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ABSTRACT 

In nuclear power plants the Primary-Loop Recirculation (PLR) pump circulates the high temperature/high-
pressure coolant in order to remove the thermal energy generated within the reactor. The pump is sealed 
using the cold purge flow in the shaft seal gap between the rotating shaft and stationary casing, where 
different forms of Taylor-Couette flow instabilities develop. Due to the temperature difference between 
the hot recirculating water and the cold purge water (of order of two hundred degrees Celsius), the flow 
instabilities in the gap cause temperature fluctuations, which can lead to shaft or casing thermal fatigue 
cracks. The present work numerically investigated the influence of temperature difference and rotating 
speed on the structure and dynamics of the Taylor- Couette flow instabilities. The CFD solver used in this 
study was extensively validated against the experimental data published in the open literature. Influence 
of temperature difference on the fluid dynamics of Taylor vortices was investigated in this study. With 
large temperature difference, the structure of the Taylor vortices is greatly stretched at the interface 
region between the annulus gap and the lower recirculating cavity. Higher temperature difference and 
rotating speed induce lower fluctuating frequency and smaller circumferential wave number of Taylor 
vortices. However, the azimuthal wave speed remains unchanged with all the cases tested. The predicted 
axial location of the maximum temperature fluctuation on the shaft is in a good agreement with the 
experimental data, identifying the region potentially affected by the thermal fatigue. The physical 
understandings of such flow instabilities presented in this paper would be useful for future PLR pump 
design optimization. 
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INTRODUCTION 

Taylor-Couette Flow Phenomena  

Different forms of Taylor-Couette flow instabilities that can develop within the 

narrow gap of two concentric rotating cylinders, have been extensively investigated by many 

researchers. At low Reynolds numbers (Re) the laminar Couette flow regime is established 

[1]. As the rotational speed of cylinders increases a family of different flow instabilities, 

Taylor-Couette flows is developed [2].  

Andereck et al. [3] presented a detailed map showing different types of Taylor 

vortices that can form under different rotating speed of cylinders. The critical angular 

velocity (or Taylor number) for the onset of Taylor vortices is strongly dependent upon the 

cylindrical gap radius ratio (η). By applying linear stability theory, Sparow et al. [4] and 

Roberts [5] showed that the critical Taylor number would increase with smaller radius ratio 

(wider gap). The experimental work of Cognet [6] also confirmed these trend. Burkhalter 

and Koschmieder [7] found that the perturbation caused by the imperfection in their 

experiment did not have any effect on the stability of the toroidal vortices as long as Taylor 

vortices were present.  

With the further increase in rotational speed, wavy Taylor-Couette flow is established, 

characterized by wavy vortices azimuthally travelling around the annular gap and fluctuating 

along the axis direction. The rotational speed for forming wavy Taylor vortices is 

approximately 20 percent higher than the critical value for onset of Taylor vortices. Kingt [8] 

reported that the wave speed is strongly linked to the radius ratio of the two cylinders, and 

is not significantly affected by Taylor number. With even higher rotational speed, wavy 

Taylor–Couette flow becomes chaotic and finally becomes fully turbulent. 
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Adding axial flow to the Taylor-Couette flows results in formation of another flow 

family – Taylore-Couette-Poiseuille flows. These flow stabilities caused by superposition of 

rotational and axial flows were experimentally demonstrated by Wereley and Lueptow [9]. 

The experimental investigation by Becker and Kaye [10] showed that addition of axial flow 

delays the transition process that leads to formation of Taylor vortices. The study of Martin 

and Hasoon [11] indicates the same gap radius ratio η effect on critical Taylor number as in 

the cases without axial flow.   

 

 

Fig. 1. Schematic of a PLR pump detail [12], and enlarged view of the flow between the 
pump shaft and casing. 

