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Full-Vectorial Finite-Element Analysis of
Acoustic Modes in Silica Waveguides

Suchara Sriratanavaree, B. M. Azizur Rahman, Senior Member, IEEE,
David M. H. Leung, Namassivayane Kejalakshmy, and Kenneth T. V. Grattan

Abstract— A finite-element code has been developed to study
the vector acoustic modes in high index contrast silica optical
waveguides. Detailed spatial variations of the transverse and
longitudinal displacement vectors are shown for the bending,
radial, and torsional modes. The variation of the frequency shift
due to the stimulated Brillouin scattering and the overlaps seen
between the acoustic and optical waveguides also are presented,
together with the modal hybridness and modal dispersion.

Index Terms— Acoustic waves, finite element analysis,
optical waveguides, stimulated Brillouin scattering.

I. INTRODUCTION

ACOUSTIC waves propagate in a medium due to the
periodic displacement of the molecules of which it is

composed, being characterized by parameters such as the
material density, elasticity, Young modulus, and Poisson’s
ratio [1]–[3]. The particle displacement of such a mode in
a waveguide can occur in the longitudinal direction or alter-
natively in the transverse plane. When the core material in
the waveguide is surrounded by a cladding, the propagation
of the waves can be classified as being of torsional, bending,
radial, flexural or longitudinal type [4], [5]. These modes can
be supported, provided at least one of the velocities (the shear
or longitudinal velocity) in the cladding exceeds that in the
core.

It is well known that the acoustic properties of optical
waveguides can be coupled to the propagation of light,
creating the phenomenon of Brillouin scattering, which in
the presence of gain can become Stimulated Brillouin scat-
tering (SBS) and allow Guided Acoustic Wave Brillouin
scattering (GAWBS) [6]–[8]. The interaction of light with
a longitudinal acoustic wave can give rise to either SBS or
conventional Brillouin scattering processes. Meanwhile, the
transverse acoustic wave interaction may result in GAWBS,
which is a relatively weak effect. Analysis of such interactions
is not trivial due to the increased complexity of modern
optical waveguide structures, exemplified by photonic crystal
fibers [8] and sub-wavelength waveguides, such as nanowires.
In a way similar to that seen for the hybrid modes in
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high-index contrast optical waveguides, the acoustic modes
in such optical waveguides are also complex. In these cases,
a rigorous full-vectorial analysis [9]–[12] is required for the
accurate characterization of the acoustic wave propagation and
such a computer code has been developed. In this paper,
the development of this code based on the versatile finite
element method is reported and numerically simulated results
of acoustic wave guiding in a high-index contrast planar
silica (SiO2) waveguide are presented and analyzed. The full-
vectorial nature of the acoustic mode in a high-index contrast
optical waveguides has been illustrated.

II. THEORY

The propagation of an acoustic wave along the propa-
gation direction, z, is associated with a periodic molecular
displacement. For a time harmonic wave, the displacement
vectors, Ui, can be written in the following form [3]:

Ui = u(ux , uy, juz) exp{ j (ωat − kaz)} (1)

where ux , uy and uz are the particle displacement vectors
along the x , y and z directions, ωa is the angular frequency
representing the time dependence and ka is the propagation
constant identifying the axial dependence. For a loss-less
system, uz (the longitudinal displacement vector) is 90 degrees
out of phase with both ux and uy (transverse displacement
vectors). In such a case, by defining uz as an imaginary
component, as shown in Eq. (1), the system equation can be
simplified to a real eigenvalue equation. A similar approach
has also been exploited for the modal analysis of loss-less
optical waveguides [13]. The deformation in an acoustically
vibrating body can be described by the strain field, S, where:

S = ∇u (2)

The elastic restoring forces can be defined in terms of the
stress field, T. The inertial and elastic restoring forces in a
freely vibrating medium are related through the translational
equation of motion where:

∇. T = ρ
∂2u
∂ t2 (3)

Hooke’s Law states that the strain and stress are linearly
proportional to each other and are given by:

Ti j = ci jkl Skl ; i, j, k, l = x, y, z (4)

The microscopic spring constants, ci jkl , can be termed the
elastic stiffness constants. The compliance and stiffness tensors
can be denoted in the matrix form by:

[T ] = [c][S] (5)



in which ci jkl is a fourth order tensor which obeys the sym-
metry condition and hence can be represented by using two
suffix notations. Furthermore, the elastic stiffness constants are
related to the shear and longitudinal velocities.

