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Abstract

We demonstrate that not all generalized Bogoliubov transformations lead to D-pseudo-

bosons and prove that a correspondence between the two can only be achieved with

the imposition of specific constraints on the parameters defining the transformation. For

certain values of the parameters we find that the norms of the vectors in sets of eigenvectors

of two related apparently non self-adjoint number-like operators possess different types of

asymptotic behavior. We use this result to deduce further that they constitute bases for

a Hilbert space, albeit neither of them can form a Riesz base. When the constraints are

relaxed they cease to be Hilbert space bases, but remain D-quasi bases.
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versità di Palermo, I-90128 Palermo, and INFN, Università di di Torino, ITALY
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1 Introduction

In this manuscript we compare two concepts which have facilitated the study on non-Hermitian

quantum systems in recent years, generalized Bogoliubov transformations (GBTs) and D-

pseudo-bosons (D-PBs). Both ideas can be employed to address different aspects of the key

questions in the study of non-Hermitian quantum systems: Under which circumstances are the

spectra of non-Hermitian Hamiltonians real and what kind of metric needs to be employed to

render the system physically meaningful? These issues have been the subject of investigations

since the seminal papers [1, 2] on this topic and aspects of them have been answered for many

different types of models. The underlying principle of both ideas make use of simple deforma-

tions of the canonical commutation relation [c, c†] = 11. This principle restricts, of course, our

analysis to a subset of the class of PT -quantum mechanics which have been studied, in recent

years, by several authors, see [3, 4] and references therein. However, this subset is rather large

and contains several well known systems, [5], like the Swanson model, just to cite one.

Bogoliubov transformations are linear transformations mapping the operators c and c† to

a new canonical pair a and b. They were originally introduced to aid the study of pairing

interaction in superconductivity [6] and have been generalized thereafter in various ways, e.g.

[7]. When the operators in the new pair are not assumed to be mutually adjoint, i.e. b† 6= a,

these maps are usually referred to as generalized Bogoliubov transformations. In the context of

the study of non-Hermitian quantum systems they were employed to establish the reality of the

spectra of certain non-Hermitian Hamiltonians and to identify well-defined metric operators

which map the system to isospectral Hermitian counterparts [8, 9].

Domain issues are often left unaddressed in these constructions. They also constitute in-

teresting mathematical problems in their own right and spectral properties of non self-adjoint

operators can be quite intricate, see for example [10, 11] or the more recent volume [5]. One

of the mathematical difficulties of non self-adjoint Hamiltonians is related to the eigenvectors

ϕn of H and Ψn of H† for n ≥ 0, if they exist. One can not simply assume that the sets of

these eigenvectors constitute biorthogonal bases of the Hilbert space H on which the models

are defined. One needs to verify this property in detail and indeed in various models this

assumption has turned out to be incorrect, as discussed in [12]-[15], for instance. In order to

understand these aspects in depth a large series of investigations has been carried out in recent

years [16, 17, 18, 14, 15] on so-called pseudo-bosonic systems [19]. The obtained results were

recently reviewed and extended in [5]. In all the explicit examples studied so far, the eigen-

vectors of H = ba and H† = a†b† are biorthogonal, of course, but they are not bases for H.
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However, see below, they still produce a weaker version of the closure relation on some dense

subspace G of H and are therefore coined G-quasi bases.
At first sight GBTs and PBs appear to be quite similar and the natural question arises under

which conditions they might be the same or more specifically: When do GBTs correspond to

PBs? We will demonstrate here that the latter only happens under suitable conditions. Thus,

in general these two notions are not equivalent. Interestingly, GBTs allow us to find examples of

number-like pseudo-bosonic operators whose eigenstates form biorthogonal bases when certain

requirements are fulfilled and examples in which this is not true, even if they still provide

useful weaker versions of the resolution of the identity. A specific version of the Swanson model

discussed in [18] is an example based on GBT which admits no bases.

