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ABSTRACT            
 

The Phenology of vegetation varies with climate and 

variability in phenology is a powerful measure of 

climate change. Remotely-sensed data can be used to 

produce phenology curves that capture ‘green-up’, 

maturity and senescence from local to global scales. 

These curves are usually produced with Normalised 

Difference Vegetation Index (NDVI) data but are 

notoriously noisy. The MERIS Terrestrial Chlorophyll 

Index (MTCI) is related to the chlorophyll content, 

does not suffer from some of the limitations of NDVI 

(e.g., saturation at high biomass) and should, it was 

hypothesised, produce a less noisy phenological curve. 

Two methods were used to determine the phenological 

curve (signal) and Variability in the curve (noise); 

iterative polynomial fitting and discrete Fourier 

transformation. 

 

The signal-to-noise ratio (SNR) for MTCI curves was 

significantly higher than for the NDVI curves and this 

difference was largest for high green biomass areas. 

This was probably the result of the compositing 

techniques typically used for MTCI data. However, the 

two methods of SNR calculation produced different 

results for the NDVI but not the MTCI, thus suggesting 

that there was bias in the less noisy NDVI curve. 

 

1. INTRODUCTION 

 

Climate influences vegetation growth and more 

specifically increased temperature and level of 

atmospheric carbon dioxide increases vegetation 

productivity, carbon sequestration and modifies 

ecosystem function [1, 2].  The estimation, in space 

and time, of vegetation phenological variables such as: 

time of onset of ‘greenness’, time of end of 

‘greenness’, duration of the growing season, rate of 

‘green up’ and rate of senescence can provide the 

information needed to understand better the effect of 

climate change on vegetation.  Such phenological 

variables can be derived from ground or remotely 

sensed data. Ground-derived phenological variables 

provide species-specific information with high 

temporal resolution but lack a spatial component [3]. 

By contrast, temporally frequent remotely sensed data 

provide a unique opportunity to estimate phenological 

variables at a range of scales from local to  global. The 

normalised difference vegetation index (NDVI), ratio 

of reflected solar radiation in red and near-infrared 

wavebands, is used widely to estimate phenological 

variables [4]. Many studies have used an NDVI time 

series calculated using the Advanced Very High 

Resolution Radiometer (AVHRR) sensor data to first, 

derive phenological variables and then use this 

information to quantify ecosystem response to climate 

change over continents and decades [5, 6, 7, 8]. These 

studies have been made possible by the high 

correlation between NDVI and the amount of green 

vegetation biomass [6]. However, most of the studies 

suffered from unexplained variations in a smooth 

growth curve, as a result of  image miss-alignment, 

sensor miss-calibration [9] and changing atmospheric 

conditions [10], for example, temporal variation in the 

presence of cloud, water, snow, or shadow [11, 12].  

As a result, it has proved difficult to derive reliable 

routine phenological variables from raw NDVI time 

series data [5]. Smoothing methods have been 

developed to suppress this sensor and environmental 

‘noise’ in the phenological signal. Examples include 

median smoothing [5], discrete Fourier transforms 

[13], moving averages [14] and Savitzky-Golay filters 

[15]. 

Furthermore, the NDVI  which varies with both the 

amount of  green vegetation biomass and the 

concentration of chlorophyll [11, 16, 17]  saturates at 

high levels of both. Satellite sensor systems such as 

EOS and Envisat and in the future, Sentinel 3, could go 

some way to addressing this constraint.  An operational 

ESA Envisat product, the MERIS Terrestrial 

Chlorophyll Index (MTCI), is related directly to 

canopy chlorophyll content [18], which is, in turn, a 

function of chlorophyll concentration and leaf area 

index [19]. MTCI has limited sensitivity to 

atmospheric effects and also soil background and view 

angle [20] and with the availability of near real time 

weekly and global MTCI composites [21] enables 

researchers to derive accurate phenological variables 

accurately. However, given the previous experience 

with the NDVI, it is important to estimate the amount 

of  sensor and environmental noise present in the 

MTCI time series before using it to derive these 

phenological variables. 