Classically, in the finite element method [14] applied for a
solid structure, the displacement field, u, can be written with
the help of the interpolation shape function, [N], and of the
vector of the nodal values of the displacement field U where:

u = [N]U (6)
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(7)

The general system of equations associated with this
problem can be written as:

([A] − ω2
a[B])U = F (8)

where [A] is the stiffness matrix which is related to strain
energy and [B] is the mass matrix related to the kinetic energy.

These matrices are generated for a given propagation
constant, ka . The column vectors, F , contain the nodal values
of the applied forces, which in this case are taken to be equal
to zero. Solving this generalized eigenvalue equation for this
system yields an eigenvalue which is ω2

a , where ωa is the
angular frequency and the eigenvector U is the displacement
vector. From the given input ka and output ωa , the phase
velocity of the acoustic wave, va , can be calculated from the
following relationship:

va = ωa/ka . (9)

The associated boundary condition of the fully-vectorial
displacement vector is similar to that of an electric wall on
the electromagnetic field.

III. RESULTS AND DISCUSSIONS

Initially, the computer code developed has been bench-
marked to study torsional and bending modes of a high-index
contrast steel waveguide [15] and also a low-index contrast
silica fiber [16]. The agreements seen were very good, but
these are not shown here.

A. Silica (SiO2) Waveguide Analysis

Silica (SiO2) is the most widely used material for optical
waveguides because of its extremely low loss value and in
this study a simple rectangular SiO2 waveguide is consid-
ered, where its longitudinal and shear velocities are taken
as 5736 m/s and 3625 m/s, respectively [5]. A low acoustic

Fig. 1. Variations of phase velocities with the frequency for different acoustic
modes.

index material (with larger acoustic velocities) is needed as the
surrounding cladding material to allow the guidance of both
the longitudinal and shear modes. In this case, the well-studied
example of xenon gas is considered, as this is known to support
both longitudinal and transverse modes. The longitudinal and
shear wave velocities in xenon are taken as 22303 m/s and
15472 m/s, respectively [17]. Any optical material with similar
higher longitudinal and shear velocities is expected to give
similar acoustic modes. The horizontal (width – W) and
vertical (height – H) dimensions of the SiO2 waveguide are
initially taken as 1.5 μm and 1.2 μm, respectively.

The most important modal parameter, the modal dispersion
properties of an acoustic waveguide shows the relationship
between the frequency or the angular frequency, propagation
constant and phase velocities. Variations of the modal phase
velocities with the frequency for the first 5 modes are shown
in Fig. 1. In this case, 12000 first order triangles were used
to represent the waveguide structure. These are identified as
Bending 1 (B1), Bending 2 (B2), Torsional (T1), Radial (R1)
and Torsional-Radial (TR1) modes. Their detailed mode
profiles are shown later in the paper. It can be observed
that for the two bending modes, as the modal frequency is
increased, their phase velocities increase and asymptotically
approach the Rayleigh wave velocity. Later it will be shown
that as the wavenumber or the frequency is increased, the
modal displacements move closer to the interfaces. These
surface waves propagating along the interface of a solid are
also known as Rayleigh waves. By contrast, for the torsional,
radial and torsional-radial modes, as the modal frequency is
increased, their phase velocities decrease and asymptotically
reach the Rayleigh wave velocity. The waveguide cross-section
is shown in Fig. 1 as an inset.