Our manuscript is organized as follows: In section 2 we recall some definitions and general

features on GBTs and PBs relevant for our investigations. In section 3 we analyze in detail under

which conditions GBT give rise to PBs. By imposing suitable constraints on the parameters

defining the GBT, we show that the eigenstates of the operators N = ba and N † are indeed

biorthogonal, with simple eigenvalues, but they are bases only if these specific constraints

are satisfied. The details are contained in section 3.1. In section 3.2 we show that, if these

constraints are not satisfied, these eigenstates are G-quasi bases but not bases. We state our

conclusions and a further outlook into open problems in section 4.

2 Generalities and definitions

To establish our conventions let us first recall some well-known facts and definitions about

GBTs and PBs.

2.1 Generalized Bogoliubov transformations

We consider two operators c and c† satisfying the canonical commutation relation [c, c†] = 11.

Taking for instance c = 1√
2

(

x+ d
dx

)

and c† = 1√
2

(

x− d
dx

)

is a well-known possible realization

of these operators in the Hilbert space H = L2(R) of the square integrable functions on R. We

use here the convention ~ = 1 when comparing to a quantum mechanical setting.

GBTs [8, 9] are linear maps defined as

(

a

b

)

=

(

β −δ

−α γ

)(

c

c†

)

, (1)
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or more explicitly, the new operators are a = βc− δc† and b = −αc+ γc†. Here α, β, γ, δ ∈ C

and to ensure that [a, b] = 11 we require det(T ) = βγ − αδ = 1, where T is the two-by-two

matrix in the defining relation for the transformation (1). In addition, we restrict here to the

choices of α, β, γ and δ such that b 6= a†. Since det(T ) = 1 6= 0, the inverse GBT always exists

T−1 =

(

γ δ

α β

)

. (2)

PBs are very similar objects as the operators a and b produced by the GBT. In fact, they

were formally (i.e., with no care on the domains of the unbounded operators involved in their

framework, as well as on other mathematical subtleties) introduced in [19], and then in a

more rigorous way in [16], by taking the commutation relation [a, b] = 11 between two different

operators a and b densely defined on a Hilbert space H as the primary object and it was

found that when b 6= a† interesting situations arose. When one wishes to apply these operators

in building non-Hermitian quantum mechanical models further constraints are needed. To

allow the usage of a and b for the construction of two families of biorthogonal vectors of H
some specific scenarios were dealt with in [16]. Also when considering non-Hermitian models

constructed from PT -invariant combinations of c and c†, the requirement that they can be

mapped by means of GBT into a form of a harmonic oscillator plus a Casimir operator [9]

imposes further constraints on the constants α, β, γ, δ.

Next we recall some definitions and relevant facts for reference about PBs.

2.2 Pseudo-bosons

Definition D-PB: The pair of operators a and b are called D-pseudo-bosons (D-PB) if, for

all f ∈ D, we have

a b f − b a f = f. (3)

The domain D is a dense subspace of a Hilbert space H stable under the action of a, b, a†

and b†, that is a♯D ⊆ D and b♯ D ⊆ D, where x♯ is x or x†.

Note that since a♯f is well defined and belongs to D for all f ∈ D, it is clear that D ⊆ D(a♯),

the domain of the operator a♯. The analogue holds also for D ⊆ D(b♯). We often use a simplified

notation and instead of (3) we only write [a, b] = 11, where, as before, 11 is the identity operator

on H, keeping in mind that both sides of this equation have to act on a certain f ∈ D.

In addition we assume:

Assumption D-PB 1: There exists a non-zero ϕ0 ∈ D such that aϕ0 = 0.
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Assumption D-PB 2: There exists a non-zero Ψ0 ∈ D such that b†Ψ0 = 0.

Assumption D-PB 3: The set Fϕ := {ϕn, n ≥ 0} is a basis for H.

Note that the vectors

ϕn :=
1√
n!

bnϕ0, Ψn :=
1√
n!

a†
n
Ψ0, (4)

are well-defined for n ≥ 0, since D is stable under the action of b and a†. In particular, it is

obvious that ϕ0 ∈ D∞(b) := ∩k≥0D(bk) and that Ψ0 ∈ D∞(a†). Therefore we can introduce the

sets Fϕ and in addition FΨ = {Ψn, n ≥ 0}. By the same reasoning we also deduce that each

ϕn and each Ψn belongs to D and therefore to the domains of a♯, b♯ and N ♯, where N := ba,

N † = a†b†.

