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ABSTRACT  

Behavioral evidence indicates that working memory (WM) in schizophrenia is already 

impaired at the encoding stage. However, the neurophysiological basis of this 

primary deficit remains poorly understood. Using event-related fMRI we assessed 

differences in brain activation and functional connectivity during the encoding, 

maintenance and retrieval stages of a visual WM task with three levels of memory 

load in 17 adolescents with early-onset schizophrenia and 17 matched controls. The 

amount of information patients could store in WM was reduced at all memory load 

levels. During encoding, activation in left ventrolateral prefrontal cortex (VLPFC) and 

extrastriate visual cortex, which in controls positively correlated with the amount of 

stored information, was reduced in patients. Additionally, patients showed disturbed 

functional connectivity between prefrontal and visual areas. During retrieval, right 

inferior VLPFC hyperactivation was correlated with hypoactivation of left VLPFC in 

patients during encoding. Visual WM encoding is disturbed by a failure to adequately 

engage a visual-prefrontal network critical for the transfer of perceptual information 

into WM. Prefrontal hyperactivation appears to be a secondary consequence of this 

primary deficit. Isolating the component processes of WM can lead to more specific 

neurophysiological markers for translational efforts seeking to improve the treatment 

of cognitive dysfunction in schizophrenia.  
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INTRODUCTION 

Working memory (WM) impairments are widely regarded as a central cognitive deficit 

of schizophrenia (Goldman-Rakic 1999; Silver et al. 2003). WM dysfunction has 

therefore gained particular interest as a target of psychological and pharmacological 

interventions (Green et al. 2004; Greenwood et al. 2005; Barch and Smith 2008; 

Barch et al. 2009) and as an intermediate phenotype in the study of the genetic 

architecture of schizophrenia (Meyer-Lindenberg and Weinberger 2006; Gur et al. 

2007). These translational strategies critically depend upon a clear understanding of 

the underlying cognitive and neurophysiological disturbances. 

Behavioral studies indicate that WM is primarily compromised during the initial 

encoding of information (Tek et al. 2002; Hartman et al. 2003; Lencz et al. 2003; Kim 

et al. 2006; Lee and Park 2006; Javitt et al. 2007; Fuller et al. 2009; Gold et al. 2010; 

Hahn et al. 2010; Mayer and Park 2012), although additional impairments during 

maintenance have also been observed (Reilly et al. 2006; Stephane and Pellizzer 

2007; Badcock et al. 2008). Therefore, elucidating the neurophysiological basis of 

impaired encoding is crucial for our understanding of WM deficits. Functional 

magnetic resonance imaging (fMRI) studies have consistently implicated a 

dysfunction of the prefrontal cortex (PFC) as a central cause for WM deficits (Glahn 

et al. 2005; Tan et al. 2007). However, the origins of impaired encoding and the 

contribution of prefrontal cortical dysfunction to this impairment remain poorly 

understood.  

In healthy participants, fMRI has provided detailed insights into the differential 

engagement of prefrontal areas during encoding and subsequent WM component 

processes. Encoding of visuospatial information appears to rely primarily on the 

superior part of the ventrolateral prefrontal cortex (VLPFC) (Bor et al. 2003; Mayer et 
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al. 2007). In contrast, for maintenance the dorsolateral prefrontal cortex (DLFPC) was 

shown to be crucial (Sakai et al. 2002; Curtis and D'Esposito 2003; Edin et al. 2009). 

Finally, the inferior portion of the VLPFC seems to be particularly important for 

retrieval (Bledowski et al. 2006; Nee and Jonides 2008). In line with their differential 

engagement, these prefrontal areas also show a corresponding preferential response 

to increasing memory load during the relevant component process (Linden et al. 

2003; Bledowski et al. 2006; Edin et al. 2009).  

These findings support a relative specialization of the PFC with regard to WM 

component processes. This implies that impaired encoding should be associated with 

disturbances in the corresponding specialized prefrontal cortical area, namely the 

superior part of the VLPFC. The same principle should also apply to maintenance 

and retrieval.  

In addition to the precise localization of prefrontal cortical dysfunction, the nature of 

the abnormal prefrontal cortical response profile is another crucial aspect. Earlier 

fMRI studies reported both decreased (Barch et al. 2001; Perlstein et al. 2001; 

Perlstein et al. 2003) and increased prefrontal cortical activation in patients (Manoach 

et al. 1999; Callicott et al. 2000; Manoach et al. 2000). The latter finding has been 

interpreted as an indication of inefficiency (Callicott et al. 2000; Potkin et al. 2009). 

However, it has also been suggested that PFC dysfunction is sensitive to the level of 

memory load: while low memory load should elicit inefficient prefrontal 

hyperactivation, high memory load should lead to hypoactivation caused by a failure 

to sustain activation in prefrontal circuits (Callicott et al. 2003; Manoach 2003).  

Yet, the use of blocked experimental designs – often in conjunction with the n-back 

task, has prevented the isolation of the component processes of WM in many of 

these studies.  
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So far, event-related studies were also unable to clarify the neurophysiological basis 

of impaired encoding. This might in part be attributable to a lack of memory load 

variation (Schlosser et al. 2008; Anticevic et al. 2011; Choi et al. 2011) and an 

incomplete separation of component processes (Johnson et al. 2006). Other event-

related studies focused on predefined prefrontal regions of interest (ROIs) (Driesen et 

al. 2008; Potkin et al. 2009), which might obscure the precise localization of 

prefrontal cortical dysfunction. This approach also ignores the fact that WM – and 

encoding in particular –  relies on a widely distributed cortical network. In addition to 

the PFC, WM prominently involves parietal and sensory areas (Munk et al. 2002; 

Linden et al. 2003), which have also been implicated in WM impairment (Barch and 

Csernansky 2007; Haenschel et al. 2007; Dias et al. 2011). 

Such widespread cortical dysfunctions could be a reflection of disturbed interactions 

between brain areas as proposed by the disconnection hypothesis (Friston 1998; 

Andreasen 1999). This interpretation is supported by reports of altered functional 

connectivity during WM (Meyer-Lindenberg et al. 2005; Tan et al. 2006; Kim et al. 

2009; Meda et al. 2009; Deserno et al. 2012). However, so far the role of altered 

functional connectivity for impaired encoding has not been investigated.  