It can be observed that the phase velocity of the B1 mode
is lower than that of the B2 mode for a given propagation
constant, ka . In this case, the width (W ) of the waveguide
was taken as being larger than its height (H ) and the
B1 mode with the Uy displacement vector is seen as the
dominant component: this can also be termed the Uy mode,
where as for the B2 mode with its Ux displacement vector as
the dominant component, this can be termed as the Ux mode.



Fig. 2. The displacement vector plots (a) Ux (b) Uy, and (c) Uz components
of B1 mode (Uy) at ka = 1.5 μm−1.

In this case, as their width and height were not equal, the
Ux and Uy modes were not degenerate and it was possible
to isolate them when the full structure was considered in the
simulation. However, in the case when the height and the width
of a waveguide are identical, these two B1 and B2 modes will
be degenerate and in that case, the symmetry condition can be
imposed along the vertical and horizontal axes (through the
center of the waveguide) to isolate these degenerate modes.
For this waveguide, with W = 1.5 μm and H = 1.2 μm, and
the propagation constant, ka = 2.0 μm−1, the frequency of
the B1 or Uy mode was 0.8716 GHz and that of the B2 or
Ux mode was 0.9362 GHz. However, if the waveguide height
and width are identical, the Ux and Uy modes will be degen-
erate, as for W = H = 1.2 μm and ka = 2.0 μm−1, both
the frequencies have been calculated as 0.880 GHz and for
the same value of ka , this parameter will be 0.929 GHz when
W = H = 1.5 μm. This indicates that the frequency of the
fundamental Uy mode is more related to the waveguide height
and that of the fundamental Ux mode is clearly related to its
width.

B. Modal Field Profile

1) Bending Mode: The full-vectorial mode profile of the
B1 mode is shown in Fig. 2, for the case when ka = 1.5 μm−1.
For this mode the dominant displacement vector was Uy and
its spatial variation in the x–y plane is shown in Fig. 2(a).
It can be observed that the Uy profile is strongly confined
inside the waveguide with almost a constant value and this
reduces monotonically in the cladding. Its detailed variation
along the transverse coordinates will be shown later. The
variation of the non-dominant Ux profile across the waveguide
cross-section is shown in Fig. 2(b). It can be observed that its

Fig. 3. Variations of Ux and Uy along the x-axis for B1 and B2 modes,
respectively at ka = 1.5 μm−1.

magnitude is relatively small, at only 6% of the dominant
Uy displacement vector, and clearly shows a higher order
spatial variation at the four corners of the waveguide. The
spatial variation of the Uz vector for this mode, B1, is shown
in Fig. 2(c), which clearly shows both positive and negative
peaks along the upper and lower horizontal side walls. The
waveguide outline is also illustrated in these figures. The
magnitude of the Uz displacement vector is considerable
higher, at about 60% of the dominant Uy vector. It is well
known that in optical waveguides with a strong refractive
index contrast, all the 6 components of the electric and
magnetic fields exist [18] and a similar feature for an acoustic
waveguide with a strong material contrast is also demonstrated
here. It should be noted that for the quasi-TE or Hy

11 mode
of an optical waveguide [19], its Hy field is the dominant
component and is primarily confined inside the waveguide
core. For the smaller non-dominant Hx field, this is mainly
located around the four corners of the waveguide with higher
order spatial variations. The parameter Hz has a relatively
higher magnitude but with its peaks along the upper and
lower dielectric interfaces, this strongly correlates with the
eigenvector shown in Fig. 2 for the Uy mode.

The B2 mode has the Ux component as its dominant
displacement vector (this is not shown here) with its profile
similar to that of the Uy profile for the Uy mode (or B1 mode),
(which is shown in Fig. 2(a)). Similarly, the non-dominant Uy
component of this B2 mode (with Ux dominant) has higher
order spatial variations at the waveguide corners with only
6% of the magnitude. Its Uz profile is also similar to the
Uz profile of the B1 mode (with Uy dominant), which is
shown in Fig. 2(c), but for this mode rotated 90 degrees,
with its positive and negative peaks along the left and right
vertical interfaces (but these are not shown here). Its maximum
magnitude is about 60% of that the dominant Ux component.
For this Ux mode (or B2 mode) with the dominant Ux vector,
this strongly correlates with the eigenvector profile of the
fundamental Hx

11 (quasi-TM) mode in an optical waveguide
with a strong index contrast, such as a silicon nanowire.