The aim of this study was to estimate and compare the 

Signal-to-Noise Ratio (SNR) in both NDVI and MTCI 

time series for different land cover types as a prelude to 

the use of the MTCI for regional to global scale 

phenological investigations. 
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2.  DATA METHODOLOGY 

 

Although most remote sensing  studies of vegetation 

phenology have used NDVI calculated using  AVHRR 

data, the NDVI derived from the spatially, spectrally 

and radiometrically more appropriate SPOT 

VEGETATION sensor  are the most accurate available 

in routinely available datasets [22]. For this study, a 

time series of  SPOT VEGETATION  NDVI 

composite (S10) products was obtained from the 

VGT4Africa  project [23]. 

The S10 NDVI product is derived from 10 day periods 

or dekads  of NDVI data [24], mapped onto a 1km 

latitude-longitude grid using a Maximum Value 

Composite (MVC) algorithm.  For each pixel in the 

grid, the MVC algorithm selects the most probable 

NDVI value [23] during the dekad period.  If two, or 

more, NDVI values  have the same probability then the 

maximum value is used. 

MTCI data was composited from standard ESA Level 

2 (geophysical) products using an identical 

compositing period (dekads) and map grid (latitude-

longitude, 112 pixels per degree) as those used for the 

S10 NDVI product.  The MTCI value compositing 

algorithm differed, however, from the VGT4Africa 

MVC algorithm in that all valid MTCI values were 

combined using an arithmetic mean. As a result, the 

S10 NDVI data have already undergone, what is in 

effect, a noise reduction procedure whereas  MTCI 

composite data have not. 

Eight dominant land cover types were selected using 

the University of Maryland (UMD) thirteen class, 1 km 

spatial resolution land cover map. The UMD land 

cover map had been prepared using AVHRR data 

acquired between 1991-1994 [25].  The NDVI 

composite, MTCI composite and land cover map were 

co-registered and for each land cover type pixels were 

selected from across Africa. 

Two techniques were used to estimate the ‘signal’ (the 

smooth time series curve) and the ‘noise’ (variability 

around the time series curve): (i) Iterative polynomial 

fitting and (ii) discrete Fourier transformation. 

 

2.1.       Iterative polynomial fitting 

The iterative polynomial algorithm divides the time 

series T, into a set of n, 21 dekad long, time series (Tn) 

with an overlap of 6 dekad between each time series. 

For each n a 5
th
 order polynomial (Pn) was fitted to 

each series (Tn) 

For each overlapping period the data were averaged. 

The resultant smooth time series is Sn is defined as : 

 Sn =Max (Tn, Pn  )                   (1) 

This process was repeated 6 times and the 5
th
 degree 

polynomial ensures that the curve cannot have more 

than 4 extrema (2 minima and 2 maxima) during the 21 

dekad time period. 

 

2.2.  Discrete Fourier transformation 

The discrete Fourier transformation (DFT) decomposes 

any complex waveform into a series of sinusoids of 

different frequency. Individual sinusoids and their 

frequencies can be amalgamated in to a complex 

waveform for which  noise has been removed. The 

DFT is given by: 
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Where f(x) is the xth value in the time series, u is the 

number of Fourier components, x is the dekad number, 

T is the length of time period cover (number of dekad), 

and here T is equal to N. 

The above equation consists of two parts: cosine (real) 

part and sine (imaginary part), where the cosine part is: 
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Using the above equation the Fourier magnitude (Fm) 

can be calculated as 
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The first two harmonics of the Fourier transformation 

usually account for 50-90% of the variability in a data 

set; in this case variability in the vegetation index time 

series [13, 26]. Inverse Fourier transformation using 

the first two harmonics alone has been used 

successfully by others to recreate an NDVI ‘profile’ for 

the identification of crop types [26], agro-ecological 

zones [27] and broad land cover types [28].  It has been  

suggested that phenologically related information  

exists within the fist five harmonics with higher order 

harmonics dominated by noise [29].  