We previously reported reduced P100 event-related potential (ERP) amplitude during 

WM encoding in schizophrenia (Haenschel et al. 2007). In an accompanying fMRI 

ROI analysis (Haenschel et al. 2007) we also demonstrated a corresponding 

reduction of activation in those visual cortical areas most closely associated with the 

generation of the P100 (Noesselt et al. 2002). However, this fMRI analysis was 

focused on one small bilateral ROI in early visual cortex during maintenance and 

retrieval. While the ERP results and EEG time frequency results provided detailed 

insights into the temporal dynamics underlying WM dysfunction, only the high spatial 
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resolution of fMRI allows for a detailed the study of the different parts of the cortical 

WM network. This aspect is particularly relevant with regard to the contribution of the 

distinct subregions of the PFC. To this end, in the current paper we present a full 

analysis of the fMRI data set.  

We investigated adolescents with early-onset schizophrenia (EOS), i.e. an onset of 

the disorder before the age of 18, and matched controls. The study of patients with 

EOS is particularly attractive, because they apparently constitute a more 

homogeneous group characterized by a relatively severe illness course and outcome 

(Hollis 2000) and a higher genetic loading (Asarnow et al. 2001) compared to 

patients with adult onset schizophrenia. WM dysfunction in EOS has been repeatedly 

demonstrated. However, only a small number of functional neuroimaging studies of 

this patient population have been reported (Thormodsen et al. 2011; White et al. 

2011a; White et al. 2011b; Kyriakopoulos et al. 2012). 

Using event-related fMRI, we investigated aberrant cortical activation and 

connectivity during encoding and subsequent WM component processes. 

Participants performed a visual delayed-discrimination task with varying levels of 

memory load (Figure 1). Our main hypothesis was that during encoding patients 

would show a dysfunction of cortical areas closely involved in this component 

process, particularly in the PFC. If these dysfunctional areas were crucial for 

encoding, we would expect them to exhibit a correlation between BOLD activity and 

the number of objects actually encoded and stored in WM. We also hypothesized that 

a primary encoding deficit should in turn lead to compensatory changes in later task 

phases. Finally, we expected to find abnormal functional connectivity within circuits 

critical for the encoding of information into WM, in line with the disconnection 

hypothesis of schizophrenia. 
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METHODS AND MATERIALS 

Subjects 

Seventeen patients with EOS according to DSM-IV criteria and seventeen control 

participants with no family history of psychotic disorder matched for age, gender, 

handedness and premorbid IQ (Table 1) participated in the study. ERP data 

(Haenschel et al. 2007), fMRI results on extrastriate visual cortex (Haenschel et al. 

2007) and EEG time frequency results (Haenschel et al. 2009; Haenschel et al. 2010) 

obtained from the same group of patients have been reported previously. Patients 

were assessed with the German version of the Structured Clinical Interview for DSM-

IV (SCID) (Sass and Wittchen 2003) and the Positive and Negative Syndrome Scale 

(PANSS) (Kay et al. 1987). Handedness was determined with the Edinburgh 

Handedness Inventory (Oldfield 1971). Premorbid IQ was assessed with MWT (Lehrl 

1995), the German equivalent of the Spot-the-Word Test (Baddeley et al. 1993). All 

patients received second generation antipsychotic medication at the time of this 

study, with one patient additionally receiving first generation antipsychotic medication 

(see Table 1 for further details).  

-----     Table 1     ----- 

Exclusion criteria for patients were a history of other neuropsychiatric conditions or 

substance abuse in the six months preceding the study. Control participants were 

recruited through local advertisements. Exclusion criteria for controls were a history 

of mental illness or substance abuse. All participants and, for participants under 18 

years, also their parents provided informed consent prior to the study. Ethical 

approval was obtained from the institutional review board of Frankfurt Medical 

School.  
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Stimuli and task 

A delayed visual discrimination task was implemented on a personal computer using 

the Experimental-Run-Time-System software (www.erts.de) (Figure 1). Non-natural 

objects, presented at the center of the computer screen, were used as visual stimuli. 

One to three sample objects were presented for 600 ms each with an interstimulus 

interval of 400 ms (encoding phase). After a delay of 12 s (maintenance phase), a 

test stimulus was presented for 3 s at the center of the screen (retrieval phase). 

Subjects had to indicate whether it was part of the initial sample set by button press. 

The inter-trial interval lasted 12 s.  

-----     Figure 1     ----- 

The three memory load conditions were randomly intermixed within each run. Prior to 

the scanning session all participants were given instruction and practice with the task. 

During scanning, the computer display was projected onto a mirror mounted on the 

head coil. Stimuli subtended 1.34° of visual angle. Responses were registered by a 

custom-made fiber-optic response box. Subjects were asked to fixate upon the cross 

at the center of the screen throughout the experiment. Each subject completed a total 

of 48 trials of the task (16 trials per memory load condition).  

 

Analysis of behavioral data 

For each subject and memory load condition, the number of objects stored in WM 

was estimated by calculating K. We used Cowan’s revised formula (Cowan 2001) K = 

N * (H + CR – 1), where N is the number of objects to be stored, H is the observed hit 

rate (correctly identified matches) and CR is the correct rejection rate (correctly 

identified non-matches). Although originally developed to estimate overall WM 

storage capacity, K also allows quantifying the amount of information actually stored 
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in WM. K values and reaction times were entered in separate repeated-measures 

analyses of variance (ANOVA) to test for main effects of group (controls and patients) 

and memory load condition (load 1, load 2 and load 3). Significant main effects and 

interactions were decomposed using t-tests.   

 

Acquisition of fMRI data 

Functional MRI data were acquired with a Siemens 1.5 T Magnetom Vision MRI 

scanner using a gradient echo EPI sequence (16 axial slices; TR = 2000ms; TE = 60; 

FA = 90°, FOV = 220 x 220 mm2, voxel size: 3.43 x 3.43 x 5 mm3, gap 1 mm). Slices 

were positioned parallel to the anterior-commissure posterior-commissure plane. 

Functional images were acquired in two runs in a single session, each comprising the 

acquisition of 350 volumes. Stimulus presentation was constantly synchronized with 

the fMRI sequence. Head motion was minimized with pillows. A high-resolution T1-

weighted three-dimensional volume using a fast low-angle shot (T1-FLASH) 

sequence (voxel size: 1x1x1 mm3) was acquired for co-registration of functional data.  