The following lowering and raising relations are then easily obtained

aϕn =
√
nϕn−1, a ϕ0 = 0, b†Ψn =

√
nΨn−1, b†Ψ0 = 0, for n ≥ 1,

a†Ψn =
√
n+ 1Ψn+1, b ϕn =

√
n+ 1ϕn+1, for n ≥ 0,

(5)

as well as the eigenvalue equations Nϕn = nϕn and N †Ψn = nΨn for n ≥ 0. Notice that all

the eigenvalues are simple. As a consequence of these last equations we derive that

〈ϕn,Ψm〉 = δn,m, (6)

for all n,m ≥ 0, when choosing the normalization of ϕ0 and Ψ0 in such a way that 〈ϕ0,Ψ0〉 = 1.

Then Fϕ and FΨ are biorthonormal sets of eigenstates of N and N †, respectively.

The assumptions D-PB 1 and D-PB 2 do in principle not allow to conclude anything about

the fact that Fϕ and FΨ are also bases for H, or even whether they are Riesz bases, which is

the reason for making the assumption D-PB 3. Notice that it automatically implies that FΨ

is a basis for H as well [20]. However, during the years several examples in which this natural

assumption is not satisfied have been found, see for instance [5] and references therein. For this

reason a weaker version of assumption D-PB 3 was introduced in [17].

Assumption D-PBw 3: Fϕ and FΨ are G-quasi bases for some subspace G dense in H.

Two biorthogonal sets Fη = {ηn ∈ G, g ≥ 0} and FΦ = {Φn ∈ G, g ≥ 0} have been called

G-quasi bases when

〈f, g〉 =
∑

n≥0

〈f, ηn〉 〈Φn, g〉 =
∑

n≥0

〈f,Φn〉 〈ηn, g〉 , (7)

holds for all f, g ∈ G. It is clear that assumption D-PB 3 implies its weaker version (7), but

the reverse can not be inferred. However, when Fη and FΦ satisfy the relation (7) we still
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have some (weak) form of resolution of the identity and from a physical point of view we are

still able to deduce interesting results, [17]. Incidentally we see that if f ∈ G is orthogonal

to all the Φn’s (or to all the ηn’s), then f is necessarily zero. Hence, both Fη and FΦ are

automatically complete in G. For further results on G-quasi bases we refer the reader to [17],

where a discussion can be found in which sense these bases extend Riesz biorthogonal bases

and additional results on the mathematical structure arising out of a, b and the various vectors

introduced so far.

Here we will be mainly interested in demonstrating the interesting fact that depending on

the choices of parameters involved in the GTBs they provide examples in which Fϕ and FΨ are

indeed bases such that assumption D-PB 3 holds as well as examples in which they are just

G-quasi bases for some dense G ⊂ H, so that assumption D-PBw 3 holds while assumption

D-PB 3 does not.

3 GBTs versus PBs

We are now in the position to address the following questions: does a GBT always produce

D-PBs? or more specifically when does a GBT produce D-PBs? In fact, the first question can

already be answered negatively by several simple counter examples. For instance, already in

[19, 16], it was shown that specific operators of the form (1) satisfying [a, b] = 11 need not be

pseudo-bosonic. Let us now make this more evident by treating the general case. We adopt

the explicit realization of c and c† quoted at the beginning of subsection 2.1. Hence we obtain

a =
1√
2

[

(β − δ)x+ (β + δ)
d

dx

]

, b =
1√
2

[

(γ − α)x− (γ + α)
d

dx

]

, (8)

a† =
1√
2

[

(β − δ)x− (β + δ)
d

dx

]

, b† =
1√
2

[

(γ − α)x+ (γ + α)
d

dx

]

. (9)