Variations of the Uy displacement vector for the Uy mode
(B1) and the Ux displacement vector for the Ux mode (B2)



Fig. 4. Variation of Uy of the Bending, B1(Uy) mode along y-axis for
ka = 1.5 μm−1 and ka = 2.0 μm−1.

along the x-axis are shown in Fig. 3, when ka = 1.5 μm−1.
The Uy profile inside the core, shown by a dashed line,
is nearly flat inside the core but with small ripples and a
smaller peak at the center (shown as an inset), where its
value reduces rapidly outside the core. On the other hand, the
Ux profile, shown by a solid line, is also nearly flat inside the
core but with a small dip at the center (shown as an inset)
and outside the core its value reduces more rapidly and is
associated with the small negative values. For this waveguide,
as the material contrast was very high, the modal eigenvectors
shows strong confinement inside the core. For a smaller index
contrast, such as with a Ge doped SiO2 waveguide with SiO2
cladding, it has been observed (but is not shown here) that the
variations of Ux and Uy along the transverse directions are
slower and can be close to a Gaussian profile in shape.

The variation of the Uy displacement vector for the Uy mode
(B1) along the y-axis is associated with a small negative dip
outside the core (similar to the Ux profile of the Ux mode (B2)
along the x-axis as shown in Fig. 3), but this is not shown
here. Similarly, the variation of the Ux displacement vector for
the Ux mode along the y-axis is monotonic without changing
its sign, in a way similar to the Uy profile along the x-axis
(as shown in Fig. 3) for the Uy mode. Thus the dominant
Uy and Ux profiles of the Uy and Ux modes reverse the
nature of their variations along the x and y directions.
When the waveguide width and height are equal, the Ux and
Uy modes are degenerate. As a result, the modes can easily
exchange power between them. For two degenerate modes
with the magnitudes of Ux and Uy (and these being equal),
their resultant displacement vectors are oriented at 45 degrees
to the two perpendicular axes. As the axial propagation
constant, ka , increases, these mode shapes transform slowly
and become more confined and the magnitudes of the non-
dominant components also increase.

The Uy profiles along the y-axis for the Uy mode (B1)
are shown in Fig. 4, for two different ka values. It can be
observed that when the propagation constant is increased, the
field outside the core reduces more rapidly – here the negative
peak gets slightly larger, but it moves closer to the boundary.
A larger dip at the center of the waveguide exists for the

Fig. 5. Variation of the Uy of B1 mode along y-axis at ka = 4.0 μm−1 and
ka = 10.0 μm−1.

Fig. 6. Uy profile of the Bending mode (B1) at ka = 10.0 μm−1.

larger ka value, given by ka = 2 μm−1. Similarly, its (Uy)
variation along the x-axis also becomes faster outside the core
when the propagation constant, ka , is increased, (but this is not
shown here). As the value of ka is increased, the non-dominant
displacement vector, Ux for the B1 mode also becomes more
confined near the 4 corners and its magnitude is increased, as
is seen for example from 6% at ka = 1.5 μm−1 to 10% when
ka = 4.0 μm−1.

Variations of the Uy profile along the y-axis, for two even
higher values of the propagation constant, ka = 4.0 and
10.0 μm−1, are also shown in Fig. 5 for the B1 mode.
It can be observed that as the ka value is increased, the dip at
the center increases further and now the eigenvector is more
confined along the upper and lower horizontal interfaces of
the waveguide. The negative dip outside the core also becomes
slightly larger, sharper and closer to the waveguide interfaces.