 

PLR Pump Application 

In boiling water nuclear reactor power plants, the Primary-Loop Recirculation (PLR) 

pump circulates the high temperature/high pressure coolant in order to remove the thermal 

energy generated within the reactor. The pump is sealed using the cold purge flow in the 

shaft-casing gap where the Taylor flow instabilities develop. Due to the temperature 
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difference between the hot recirculating water and the cold purge water (in the order of two 

hundred degrees Celsius), the temperature fluctuations could potentially lead to shaft or 

casing thermal fatigue cracks. Figure 1 shows a schematic of a PLR pump shaft detail given 

by Narabayashi et al. [12]. The purge coolant water enters the gap from the top of the shaft 

and eventually mixes with the hot water in the casing impeller cavity. This important 

engineering problem was originally experimentally investigated by Narabayashi et al. [12] 

and Kato et al. [13]. They reported that the temperature fluctuations (and eventually 

thermal fatigue) in the shaft-casing gap were caused by the wavy Taylor vortices which 

periodically bring the hot and cold water close to the rotor shaft and casing cover. The axial 

temperature difference in their study was 60℃, while the temperature difference in real 

operating conditions could be as high as 250℃. Watanabe et al. [14] observed that the 

amplitude of temperature fluctuations would increase with larger purge water flow rate. 

Their study proposed a seal purge heater concept to mitigate the amplitude of temperature 

fluctuations by heating the cold water before it entered the annulus gap and downstream 

cavity. Due to the experimental difficulties associated with the extremely high radius ratio 

(0.993), these experimental studies only provided some general observation of the 

temperature fluctuation. No detailed flow physics were revealed.  

There are several studies which looked into the heat transfer phenomena associated 

with the Taylor-Couette flow [10, 15-17]. Most of these investigations focused on 

measurements of the inner cylinder heat transfer coefficients for cases with radial 

temperature gradient within the annulus gap. A series of correlation formulas for average 

Nusselt number calculation along the whole cylindrical axis were reported by Fenot et al. 

[18]. Recently, Liu et al. [19] showed that the wavy frequency of the vortices would be lower 

when temperature of the flow is increased, and there is an accelerating effect on their 
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formation when the inner cylinder is much cooler than that of the outer one. Effect of 

temperature gradient brought by the axial cold purge flow has not been investigated in the 

studies listed above. 

Objectives and Outline of the Presented Work 

The present numerical study aims to understand how the large temperature 

differences between cold purge flow and hot recirculating water affect the flow dynamics at 

shaft-casing gap of a PLR pump.  

In the first part of the paper, three different experimental test cases, available in 

open literature, that focus on different aspects of Taylor instabilities, were modelled in order 

to test the capabilities of the flow solver used in this study.  

• Test Case 1: Wavelength analysis (Burkhalter and Koschmieder [7]) 

• Test Case 2: Wavy Taylor-Couette Flow (Kingt [8]) 

• Test Case 3 :Heat transfer in Taylor-Couette Flow (Ball et al. [20]) 

In the second part of the paper, a simplified, but representative geometry of the 

interface between the shaft-casing gap and the pump cavity was modelled. The investigation 

starts by analysing the flowfield in the shaft-casing gap for the case with no temperature 

difference between the purge flow and the main pump flow. The temperature difference of 

243 K between two fluids was then introduced, followed by a detailed analysis of the 

unsteady flow and temperature field. In the final study presented in this paper, the 

temperature difference between two flows was varied in order to estimate the vertical 

penetration depth of the hot fluid inside the gap, an important parameter for the pump 

design.  
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The results obtained in this paper could potentially help the development of an 

effective control solution to mitigate thermal fatigue in different components caused by flow 

instabilities in the shaft gap. 

COMPUTATIONAL DETAILS 

The commercial CFD solver ANSYS FLUENT was used to simulate all the cases considered 

in this paper. FLUENT is a finite-volume solver and is capable of simulating both steady and 

unsteady flow problems with a wide range of fluid properties. Fully compressible 3D viscous 

simulations based on the PLR pump shaft operating boundary conditions were performed in 

the present study. Since large variations of viscosity, density, and thermal conductivity of the 

water exist within the temperature ranges being investigated in this paper, density-based 

solver in FLUENT (fully compressible flow solver option) was chosen for all the CFD 

simulations. 