 

Functional image preprocessing 

Functional data were analyzed using BrainVoyager QX 1.10.4 and the BrainVoyager 

QX Matlab Toolbox (www.brainvoyager.com). The first four volumes of each run were 

discarded to allow for T1 equilibration. Functional data preprocessing included slice 

scan time correction, motion correction, linear trend removal and temporal high pass 

filtering (high pass: 0.00867 Hz), manual alignment to the anatomical scans and 

transformation into Talairach coordinate space.  
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To minimize the impact of increased anatomical variability found in schizophrenia 

(Park et al. 2004), we applied a high-resolution, multiscale cortex alignment 

procedure, which reliably aligns corresponding gyri and sulci across subjects (Goebel 

et al. 2006). Anatomical scans were segmented along the white–gray matter 

boundary. Cortical hemispheres were reconstructed and morphed into spherical 

representations. Each cortical folding pattern was aligned to a dynamically updated 

group average through iterative morphing following a coarse-to-fine matching 

strategy. Based on the vertex-to-vertex referencing from the folded, topologically 

correct meshes to the aligned spherical representations, the functional data was 

mapped into a common spherical coordinate system (Fischl et al. 1999) and spatially 

smoothed using a nearest neighbor interpolation (FWHM 5 mm).  

 

Analysis of intrascan motion 

To assess group differences in intra-scan motion, the standard deviations for the six 

estimates of motion obtained during motion correction (translation in x, y, z direction 

and rotation around x, y, z axis) of each subject were entered into a repeated-

measures ANOVA with group as the between-factor and standard deviation for the 

six motion estimates as the within-factor. This yielded no significant group differences 

(F1,32=0.47, p=.50) and no significant group by motion interaction (F5,160=1.93, p=.15). 

 

Cortex-based group fMRI analysis 

Multi-subject statistical analysis was performed by multiple linear regression of the 

BOLD signal. Only correctly answered trials were entered into our analyses. To 

ensure a balanced analysis, for controls a subset of correct trials equal to the number 

of correct trials of the patients on the respective memory load level were randomly 
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selected. For both groups, this resulted in a total number of 234 trials for memory 

load 1, 231 trials for memory load 2 and 215 trials for memory load 3 per group. 

For each memory load condition four task phases of interest were modeled by ideal 

box-car functions, which covered the first, third, fifth and eighth volume of each trial, 

respectively, convolved with a synthetic double-gamma hemodynamic response 

function. Encoding-related activity was captured by the first and retrieval-related 

activity by the fourth regressor. The second and third regressor reflected activity 

during the early and late maintenance phase. These predictors were used to build 

the design matrix of the experiment. We computed a voxel-wise general linear model 

(GLM) with a standard two-level (hierarchical) ordinary least squares fit procedure. 

For each task phase of interest, the obtained beta weights were entered into a 

random-effects level repeated-measures ANOVA with memory load condition (load 1, 

load 2 and load 3) as within-factor and group (controls and patients) as between-

factor.  

To correct for multiple comparisons, maps for the main effect of memory load, for the 

main effect of group and for the group by memory load interaction were first 

thresholded at a voxel-wise threshold of p<.01 (uncorrected). They were then 

submitted to a whole-brain correction criterion based on the estimate of the map’s 

spatial smoothness and on an iterative procedure (Monte Carlo simulation) for 

estimating cluster-level false-positive rates (Forman et al. 1995; Goebel et al. 2006). 

During this procedure, for each simulated image (2000 iterations) all “active” clusters 

in the imaged volume are considered. These clusters are used to update a table 

reporting the counts of all clusters above this threshold for each specific size. 

Subsequently an alpha value is assigned to each cluster size based on its observed 

relative frequency during the simulations. Based on this estimation, which was 
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carried out separately for each map, the appropriate minimum cluster size threshold 

was specified in order to yield a cluster-level false-positive rate of 5%.  

 

Task related activation 

Our main goal was to detect the abnormal activation patterns underlying impaired 

WM in patients.  

As a secondary objective, we were interested in revealing the cortical networks 

engaged by our WM paradigm. In this context, the main effect of memory load 

provides information about areas, whose activation patterns are mainly modulated by 

the task. However, the ANOVA approach is inherently blind to the direction of 

changes in the BOLD response. Therefore, the main effect of memory load cannot 

distinguish between areas showing task related activation and areas showing task 

related deactivation.  

To complement our primary analysis, we computed t-tests for each memory load 

condition during each task phase for both groups separately utilizing the same GLM 

approach employed for the ANOVA. The resulting maps for each memory load 

condition were thresholded at an uncorrected voxel-wise threshold of p<.01, 

corrected for multiple comparisons using a cluster threshold procedure (Monte Carlo 

simulation, 2000 iterations) in order to yield a cluster-level false-positive rate of 5%. 

The results of this analysis can be found in the supplementary material (Figures S1 – 

S4).  

 

Group differences 

To investigate both general activation abnormalities arising independent of memory 

load as well as abnormal activation patterns, which are memory load dependent, we 

examined the results main effect of group and the group by memory load interaction 
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in more detail. To this end, region of interests (ROIs) were derived from each cluster 

showing either a significant main effect of group or a significant group by memory 

load interaction. For each ROI, post-hoc t-tests were performed on the extracted 

beta-values to test for the direction of group differences in individual memory load 

conditions.  

 

Correlation between BOLD activity and the number of stored objects  

To investigate the relationship between BOLD activation and the number of objects 

stored in WM a planned ROI based post-hoc Spearman's rank correlation between 

beta values and K across all three memory load conditions was computed (α  = 

0.00129 (Bonferroni corrected for the total number of 39 ROIs derived from the 

ANOVA)).  

 

Cortex-based functional connectivity analysis 

Finally, we investigated whether impaired WM encoding is associated with a 

disturbance of connectivity of the PFC with other parts of the WM network. Functional 

connectivity was computed using the instantaneous influence term of Granger 

causality mapping (Roebroeck et al. 2005). As seed regions we used the only two 

prefrontal ROIs, which emerged from the ANOVA for encoding. Correct trials from all 

memory load conditions were pooled. For each subject, functional connectivity maps 

for both seed region were generated. Differences in functional connectivity were 

analyzed using t-tests (random effects level). The resulting maps were thresholded at 

an uncorrected voxel-wise threshold of p<.01, corrected for multiple comparisons 

using a cluster threshold procedure (Monte Carlo simulation, 2000 iterations) in order 

to yield a cluster-level false-positive rate of 5%.  
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RESULTS: 

Behavioral Performance  

Figure 2 depicts the estimated number of objects stored in WM (K) and average 

response times for patients and controls. K was lower for patients (F(1,32)=14.31, 

p<0.001), with no interaction between group and memory load (F(2,64)=2.46, p=0.093). 