The transverse variation of the displacement vector, Uy,
of the Uy mode (B1) across the waveguide cross-section
is shown in Fig. 6, when ka = 10.0 μm−1. It can be
observed that the profile of Uy for the same B1 mode at
ka = 10.0 μm−1, as shown here, is quite difference from
the Uy profile at ka = 1.5 μm−1, as shown in Fig. 2(a).
It can be observed that the displacement profile is more
confined along the upper and lower interfaces and its variation
along the x-direction is relatively flat. For this higher



Fig. 7. Variation of Uz along y-axis of the B1 mode(Uy) at ka = 1.5 μm−1

and ka = 4.0 μm−1.

propagation constant, the magnitude of the non-dominant
Ux displacement vector of this B1 mode increases significantly
to about 40%, but their displacements are mainly confined at
the four corners of the waveguide, (which is not shown here).

The variations of the axial displacement vector, Uz, for the
B1 (Uy) mode along the y-axis for ka = 1.5 and 4.0 μm−1

are shown in Fig. 7. It can be observed that as the propagation
constant is increased, the displacement vector Uz becomes
more narrowly confined along the upper and lower horizontal
interfaces and its magnitude also slightly increases.

The detailed spatial variations of all the three displacement
vector components for this B1 (Uy) mode are shown in
Figs. 2 to 7. For the B1 (or Uy mode), the displacement vector
has the dominant Uy component and the resultant structural
deformation will be in the vertical direction, particularly for
lower propagation constants (or lower frequencies). However,
for higher frequencies, as the magnitude of the Ux displace-
ment also increases to nearly 40% of the Uy displacement,
the profile of their combined transverse displacement vector
(Ut = xUx + yUy) will modify considerably, particularly
near the four corners. The signs of the displacement vectors
will change after every half-wavelength and repeat after every
wavelength and this will produce a periodic structural bending
along the vertical axis. Similarly, for the B2 mode, the
periodic displacement along the x-axis will cause this mode
to periodically bend the waveguide along the x-axis.

It should be noted that for the B1 mode, although the
dominant displacement is in the y-direction, it also has a
significant Uz displacement. The variation of Uz along the
transverse plane is more complicated with its positive and
negative values at the upper and lower horizontal interfaces.
The total displacement will vary periodically along the axial
direction. As ka increases, both the dominant Uy and the
next significant component, Uz, are confined mainly along the
upper and lower horizontal interfaces and like a surface mode
confined along the material interfaces, its velocity approaches
that of the Rayleigh wave.

2) Torsional Mode: The modal properties of other modes
are of interest and are presented briefly. The torsional mode,
labeled T1 in Fig. 1, has nearly equal Ux and Uy displace-

Fig. 8. Displacement vector (a) Ux (b) Uy, and (c) Uz profiles of the T1 mode
at ka = 1.5 μm−1.

ment vectors. The Ux, Uy and Uz profiles for this mode at
ka = 1.5 μm−1 are shown in Fig. 8. It can be observed
that the more dominant displacement vector, Uy shows its
maximum values along the left and right vertical interfaces,
as shown in Fig. 8(b). On the other hand the horizontal
displacement vector, Ux shows its maximum values along the
upper and lower horizontal interfaces, as shown in Fig. 8(a).
As the height and width of the waveguide were not equal, the
torsional modes were not degenerate and the magnitudes of the
Ux and Uy values were also slightly different. The Uz profile
of this torsional mode (T1) is shown in Fig.8(c) – this exists
mainly at the four corners with higher order spatial variations.
For this ka value, its magnitude was 20% of the dominant
Uy components, and this shows that the relative magnitude
of the longitudinal displacement vector, Uz, is lower than that
of the B1 and B2 modes. This mode shows antisymmetric Ux
and Uy displacement vectors and the Uz displacement vector
with very small magnitude will have a smaller interaction with
the fundamental optical mode.

