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Abstract

We study and classify regular and semi-regular tessellations of Riemann surfaces

of various genera and investigate their corresponding supersymmetric gauge theories.

These tessellations are generalizations of brane tilings, or bipartite graphs on the

torus as well as the Platonic and Archimedean solids on the sphere. On higher genus

they give rise to intricate patterns. Special attention will be paid to the master space

and the moduli space of vacua of the gauge theory and to how their geometry is

determined by the tessellations.
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1 Introduction

Recently, there has been a host of activity in exploring a remarkable bipartite structure

of supersymmetric gauge theories. This has ranged from a relatively well-established

programme of using doubly periodic brane-tilings, or equivalently, dimer models on

the torus, to understand the four-dimensional N = 1 quiver gauge theories of D3-

branes probing toric Calabi-Yau spaces [1–5], to matrix models and quiver calculators

as a BPS state-counting mechanism [6,7]; from a systematic outlook of bipartite field

theories (BFT) [8–12] to relations to Grothendieck’s dessin d’enfant and subsequent

connections to number theory [13–16]; as well as to the vast and exciting subject

of encoding scattering amplitudes in N = 4 super-Yang-Mills theory in terms of

planar bipartite graphs and cells in the positive Grassmannian [17–21]. Amongst

these various facets there has been an ever-steady emergence of new connections and

understanding.

At the crux of all of the above is the question of representing the gauge theory

information in terms of bipartite graphs on Riemann surfaces, which is an important

problem in and of itself in combinatorial geometry. Along this vein there has been,

with the aid of modern computing and algorithmic geometry [22], a persistent series

of classification results in cataloguing these graphs in the context of gauge theories
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[16, 23–31].

Motivated by this taxonomy of bipartite structures in gauge theory, our vision is

two-fold: (1) to go beyond planar and doubly-periodic tilings and (2) to explore the

terra incognita of non-bipartite field theories. In the first direction, a recent work [29]

has nicely addressed the situation of genus 2 Riemann surfaces. We will focus on

a particular case of so-called (semi-)regular tilings on aribitrary Riemann surfaces

and proceed, in incremental genus, to explicitly construct the relevant gauge theories.

Such tilings are fundamental to the study of tessellations, the planar case of which

dates back to the geometric patterns known to early civilizations. Throughout we

will use the terms “(brane) tilings” and “tessellations” interchangeably. In particular,

we will focus on the case where the tilings admit a dimer model and touch upon the

cases beyond such bipartite colouring of the nodes.

In the second direction, very little work has been due to the augmenting complexity

and the lack of physical intuition. In the context of gauge theories, the toric condition

restricts the superpotential to assume a particular form, consisting of plus/minus

terms only, and grouped in pairs. This is the string-theoretic (AdS/CFT) origin of

the bipartite graphs. There are, of course, geometrically engineered gauge theories

which transcend this restriction and do no afford tiling/dimer descriptions. Very

quickly, in leaving the realm of toric Calabi-Yau spaces, we lose control of (coupling)

parametres in the superpotential. Constrained by (semi-)regularity, we will take the

first steps in probing some of these theories and compute their moduli space of vacua.

The outline of the paper is as follows. In section 2.1 we give a brief introduction

to the use of dimer models in describing quiver gauge theories. Then in section 2.2 we

explain how to use these models to recover the mesonic moduli space of the theory.

Section 2.4 explains the exact methods we use to analyse our tilings. The methodology

used to classify the regular and semi-regular tilings is described in section 2.3. Our

analysis of the tilings is found in sections 3.1 and 4.1. The results are summarised

in 6, which also provides directions of further research. A brief foray into the study

of tilings of Riemann surfaces which do not have bipartite structure is discussed in

section 5.
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2 Bipartite Tessellation of Riemann Surfaces

Let us begin by collecting some rudiments of the requisite mathematics and physics.

We will introduce the bipartite tiling of Riemann surfaces, emphasizing the approach

from dessins d’enfants and permutation triples, and their physical realization of four-

dimensional supersymmetric gauge theory. The vacuum moduli space of the gauge

theory will be an associated Calabi-Yau variety. In a string theoretic realization

of the gauge theory, geometrically engineered by configurations of brane tilings, or

equivalently, as the dual world-volume theory of a D3-brane, the Calabi-Yau geometry

is precisely the one which the branes probe.

2.1 Dimer Models: Bipartite Graphs on Riemann Surfaces

Our dimer model consists of a balanced bipartite graph drawn on a Riemann surface

Σ, i.e. a finite graph embedded into Σ with an equal number of nodes coloured

black and white, and with every black node only connected to white nodes and vice

versa (cf. e.g., [15] for a rapid introduction). We will use the dimer to encode a four-

dimensionalN = 1 quiver gauge theory as follows: the edges represent bi-fundamental

(adjoint) fields Φi, while each face with N sides represents a U(1) gauge group with

N fields charged under it. The direction of the bi-fundamental is determined by an

overall choice of orientation of black-to-white.