We can easily verify whether the assumptions D-PB 1 and D-PB 2 are satisfied. In particular,

the equations for the ground states aϕ0(x) = 0 and b†Ψ0(x) = 0 admit the solutions

ϕ0(x) = Nϕe
− 1

2
x2 β−δ

β+δ , Ψ0(x) = NΨe
− 1

2
x2 γ−α

γ+α , (10)

where Nϕ and NΨ are suitable normalization constants to be specified further below. The first

crucial point to note is that these two functions do not always belong to H = L2(R). This is

only true when the following constraints on the parameters in T are satisfied:

ℜ
(

β − δ

β + δ

)

> 0, ℜ
(

γ − α

γ + α

)

> 0. (11)
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Is is evident that (11) is distinct from the necessary condition det(T ) = 1. It is easily seen

that assuming the latter we can produce all possible scenarios a) ϕ0(x) ∈ H, Ψ0(x) /∈ H, b)

ϕ0(x) /∈ H, Ψ0(x) ∈ H, c) ϕ0(x), Ψ0(x) /∈ H and d) ϕ0(x), Ψ0(x) ∈ H. Explicit examples for

parameter choices for these cases are for instance a) α = γ = δ = 1, β = 2, b) α = β = δ = 1,

γ = 2, c) α = −3/2, β = 1/4, γ = 1 , δ = 1/2 and d) α = 2/3, β = 2, γ = 1, δ = 3/2. Thus

on the basis of assumptions D-PB 1 and D-PB 2 alone we conclude already that the GBT

described by the cases a), b) and c) can not be D-PB. However, the case d) demonstrates that

we have GBTs that might also produce D-PBs. Thus we need to verify whether the remaining

assumption D-PB 3 in section 2.2 also holds for those cases and of course we also need to fix

D.

Thus the next step is to compute

ϕn(x) =
1√
n!

bnϕ0(x), Ψn(x) =
1√
n!

a†
n
Ψ0(x), (12)

for n ≥ 0. It suffices to determine the expression for ϕn(x) as those for Ψn(x) can be obtained

from the former simply by replacing δ with α and β with γ when noting that b and Ψ0(x)/NΨ

algebraically coincide with a† and ϕ0(x)/Nϕ, respectively after this requirements. Moreover,

with the use of condition (11) we can fix the value for the product of Nϕ and NΨ

〈Ψ0, ϕ0〉 = 1 ⇒ NϕNΨ =
1

√

π(α+ γ)(β + δ)
. (13)

From the definition (12) and (10) it is easy to see that

ϕn(x) =
Nϕ√
n!2n

[

(γ − α) x− (γ + α)
d

dx

]n

e−
1

2
x2 β−δ

β+δ , (14)

=
Nϕ√
n!2n

(

α + γ

β + δ

)n/2

Hn

[

x
√

(α + γ)(β + δ)

]

e−
1

2
x2 β−δ

β+δ , (15)

for all n ≥ 0, with Hn(x) denoting the n-th Hermite polynomial. The constraint needed for

these functions to be square integrable is the same as (11), since they are simply polynomials

times the same Gaussian that already appeared in ϕ0(x). The functions Ψn(x) are then readily

deduced by using the aforementioned replacement rule

Ψn(x) =
NΨ√
n!2n

(

β + δ

α + γ

)n/2

Hn





x
√

(α + γ)(β + δ)



 e−
1

2
x2 γ−α

γ+α . (16)

We have now constructed our sets Fϕ and FΨ.
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A special case of this general treatment was previously discussed in [18], where the pseudo-

bosonic operators a and b were denoted as Aθ = cos θ c + i sin θ c† and Bθ = cos θ c† + i sin θ c,

depending on a real parameter θ ∈ I := (−π
4
, π
4
) \ {0}. Thus the parameters in T are identified

as β = γ = cos θ and δ = α = −i sin θ, clearly satisfying det(T ) = 1 and the two constraints in

(11) equal each other reducing to ℜ
(

e2iθ
)

= cos(2θ) > 0 for θ ∈ I. Furthermore, the general

solutions (15) and (16) for ϕn(x) and Ψn(x) simplify to

ϕθ
n(x) =

Nϕ√
2n n!