 

2.3.          Estimating Signal-to-Noise ratio (SNR) 

We assumed that the smooth curves obtained by 

iterative polynomial fitting and inverse Fourier 

transformation were ‘signal’ and  the difference 

between  this smooth curve and the raw data  were 

‘noise’. The SNR can be estimated as: 

Noise

signalSignal

StDev

MinMax
SNR

−
=           (4)                                                        

This was applied to NDVI and MTCI time series 

processed using iterative polynomial fitting and 

discrete Fourier transformation. 
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3. RESULTS AND DISCUSSION 

 

For a broadleaved forest pixel a comparison between 

the smoothed curve derived using both iterative 

polynomial fitting and discrete Fourier transformation 

and raw data for the MTCI and NDVI is shown in Fig. 

1.  
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Figure 1. Comparison of smoothed curve (signal) and 

raw data using discrete Fourier transformation & 

iterative polynomial fitting for MTCI & NDVI  for a 

deciduous broadleaved pixel and  the normalised  

noise. 

 
The iterative polynomial curve was fitted along the 

highest values, as NDVI values were, in general, 

lowered by sensor and environmental noise.  The 

discrete Fourier transformation makes no such 

assumptions and fitted the curve through the middle of 

the time series points. 

The MTCI and NDVI  SNR  for each land cover type 

were compared using  scatter plots (Fig. 2 and 3) and 

as would be expected, there was no correlation 

between the two. However, the MTCI SNR was high 

for the high green biomass classes (deciduous 

broadleaf, evergreen broadleaf, woodland, wooded 

grassland) and the NDVI SNR was slightly higher for 

the intermediate green biomass class (shrubland). 

Moreover, the MTCI SNR was more than twice that of 

NDVI SNR  for deciduous broadleaf, evergreen 

broadleaf and  woodland (table 1). As discussed above 

iterative polynomial fitting produced a slightly lower 

NDVI SNR than that of discrete Fourier 

transformation. 
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Figure 2. Relationship between MTCI SNR and NDVI 

SNR for eight land cover classes using iterative 

polynomial fitting. 

  Table1. Mean and standard deviation (SD) of MTCI 

SNR and NDVI SNR  for eight land cover classes  

estimated using the discrete Fourier 

transformation(DFT)  and iterative polynomial 

fitting(IPF). 

 

Mean SNR using  

IPF 

Mean SNR 

using DFT   
Land cover class 

No of  

points MTCI NDVI MTCI NDVI 

Deciduous broadleaf 82 11.15 4.04 10.82 5.26 

Evergreen  broadleaf 139 7.09 2.90 6.70 4.17 

Woodland 138 14.45 7.44 14.71 8.64 

Wooded grassland 121 12.31 10.19 12.91 11.36 

Closed shrubland 92 9.25 11.05 9.94 12.74 

Open shrubland 99 9.30 10.43 8.08 12.20 

Grassland 101 9.05 8.03 8.79 9.27 

Cropland 101 11.0 10.5 12.6 12.5 
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Figure 3. Relationship between MTCI SNR and NDVI 

SNR for eight land cover classes using discrete Fourier 

transformation. 

 

The Mann-Whitney U test was used to determine (i) if 

there was a significant difference between SNR 

produced using the two methods and (ii) if variation in 

SNR in MTCI and NDVI was significant. The Mann-

Whitney U-Test examines whether the differences 

between two sets of sample data are significant or 

whether these differences could have occurred by 

chance. 

For NDVI time series and for most land cover classes 

either there was a significant (p<0.001) or marginally 

significant (p<0.05) difference between the SNR 

produced using the two methods (table 2). By contrast, 

for MTCI time series and for most land cover classes 

(except cropland) there was no significant difference 

between the SNR produced using the two methods 

(table 2). This was because the iterative polynomial 

was fitted to high values of NDVI and the discrete 

Fourier transformation produced a curve that passed 

through the middle of the time series points. Therefore, 

when there was a data ‘drop out’ in the NDVI time 

series the difference between raw and processed data 

was higher  when iterative polynomial fitting than 

when using  discrete Fourier transformation; resulting 

in a higher noise and lower SNR for the former 

method. As there was no significant difference between 

the SNR produced by both methods in the MTCI time 

series curve, it can be inferred that there is no bias in 

the MTCI noise. It suggested that MTCI noise is more 

randomly distributed around the signal  and so does not 

results in the data ‘drop outs’ seen  in NDVI data. 