A dimer with faces F1, . . . , Fk thus gives a total gauge symmetry of U(1)k. Note

each field is charged exactly twice as it is the border between two faces. The super-

potential can also be recovered from the dimer as follows: to each vertex we assign

a monomial equal to the product of the fields associated to the edges incident to the

vertex. We circle the black vertices clockwise and the white vertices anti-clockwise.

The superpotential is then the (weighted) sum of these monomials, where each mono-

mial from a black node appears as a positive term and each one from a white node

appears as a negative term [2, 3]. As a result, each superpotential term appears ex-

actly twice in the superpotential, once with a positive and once with a negative sign,

hence capturing the toric nature of the theory in what has become known as the

“toric condition” [1].

The quiver diagram, which is a directed graph representing the gauge theory, with

5



nodes representing the gauge groups and edges representing the bifundamental fields,

is then found as the dual graph of the dimer. The direction is given by the orientation

of the Riemann surface on which the dimer is drawn: the arrows are pointing in such

a way that in the original tiling, the black node is on the right and the white node on

the left. Note this is contrary to the convention in [2]. This does not matter however:

for any tiling, we could interchange our white and black nodes to use the convention

in [2]; this interchange merely changes the signs of the terms in the superpotential

and hence does not affect the gauge theory.

The gauge invariants of the theory are then found as closed loops in the quiver [33].

The dimer model can also be represented by permutation triples and Belyi pairs

[4, 5]. The permutation triple {σB, σW , σ∞} is such that each cycle of σB gives the

clockwise ordering of the edges around a certain black node. The cycles of σW cor-

respond to clockwise orderings around white nodes. Note that the same direction is

chosen, unlike the case of reading out the plus/minus terms in the superpotential. The

third permutation σ∞ is then found by imposing the condition, with multiplication

as permutations in the symmetric group,

σBσWσ∞ = Id . (2.1)

An interesting thing to note here is that the cycle decomposition of σ∞ gives infor-

mation about the faces of the bipartite tiling: there is a 1-1 correspondence between

a p−cycle in σ∞ and a 2p−gon in our tiling. In fact, this correspondence is such that

each cycle in σ∞ corresponds to a set of outgoing arrows at a node in the quiver and

giving the clockwise orientation with which they appear in the tiling.

Finally, we can realise the dimer concretely by having an algebraic model for the

Riemann surface Σ, together with a rational map π to P1, ramified only at 3 points

(say 0, 1 and ∞); this is the Belyi pair:

(Σg, π : Σg → P1) . (2.2)

In the above and the ensuing, we write the genus g of the Riemann surface as a

subscript. For the details on the construction of Belyi pairs, we refer the interested

reader to [4, 5]. The key properties we need are the following.

We are mapping a Riemann surface of genus g to P1, of genus G = 0, using a

6



degree d rational map, so it should satisfy the Riemann-Hurwitz relation:

2g − 2 = d(2G− 2) +B , B =
∑

i∈{B,W,∞}

(d− Cσi) (2.3)

where B is the branching number and Cσi represents the number of cycles in permu-

tation σi. Whence, we find that

d− n = 2− 2g , (2.4)

where n is the number of ramification points. All ramification structures given in the

paper can be checked to satisfy this condition.

2.2 Master Space and Moduli Space

An object of crucial importance in the study of N = 1 supersymmetric gauge theories

is the moduli space of vacuaM, given by the vanishing of scalar potential of the field

theory [35]. It is the space of zeroes to the F-terms :

∂W (φ)

∂φi
= 0 (2.5)

describing the extremisation of the superpotential of the theory, and the D-terms :

DA =
∑
i

φ†i0T
Aφi0 = 0 (2.6)

describing the orbits of the gauge invariant operators of the theory.

The space of F-flatness (solutions to the F-terms) is called the Master Space

[36,37], denoted F [. The moduli space M is then the symplectic quotient:

M' F [//GD[ (2.7)

where GD[ describes the D-flatness conditions.

It is worth noting that the vacuum moduli space is an affine variety [38,39], i.e., it

is a submanifold of Cn, the coordinates of whose points vanish exactly on some (finite)

set of polynomials {fi(z1, . . . , zn)}. The following theorem by Luty and Taylor proves
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useful to us [38]:

THEOREM 2.0 Given a group GD[ acting on a variety A, there is a one-to-one

correspondence between A//GD[ and the set of points in the affine variety AG defined

by the ring RG of G-invariant elements in R = R(A), where R(A) is the ring of

polynomials defining the variety A.