The combined displacement vector, Ut in the transverse
plane for this torsional mode, T1, is shown in Fig. 9, when
ka = 1.5 μm−1. This clearly shows a twist in the transverse
plane due to the combination of the x and y displacement
vectors, which has been shown in Fig. 8(a) and (b), respec-
tively. Every half-wavelength, the sign of the displacement
vectors (and direction of twist) will change. This will give the
periodic clockwise and anticlockwise twists in the transverse
plane along the waveguide.

3) Radial Mode: By contrast, the radial mode R01 labeled
R1, shows a considerable magnitude for all the three displace-
ment vectors. The Ux, Uy and Uz profiles for this mode at
ka = 10.0 μm−1 are shown in Fig. 10. It can be observed
that the dominant displacement vector, the Uy profile shown



Fig. 9. The vector displacement, Ut plot of Torsional mode (T1) at
ka = 1.5 μm−1.

Fig. 10. The displacement vector plots of (a) Ux (b) Uy and
(c) Uz components of the R1 mode at ka = 10.0 μm−1.

in Fig. 10(b), is mainly confined to the upper and lower hori-
zontal interfaces. On the other hand, the Ux displacement vec-
tor, shown in Fig. 1 (a), is mainly confined along the left and
right vertical interfaces with its maximum magnitude being
about 80% of the maximum Uy displacement. However its
Uz profile, given in Fig. 10(c), clearly shows its confinement
along all the four interfaces with the sharp peaks at the four
corners. It changes its sign at the interfaces and sustains
a smaller but relatively constant magnitude inside the core.
Its maximum magnitude is 80% (of that of the dominant Uy
displacement vector) at the four corners, about 50% along
the four interfaces and about 25% inside the core. Due to
the symmetric nature of the Uz profile, this mode would be
expected to have a considerable overlap with the fundamental
optical mode.

4) Torsional-Radial Mode: Figure 11 (a) shows the resultant
Ut vector profile in the transverse plane for the R1 mode

Fig. 11. Vector plot Ut of (a) Radial mode (R1) (b) Torsional-Radial
more (TR1) at ka = 10.0 μm−1.

when ka = 10 μm−1. In this case, the dominant Uy had
positive and negative peaks at the upper and lower interfaces,
as shown in Fig. 10 (b) and Ux had negative and positive peaks
along the left and right interfaces as shown in Fig. 10 (a). The
resultant Ut vector shows a displacement which moves radially
outward but is periodically reversing its direction so expanding
and contracting its dimension along the propagation direction.
However, its changing cross-section remains rectangular in
shape. R1 will perturb the refractive index profile radially
without changing the polarization of the guided wave. The
combination of the transverse and longitudinal displacements
can give rise to nonlinear optical effects such as SBS and
polarized GAWBS [7], [20].

The Ux and Uy profiles of the TR21 mode, labeled as
the TR1 mode, were similar to that of the R1 mode, but
π radian out of phase in the time axis (and these are not
shown here). However, their out of phase combination yields
the Ut profile, which is shown in Fig.11(b). This shows the
maximum displacement in the four quadrants of the core. The
vector displacement shown in this figure will cause the guide
to expand along the vertical axis and ‘squeeze’ along the
horizontal axis. This produces a deformation of the waveguide
which also reverse its shape periodically and hence induces
additional optical birefringence.

C. Acoustic-Optical Interactions

1) SBS Shift Frequency: In this section the interaction
between the acoustic and the optical mode has been studied
by using ka = 2β to calculate the SBS frequency shift in the
acoustic waveguide and afterwards the overlap integrals of the
acousto-optic interaction are shown [21]–[23].

Firstly, the variation of the SBS frequency shift with
the waveguide height is shown in Fig. 12(a). It can be
observed that as the height is reduced initially, then the
SBS frequency decreases and then approaches the cut-off.
Further decreases of height of the waveguide results the
SBS frequency being increased, as shown in the figure for both
quasi-TE and quasi-TM modes. The variation of the
SBS frequency shift with the waveguide width, W, is shown
in Fig. 12(b) for both quasi-TE and quasi-TM modes. It can
be observed that as the width is reduced, the SBS fre-
quency shifts for both the polarized modes are reduced.