 

SNR for NDVI SNR for MTCI 
Land cover class 

Z p Z p 

Deciduous broadleaf -3.516 <0.001 -0.326 0.745 

Evergreen broadleaf -6.877 <0.001 -0.222 0.824 

Woodland -2.213 0.027 -0.829 0.407 

Wooded grassland -1.134 0.257 -0.310 0.756 

Closed shrubland -2.127 0.033 -1.005 0.315 

Open shrubland -1.822 0.069 -1.503 0.133 

Grassland -2.053 0.040 -0.393 0.694 

Cropland -2.185 0.029 -2.348 0.019 

Table 2. Mann Whitney Z and  p values for MTCI SNR 

and NDVI SNR between SNR estimated using the 

discrete Fourier transformation and iterative 

polynomial fitting. 

 
SNR using  

discrete Fourier 

transformation 

  

SNR using  

iterative  

polynomial 

 fitting 
Land cover class 

Z p Z p 

Deciduous broadleaf -8.728 <0.001 -7.715 <0.001 

Evergreen broadleaf -12.191 <0.001 -8.698 <0.001 

Woodland -9.078 <0.001 -8.031 <0.001 

Wooded grassland -3.219 0.0013 -2.875 0.0040 

Closed shrubland -2.274 0.0230 -2.666 0.0077 

Open shrubland -1.558 0.1192 -4.829 <0.001 

Grassland -1.842 0.0655 -0.629 0.5292 

Cropland -1.169 0.2425 -0.675 0.4991 

 

Table 3. Mann Whitney Z and  p values for SNR 

estimated using the discrete Fourier transformation 

and iterative polynomial fitting between the MTCI SNR 

and NDVI SNR. 

 

Similar NDVI and MTCI SNR were obtained when 

using iterative polynomial fitting and the discrete 

Fourier transformation (Table 3). However, MTCI 

SNR for deciduous broadleaf, evergreen broadleaf, 

woodland and wooded grassland classes were 

significantly higher than for NDVI SNR  (p<0.001 and 

p<0.05). The difference between MTCI SNR and 

NDVI SNR for the remaining classes was not 

significant, with the exception of the shrubland class 

where the NDVI SNR was significantly higher than the 

MTCI SNR when using iterative polynomial fitting.  

A lower NDVI SNR than MTCI SNR for high biomass 

classes was because NDVI saturates at high LAI 

whereas MTCI does not. As a result the signal will 

reach an asymptote for NDVI but peak for MTCI.  This 

suggests that MTCI is more sensitive than NDVI to 

growth in vegetation, in particular for high biomass 

classes. However, the MTCI composites were 

produced as an arithmetic mean without any prior noise 

removal and just one ‘noisy’ point within the 

composting period could have a large effect on the 

overall value of the composited data. If, in future, 

better compositing methods were used that suppressed 



noise within the compositing period then the MTCI 

SNR would be even higher. 

 

4. CONCLUSION 

 

The SNR for NDVI and MTCI time series were 

determined for eight land cover types using iterative 

polynomial fitting and discrete Fourier transformation. 

A maximum value compositing method was used to 

produce NDVI composites; whereas an arithmetic 

mean was used to produce MTCI composites. It can be 

conluded from this study that: 

(i) The MTCI SNR was significantly higher than 

NDVI SNR for areas of high green biomass. 

However, the MTCI SNR could have been 

increased by adopting a better composting method 

which could remove outliers that contribute to 

noise.  

(ii) There was a statistically significant difference 

between  NDVI SNR estimated using the two 

methods which suggested a bias in NDVI time 

series  as a result of sensor and environmental  

noise. 

(iii) There was no significant difference between MTCI 

SNR estimated using the two methods which 

suggested MTCI was less affected by sensor and 

environmental noise. 

Other criteria, such as phenological variable 

determination, are subject to further comparison. The 

future work should focus on:(i) alternate filtering for 

MTCI compositing e.g. median instead of mean to 

reduce the effect of outlier values and (ii) comparison 

in areas of know NDVI value ‘dropouts’ (e.g., along 

the Gulf of Guinea in Africa) to see if MTCI is 

degraded to the same extent. 