For us, this effectively means we can find the moduli space M as a quotient

polynomial ring as follows [39]:

• First we define the polynomial ring S = C[φ1, . . . , φn] where the {φ1, . . . , φn}
are the fields. We then wish to impose the F-term constraints ∂iW = 0. This

can be achieved by considering the ideal I1 = 〈∂iW 〉i=1,...,n. Then by definition,

the quotient ring F = C[φ1, . . . , φn]/〈∂iW 〉i=1,...,n is a polynomial ring in which

exactly all F-flatness is satisfied.

• The D-term conditions are captured exactly by the holomorphic gauge in-

variants. Generally there is a large number of gauge invariants, carrying a

certain amount of redundancy. We consider a minimal generating set D =

{rj(φi)}j=1,...,k. As the rj are polynomials in the φi, we can consider the set

D as a map from S = C[φ1, . . . , φn] to R = C[r1, . . . , rk]. To satisfy F-term

constraints, we simply restrict the map to F :

D : F → C[r1, . . . , rk] . (2.8)

The moduli space M is then the image of this map:

M' Im
(
F D−→ R

)
. (2.9)

One can re-phrase this as an elimination problem [45] which can then be ad-

dressed using parallelisable algorithms. Alternatively, we can also use Gröbner-basis

techniques to study the affine variety [39], computing such quantities as dimension,

degree and Hilbert series of the moduli space of vacua [33].
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2.3 Classification of (Semi-)Regular Tessellations

We now move on to describe in detail the protagonist of our concerns. In this section,

we provide a complete classification of all regular tilings on Riemann surfaces of genus

g = 0, 1, 2, 3. We first define a regular and semi-regular tiling and show our methods

for classifying them. We then show the results of our computational analysis of the

gauge theory arising from the tiling.

As there are several inequivalent definitions of (semi-)regular tessellations, and to

assist the reader not familiar with the terminology used, we first give an overview of

some important definitions and terms. We then discuss properties of (semi-)regular

tessellations that will aid us in their classification, after which we restrict ourselves

to the easier case of the regular tessellations. We discuss the construction we used

to attempt a complete classification of these. For the interested reader, we have also

included a proof (unfortunately non-constructive) that for any Riemann surface Σ of

a given genus g, the number of semi-regular maps that can be embedded in it is finite.

2.3.1 Terminology and Definitions

A tessellation of a Riemann surface Σ, being a graph embedded onto Σ, consists of

vertices, edges and faces and has an associated symmetry group we will denote by G.

We define a tessellation to be semi-regular if its symmetry group G acts transitively

on its vertices. To define regular tessellations, we first define a flag of the tiling to

be a triple of vertex, incident edge and face of the tessellation. A tessellation is then

regular if the symmetry group G acts transitively on the flags. Note this implies that

G also acts transitively on the the vertices, so any result holding for semi-regular

maps holds for regular maps.

Given the vertex transitivity condition of semi-regular tessellations, we note that,

given any surface to embed in, we can classify tessellations according to the structure

of the edges around each vertex. Following notation from [52], we will write the cyclic

sequence x = (p1, p2, . . . , pq) for a semi-regular tessellation where every vertex is of

valency q and is surrounded by faces that are pi-gons, appearing in the cyclic order

given by x. Note physics imposes on us the constraints q, pi ≥ 3.

In the case of a regular tiling, we see that by flag-transitivity, we must have
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p1 = p2 = · · · = pq =: p, so that x = (p, p, . . . , p). In this case, it is more useful to

classify the type of tessellation by its Schläfli symbol {p, q}, where q is the valency of

the vertices and all the faces are p-gons.

A further useful definition is that of a dart : a half-edge of the tessellation, of which

there are 2E. We consider in our symmetry group G the subgroup H of rotational

symmetries. We note that any element h ∈ H is completely determined by its action

on one of the darts of the tessellation, hence we see H is a group of order |H|= 2E,

a fact that will come in useful later in classifying all regular tilings.

2.3.2 Classification

We consider a regular tessellation of type x = (p1, p2, . . . , pq). Define mp to be the

multiplicity of p in x, i.e. mp is such that every vertex has mp incident p-gons. Then

we must have the relation:

Fp =
mp

p
V , (2.10)

where Fp is the number of p-gons in our tiling. This rearranges to give

F =
∑
p

Fp = V
∑
p

mp

p
= V

q∑
i=1

1

pi
. (2.11)

By considering the number of edges meeting at each vertex, and by noting genus g

Riemann surfaces are orientable and have Euler characteristic χ = 2 − 2g, we have

the relations:

2E = qV, V − E + F = 2− 2g . (2.12)

Combining these results, we get the relation:

q∑
i=1

1

pi
− q

2
+ 1 +

2g − 2

V
= 0 . (2.13)

We now consider two cases.

