hash values should
be uniform regardless which hash function is used. Since the linkage depends
only on the overall number of common bits, not on local similarities or pattern
similarities, the choice of the HMAC is uncritical with regard to precision and
recall.

Keys (CLKs [36]). For this simulation, CLKs were built using
the first and last name, sex, multifetal sequence number, date
of birth and hour of birth.The number of hash functions was
k = 10 (CLK k=10), k = 20 (CLK k=20) and k = 30 (CLK
k=30) for each identifier. For names, bigrams were used for
hashing, for all other identifiers, unigrams were used. Finally,
another CLK version (CLK + birthweight) additionally using
the unigrams of birth weight (with k = 10) was tested.

E. Linkage methods

The two ALC variants were linked using exact matching,
as MD5-encoded strings are ill-suited for probabilistic linkage
techniques. All GBA variants were matched using probabilistic
linking, blocked with a combination of the MD5 codes of a
hospital ID, state, sex, multifetal sequence number, date of
birth and hour of birth.

The CLK variants were linked using Multibit trees [37].
Initially developed in chemoinformatics, they have been pro-
posed for PPRL using bit vectors by [38] for the classification
of matches and non-matches using a given similarity threshold.
Simulations have shown that Multibit Trees are among the
fastest methods for finding nearest neighbours in data sets
consisting of millions of bit vectors [39]. Multibit trees are
built by finding a bit position in a bit array where approx-
imately half of the records have a value set to one for this
bit position and the other half of the records are set to zero
for this exact bit position. These halved records form leaves,
which are then split again. This process is repeated (here: 8
times) for all leaves. The resulting data structure is the Multibit
tree. This tree is queried by a second set of bit arrays. For each
query array, a minimum and maximum bound for a similarity
coefficient can now be calculated for each leaf in the Multibit
tree. This reduces the amount of pairs considered for similarity
calculations dramatically. As suggested by [37], similarity is
assessed by the Tanimoto coefficient T [40]:

T (A,B) =
Σi(Ai ∧Bi)

Σi(Ai ∨Bi)
(1)

T is 1 for exact matching bit arrays and 0 for bit arrays
where every bit position differs. For the use of Multibit
trees in PPRL a threshold for T has to be selected. This
threshold controls the number of candidate pairs of a leaf
to be considered for similarity calculation. A lower threshold
considers less similar pairs. Therefore, a threshold of 1.0 will
only consider exact matches, while lower thresholds allow
for more errors. Lower thresholds will obviously result in a
higher number of false positive classifications and increase the
computing time. For the simulations, Tanimoto thresholds were
varied between 0.8 and 1.0 in steps of 0.05.

Simulations were done using R 3.2.0 [41] on a machine
with 64 GB RAM, a six-core Intel i7-4930K CPU with 3.4
GHz, running Ubuntu 12.04.

III. ANALYSIS AND RESULTS

To assess linkage quality, the standard record linkage
criteria (precision, recall and F-score) were used.



A. Linkage quality measures

Precision is defined as the number of correctly classified
pairs (true positive classifications tp) divided by the number
of all classified pairs (tp and false positives fp):

Precision =
tp

tp + fp
(2)

Recall is defined as the number of true positive matches
divided by the number of factual pairs, including pairs falsely
classified as non-matches (false negatives fn) by the linkage
algorithm:

Recall =
tp

tp + fn
(3)

Finally, F-score is defined as harmonic mean of recall and
precision:

F-score =
2 · Recall · Precision
Recall + Precision

(4)

B. Results

Figure 1 shows the performance of all procedures with
regard to F-scores. Since the Tanimoto threshold is only
relevant for the CLK variants, all other variants are shown
as constants. The GBA approach proposed in this paper is
superior to all alternative approaches tested here. GBA variants
seem to be resilient against errors in identifiers and missing
identifiers, whereas most other methods perform poorly under
these circumstances.

Precision for each linkage procedure considered here is
shown in figure 2. Obviously, nearly all methods have a very
high precision, whereas the CLKs seem to be sensitive to errors
and Tanimoto thresholds below 0.95. A high precision implies
a low false positive rate.8

The recall shown in figure 2 is very low for the ALC
methods, especially in a setting with many errors and miss-
ing identifiers. Regarding recall, CLKs perform increasingly
better with lower Tanimoto thresholds, since more pairs are
considered for the similarity calculation. However, even the
best CLK variants are consistently outperformed by the GBA
approach suggested here. The recall is close or equal to 1.0
for all scenarios except for the scenario with high amounts of
missing identifiers. Under these conditions, GBA drops slightly
below 1.0, but still outperforms all other procedures by far.

8The false positive rate is the ratio of false positives to the sum of true
negatives and false positives (FPrate = fp

fp+tn
). The false positive rate is

zero for all scenarios and methods except for the CLKs. Here, false positive
rates for a CLK with k = 20 hash functions under the assumption of 10%
errors in the files using a Tanimoto threshold of 0.9 gives a false positive rate
ranging from 0.065 (missings 50% of observed) to 0.342 (missings 200% of
observed). Note that the false positive rate depends on the Tanimoto threshold
used and rises sharply with an increase in missing values. If the application
demands very low false positive rates, the set of personal identifiers used for
building CLKs should be extended. This effect can be seen in figure 2, where
the precision of the CLK plus birth weight is always higher than all other
CLKs.