Hn

(

eiθx
)

exp

[

−1

2
e2iθ x2

]

Ψθ
n(x) =

NΨ

Nϕ

ϕ−θ
n (x). (17)

constructed in [18] for the specific choice of parameters as given above.

A direct computation shows that the two sets of functions Fϕ and FΨ are indeed biorthog-

onal sets satisfying (7). In previous analysis on D-PBs [5] a particular relevant role was

played by the norms of ϕn and Ψn. For several concrete models it has been proved that

limn→∞ ‖ϕn‖ = limn→∞ ‖Ψn‖ = ∞, which is enough to conclude that Fϕ and FΨ do not con-

stitute bases for H, [11], Lemma 3.3.3. However, this property does not exclude the possibility

that they are D-quasi bases for some dense subspace D in H. Thus we will next compute those

limits in order to be able to decide whether we encounter D-PB or no PB at all and for which

choices of the parameters in T any of these situations might occur.

We proceed by imposing some constraints on T rather than considering the complete generic

case and compute ‖ϕn‖ together with the appropriate limit. This will make computations

transparent at first. Subsequently we investigate the consequences of relaxing some of the

constraints. In this manner we obtain unexpected and interesting conclusions about the sets

Fϕ and FΨ.

3.1 Real valued GBT with constraint αβ = γδ

We assume here that T is real valued and its parameters are ordered as β > δ > 0 and

that γ > α > 0. This choice guarantees that the constraints in (11) are automatically satisfied,

whereas det(T ) = 1 must still be imposed. An explicit example for this choice of the parameters

is case d) provided after (11). To compute ‖ϕn‖ we use the general formula

∫ ∞

0

e−px2

Hn(bx)Hn(cx) dx =
2n−1 n!

√
π

p(n+1)/2
(b2 + c2 − p)n/2 Pn

(

bc
√

p(b2 + c2 − p)

)

, (18)
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which holds for all p with positive real part [21] and Pn(x) denotes the n-th Legendre polynomial.

From (18) and (15) follows

‖ϕn‖2 =
√
π|Nϕ|2
2

(

α + γ

β + δ

)n(
β + δ

β − δ

)
n+1

2
(

γ − α

γ + α

)
n
2

Pn

(

1
√

(β2 − δ2)(γ2 − α2)

)

. (19)

We observe that (β2 − δ2)(γ2 − α2) = 1− (αβ − γδ)2, which implies that the argument of the

Legendre polynomial is always greater or equal to one. It is suggestive to take, to begin with,

αβ = γδ as for that choice the expression in (19) simplifies drastically due to the fact that

Pn(1) = 1 for all n. Thus (19) collapses to

‖ϕn‖2 =
√
π|Nϕ|2
2

√

β + δ

β − δ

(

γ

β

)n

, (20)

and by using the aforementioned replacement rule we also obtain

‖Ψn‖2 =
√
π|NΨ|2
2

√

γ + α

γ − α

(

β

γ

)n

. (21)

Then the conclusions are clear. We distinguish three cases:

γ = β : limn→∞ ‖ϕn‖ = const, limn→∞ ‖Ψn‖ = const,

γ > β : limn→∞ ‖ϕn‖ = ∞, limn→∞ ‖Ψn‖ = 0,

γ < β : limn→∞ ‖ϕn‖ = 0, limn→∞ ‖Ψn‖ = ∞.

(22)

For γ = β we simply have ϕn(x) = Ψn(x)Nϕ/NΨ, since this choice also implies α = δ and

therefore the GBT reduces to the standard Bogoliubov transformation with a = b†. The two

sets Fϕ and FΨ essentially simply collapse.

The situation γ 6= β is more interesting. The fact that the norms of the elements in

Fϕ and FΨ behave differently in the large n asymptotic limit constitutes a new result when

compared with the many examples previously considered in the literature. For instance, for

the special case of the Swanson model, dealt with in [18], it was found that both norms diverge

limn→∞ ‖ϕn‖ = limn→∞ ‖Ψn‖ = ∞.