Case g = 0: We get that 1
q

(
1 +

q∑
i=1

1
pi

)
= 1

2
+ 2

V
≥ 1

2
. This condition gives

us exactly five regular tessellations of the sphere, corresponding to the Platonic
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solids, and thirteen other semi-regular tessellations, corresponding to the well-known

Archimedean solids, pictured in Figure 1 (cf. [48] and detailed discussions in [30]).

Case g ≥ 1: Note this holds if and only if 1− g ≤ 0. Then we have that

q∑
i=1

1

pi
− q

2
≤

q∑
i=1

1

3
− q

2
≤ −q

6
, (2.14)

where we have used the fact that pi ≥ 3 for all i. Hence we see that

− q

6
≥

q∑
i=1

1

pi
− q

2
= −1 +

2− 2g

V
≥ −1 + 1− g = −g , (2.15)

in the case that V ≥ 2, which leads to the bound:

q ≤ 6g (2.16)

for (semi-)regular tessellations. Had we restricted ourselves to bipartite tessellations,

we would need pi ≥ 4 and we would get the bound

q ≤ 4g . (2.17)

In the case that V = 1, we see that equation 2.15 gives us − q
6
≥ 1 − 2g, or bound

q ≤ 12g − 6.

2.3.3 Regular Tessellations

We first limit our discussion to that of regular tessellations, using the same notation

as before. Let Σg be the Riemann surface of genus g. Consider a regular map with

Schläfli symbol {p, q}. Then by considering each edge as seperating two faces, we

get the relation pF = 2E. Combining this with equation 2.12, we get the following

relations:

qV = pF = 2E, V − E + F = 2− 2g , (2.18)

which rearranges to:
1

p
+

1

q
+
g − 1

E
=

1

2
. (2.19)
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Figure 1: The Archimedean Solids, corresponding to the semi-regular tessellations of the
plane.
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Note this is merely a necessary, and not sufficient condition. However, for any

fixed g ∈ N, we will see there is only a finite number of solutions (p, q, E) ∈ N3 and

hence we can consider these on a case-by-case basis.

From a physical point of view, we must also impose for consistency that p, q ≥ 3.

It is easy to see from 2.19 that there is something interesting going in when g = 1.

Hence we first consider the case g 6= 1, leaving the g = 1 case to a separate section. In

our analysis, it turns out to be expedient to first consider seperately the case g = 0.

Case g = 0: we see that 1
p

+ 1
q

= 1
2

+ 1
E
> 1

2
. As p, q ∈ N, this means that the only

solutions in the required range are

{p, q} = {3, 3}, {3, 4}, {4, 3}, {3, 5}, {5, 3} . (2.20)

Note that by 2.19, each solution fixes the number of edges E. These solutions describe

the famous Platonic solids: they are (respectively) the tetrahedron, the octahedron,

the cube, the icosahedron and dodecahedron, pictured in Figure 2.

Figure 2: The five Platonic Solids, corresponding to the regular tessellations of the plane.
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Case g > 1: For the case of arbitrary genus g ≥ 2, we must solve over the natural

numbers for:
1

p
+

1

q
=

1

2
− g − 1

E
. (2.21)

We note that 1
p
, 1
q
∈ {1

3
, 1

4
, 1

5
, . . . } and that 1

p
+ 1

q
< 1

2
, whence

1

p
+

1

q
≤ max

(
{ 1

n
+

1

m
: n,m ∈ N} ∩ (0,

1

2
)

)
=

1

3
+

1

7
. (2.22)

Thus we see that g−1
E
≥ 1

2
− (1

3
+ 1

7
) = 1

42
, so we get an upper bound:

E ≤ 42(g − 1) . (2.23)

Now we note that for a fixed E, we have 1
2
− g−1

E
∈
(

1
n+1

, 1
n

]
for some n ∈ N. Hence

we need p, q ≥ n+ 1. We saw before that for g ≥ 1 we have bound q ≤ 4g for (semi-

)regular tilings with bipartite structure with V > 1. Noting that any regular tiling

of type {p, q} has a regular tiling that is realised as its dual (i.e. by interchanging

vertices and faces) and is of type {q, p}, we see by symmetry that for regular tilings

we must also have bound p ≤ 6g whenever F > 1. In the case that F = 1, we can

use the bound previously obtained for q when V = 1 to see that p ≤ 12g − 6. So we

see there are only finitely many solutions in the positive integers for any genus g.

We used the bounds thus obtained to generate, in Matlab or Mathematica, for

example, all possible solutions for {p, q}. Note that the existence of such a solution

does not automatically imply a tiling with this p and q actually exists. A complete

overview of the solutions for each genus and details regarding their existence can be

found in the ensuing subsections.

