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ABSTRACT 

In the present work, the effect of coolant injection on the 
Over-Tip-Leakage (OTL) flow and squealer designs has been 
investigated in a transonic flow regime. After an experimental 
verification of the computational tool adopted for capturing 
transonic flow characteristics, a series of quasi-3D 
computational analyses were carried out to reveal and 
understand the cooling jet - OTL flow interaction at various 
hole locations and inclination angles. The results indicate that 
the performance rankings between flat tip and squealer tip 
designs might be altered by the addition of cooling injection. 
Full 3D conjugate heat transfer analyses demonstrate that 
partially replacing the squealer cavity with a simple flat shaped 
configuration in the rear transonic flow portion would offer a 
much improved coolablility without paying extra aerodynamic 
penalty. 
 
INTRODUCTION 

Modern turbine blade tip has to be effectively cooled to 
survive the extremely high heat load in the engine operating 
condition, even though most typical tip design concepts were 
initiated by the aerodynamicist to control the Over-Tip-Leakage 
(OTL) loss. The cooling injection within the narrow tip gap 
clearance would add much more complexity to the OTL flow 
structure, thus greatly vary tip heat load distribution. In 
practice, the tip aerodynamic design and the cooling design 
have to be an iterative process. 

The mixing process between OTL flow and the coolant 
and related heat transfer are different from most of the other 
film cooling in the gas turbine. Generally the injected coolant 
either impinges onto the adjacent casing wall, or has to interact 
with highly three-dimensional vortical flow structures 
associated with winglet or squealer tip designs. As addressed by 
Bunker [1], the primary intention for an efficient tip film 
cooling is to reduce heat flux with minimal coolant amounts 

(not to block the leakage flow from entering the tip gap, though 
this effect may be present to a small degree). There have been 
many studies which focused on the heat transfer and film 
cooling effectiveness of tip injection. Kim et al. [2] presented 
an early review on the effects of coolant injection on heat 
transfer. They reported that, for a given tip geometry, the 
cooling effectiveness was highly dependent on the coolant hole 
shape and injection location. The performance of different 
cooling hole shapes and geometries has been studied by Kim 
and Kim [3] and Lee and Kim [4]. According to Newton et al. 
[5], coolant holes placed at the separation bubble have a better 
performance than at the reattachment zone in reducing the tip 
heat load. Their flow visualization and pressure data revealed 
that injecting coolant can significantly alter the fluid dynamics 
of the OTL flow. This observation is also consistent with the 
experimental study by Yoon and Martinez-Botas [6]. The 
understanding in common is that, the interaction between the 
separation bubble and the narrow tip passage prevents the 
coolant expanding into the freestream, forces the coolant into a 
closer contact with the tip surface, and thus leads to a better 
film cooling performance. Ahn et al. [7] compared the cooling 
performance of plane and squealer tips with cooling holes 
located along the camber line or along the pressure side. 
Pressure-side cooling injection was identified as a better choice. 
For a squealer tip design, Hofer and Arts [8] found out that 
increasing the coolant mass flow rate increases the resistance to 
the OTL flow and the tip heat transfer is reduced accordingly. 
Similarly for a winglet tip studied by Zhou et al. [9], the 
average cooling effectiveness increases and the heat load 
reduces with more coolant mass flow ratio. Narzary et al. [10] 
and Li et al. [11] investigated the effect of coolant density ratio 
on cooling effectiveness, and concluded that the heavier density 
coolant could adhere to the surface and result in a higher film 
cooling effectiveness. The relationship between the blowing 
ratio and cooling effectiveness has also been studied by Lu et 
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