The first clear conclusion is: Neither Fϕ nor FΨ can be Riesz bases when γ 6= β. The

reason is simple. For definiteness we take γ > β. Then, since limn→∞ ‖Ψn‖ = 0 one may

imagine the existence of an bounded operator V and an orthonormal basis {en} of H such that

Ψn = V en. However, due to the uniqueness of the biorthogonal basis, we must necessarily have

ϕn = (V −1)†en. Now, since limn→∞ ‖ϕn‖ = ∞, the operator V −1 cannot be bounded, which in

turn implies our statement1.

1We recall that in the definition of a Riesz basis the operator V is required to be invertible.
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Our second conclusion is: Fϕ and FΨ constitute two biorthogonal bases for H. Notice that

this, of course, is not in contrast with the fact that they are not Riesz bases. The reason is

because ‖ϕn‖ and ‖Ψn‖ have a different asymptotic behavior, so that ‖ϕn‖‖Ψn‖ is uniformly

bounded in n, as required in [11]. In fact, our second conclusion is not difficult to prove. Using

det(T ) = 1 and our constraint αβ = γδ we can eliminate α and γ from the expressions ϕn(x)

in (15) and Ψn(x) in (16) and express them entirely in terms of the parameters β and δ

ϕn(x) =
Nϕ√
2n n!

(

1

β2 − δ2

)n/2

Hn

(
√

β − δ

β + δ
x

)

e−
1

2
x2 β−δ

β+δ (23)

and

Ψn(x) =
NΨ√
2n n!

(

β2 − δ2
)n/2

Hn

(
√

β − δ

β + δ
x

)

e−
1

2
x2 β−δ

β+δ , (24)

with NϕNΨ =
√

(β − δ)/(β + δ)π. Note that by our initial assumption the arguments of all

the square roots are positive. Then we have Ψn(x) = (β2 − δ2)
n
ϕn(x)NΨ/Nϕ for all n ≥ 0,

i.e. the two sets only differ by a constant, albeit n-dependent, factor. Taking now a generic

function f(x) ∈ L2(R) simple manipulations show that

∞
∑

n=0

〈ϕn, f〉Ψn(x) =

∞
∑

n=0

NϕNΨ

√
π

µ

(
∫

R

en(s)fµ(s)ds

)

en(t), (25)

where we have introduced the positive quantity µ =
√

(β − δ)/(β + δ), the variable t = xµ, the

shorthand notation fµ(s) = f (s/µ) and the function en(s) = Hn(s)e
− 1

2
s2/
√

2n n!
√
π, which all

together (i.e. for n = 0, 1, 2, . . .) form an orthonormal basis for L2(R). This implies that

∞
∑

n=0

〈ϕn, f〉Ψn(x) = fµ(t) = f(x), (26)

which is what we had to prove. Therefore FΨ is a basis. Analogously, we can show that Fϕ is

a basis too. Moreover, they are clearly both H-quasi bases.

Remark: This is not very different from what happens if we start with a generic orthonormal

basis E = {en} of H and construct out of it two sets Fϕ = {ϕn = λnen} and FΨ = {Ψn =

λ−1
n en}, using a sequence {λn} of non zero complex numbers. Then, if for instance |λn| ≤ M ,

for some 0 < M < ∞, with divergent λ−1
n , it is clear that: (i) Fϕ and FΨ are not Riesz bases,

(ii) They are biorthogonal and they are both bases for H and (iii) they are both H-quasi bases.

It is easy to understand why, when det(T ) = 1 and αβ = γδ, the sets Fϕ and FΨ essen-

tially collapse and became bases for H. The reason is that, under these assumptions on the
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coefficients, the number operator N = ba is self-adjoint2. In fact, we find that

N =
1

β2 − δ2
(

βc− δc†
)† (

βc− δc†
)

.

So, we are just working with a sort of rescaled self-adjoint harmonic oscillator. This will not

be so in the next Section, where something completely different will be deduced.