An interesting thing to note about the regular tilings is that for g ≥ 2 we can see

certain “families” of tilings appearing, with very similar looking tilings and quivers,

such as the family with V = 2, E = 4g, F = 2g, p = 4, q = 4g, the family with

V = 2g, E = 4g, F = 2, p = 4g, q = 4, or more obviously, the families with V =

1, E = 2g, F = 1, p = 4g, q = 2g or V = 2, E = 2g + 2, F = 2, p = 2g + 2, q = 2g + 2.

Case g = 1: In this special case, equation 2.19 becomes 1
p

+ 1
q

= 1
2
, and again we

can proceed via simple elimination, getting solutions {p, q} = {3, 6}, {4, 4}, {6, 3}.
Alternatively, we can note this is the torus, whose fundamental polygon is doubly
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periodic (i.e. a parallelogram) with opposite edges identified. Hence we see that

(both for regular and semi-regular tilings) these tessellations are in a one-to-one cor-

respondence with regular and semi-regular, respectively, tessellations of the plane by

polygons. Complete classifications of these already exist in the literature [49].

We note that, unlike for other genera, the number of edges E is not fixed by

equation 2.19 for g = 1. However, note that each regular tiling corresponds to a

regular tessellation of the plane with a fundamental domain imposed. Hence each

choice of fundamental domain gives a new gauge theory, but having m× n copies of

the fundamental domain simply corresponds to an orbifold action by Zm×Zn [3]. We

do not consider these cases here.

The image below shows the three regular tilings of the plane, by triangles, squares

and hexagons respectively:

To find a fundamental domain of our tessellation we need to specify a parallelo-

gram with a base point a and sides given by vectors x y, where x and y are such that

our tessellation is invariant under translation by them. However, specifying x and y

is actually sufficient. Imagine having a parallelogram superimposed upon our lattice.

Identify this parallelogram as the ordered triple (a,x,y), where a is the ‘base point’

of the parallelogram and x,y giving the sides (i.e. our parallelogram has vertices

a, a + x, a + y, a + x + y).

Now consider a second parallelogram (b,x,y). The two parallelograms are easily

seen to be homotopic by “sliding” one onto the other. We also note that at every step

in this sliding, the diagram - as living on the torus - is preserved, because whenever

a vertex, edge or face ‘disappears’ on one side, it reappears at the opposite side (by

the translational symmetry of our lattice under x,y).

We find any two vectors g,h that give us a primitive fundamental domain, where

primitive means there is not fundamental domain contained strictly within it (see e.g.
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figure below). We can then form new vectors z(m,n) := mg + nh (where m,n ∈ Z)

that are again translational symmetries of our lattice.

Conversely, any translational symmetry must be of this form. To see this, consider

a tessellation in which g,h are such that they give a primitive fundamental domain.

Suppose x := ~AB is a symmetry of the lattice. As B is in some parallelogram, we

can write x = ag + bh + rx where a, b ∈ Z and rx is contained in the parallelogram

((0, 0),g,h). Then note rx = x− ag− bh is also a translational symmetry (as x,g,h

are). Consider then for example the fundamental domain given by vectors g and

rx. Note that this gives parallelograms that are strictly contained in those given by

vectors g,h, which is a contradiction.

So once we have a primitive fundamental domain given by two vectors g,h, we can

form any other fundamental domain by making two vectors x = z(a1, b1) = a1g + b1h

and y = z(a2, b2) = a2g + b2h where we require that x1 and x2 are not linearly

dependent, if and only if a1
b1
6= a2

b2
, if and only if J = det

 a1 a2

b1 b2

 6= 0.

Now note that the Jacobian J is in fact the scaling factor of the area, i.e.

J =
Anew
Aold

, (2.24)

where Anew, Aold denote the area of our new, respectively old, fundamental domain.

The mapping f : {g,h} → {x,y} with associated Jacobian Jf 6= 0 is invertible with

inverse f−1 which has Jacobian 1/Jf .

We see that hence we can classify all fundamental domains by their area and define

a minimal fundamental domain to be a pair of vector symmetries of the planar tiling

{g,h} such that any mapping f : {g,h} → {x,y} to another such pair has an asso-

ciated Jacobian Jf ≥ 1. Note we have equality if and only if the target fundamental

domain is also minimal. Equivalently, this means that the area of the fundamental

domain is minimal in the set {A(ρ)|ρ is a fundamental domain}. Because the fun-

damental domain {g,h} is minimal, this means that any mapping π onto another

fundamental domain {x = a1g + b1h,y = a2g + b2h} must satisfy a1, a2, b1, b2 ∈ Z
and hence:

Jπ = |a1b2 − a2b1|∈ Z . (2.25)
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We now show there is a direct correspondence between the area of a fundamental

domain and the number of vertices it contains. To see this, we will apply Pick’s

theorem, which states that any polygon on a square lattice (where each square has

unit area), with its vertices all lattice points, has an area as follows:

A = i+
b

2
− 1 , (2.26)

where i is the number of lattice points interior to the polygon and b the number of

lattice points on the boundary.