The spatial discretization used was flux difference splitting based on the second-order 

upwind (default option for compressible flow in FLUENT) and a second-order implicit 

scheme adapted for temporal discretization. A solver was chosen to ensure a fully 

compressible solution and a constant time step of at least 1/50 over one fundamental 

period was maintained for the unsteady simulation (constant time-stepping is essential for 

the time consistency of the resolved unsteady structures). As an example, the wavy 

frequency was generally observed at around the cylinder rotating frequency. Therefore, for 

the case with a rotational speed of 127 rad/s, the time required for one complete rotation 

will be 0.0495 sec. To ensure that transient phenomena were accurately resolved, each 

period was computed using 50 discrete time steps, which results in a time step size of 0.001 

sec. Initially, the simulations were run for a total of 15000 time steps to achieve fully 
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resolved unsteady solutions. Then the unsteady monitors were activated and the flow 

simulations were run for 1000 more time steps to record the corresponding unsteady 

information. For further unsteady flow analysis, Fast Fourier Transforms (FFT) method was 

applied and all the FFT data presented in this paper correspond to the spectral analysis of 

the unsteady signals for the 1000 time steps. 

Mesh independence study was performed by varying grid numbers along the axial, 

radial and circumferential directions. It was established that a computational domain with 

100×60×400 grid points (along the circumferential, radial, and axial directions) was enough 

to provide mesh independent results. This was verified by monitoring the Taylor vortices 

number along the axial direction and the shape of vortical structure. This computational grid 

topology was maintained for all the CFD simulations performed in this paper. 

VALIDATION TEST CASES 

This section assesses the suitability of the CFD method and the solver employed to 

simulate the flow phenomena in the present study. The first validation case compares the 

simulated axial wavelengths with the experimental data, in which the flow regime is within 

the first stage of the Taylor vortices formation. The second validation case verifies the 

solver’s capability of predicting the flow properties when it is within the second stage of 

Taylor-Couette flow. Finally, a third case was used to validate the thermal prediction 

capability of the solver. In the first and the second cases, the working fluid was water 

whereas the working fluid in the third case was air. 

Test Case 1: Wavelength Analysis [7] 

As the first validation case, conditions in the work of Burkhalter and Koschmieder [7] 

were simulated. They studied the axial wavelength of Taylor vortices at varying Taylor 
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numbers under a sudden start situation, which meant that the time taken by the inner 

cylinder to accelerate to the preset rotating speed was much smaller than the fluid 

dissipation time. This was also the reason why the present work chose this study as a 

reference, since the setting flow variables at the boundary of a rotating wall to constant 

values has the same effect as with a sudden start in real scenario. They provided detailed 

boundary conditions and a full set of results regarding Taylor number and wavelength 

relations. The geometry applied in the present validation work was a simple hollow cylinder 

and its dimensions were matched with those in the real experiment: the height of the 

cylinder was 0.9144 m, the inner and outer radii were 0.04572 m and 0.06285 m 

respectively (η=0.727). Here the Taylor number was defined as, 

ܶܽ = ଶమଵିమ (ఆௗమ)మఔమ ,                                                     (1) 

where Ω is the angular velocity, d is the gap width, and ν is the kinematic viscosity. Tac 

(equal to 69.2 based on the simulation) is the critical Taylor number, which is the minimum 

value at which Taylor vortices may appear. The axial wavelength (λ) of Taylor vortices was 

defined as, ߣ = ିாேௗ ,                                                            (2) 

where L is the height of the cylinder, E is the summation of the size of the two end vortices, 

N is the number of the vortex rings (half of the total vortices except for the end ones). 
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(f) was then derived by Fast Fourier Transform of the unsteady signal (FFT), as shown in Fig. 