Fig. 12. Variation of the SBS frequency shift (GHz) with (a) Height (μm)
and (b) Width (μm) for quasi-TE and quasi-TM modes.

It can also be noticed that as the width is increased, the SBS
frequency is increased of both quasi-TE and TM modes, as it
approaches the maximum width the quasi-TE mode has higher
SBS frequencies than that quasi-TM mode, of 5.98 GHz and
5.85 GHz, respectively.

2) Modal Overlap: As discussed previously, the SBS
frequency indicates the resulting frequency shift due to the
optical-acoustic interaction: however, its strength depends on
the overlap between these modes. The overlap interaction of
the transverse Radial (R1 or Uy

12) mode with its Uz displace-
ment vector is shown here. The variation of overlap integral
values of the acousto-optic interaction is shown in Fig. 13(a).
This represents the overlap interaction of the Uz displacement
vector with the dominant optical field. For the quasi-TE mode,
the overlap integral determination was carried out with the
dominant Hy field, but for the quasi-TM mode, it was done
with the Hx field. In here, the overlap calculation of the
Uz displacement vector profile of the radial mode will intro-
duce both GAWBS and SBS into the core of the waveguide
and create the interaction between acoustic and optical modes.

The graph shows that the maximum overlap is achieved
when the heights are 1.0 μm and 1.15 μm for the quasi-TE
and quasi-TM modes, respectively, and further increases
of height will reduce the overlap integral. Therefore, the
mismatch between the acoustic and the optical mode is higher
when the height is increased. In this section the effect of the
width of the SiO2 waveguide is studied on the SBS frequency
shift and the overlap between the acoustic and optical
waves. To achieve that, first the optical modes are studied.
To obtain the SBS frequency shift, it is essential to calculate

Fig. 13. The overlap variations with the (a) Height (μm) and (b) Width
(μm) of the guide for the quasi-TE and quasi-TM modes.

the propagation constant, which is related to the effective index
of a mode. Figure 13 (b) shows the overlap integral between
the acoustic radial mode (R1) of its Uz displacement vector
with the fundamental quasi-TE and quasi-TM optical modes
with the waveguide width. It can be observed that as the width
of the guide is increased the overlap increases rapidly and
reaches its maximum value, then reduces as width is increased
further. When the width is at its maximum, the overlap
ratio between acoustic and optical modes is at its minimum.
In contrast, a higher overlap ratio is shown to be 0.438 and
0.40 at 1.1 μm and 1.15 μm, respectively, for the quasi-TE
and quasi-TM modes. It can be observed that the mismatch
between acoustic and optical waves is quite high when width
is increased.

IV. CONCLUSION

Detailed displacement vectors for several fully hybrid
acoustic modes with both transverse and longitudinal
displacement vectors have been determined and are discussed
for a high index contrast acoustic SiO2 waveguide. Unlike
in a weakly guiding SiO2 waveguides, the transverse and
longitudinal displacements are strongly coupled in the high
index contrast SiO2 waveguide. It is also shown here that
their displacement vector profiles continuously evolve as the
frequency or propagation constant increases and becomes
increasingly confined along the waveguide interfaces.

The development of the finite element code allows a more
rigorous study of the vector acoustic modes in complex
acoustic waveguides to be undertaken, such as are used
for guiding through exotic optical waveguides, for example
via photonic crystal fibers, silicon nanowires, silicon slot



waveguides, Bragg fibers and plasmonic hybrid waveguides,
which may have higher optical and acoustic index contrasts.
It should be noted that the optical modes are also fully hybrid
with all the 6 components of the E and H fields present.
To evaluate and optimize the complex interactions between the
hybrid optical modes and the hybrid acoustic mode, a fully-
vectorial approach is necessary. A computationally-efficient
finite element based approach, as presented here, has been
shown to be more appropriate to study and thus use to optimize
such interactions.
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