Two-tailed t-tests showed that the number of stored objects was lower in patients in 

each memory load condition (memory load 1: t=2.65, p<0.05; memory load 2: t=3.76, 

p<0.001; memory load 3: t=2.39, p<0.05). Reaction times increased with memory 

load in both groups (F(2,64)=23.26, p<0.001). There was no difference in reaction 

times between groups (F(1,32)=2.49, p=0.12) and no memory load by group interaction 

(F(2,64)=0.26, p= 0.95).  

-----     Figure 2     ----- 

ANOVA 

Task related activity 

The main effect of WM load demonstrated a differential effect of WM load on cortical 

activation during the different task phases. The effect of increasing levels of WM load 

was most pronounced during encoding and the initial part of the maintenance phase. 

Conversely, the degree to which WM load was driving activation markedly decreased 

during the later stages of the delay period and particularly during retrieval. This 

finding is in keeping with previous studies utilizing the same task (Linden et al. 2003; 

Bledowski et al. 2006). These studies revealed widespread cortical activation during 

the maintenance and retrieval stages. However, compared to encoding this activation 

was far less modulated by WM load. Thus, relying only on the main effect of memory 

load would underestimate the full extent of task related activation.  
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The additional t-statistics (Figure S1-S4) revealed considerable task related 

activation in a distributed network comprising frontal, parietal and visual areas 

commonly observed in studies of visual WM (Munk et al. 2002). During the 

maintenance phase, a core fronto-parietal network showed persistent activity. 

Furthermore, we observed task related deactivation in the default mode network 

(DMN) well in line with previous WM studies (Mayer et al. 2010).  

 

Group differences 

For our main goal, the identification of abnormal activation in patients, we focused on 

areas showing a main effect of group or a group by memory load interaction. Beta-

values of these ROIs for each task phase are depicted in the supplementary material 

(Figures S5-S8).  

For encoding, the ANOVA yielded a main effect of group in the left VLPFC and left 

inferior parietal lobule (IPL) (cluster level threshold (CLT) 37 mm²) (Figure 3a, Table 

2). Post-hoc t-tests indicated reduced activation for patients in both regions for all 

three memory load conditions.  

A group by memory load interaction was observed in the left VLPFC caudally of the 

region showing a main effect of group, the left insula, left middle temporal gyrus 

(MTG), left precuneus, the right IPL and right lingual gyrus (CLT 52 mm²). Post-hoc t-

tests indicated reduced activation for patients in the left VLPFC and the left MTG at 

memory load 2 and 3. In the left precuneus patients showed reduced activation only 

at memory load 3. In the left insula, the right IPL and the right lingual gyrus a pattern 

compatible with a memory load dependent dysfunction was found. Here, patients 

showed increased activation at memory load 1 but reduced activation at memory load 
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3. Finally, in the right lingual gyrus patients showed reduced activation at memory 

load 2.  

-----     Figure 3     ----- 

-----     Table 2     ----- 

For early maintenance, the ANOVA yielded a main effect of group in the following 

areas: the posterior cingulate cortex (PCC), precuneus and middle occipital gyrus 

(MOG) bilaterally, the left insula and left MTG, the right central sulcus, right 

supramarginal gyrus (SMG), right superior temporal gyrus (STG) and right lingual 

gyrus (CLT 61 mm²) (Figure 4, Table 3). Post-hoc t-tests indicated reduced activation 

for patients in each of these regions for all three memory load conditions. 

A group by memory load interaction was observed in the superior parietal lobule 

(SPL) bilaterally, the left DLPFC, the left frontal eye field (FEF), and two clusters in 

the left intraparietal sulcus (IPS) (CLT 33 mm²). Post-hoc t-tests indicated reduced 

activation for patients in the left DLPFC, the right SPL and both clusters in the left IPS 

at memory load 3. In the more lateral left IPS cluster, patients showed increased 

activation at memory load 2. Similarly, in the left DLPFC patients showed a trend 

towards increased activation (p=0.056) at memory load 1.  

-----     Figure 4     ----- 

-----     Table 3     ----- 

 

For late maintenance, the ANOVA yielded a main effect of group in three regions 

(CLT 37 mm²) (Figure 5a, Table 4). In the left STG and the left PCC activation 

patients showed decreased activation at memory load 2 and 3. This was due to a 
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deactivation in patients, which increased with increasing memory load and was 

absent in controls. Conversely, in the left FEF patients showed increased activation 

in all memory load conditions. No area showed a group by memory load interaction. 

-----     Figure 5     ----- 

-----     Table 4     ----- 

For retrieval, the ANOVA yielded a main effect of group in the anterior cingulate 

cortex (ACC), inferior VLPFC and IPL bilaterally as well as in the left anterior PFC 

(CLT 15 mm²) (Figure 6, Table 5). Post-hoc t-tests indicated higher activation for 

patients in each of these regions at memory load 2 and 3. This effect extended to 

memory load 1 in the IPL bilaterally.  

A memory load by group interaction was observed in the left fusiform gyrus (FFG) 

and the right ACC (CLT 37 mm²). Post-hoc t-tests indicated higher activation in 

controls in the left FFG at memory load 1. In the right ACC controls showed higher 

activation at memory load 1, while patients showed higher activation at memory load 

2.  

-----     Figure 6     ----- 

-----     Table 5     ----- 

Correlation between BOLD activity and the number of stored objects  

During encoding controls but not patients showed a significant positive correlation 

between BOLD activity and the number of objects stored in WM for the left posterior 

VLPFC (ρ =0.445, p<.05, corr.), the left insula (ρ=0.549, p<.01, corr.) and the right 

lingual gyrus (ρ=0.44725, p<.05, corr.) (Figure 3b). In contrast, during late 

maintenance patients but not controls showed a significant negative correlation 
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between BOLD activity and the number of objects stored in WM in the left STG (ρ=-

0.603, p<.001, corr.) and the left PCC (ρ=-0.543, p<.01, corr.) (Figure 5b). During 

early maintenance and retrieval no significant correlation was observed in either 

group. 