3.2 Removing constraint αβ = γδ

From the previous subsection it appears at first sight that the constraint αβ = γδ only facilitated

our computations. We will now demonstrate that it actually describes a very special situation

and when it is relaxed the properties of our PBs change severely, i.e. we find that neither

Fϕ nor FΨ constitute bases for H when the coefficients in the GBT are such that αβ 6= γδ.

The proof of this claim makes use of the fact that in this case the argument of the Legendre

polynomial in (19) is always larger or equal to one. Then, to deduce the asymptotic behavior

of ‖ϕn‖, where ϕn(x) are now those in (15), for large n we can employ the following formula,

see [22],

Pn(x) ≃
1√
2πn

1

(x2 − 1)1/4

{

x+
√
x2 − 1

}n+1/2

, (27)

which holds if x > 1. The asymptotic behavior of (19) and the analogous one for Ψn

‖Ψn‖2 =
√
π|NΨ|2
2

(

δ + β

γ + α

)n(
γ + α

γ − α

)
n+1

2
(

β − δ

β + δ

)
n
2

Pn

(

1
√

(β2 − δ2)(γ2 − α2)

)

, (28)

are described by

‖ϕn‖2 ≃ Aϕ xn

√
n
, ‖Ψn‖2 ≃ AΨ yn√

n
. (29)

We introduced here the quantities

x :=
1 + |αβ − γδ|

β2 − δ2
, y :=

1 + |αβ − γδ|
γ2 − α2

, (30)

and

Aϕ :=
A
√
π|Nϕ|2
2

√

β + δ

β − δ
, AΨ =

A
√
π|NΨ|2
2

√

γ + α

γ − α
, (31)

2It might be useful to observe that condition γ = β needs not to be satisfied, here, since it is a sufficient but

not a necessary condition to have N = N †.
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with

A =
1√
2π

1

(s2 − 1)1/4

[

s+
√
s2 − 1

]1/2

, (32)

where s = 1√
(β2−δ2)(γ2−α2)

.

From (29) it is clear that limn→∞ ‖ϕn‖ = 0 for 0 < x ≤ 1 and that it diverges when x > 1.

Analogously, we have limn→∞ ‖Ψn‖ = 0 for 0 < y ≤ 1 and limn→∞ ‖Ψn‖ = ∞ when y > 1.

Therefore, at a first sight, we might expect to recover the same situation as in the previous

section where the product ‖ϕn‖‖Ψn‖ turned out to be independent of n, see (20) and (21). In

particular, this product was uniformly bounded in n, which is a necessary (but not sufficient)

condition for Fϕ and FΨ to be bases for H, see [11], Lemma 3.3.3. In contrast, we will see

that this condition is never satisfied in the present setting. The proof of this behavior is indeed

simple. From (29) follows that

‖ϕn‖2‖Ψn‖2 = AϕAΨ (xy)
n

n
= AϕAΨ 1

n

(

1 + |αβ − γδ|
1− |αβ − γδ|

)n

, (33)

which diverges with n → ∞ whenever αβ − γδ 6= 0. Thus in this case we recover the behavior

already encountered for the special case of the Swanson model, where both Fϕ and FΨ were

shown not to be bases. Nonetheless, we are left with the possibility that they are D-quasi bases.

And indeed, this is what happens.

To prove the latter, we begin by introducing the set

D =
{

f(x) ∈ L2(R) : e
1

2
x2|αβ−γδ|f(x)∈L2(R)

}

. (34)

This set is dense in L2(R), since it contains the set D(R) of the C∞ functions with bounded

support. Moreover, if αβ 6= γδ, it clearly does not coincide with L2(R). Now, if f(x) and g(x)

belong to D, we can check that

〈f, ϕn〉 = An

√

(α + γ)(β + δ)

∫

R

f1(x)Hn(x)e
−x2/2dx (35)

and

〈Ψn, g〉 = Bn

√

(α+ γ)(β + δ)

∫

R

Hn(x)e
−x2/2g1(x) dx, (36)

where, to simplify the notation, we have introduced

An =
Nϕ√
2n n!