To see this applies, we consider a minimal fundamental domain of a tiling, which

- without loss of generality - we can take to have corners coinciding with the vertices

of the tiling. By using an appropriate shear mapping (which preserves the area of

polygons) and imposing a suitable distance measure, we can then take the fundamen-

tal domain to be a square with its sides parallel to the x-axis and y-axis respectively.

To any fundamental domain, whose corners have to be lattice points, we can apply

Pick’s theorem to see that

A = V . (2.27)

This happens as we can split the boundary vertices into two sets: the four vertices

on the corners, which, after identification of opposite sides, only contribute to one

vertex in our toric tiling, and the other boundary vertices b̃, which contribute in pairs

to one vertex in the toric tiling, hence negating the fact that equation 2.26 has a

factor of 1
2

in it. Combining this result with equations 2.24 and 2.25, we see that the

number of vertices V (new) in any fundamental domain is an integer multiple n of

the number of vertices V (old) in the minimal domain. For any (semi-)regular tiling,

we can then use the relation 2E = qV , to see E(new)
E(old)

= n = V (new)
V (old)

.

If we look now at the number Fp of p-gons, we have according to equation 2.10 that

Fp = V mp
p

, where mp is the multiplicity of p-gons around each vertex, so that again:
Fp(new)

Fp(old)
= n = V (new)

V (old)
. Hence we see that in fact, any fundamental domain gives a

gauge theory that is an orbifold of the gauge theory given by a minimal fundamental

domain.

So we need only consider each solution for {p, q} once. Also note that we cannot

impose a bipartite structure on the tessellation by triangles, so we are simply left

with two regular tessellations, corresponding to the C3 and conifold theories.
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2.3.4 Semi-Regular Tessellations

In this subsection, we give a proof that the number of semi-regular tessellations of

a Riemann surface Σg is finite. This proof is not necessary for the remainder of the

paper and hence can be skipped; it is included for the interested reader.

The proof is not constructive and does not aid in actually finding these tilings; for-

tunately however, for g = 0 and g = 1 complete classifications already exist [48, 49].

They correspond to the Archimedean solids and semi-regular tessellations of the

planes respectively, the latter of which are pictured in Figure 3.

Figure 3: The semi-regular tessellations of the plane. Picture obtained from http://

mathworld.wolfram.com/Tessellation.html

To see the number of tessellations of Σg is finite, we first recall that q is bounded.

We now show that E - and hence V - is bounded for g > 1. Note we need not consider

g = 0 or g = 1, as we already know the number of tessellations is finite. We consider

equation 2.13 and rearrange to get:

g − 1

E
=

1

2
− 1

q
− 1

q

q∑
i=1

1

pi
≥ 1

3

(
1

2
−

q∑
i=1

1

pi

)
, (2.28)

where we use the fact that q ≥ 3. We now show that either
q∑
i=1

1
pi

= 1
2
, which happens
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if and only if g = 1, or there exists ε0 > 0 such that
q∑
i=1

1
pi
< 1

2
−3ε0, whence it follows

that for g > 1:

E ≤ 1

ε0
(g − 1) . (2.29)

To see this, we first fix 3 ≤ q ≤ max{6g, 12g − 6}. Suppose for a contradiction that

given any ε > 0, there are (p1, . . . , pq) such that

0 <
1

2
−

q∑
i=1

1

pi
≤ ε . (2.30)

Without loss of generality we can impose that p1 ≤ p2 ≤ . . . ≤ pq−1 ≤ pq. We first

consider p1. Note that
∑q

i=1
1
pi
≥
∑q

i=1
1
p1

= q
p1

. Hence equation 2.30 implies that
1
p1
≥ 1

q
S

(ε)
1 where S

(ε)
1 = 1

2
− ε, or equivalently:

p1 ≤
q

S
(ε)
1

. (2.31)

So we see that p1 can only take the finite number of values {3, 4, . . . , b q

S
(ε)
1

c}.

Fix any such value of p1. We then want to choose (p2, . . . , pq) such that
q∑
i=2

1
pi
≥

1
2
− 1

p1
− ε. Now we define for any fixed (p1, . . . , pn−1):

S(ε,p1,...,pn−1)
n =

1

2
−

n−1∑
i=1

1

pi
− ε . (2.32)

Again, we take note of the ordering on the pi and conclude that 1
p2
≥ 1

q−1
S

(ε,p1)
2 , or

equivalently:

p2 ≤
q − 1

S
(ε,p1)
2

. (2.33)

Now fixing p2 to be any of the finite number of values it can take, we proceed to

inductively get the bound:

pn ≤
q − n+ 1

S
(ε,p1,...,pn−1)
n

(2.34)

for n ≤ q − 1.
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Now we consider again equation 2.30 and note we get, upon rearranging:

1

pq
≥ 1

2
−

q−1∑
i=1

1

pi
− ε (2.35)

We have two cases to consider:

• If 1
2
−

q−1∑
i=1

1
pi
6= 1

N
for some n ∈ N, we can pick ε > 0 small enough such that no

pq ∈ N satisfies this equation.