For the two ROIs for which patients showed a significant negative correlation 

between BOLD activity and K, we aimed to specify whether these disparate results 

could be explained by a general difference in BOLD activity or by differences in K. To 

this end, we carried out an additional post-hoc ANCOVA with BOLD activity as within-

factor, group (controls and patients) as between-factor and K as a covariate. A 

significant effect of group was observed in both the left STG (F(1,99)=17.16, 

p<0.001) and the left PCC (F(1,99)=15.84, p<0.001). This indicates that these 

findings may primarily be the result of differences in BOLD activity between patients 

and controls.  

 

Correlation of activation across task phase 

We also examined whether prefrontal hypoactivation in patients during encoding 

might be correlated with prefrontal hyperactivation during retrieval. Such a correlation 

would strengthen our hypothesis of a primary encoding deficit. In the previous 

analysis, we found a correlation between BOLD activity and the number of objects 

stored in WM (K) in parts of the left prefrontal cortex during encoding. However this 

correlation was only observed in controls. To minimize any bias resulting from a 

potential differential relationship between BOLD activity and K in patients and 

controls, we conducted post-hoc partial correlations, which controlled for K. These 

partial correlations were computed between the two left hemispheric VLPFC clusters, 
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for which patients showed hypoactivation during encoding, and the bilateral clusters 

in inferior VLPFC, for which patients showed hyperactivation during retrieval. A 

correlation across component processes was observed in both groups between the 

left posterior VLPFC cluster from the encoding map and the right inferior VLPFC 

cluster from the retrieval map. However, while patients showed a negative correlation 

(ρ=-0.361, p=.01) controls showed a positive correlation (ρ=0.326, p<.05). 

 

Functional connectivity analysis 

Significant differences in functional connectivity between groups were found in one of 

the two tested prefrontal seed regions, namely the more rostral left VLPFC cluster. 

For this region, patients showed reduced functional coupling with the left precentral 

gyrus (PCG) (Talairach coordinates x: -45, y: -6, z: 43) corresponding to the premotor 

cortex and an area in the left MOG (Talairach coordinates x: -44, y: -60, z: -4) 

corresponding to the lateral occipital complex (LOC) (Malach et al. 1995) (CLT 45 

mm²) (Figure 7). For the second seed region, the more dorsal left VLPFC cluster no 

significant group differences in functional connectivity emerged.  

-----     Figure 7     ----- 
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DISCUSSION  

We investigated the neurophysiological basis of impaired WM encoding in 

adolescents with schizophrenia compared to healthy controls performing a visual WM 

task with three levels of memory load. At all memory load levels, the amount of 

information patients were able to memorize was reduced compared to controls. 

Patients exhibited abnormal activity patterns in key regions of the fronto-parietal 

network and in extrastriate visual areas, which were specific for the different WM 

component processes. Impaired encoding in patients was also accompanied by 

disturbed functional connectivity between prefrontal and visual areas.  

Patterns of cortical dysfunction during encoding in patients were largely indicative of 

a general impairment of this component process. Patients showed hypoactivation, 

particularly at higher memory load, in two overlapping clusters within a part of the left 

VLPFC closely linked to WM encoding (Bor et al. 2003; Mayer et al. 2007). This 

confirms our initial hypothesis, that impaired encoding is associated with a 

dysfunction in those prefrontal areas most specialized for this component process. 

Patients also failed to recruit the left IPL, which is closely involved in encoding as well 

(Linden et al. 2003; Mayer et al. 2007).  

During encoding, only controls showed a significant positive correlation between the 

amount of information stored in WM and BOLD activity in the left VLPFC, insula and 

extrastriate visual cortex. These areas also showed generally lower activation levels 

in patients. Thus, impaired encoding in patients appears to result from a dysfunction 

of both prefrontal and visual areas critical for this component process.  

Further support for this interpretation comes from our functional connectivity analysis. 

During encoding, patients showed significantly reduced functional connectivity 
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between the left VLPFC and the left premotor cortex as well as the left LOC. The 

latter areas is essential for the detailed processing of object information (Grill-Spector 

et al. 1998).  

These findings extend our previous reports of abnormal ERP (Haenschel et al. 2007) 

and evoked oscillatory responses (Haenschel et al. 2009) during encoding in the 

same group of patients. They indicate that in addition to disturbances at early stages 

of visual processing impaired encoding is associated with a disruption of 

communication between the ventral visual pathway and the VLPFC (Ungerleider et 

al. 1998). Thus, mechanisms critical for object recognition (Sehatpour et al. 2008) 

and object WM (Goldman-Rakic 1995) seem to be affected. Our results are 

compatible with the view that perceptual processing deficits contribute to WM 

impairment (Haenschel et al. 2007; Koychev et al. 2010; Dias et al. 2011). They also 

indicate a link between perturbed perceptual processing and prefrontal cortical 

dysfunction. However, due to the lack of directional information the analysis of 

functional connectivity cannot resolve the question, whether either one of them or 

both represent a primary deficit.  

Moreover, WM encoding can be further subdivided into a number of cognitive 

processes including WM consolidation (Jolicoeur and Dell'Acqua 1998) and 

attentional selection (Awh et al. 2006). Behavioral studies indicate that patients with 

schizophrenia are impaired in these processes (Luck and Gold 2008; Fuller et al. 

2009; Hahn et al. 2010). The neurophysiological underpinnings of these impairments 

and their exact contribution to disturbed WM encoding need to be elucidated in future 

studies.  

While our primary goal was to clarify the neurophysiological substrate of impaired 

encoding, two findings during the subsequent component processes are also 
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particularly relevant to neuropsychological and neurophysiological models of 

schizophrenia. During early maintenance, patients showed an abnormally strong 

deactivation in parts of the default mode network (DMN) (Raichle et al. 2001) 

including bilateral PCC and precuneus. During late maintenance, the left STG and 

the left PCC exhibited a similar pattern. Here, only patients showed a negative 

correlation between BOLD activity and the number of objects stored in WM. Thus, 

deactivation in parts of the DMN was stronger in patients with a relatively preserved 

ability to store information in WM. Whether this indicates a compensatory mechanism 

in patients which supports WM maintenance or whether a failure to adequately 

disengage the DMN actually impairs WM cannot be determined on the basis of the 

present results. However, the observed correlation between BOLD activity and 

performance in patients point to a particular relevance of this network for WM 

dysfunction. Furthermore, our results are in line with increasing evidence for 

alterations within the DMN in schizophrenia (Whitfield-Gabrieli et al. 2009; Metzak et 

al. 2011).   