4(c). 

The wave speed (s) is defined as, ݏ = ଶగஐభ.                                                            (3) 

The final simulation results are presented in Table 1. Qualitatively, the computed results 

showed consistently the trend seen in the experiment that the wave speed increases with 

increasing radius ratios. Quantitatively also, the discrepancies between the three computed 

cases and the experimental data were within an acceptable range.  

 

Table 1 Wave speed values achieved from simulation and experiment at three different η. 

η(R1/R2)  Present study  Experimental results 

0.868 0.334 0.320±0.005

0.900 0.362 0.360±0.010 

0.950 0.458 0.450±0.001 
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Fig. 5. Comparisons of mean equivalent conductivity between data from [20, 21] and the 
present study. 

 

Test Case 3 :Heat transfer in Taylor-Couette Flow [20] 

In addition to the validation of the solver for flowfield variations, the published data of 

Ball et al. [20] was used to validate the thermal prediction capability of the solver. Heat 

transfer phenomena in Taylor-Couette flow with radial temperature gradient were studied in 

this section of the paper. In order to systematically investigate the effects of both the 

buoyancy and the centrifugal forces on the flow stability, the local mean equivalent 

conductivity (keq) was chosen to be the key parameter for comparison. It was defined as, ܭ = −ℎ(4)                                                   ,݇/(ߟ)݈݊ݎ 

where h is the average heat transfer coefficient in the inner cylinder surface, k is the thermal 

conductivity, and r is the radial coordinate.  
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The computational geometry and the boundary conditions for this study were based on 

the experimental set up of Ball et al. [20], which were: the inner and outer cylinders were 

set to be 0.01252 m and 0.02216 m respectively (η=0.565). The height of the annulus gap 

was 0.5064 m. In order to maintain Grashof number at 100 (the temperature difference 

between two cylinders was 7.582 K), the inner cylinder was specified to be a no-slip wall 

with an isothermal surface temperature of 293.000 K, while the outer cylinder was set to 

have a temperature of 300.582 K. The fluid material was air, with a density of 1.175 kg/m3, 

thermal conductivity of 0.0257 w/m-k and kinematic viscosity of 15.11×10−6 m2/s. In total 

three different cases with varying rotating speeds (5.008 rad/s, 15.023 rad/s and 35.054 

rad/s) were simulated. All the cases were simulated under laminar regime since the 

maximum corresponding Reynolds number was much less than the critical Reynolds number 

for η of 0.565. 

The computed results is compared with the experimental data of Ball et al. [20] in Fig. 5. 

As an additional reference, Figure 5 also presents numerical results by Kedia [21] who have 

conducted CFDl study to simulate the same case by Ball et al. [20]. It is evident from the 

figure that two simulations are seen to show a consistent trend, however the CFD results 

show some discrepancies with the experimental data (especially at higher Reynolds number). 

Kedia [21] suggested that such discrepancy was due to the variation of the axial wave along 

the cylinders caused by the uncertain thermal conditions of the end walls in the 

experimental set up. 
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Taylor number. A rotating speed of 146 rad/s employed in the present study is inadequate 

for the transition to occur. Note that it has also been confirmed that the axial flow will 

further delay the formation of Taylor vortices. This had not been taken into account by Di 

Prima and Swinney [24], which makes the present laminar assumption more valid. Secondly, 

Kaye and Elgar [25] summarized typical flow regimes at various axial flow Reynolds and 

Taylor numbers. The transition lines between the laminar and the turbulent flow regimes for 

radius ratios of 0.693 and 0.802 are shown in Fig. 7. In the present study, the radius ratio is 

0.993. An approximate line (red dashed line in Fig. 7) was extrapolated from these two 

existing transition lines by Kaye and Elgar [25]. It can be seen that the operating condition 

for the present study (axial Reynolds number is 217.5 and Taylor number is 9154.4) should 

be in the laminar flow regime, as shown by the red marker in the figure. 