 

5. ACKNOWLEDGEMENT 

The authors acknowledge the NERC Earth Observation 

Data Centre for MTCI composites; VGT4Africa 

project, SPOT Vegetation programme and CNES for 

NDVI composite data and Mr Jonathan Rumsey for 

help in data processing.  

6. REFERENCES 

1. Rosenzweig, C. & M. L. Parry. (1994). Potential 

impact of climate-change on world food-supply, 

Nature, vol. 367, no. 6459, pp. 133-138. 

2. Diaz, S., Grime, J. P., Harris, J. & Mcpherson, E. 

(1993). Evidence of a feedback mechanism 

limiting plant-response to elevated carbon-

dioxide, Nature, vol. 364, no. 6438, pp. 616-

617. 

3. Studer, S., Stockli, R., Appenzeller, C. & Vidale, P. 

L. (2007). A comparative study of satellite and 

ground-based phenology, International Journal 

of Biometeorology, vol. 51, no. 5, pp. 405-414. 

4. Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, 

D.W. (1974). Monitoring vegetation systems in 

the Great Plains with ERT, In Proceedings, 

Third Earth Resources Technology Satellite-1 

Symposium, Greenbelt: NASA SP-351,  pp. 

309-317. 

5. Reed, B. C., Brown, J. F., Vanderzee, D., Loveland, 

T. R., Merchant, J. W. & Ohlen, D. O. (1994). 

Measuring phenological variability from 

satellite imagery, Journal of Vegetation Science, 

vol. 5, no. 5, pp. 703-714. 

6. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, 

G. & Nemani, R. R. (1997). Increased plant 

growth in the northern high latitudes from 1981 

to 1991, Nature, vol. 386, no. 6626, pp. 698-

702. 

7. Zhou, L. M., Tucker, C. J., Kaufmann, R. K., 

Slayback, D., Shabanov, N. V. & Myneni, R. B. 

(2001). Variations in northern vegetation 

activity inferred from satellite data of vegetation 

index during 1981 to 1999, Journal of 

Geophysical Research-Atmospheres, vol. 106, 

no. D17, pp. 20069-20083. 

8. White, M. A., Hoffman ,F., Hargrove, W. &. 

Nemani, R. (2005). A global framework for 

monitoring phenological responses to climate 

change, Geophysical Research Letters, vol. 32, 

no. 4, doi:10.1029/2004GL021961. 

9. Vermote, E. & Kaufman, Y. J. (1995). Absolute 

calibration of AVHRR visible and near-infrared 

channels using ocean and cloud views, 

International Journal of Remote Sensing, vol. 

16, no. 13, pp. 2317-2340. 

10.  Tanre, D., Holben, B. N. & Kaufman, Y. J.(1992). 

Atmospheric correction algorithm for NOAA-

AVHRR products - Theory and application, 

IEEE Transactions on Geoscience and Remote 

Sensing, vol. 30, no. 2, pp. 231-248. 

11. Huete, A.,  Didan, K., Miura, T., Rodriguez, E. P., 

Gao, X. & Ferreira, L. G. (2002). Overview of 

the radiometric and biophysical performance of 

the MODIS vegetation indices, Remote Sensing 

of Environment, vol. 83, no. 1-2, pp. 195-213. 

12.Goward, S. N.,  Markham, B., Dye, D. G., Dulaney, 

W. & Yang, J. L. (1991). Normalized Difference 

Vegetation Index measurements from the 

Advanced Very High-Resolution Radiometer, 

Remote Sensing of Environment, vol. 35, no. 2-

3, pp. 257-277. 

13. Moody A. & Johnson, D. M. (2001).  Land-surface 

phenologies from AVHRR using the discrete 

Fourier transform, Remote Sensing of 

Environment, vol. 75, no. 3, pp. 305-323. 