During retrieval, patients showed a marked hyperactivation at all memory load levels 

in a bilateral network encompassing the inferior VLPFC, ACC, and IPL. These areas 

are essential for WM retrieval (Druzgal and D'Esposito 2001; Bledowski et al. 2006; 

Nee and Jonides 2008). Their increased recruitment could reflect an inefficient 

engagement of WM read out mechanisms in patients, which might result from their 

relatively imprecise memory representations. Such an interpretation is also supported 

by the negative correlation between BOLD activity in the left VLPFC during encoding 

with that in the right inferior VLPFC during retrieval in patients. Thus, prefrontal 

inefficiency during retrieval was more prominent in those patients who showed more 

PFC hypoactivation during the initial encoding of information.  
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Our findings have implications for our understanding of WM related prefrontal cortical 

dysfunction in schizophrenia. Prefrontal inefficiency, indexed by hyperactivation, is 

regarded as an important marker of this dysfunction (Winterer and Weinberger 2004). 

However, in the present study it was only observed during retrieval. Consequently, 

prefrontal inefficiency could constitute a secondary phenomenon, while prefrontal 

hypoactivation associated with abnormal encoding might be the primary 

manifestation of prefrontal cortical dysfunction. Notably, the prefrontal hyperactivation 

observed in a large, multisite patient cohort was also associated with retrieval (Potkin 

et al. 2009). We found no indication of a memory load dependent prefrontal cortical 

dysfunction (Callicott et al. 2003; Manoach 2003) during encoding. Such a switch 

from hyperactivation at low memory load to hypoactivation at high memory load was 

only observed in the left DLPFC during early maintenance. However, the fact that this 

prefrontal response profile occurred after the initial prefrontal hypoactivation during 

encoding indicates, that it might not represent a primary deficit. Overall, our findings 

imply that prefrontal cortical dysfunction is more sensitive to the demands of a 

particular WM component process than to the level of memory load. The fact, that we 

observed abnormal prefrontal activation in those parts of the PFC shown to be 

particularly relevant for each WM component process, also supports such an 

interpretation.  

Interestingly, a recent fMRI study using a visuospatial WM paradigm did not find 

abnormal prefrontal cortical activation in patients with EOS (White et al. 2011a). 

Notably, on average their patient group was about 3 years younger than ours while 

having a similar duration of illness. Based on their negative finding White and 

colleagues hypothesized, that prefrontal cortical dysfunction might be the result of a 

downstream developmental process, which had not yet manifested itself in their 
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patient group. In contrast, our finding of a robust prefrontal cortical dysfunction is well 

in line with findings in patients with adult-onset schizophrenia.  

In summary, the primary impairment of WM encoding seems to arise from 

disturbances in both early visual and prefrontal areas and a disruption of neuronal 

communication between these areas in line with the disconnection hypothesis of 

schizophrenia. Isolating the component processes of WM allowed us to better 

differentiate between primary and secondary markers of cortical dysfunction. This 

might be crucial for the development of reliable biological markers (Oertel-Knoechel 

et al. 2011; Barch et al. 2012; Linden 2012) and pharmacological compounds 

targeting WM dysfunction (Barch 2004). Therefore, our approach should aid 

translational studies, which probe the pathways from the molecular mechanisms to 

the phenotypes of schizophrenia (Meyer-Lindenberg 2010). 
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Table 1. Demographic and clinical characteristics  
 

    
Variable Patients (n=17) Controls (n=17) P Value 

Age (range) 17.9 (15.2–20.4) 17.5 (15.1–19.9) t(32)=0.87, p=.48 

Sex (male/female) 11 / 6 11 / 6 χ2 (1)=0, p<.99 

Handedness (right/left) 13 / 4 13 / 4 χ2 (1)=0, p<.99 

Mean Premorbid IQ 96 (SD 16) 97 (9) t(32)=-0.21, p=.83 

Years of Illness 1.4 (SD 0.9) 
  

Age at Onset 16.5 (SD 1.2) 
  

Mean PANSS Score 44.92 (SD 18.38) 
  

    
Antipsychotic medication  

   Quetiapine 10 
  Risperidone 2 
  Clozapine 1 
  Olanzapine 1 
  Aripiprazole 2 
  Perphenazine 1 
  Mean (SD) Chlorpromazine Equivalents, mg/d 188.7 (166.0) 
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Table 2. ANOVA results encoding 

           
Map 
Index 

   No of 
Vertices 

Talairach coordinates  WM Load 1 WM Load 2 WM Load 3 

Name BA x y z t(32) t(32) t(32) 

1 left VLPFC 45 56 -48 25 12 2.91c 2.88c 3.79c 

2 left IPL 40 126 -54 -43 26 2.55b 3.61c 4.52c 

           
3 left VLFPC 44 97 -48 11 12 0.32 2.75c 3.71c 

4 left insula 13 79 -34 4 6 -2.15b 0.51 2.99c 

5 left middle temporal gyrus 37 197 -50 -55 7 -1.21 2.06b 3.12c 

6 left precuneus 31 195 -6 -68 27 -1.63 1.90a 2.85c 

7 right lingual gyrus 18 181 18 -56 4 -2.41b 2.06b 1.92a 

8 right IPL 40 101 57 -41 26 2.12b 1.79a 2.05b 

           

    
ap<.1 (trend) bp<.05 cp<.01 
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Table 3. ANOVA results early maintenance 
       

           
Map 
Index 

   No of 
Vertices 

Talairach coordinates  WM Load 1 WM Load 2 WM Load 3 

Name BA x y z t(32) t(32) t(32) 