RESULTS AND DISCUSSIONS 

 The following section describes the influence of the temperature difference between 

the axial purge and cavity fluids on the flow field in the gap between the rotating shaft and 

stationary casing.  

For a case with uniform temperature of 308 K and inner cylinder rotating speed of 146 

rad/s, Fig. 8(a) shows the temporal development of the normalized z direction velocity Vz 

contours during one period of flow movement at one circumferential plane near the 

interface region between the upper shaft gap and hot water cavity (the end of the annulus 

gap). The instantaneous z direction velocity distribution around the circumference in the 

middle of the gap is shown in Fig. 8(b). Physical locations of the circumferential and mid-gap 

planes were marked in both figures as vertical dashed lines. Red colors in the contours 

indicate the upward flow whereas the blue colors represent the downward flow. 
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The purge flow dominates the flow field at the beginning of the period, as shown in the 

circumferential plane in Fig. 8(a). The region where the cold purge flow penetrates the 

downstream cavity moved around the circumference by time. As the purge flow moves away, 

Taylor instabilities start to develop, pairs of counter-rotating vortices are formed in the gap. 

In the middle part of the transient period, Taylor vortices dominate the dynamics of the flow 

in the gap. Influenced by the new purge flow approaching this location, the vortices start to 

stretch and merge (indicated by dashed lines in Fig. 8(a)). During the majority of the 

transient period, all the vortices in the flow are gradually moving downward (line II) before 

the purge flow dominates again. Spatial development of such convection process of the 

vortical structure is demonstrated by the z direction velocity contour along the mid-gap 

surface shown in Fig. 8(b). From this typical wavy Taylor vortical flow structure, it can be 

clearly observed that the transient period shown in Fig.4.3(a) is repeated four times (line I) 

during one revolution of the shaft (azimuthal wave numbers m=4). 
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Fig. 8. Normalized z direction velocity Vz contours during one period of flow movement at 
one circumferential plane and instantaneous z direction velocity Vz distribution around the 
circumference in the middle of the gap. Case with no temperature difference. 

 

Flow structures for cases with temperature difference between the two inlets are 

presented as below. As a good comparison with Fig. 8, Fig. 9 shows similar distributions of 

normalized z direction velocity near the end of the annuls gap, again driven by the purge 

flow dynamics, but with large temperature difference (cold inlet temperature of 318 K and 

hot inlet temperature of 551 K). Figure 9 shows that as the purge flow moves away, the 

cavity fluid penetrates upwards into the gap causing the stretching of the local vortical flow 

structures. It can be also seen that the upwards moving cavity fluid maintains its position in 

the vicinity of inner rotating shaft surface (indicated by red color contours). This simulation 
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transient process. Two dimensional streamlines generated by projecting the tangential 

velocity vector on the plane were also added to the contour plot to illustrate the stretching 

of Taylor vortices in the flow.  

For both of the cases, Taylor vortices form in the middle part of one period and seem to 

be disappearing at the beginning and ending time. Further in aspect of movement, it can be 

seen that, for both cases, the axial flow shows with a sinuous nature, passing through the 

space between adjacent vortices. And the strength of the axial flow periodically changes. It 

is because that as long as the bottom vortex was pushed out of the annulus gap or forced to 

be deformed (in case with temperature difference), the axial flow will rush out until new 

Taylor vortices form again. The difference in flow structure is evident for two cases. Besides 

the content mentioned in the last section, the vortices in case without temperature 

difference has more uniform structure and the size of the vortex at the bottom decreased 

until it was completely pushed out of the annulus gap. For the case with temperature 

difference, the number of the vortices developed in the gap region close to the interface 

with the downstream cavity is reduced and the bottom vortex is greatly stretched. That 

vortex is pushed by the downward axial flow. Therefore, the size of it should be decreasing 

theoretically. However, the contacting vortex sometimes merges into it and elongation will 

happen consequently. Clearly, in addition to the stretching of the local vortical flow structure, 

all the fluids near the end of the annulus gap are moving upward attaching the surface of 

inner rotating shaft (indicated by red color contours). 
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vortices without the existence of axial flow. Such trend is mainly due to the reduction in 

viscosity of the fluid. Table 2 also indicates that lower azimuthal frequency and smaller wave 

number are associated with higher temperature differences.  