(

α + γ

β + δ

)n

, Bn =
NΨ√
2n n!

(

β + δ

α+ γ

)n

, (37)

and

f1(x) = f
(

x
√

(α + γ)(β + δ)
)

e
1

2
x2(γδ−αβ), g1(x) = g

(

x
√

(α + γ)(β + δ)
)

e
1

2
x2(αβ−γδ).
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Notice that, since both f(x) and g(x) are taken into D, f1(x) and g2(x) are square integrable,

even if γδ 6= αβ. Now, using again the orthonormal eigenfunctions of the harmonic oscillator

en(x) =
1

√

2n n!
√
π
Hn(x) e

−x2/2, (38)

for n = 0, 1, 2, . . ., we deduce that

∞
∑

n=0

〈f, ϕn〉 〈Ψn, g〉 =
√
π (α + γ)(β + δ)NϕNΨ

∞
∑

n=0

〈f1, en〉 〈en, g1〉 (39)

=
√
π (α + γ)(β + δ)NϕNΨ 〈f1, g1〉 = 〈f, g〉 . (40)

Analogously one can prove that
∑∞

n=0 〈f,Ψn〉 〈ϕn, g〉 = 〈f, g〉, for all f, g ∈ D. The conclusion

is that Fϕ and FΨ, even if they are not bases for H, are D-quasi bases. This is what happens

also for the aforementioned special case of the Swanson model, which, however, differs from

the situation considered here since in that case some of the coefficients were complex valued.

Therefore, apparently, having real or complex parameters in T does not prevent the sets Fϕ

and FΨ to be D-quasi bases, while among all the real possibilities, there exists just a particular

family of choices which reproduces biorthogonal bases for H. Other choices of real parameters

produce not bases, but D-quasi bases.

4 Conclusions

In this manuscript we have studied the relations between GBTs and D-PBs. We have found

the interesting possibility that GBTs may produce examples of biorthogonal sets that are in

addition bases for a Hilbert space H. When the map T in (1) that defines the GBT is taken

to be real valued and its parameters are ordered as β > δ > 0 and γ > α > 0 we found

two qualitatively different situation. Imposing in addition the constraint αβ = γδ we found

the hitherto unobserved behavior that the norms of the vectors in sets of the eigenvectors of

two related number operators, Fϕ and FΨ, respectively, possess different types of asymptotic

behavior. We concluded from this that they do not form Riesz bases, but still they constitute

two biorthogonal bases for H, and H-quasi bases as a consequence. In contrast, when we relax

the constraint and take αβ 6= γδ instead we proved that neither Fϕ nor FΨ are bases for H.

Nonetheless, even in this case the sets Fϕ and FΨ are still D-quasi bases for a suitable D dense

in H as specified in (34). The latter behavior was previously observed for specific complex

choices of the parameters in T related to a particular version of the Swanson model. In fact,
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see [5], in this case the sets Fϕ and FΨ are G-quasi bases, where G is the linear span of the

en(x)’s, which is obviously dense in H.

One may also consider the reverse construction, i.e. the possibility of constructing a GBT

out of a family of D-PBs. Indeed, this is either trivial as in the example provided with operators

Aθ and Bθ, where one simply has to read off the values for the complex-valued parameters α,

β, γ and δ to define the map T that represents the GBT or it is not possible at all. The latter

case emerges for instance when the D-PBs are constructed by adding complex constants to

the standard representations of the operators c and c†, see for instance [15]. Clearly such a

construction can not be cast into the form of a GBT of the form as specified in (1). In summary,

not all GBT correspond to PBs and vice versa not all versions PBs may be cast into the form

of a GBT.

There are clearly some challenges left. Obviously to complete the picture it would be in-

teresting to study the behavior for the remaining choices of α, β, γ and δ not covered in our

treatment. In addition, it would be interesting to study these aspects in more complicated mod-

els based on GBT, such as the non-Hermitian Hamiltonians of Lie algebraic type investigated

in [9].
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