1 left insula 13 418 -40 -26 17 2.94c 3.14c 3.86c 

2 left middle temporal gyrus 19 83 -45 -63 13 1.11 2.31b 3.49c 

3 left middle occipital gyrus 19 79 -24 -81 14 3.15c 3.80c 3.63c 

4 left precuneus 31 240 -5 -68 23 3.39c 4.45c 3.75c 

5 left posterior cingulate cortex 31 230 -10 -33 38 2.64b 4.28c 3.20c 

6 right central sulcus 1,2 125 19 -32 58 2.68b 3.64c 2.55b 

7 right supramarginal gyrus 40 286 51 -25 24 2.46b 3.63c 3.95c 

8 right superior temporal gyrus 41 152 51 -29 16 2.92c 2.61b 3.56c 

9 right middle occipital gyrus 19 116 24 -80 16 3.88c 3.84c 4.83c 

10 right posterior cingulate cortex 31 134 12 -30 41 2.07b 3.95c 2.28b 

11 right precuneus 31 187 7 -65 25 2.42b 4.58c 3.41c 

12 right lingual gyrus 18 78 8 -76 -11 2.12b 4.60c 4.11c 

           
13 left DLFPC 9 47 -37 10 38 -1.98a 1.58 3.47c 

14 left FEF 
6, 
9 

48 -26 -12 51 -1.84a -1.53 1.86a 

15 left SPL 7 126 -31 -50 44 -1.47 -1.70a 1.59 

16 left posterior IPS 19 131 -30 -62 37 -0.29 -2.56b 2.05b 

17 left posterior IPS 7 96 -23 -67 35 -0.05 -0.37 2.68b 

18 right SPL 7 107 31 -49 42 -0.14 -0.79 2.75c 

           

    
ap<.1 (trend) bp<.05 cp<.01 
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Table 4. ANOVA results late maintenance 
       

           
Map 
Index 

   No of 
Vertices 

Talairach coordinates  WM Load 1 WM Load 2 WM Load 3 

Name BA x y z t(32) t(32) t(32) 

1 left superior frontal gyrus 6 83 -16 -14 62 -3.01c -2.18b -3.25c 

2 left superior temporal gyrus 39 185 -45 -54 20 1.61 3.58c 2.22b 

3 left posterior cingulate cortex 31 63 -5 -41 29 1.18 4.14c 1.91a 

           

    
ap<.1 (trend) bp<.05 cp<.01 
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Table 5. ANOVA results retrieval 
        

           
Map 
Index 

   No of 
Vertices 

Talairach coordinates  WM Load 1 WM Load 2 WM Load 3 

Name BA x y z t(32) t(32) t(32) 

1 left anterior PFC 10 31 -33 48 18 -1.72a -3.74c -2.70b 

2 left inferior VLPFC 47 37 -27 20 -3 -1.65 -2.80c -3.19c 

3 left IPL 2, 40 94 -49 -25 35 -4.12c -2.72b -3.17c 

4 left IPL 40 36 -37 -48 37 -2.73b -2.80c -2.40b 

5 left anterior cingulate gyrus 32 19 -8 27 26 -1.18 -3.61c -2.56b 

6 right inferior VLPFC 47 36 28 19 2 -1.92a -3.02c -2.29b 

7 right IPL 2, 40 50 38 -30 41 -2.62b -3.39c -2.92c 

8 right lingual gyrus 18 16 11 -86 -7 -1.35 -3.85c -2.48b 

           
9 left fusiform gyrus 37 88 -30 -38 -11 2.62b -1.40 0.77 

10 right anterior cingulate gyrus 32 47 5 22 28 2.04b -2.79c -1.73a 

           

    
ap<.1 (trend) bp<.05 cp<.01 
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Figure Legends 

 

Figure 1.  Working memroy paradigm.  

The delayed discrimination task with random shapes. Memory load was varied by 

presenting one to three objects for encoding for 600 msec each with an 

interstimulus interval of 400 msec. After a 12 second delay interval a probe stimulus 

was presented for 3 seconds. Subjects had to judge whether or not it was part of 

the initial sample set by pressing a button. The intertrial interval was 12 seconds. 
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Figure 2. Behavioral parameters.  

Mean reaction time (left) and mean K (the number of objects stored in WM) (right) 

for each memory load condition are shown for controls (blue) and patients (red). 

Error bars represent SEM. *p<.05, **p<.01.  
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Figure 3.  ANOVA results encoding.  

a ) F-maps of the ANOVA for encoding (p<.05, corrected using cluster 

thresholding). Areas, which showed a main effect of memory load (CLT 142 mm²), 

are depicted in white. Areas, which showed a main effect of group (CLT 37 mm²), 

are depicted in yellow. Areas, which showed a group by memory load interaction 

(CLT 52 mm²), are depicted in green. 



Bittner et al. - The When and Where of working memory dysfunction in early-onset schizophrenia 39 

 

The numbers next to each area showing either a main effect of group or a  group by 

memory load interaction correspond to the respective indices in Table 2. 

Additionally, next to each index number the results of the two-tailed t-tests for group 

differences for each memory load condition are represented by three colored 

vertical bars. The lower bar corresponds to the memory load 1, the middle bar 

corresponds to the memory load 2 and the upper bar corresponds to the memory 

load 3 condition. For these bars, blue indicates significantly higher activation 

(p<0.05) in controls compared to patients, while light blue indicates a trend (p<0.1). 

Red indicates significantly higher activation (p<0.05) in patients compared to 

controls, while orange indicates a trend (p<0.1). b) Correlation between BOLD 

activity and the number of objects stored in WM across all memory load conditions 

for controls (blue) and patients (red). *p<.05, **p<.01. VLPFC: ventrolateral 

prefrontal cortex.  
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Figure 4.  ANOVA results early maintenance.  

F-maps of the ANOVA for early maintenance (p<.05, corrected using cluster 

thresholding). Areas, which showed a main effect of memory load (CLT 64 mm²), 

are depicted in white. Areas, which showed a main effect of group (CLT 61 mm²), 

are depicted in yellow. Areas, which showed a group by memory load interaction 

(CLT 33 mm²), are depicted in green. The numbers next to each area with  a main 

effect of group or a  group by memory load interaction correspond to the respective 

indices in Table 3.. Additionally, next to each index number the results of the two-

tailed t-tests for group differences for each memory load condition are represented 

by three colored vertical bars. The lower bar corresponds to the memory load 1, the 

middle bar corresponds to the memory load 2  and the upper bar corresponds to the 

memory load 3 condition. For these bars, blue indicates significantly higher 



Bittner et al. - The When and Where of working memory dysfunction in early-onset schizophrenia 41 

 

activation (p<0.05) in controls compared to patients, while light blue indicates a 

trend (p<0.1). Red indicates significantly higher activation (p<0.05) in patients 

compared to controls, while orange indicates a trend (p<0.1).  
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Figure 5.  ANOVA results late maintenance.  