• If 1
2
−

q−1∑
i=1

1
pi

= 1
N

for some n ∈ N, we can pick ε > 0 small enough such that the

only solution is such that 1
pq

= 1
2
−

q−1∑
i=1

1
pi

, which is a contradiction of equation

2.30.

Either way, by the finiteness of the possibilities of (p1, . . . , pq), we see that it is not

possible to find, given any ε > 0, (p1, . . . , pq) such that 2.30 holds. Hence there must

exist some ε0 such that
q∑
i=1

1

pi
<

1

2
− 3ε0 . (2.36)

We have hence shown that 2.29 holds. Furthermore, to see all the pi are bounded, we

simply note that each edge of the tiling can only appear as an edge of any face twice.

Hence we see that necessarily pi ≤ 2E for all pi.

Finally, we see that on any Riemann surface, there are only a finite number of

solutions to equation 2.13, a necessary equation for a semi-regular tiling of type

(p1, . . . , pq) to exist.

We will see in section 3 that it is possible to have multiple (semi-)regular tilings of

the same type. However, to see this number is finite, we simply note that for any two

such tilings T1, T2 there is a bijection f : V1 ×E1 × F1 → V2 ×E2 × F2. As these sets

are all finite by the above, we note there can only be finitely many such f . So there

are only finitely many semi-regular maps of a certain type on any given Riemann

surface.

We conclude that on any Riemann surface of a given genus g, there are only

finitely many semi-regular tilings.
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2.4 Outline of Computation

The course of our action is therefore clear.

• We will study tessellations of Riemann surfaces, focusing on the regular and

semi-regular classes. Having obtained the finiteness results from the above dis-

cussions, we will explicitly find regular and semi-regular tessellations in sections

3 and 4 respectively for various genera.

• Having found a tiling, we then impose a bipartite structure on it, noting that

this is unique up to interchange of black and white vertices (which would merely

flip all signs in later calculations, hence not affecting the gauge theory). This

may not always be possible and we will leave the impossible cases to a discussion

in section 5.

• We then establish the quiver gauge theory associated to the tiling. As described

in section 2.1, we assign a superfield Φi and a U(1) gauge group to each face. As

described earlier, we then find the superpotential W by considering each vertex

as generating a monomial. We also draw the corresponding quiver diagram as

the dual of the regular tiling.

• Given the gauge data in terms of the matter content and the superpotential, we

can proceed to compute the relevant moduli space. First, we list the partials

{ ∂W
∂Φj
}j=1,...,n of the superpotential. We then use a computer algebra system, for

example Macaulay2 [43], to generate the master space F [, which is realised as

the quotient:

C[Φi]i=1,...,n/〈∂jW 〉j=1,...,n . (2.37)

We would then like to study the branches of the vacua. This is done by finding

the primary decomposition of the ideal I = 〈∂jW 〉j=1,...,n and listing its compo-

nents. Generally, all but one of these will be low-dimensional, linear pieces. The

most interesting is the top-dimensional ideal, the coherent component, usually

written IrrF [, which is a Calabi-Yau manifold of the same dimension and degree

as the master space itself [36, 37].

• We compute the Hilbert series of these ideals. This is the central object to

the Plethystic Programme of studying operator enumeration of supersymmetric

gauge theories [33, 34]. For a (quotient) polynomial ring X =
⊕

i≥0Xi, the
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Hilbert series is given by

H(t) =
∞∑
i=0

dim(Xi)t
i = P (t)/(1− t)dim X (2.38)

for some polynomial P (t) with integer coefficients, where dim(Xi) represents

the number of independent polynomials of a degree i on the variety.

• From the Master space, we can proceed to compute the full (mesonic) mod-

uli space. We consider the gauge invariants {rj}j=1,...,k, corresponding to closed

loops of minimal length in the quiver, i.e., those that do strictly contain another

closed loop. We bypass the mapping as described in section 2.2 by considering

ring S = C[Φi, yj]i=1,...,n; j=1,...,k with ideal J = 〈∂iΦ, yj〉i=1,...,n; j=1,...,k. We sub-

sequently eliminate the Φ variables and substitute the ideal J into the new ring

R = C[yj]j=1,...,k to get the (mesonic) moduli space as:

C[yj]j=1,...,k/〈∂iΦ, yj〉i=1,...,n; j=1,...,k . (2.39)

We find that the dimension ofMmes is equal to 1+2g, agreeing with well-known

g = 1 gauge theories (i.e., Calabi-Yau threefolds) and the g = 2 theories in [29].