14. Tieszen, L. , Reed, B. C., Bliss, N. B., Wylie, B. K. 

& Dejong, D. (1997). NDVI, C-3 and C-4 

production, and distributions in Great Plains 

grassland land cover classes, Ecological 

Applications, vol. 7, no. 1, pp. 59-78. 



15.Zhang, X. Y., Friedl, M. A., Schaaf, C. B., et al. 

(2003). Monitoring vegetation phenology using 

MODIS, Remote Sensing of Environment, vol. 

84, no. 3, pp. 471-475. 

16. Gitelson,  A. A. & Kaufman, Y. J. (1998). 

MODIS NDVI optimization to fit the AVHRR 

data series spectral considerations, Remote 

Sensing of Environment, vol. 66, no. 3, pp. 343-

350. 

17. Mutanga O. & Skidmore, A. K. (2004). Narrow 

band vegetation indices overcome the saturation 

problem in biomass estimation, International 

Journal of Remote Sensing, vol. 25, no. 19, pp. 

3999-4014. 

18.ESA (2007). MERIS chlorophyll data proves 

positive [online]. Available: 

http://www.esa.int/esaLP/SEMADLSMTWE_L

Pcampaigns_0.html 

19.Dash, J. & Curran, P. J. (2004).  The MERIS 

Terrestrial Chlorophyll Index, International 

Journal of Remote Sensing, vol. 25, no. 23, pp. 

5403-5413. 

20.Curran, P. J. & Dash, J. (2005). Algorithm 

theoretical basis document (ATBD): 

Chlorophyll Index-Version 2.2”, European 

Space Agency, Noordwijk, The Netherlands 

[online].Available: 

envisat.esa.int/instruments/meris/atbd/atbd_2_2

2.pdf . 

21. Curran, P. J.,  Dash, J., Lankester, T. & Hubbard,S. 

(2007). Global composites of the MERIS 

Terrestrial Chlorophyll Index, International 

Journal of Remote Sensing, vol. 28, no.18, pp. 

3757-3758. 

22.Tucker, C. J.,  Pinzon, J. E.,  Brown, M. E. et al. 

(2005). An extended AVHRR 8-km NDVI 

dataset compatible with MODIS and SPOT 

vegetation NDVI data, International Journal of 

Remote Sensing, vol. 26, no. 20, pp. 4485-4498. 

23. Baret, F.,  Bartholomé, E., Bicheron, P. et al. 

(2006).  VGT4Africa User Manual [online]. 

Available: 

http://www.vgt4africa.org/PublicDocuments/VG

T4AFRICA_user_manual.pdf. 

24.World Meteorological Organization, “International 

Meteorological Vocabulary”, 2nd edn. WMO: 

Geneva, Switzerland. WMO Publication 182, 

1992. 

25. Hansen, M.,  DeFries, R.,  Townshend, J. R. G.  & 

Sohlberg, R. (1994). UMD Global Land Cover 

Classification, 1 Kilometer, 1.0, Department of 

Geography, University of Maryland, College 

Park, Maryland. 

26. Jakubauskas, M. E., Peterson, D. L., Kastens, J. H.  

& Legates, D. R. (2002). Time series remote 

sensing of landscape-vegetation interactions in 

the southern Great Plains, Photogrammetric 

Engineering and Remote Sensing, vol. 68, no. 

10, pp. 1021-1030. 

27. Menenti, M.,  Azzali, S.,  Verhoef, W. & Vanswol, 

R. (1993). Mapping agroecological zones and 

time-lag in vegetation growth by means of 

Fourier-analysis of time-series of NDVI images, 

Advances in Space Research, vol. 13, no. 5, pp. 

233-237. 

28. Andres, L., Salas, W. A.  & Skole, D. (1994). 

Fourier-analysis of multitemporal AVHRR data 

applied to a land-cover classification, 

International Journal of Remote Sensing, vol. 

15, no. 5, pp. 1115-1121. 

29. Geerken, R.,  Zaitchik, B. & Evans, J. P. (2005). 

Classifying rangeland vegetation type and 

coverage from NDVI time series using Fourier 

filtered cycle similarity, International Journal of 

Remote Sensing, vol. 26, no. 24, pp. 5535–5554. 

 

 

                                       