For the case with ΔT=243 K, the instantaneous normalized temperature at one location 

of the shaft wall surface (near the interface region) is plotted in both time and frequency 

domains, as shown in Fig. 15(a) and (b), respectively. Figure 15 also presents the 

corresponding z velocity fluctuations of the near wall fluid at the same vertical location 

(dashed-line). Apparently, the velocity and temperature fluctuations synchronize with each 

other, which reveals an important fact that the thermal fatigue in practice is mainly driven 

by the oscillation of the local unsteady flow field.  



 

Fig. 15. 
the inte
 

 

Not

present

conditio

 

 

 Fluctuati
erface regio

te that the 

t study. Th

on are to be

ons of norm
n at (a) tim

axial therm

herefore un

e made. 

malized tem
e domain, a

mal conducti

ncertainties

mperature an
and (b) freq

ion along th

s exist wh

nd z velocit
quency dom

he shaft an

ile compar

y at one sha
main (PSD). (

d casing wa

risons to t

aft location
(ΔT=243 K) 

as neglecte

the real op

28 
 

 near 

d in the 

perating 

 



 

29 
 

CONCLUSION 

This paper presents a numerical study on the effect of temperature gradient on the 

Taylor-Couette flow instabilities in the PLR pump of the nuclear power plants. The capability 

of the computational solver employed was extensively validated against published 

experimental data in the open literature.  

For both cases with and without the temperature gradient, the mechanism of Taylor 

instability formation is similar, and the azimuthal wave speed of the wavy Taylor vortices 

stays nearly constant. With the existence of larger temperature difference, the local Taylor 

vortical structure near the interface between the annulus gap and lower cavity stretches 

greatly along the gap. The hot fluid from the lower cavity penetrates upwards into the gap, 

and mostly maintains its position in the vicinity of inner rotating shaft surface (driven by the 

centrifugal force). Higher temperature difference and rotating speed induce lower 

fluctuating frequency and smaller circumferential wave number of Taylor vortices. However, 

the azimuthal wave speed remains unchanged with all the cases tested. 

The predicted axial location of the maximum temperature fluctuation on the shaft is in a 

good agreement with the experimental data. The temperature fluctuation is strongly 

synchronized with the unsteady flow movement. 

It is in the hope that the new physical understandings presented in this paper would help 

the future PLR pump shaft-casing design optimization to ease the thermal fatigue problem in 

practice. 
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NOMENCLATURE 

H Annulus gap height (m) 

h Average heat transfer coefficient in the inner cylinder surface(W/(m2K)) 

λ Axial wavelength 

s Azimuthal wave speed  

Tac Critical Taylor number 

f Fundamental frequency of the azimuthal waves (Hz) 

d Gap width=R2-R1(m) 

Z Height from the end of the annulus gap (m) 

TH Highest temperature (K) 

Vin Inlet velocity (m/s) 

ν Kinematic viscosity (m2/s) 

keq Local mean equivalent conductivity 

TL Lowest temperature (K) 

m Number of azimuthal waves 

τ Period time (s) 

r Radial coordinate (m) 

R1 Radius of inner cylinder (m) 

R2 Radius of outer cylinder (m) 

η  Radius ratio=R1/R2 

Ω1 Rotating speed of the inner cylinder (rad/s) 

Ω2 Rotating speed of the outer cylinder (rad/s) 

Re Reynolds number 

Ta  Taylor number which is defined as ஐௗோభఔ  

k Thermal conductivity 

Vz Z-direction velocity (m/s) 
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