a) F-maps of the ANOVA for late maintenance (p<.05, corrected using cluster 

thresholding). Areas, which showed a main effect of memory load (CLT 72 mm²), 

are depicted in white. Areas, which showed a main effect of group (CLT 37 mm²), 

are depicted in yellow. No area showed a significant group by memory load 

interaction The numbers next to each area showing a main effect of group 
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correspond to the respective indices in Table 4. Additionally, next to each index 

number the results of the two-tailed t-tests for group differences for each memory 

load condition are represented by three colored vertical bars. The lower bar 

corresponds to the memory load 1, the middle bar corresponds to the memory load 

2  and the upper bar corresponds to the memory load 3 condition. For these bars, 

blue indicates significantly higher activation (p<0.05) in controls compared to 

patients, while light blue indicates a trend (p<0.1). Red indicates significantly higher 

activation (p<0.05) in patients compared to controls, while orange indicates a trend 

(p<0.1). b) Correlation between BOLD activity and the number of objects stored in 

WM across all memory load conditions for controls (blue) and patients (red). *p<.05, 

**p<.01. STG: superior temporal gyrus, PCC: posterior cingulate cortex. 
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Figure 6.  ANOVA results retrieval.  

F-maps of the ANOVA for retrieval (p<.05, corrected using cluster thresholding). 

Areas, which showed a main effect of memory load (CLT 47 mm²), are depicted in 

white. Areas, which showed a main effect of group (CLT 15 mm²), are depicted in 

yellow. Areas, which showed a group by memory load interaction (CLT 37 mm²), 

are depicted in green. The numbers next to each area showing either a main effect 

of group or a group by memory load interaction correspond to the respective indices 

in Table 5. Additionally, next to each index number the results of the two-tailed t-

tests for group differences for each memory load condition are represented by three 

colored vertical bars. The lower bar corresponds to the memory load 1, the middle 

bar corresponds to the memory load 2 and the upper bar corresponds to the 

memory load 3 condition. For these bars, blue indicates significantly higher 
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activation (p<0.05) in controls compared to patients, while light blue indicates a 

trend (p<0.1). Red indicates significantly higher activation (p<0.05) in patients 

compared to controls, while orange indicates a trend (p<0.1).  
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Figure 7. Functional connectivity results encoding.  

t-map depicting significant group differences in the strength of functional 

connectivity during encoding for the left VLPFC (two-tailed t-tests, random effects 

level, p<.05, corrected using cluster thresholding;  CLT 45 mm²). Blue areas 

indicate stronger connectivity with the seed region for controls, red areas indicate 

stronger connectivity with the seed region for patients (two-tailed t-tests, random 

effects level).  
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Supplementary Material 

 

Figure S1.  Task-related activation and deactivation maps encoding.  

Superimposition maps showing the cortical networks engaged in both patients and 

controls during encoding for each WM load condition (t-test, p<.05, corrected using 

cluster thresholding). Areas showing task related activation are depicted in red, 

areas showing task related deactivation are depicted in blue. Each WM load 

condition is associated with an increasingly darker shade of red and blue, reflecting 

increasing WM load. Colors are superimposed and areas of overlap (cortical 

regions showing activation or deactivation during more than one WM load condition) 

receive the appropriate mixed color. 
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Figure S2.  Task-related activation and deactivation maps early maintenance.  

Superimposition maps showing the cortical networks engaged in both patients and 

controls during early maintenance for each WM load condition (t-test, p<.05, 

corrected using cluster thresholding). Areas showing task related activation are 

depicted in red, areas showing task related deactivation are depicted in blue. Each 

WM load condition is associated with an increasingly darker shade of red and blue, 

reflecting increasing WM load. Colors are superimposed and areas of overlap 

(cortical regions showing activation or deactivation during more than one WM load 

condition) receive the appropriate mixed color. 
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Figure S3.  Task-related activation and deactivation maps late maintenance.  

Superimposition maps showing the cortical networks engaged in both patients and 

controls during late maintenance for each WM load condition (t-test, p<.05, 

corrected using cluster thresholding). Areas showing task related activation are 

depicted in red, areas showing task related deactivation are depicted in blue. Each 

WM load condition is associated with an increasingly darker shade of red and blue, 

reflecting increasing WM load. Colors are superimposed and areas of overlap 

(cortical regions showing activation or deactivation during more than one WM load 

condition) receive the appropriate mixed color. 

 

 



Bittner et al. - The When and Where of working memory dysfunction in early-onset schizophrenia 50 

 

 

Figure S4.  Task-related activation and deactivation maps retrieval.  

Superimposition maps showing the cortical networks engaged in both patients and 

controls during retrieval for each WM load condition (t-test, p<.05, corrected using 

cluster thresholding). Areas showing task related activation are depicted in red, 

areas showing task related deactivation are depicted in blue. Each WM load 

condition is associated with an increasingly darker shade of red and blue, reflecting 

increasing WM load. Colors are superimposed and areas of overlap (cortical 

regions showing activation or deactivation during more than one WM load condition) 

receive the appropriate mixed color. 
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Figure S5.  Beta values encoding.  

Beta values for the regions of interest derived from the ANOVA for encoding for 

controls (blue) and patients (red). The number for each region corresponds to its 

index in Figure 3 and Table 2. Error bars represent SEM.  

Xp<.1, *p<.05, **p<.01. 
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Figure S6.  Beta values early maintenance.  

Beta values for the regions of interest derived from the ANOVA for early 

maintenance for controls (blue) and patients (red). The number for each region 

corresponds to its index in Figure 4 and Table 3. Error bars represent SEM.  

Xp<.1, *p<.05, **p<.01. 
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Figure S7.  Beta values late maintenance.  

Beta values for the regions of interest derived from the ANOVA for late maintenance 

for controls (blue) and patients (red). The number for each region corresponds to its 

index in Figure 5 and Table 4. Error bars represent SEM.  

Xp<.1, *p<.05, **p<.01. 
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Figure S8.  Beta values retrieval. Beta values for the regions of interest derived 

from the ANOVA for retrieval for controls (blue) and patients (red). The number for 

each region corresponds to its index in Figure 6 and Table 5. Error bars represent 

SEM.  

Xp<.1, *p<.05, **p<.01. 

 

 

 
 