IV. DISCUSSION

Using F-scores as criterion, the simulations reported above
demonstrated the superior performance of Bloom filter variants
compared to anonymous linkage keys in nearly all simulated
scenarios. Exceptions are conditions with a doubled proportion
of missing identifiers as currently observed and – at the same
time – higher error rates in names. Using a low similarity
threshold of 0.85 for the Multibit tree linkage as suggested by
[19], even in this (unlikely) worst case scenario the best CLK
variant is still slightly superior to the Australian Statistical
Linkage Key (AUS ALC). In general, variants of CLKs with
either k = 20 or k = 10 hash functions show the best
performance.

A. Security of Bloom filter-based approaches

Two partially successful attacks on Bloom filters using a
Constraint Satisfaction Solver have been reported by [42], [43].
In the more recent study, the authors used combined Bloom
filters (a CLK variant). After reducing the problem to the most
common 20 surnames and using considerable computing time,
they reported the identification of 4 of the 20 most frequent
names. Therefore, they concluded that the combination of
independent Bloom filters seem to withstand cryptographic
attacks.

However, their attack was purely computational and not
based on the specific properties of the encryption method. In
contrast to this, an analytical cryptanalysis has been reported
by [44]. The initial construction of Bloom filters was based
on the use of only two independent HMACs [45]. This double
hashing scheme reduces the number of possible encodings.
Using this idea, [44] demonstrated a manual attack on double
hashing-based Bloom filters resulting in a near complete re-
identification of all records. This kind of attack has been used
by [46] for attacking double hashing based combined Bloom
filter (CLKs).

Because of these unsatisfactory cryptographic properties of
linear combinations of HMACS [44], the use of k randomly
selected values (for example, by using seeded random number
streams) for each n-gram is currently recommended practice
[44]. This modification makes the described analytical attack
nearly impossible. By the use of randomly selected hash values
in combined Bloom filters (CLKs) in conjunction with addi-
tional hardenings like salting [19], all cryptographic attacks
on Bloom filters known so far will fail. Consequentially, no
successful attack on hardened Bloom filters has been reported
up to now.

For the application considered here, the separate Bloom
filters should be salted with blocking variables. Hereby, the
number of records with common encodings can be reduced
below the number necessary for a frequency attack.9

9Using this strategy, the re-identification risk by any frequency based attack
will be greatly reduced since only few cases share the same encoding. Using
Date of Birth (365) and Sex (2) will yield about 600.000/(365 ∗ 2) ≈ 822
births using the same encoding. This set has to be used for estimating the
frequency of the most frequent bigrams. Due to the low number of cases
available, the resulting estimated frequencies will have large large standard
errors and re-identification will be more difficult.
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relevant for CLKs using Multibit trees, all other encryption methods are shown as constants. Note that the differences between the GBA variants are too small
to be visible.

B. Implementation in the real-world

Implementation of the suggested procedure in about 1,000
hospitals using about 30 different hospital information systems
will need some additional efforts. For example, organisational
safeguards regarding the key management are required [9].
To prevent building a database of all newborn over time, the
keys for generating the encryptions have to be changed yearly.
However, because the hospitals are not linked electronically,
data delivery will be delayed, sometimes for months. To link
all records of two consecutive years despite these delays will
require the separate encoding of each record both by the
current key and the key of the previous year.

V. CONCLUSION

The findings reported here demonstrate that it is possible
to achieve good results with privacy preserving record linkage
even under very strict privacy jurisdictions. The proposed in-
clusion of additional personal identifiers to the set of character-
istics to be encrypted will yield sufficient discriminating power
between very similar cases, resulting in only a small number
of false positive links. A further decrease of false positive
links can be achieved by including additional identifiers. In the
context of neonatal registries, obvious additional identifiers are

birth weight and place of birth of the mother. If organisational
and legal constraints permit the use of additional identifiers,
their inclusion will be useful. Using the recommended param-
eters for the encoding procedure and similarity thresholds will
find most true links despite missing or misspelled names.

However, the simulations have shown that the performance
of Bloom filter-based PPRL strongly depends on carefully
chosen parameters. If different identifiers or different distri-
butions of identifiers have to be used, fine tuning parameters
(especially for the CLKs) might be necessary. For example,
a population with a different mixture of ethnic names will
certainly need different pre-processing routines and different
parameter choices. To facilitate further applications, we are
investigating the automatic choice of optimal parameters for
Bloom filter-based PPRL.
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E Não Beneficiárias Do Programa Bolsa Famı́lia Da Região Nordeste
(Brasil): Pareamento Entre Cadúnico E Sinasc,” in Saúde Brasil 2010:
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