The moduli space is a Calabi-Yau manifold if the tiling is consistent [29].

Due to the complexity of Groebner basis calculations, based on the Buchberger

algorithm, which has large space complexity and doubly exponential time com-

plexity in the input size [46,47], we were not able to compute the full information

for the moduli spaces for tilings with too many edges or gauge invariants.

• We also provide a permutation triple with its associated ramification structure,

which gives information about the cycle decomposition, in accordance with the

procedure outlined in [4], to aid in any future construction of a Belyi pair from

the genus g Riemann surface to the sphere.

3 Regular Tessellations

We follow the prescription of the above subsection and proceed to study the tessella-

tions in detail. We begin with the regular cases and then move on to the semi-regular

ones in the next section. We find it expedient to summarize, for the reader’s ease, the
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results of the geometrical properties first before addressing the individual examples.

3.1 Summary of results

The table below shows a summary of the results, with more detailed results in the

relevant subsections. The first column is the genus g of the Riemann surface and the

Schläfli symbols {p, q} (recall q is the valency of the vertices and all the faces are

p-gons). The second column lists the dimensions and the degrees of the master space

F [ and the full mesonic moduli space Mmes. The third column presents the Hilbert

spaces of the affine varieties F [, its coherent (highest dimensional irreducible) com-

ponent IrrF [ andMmes. Due to the computational complexity of our calculations, as

described in section 2.4, the expensiveness of the primary decomposition and Gröbner

basis calculations prevented us in giving all results with our present computing re-

sources; these will be marked “n/a”. We show as much information as possible, to

make any future calculations easier.

g {p,q} (dim,deg)F[ Hilbert series

(dim,deg)Mmes

0 {4,3} (6,14) F [ : (1− t)−6(1 + 6t+ 9t2 − 5t3 + 3t4)

IrrF [ : (1− t)−6(1 + 6t+ 6t2 + t3)

(1,1) Mmes : (1− t3)−1

1 {6,3} (3,1) F [ : (1− t)−3

IrrF [ : (1− t)−3

(3,1) Mmes : (1− t)−3

{4,4} (4,1) F [ : (1− t)−4

IrrF [ : (1− t)−4

(3,2) Mmes : (1− t2)−3(1 + t2)

2 {4,6} (10,9) F [ : (1− t)−10(1 + 2t+ 3t2 + 4t3 + 5t4 − 6t5 − 8t6 + 8t7)

IrrF [ : (1− t)−10(1 + 2t+ 3t2 + 2t3 + t4)

(5,216) Mmes : (1− t6)−5(1 + 44t6 + 126t12 + 44t18 + t24)
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{4,8} (8,1) F [ : (1− t)−8

IrrF [ : (1− t)−8

(5,24) Mmes : (1− t4)−5(1 + 11t4 + 11t8 + t12)

{6,4} (8,16) F [ : (1− t)−8(1 + 4t+ 10t2 + 8t3 − 6t4 − 20t5

+28t6 − 12t7 + 3t8)

IrrF [ : (1− t)−8(1 + 4t+ 6t4 + 4t3 + t4)

(5,216) Mmes : (1− t4)−5(1 + 47t4 + 114t8 + 62t12 − 11t16 + 3t20)

{6,6} (6,1) F [ : (1− t)−6

IrrF [ : (1− t)−6

(5,6) Mmes : (1− t2)−5(1 + 4t2 + t4)

{8,3} (10,594) F [ : (1− t)−10(1 + 14t+ 81t2 + 233t3 + 268t4

−45t5 − 63t6 + 105t7)

IrrF [ : n/a

(5,96) Mmes : (1− t3)−5(1 + 20t3 + 54t6 + 20t9 + t12)

{8,4} (6,4) F [ : (1− t)−6(1 + 2t+ 3t2 − 4t3 + 2t4)

IrrF [ : (1− t)−6(1 + 2t+ t2)

(5,6) Mmes : (1− t2)−5(1 + 11t2 + 11t4 + t6)

{10,5} (5,1) F [ : (1− t)−5

IrrF [ : (1− t)−5

(5,1) Mmes : (1− t)−5

3 {4,6} (18,896) F [ : (1− t)−18(1 + 6t+ 21t2 + 56t3 + 126t4 + 228t5

+335t6 + 390t7 + 300t8 − 70t9 − 543t10

−660t11 − 187t12 + 282t12 + 1329t14 − 1340t15

+894t16 − 384t17 + 139t18 − 30t19 + 3t20)

IrrF [ : n/a

n/a Mmes : n/a

{4,8}A (14,16) F [ : (1− t)−16(1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 7t6

−8t7 − 10t8 − 12t9 + 18t10)
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IrrF [ : n/a

(7,88) Mmes : (1− t4)−7(1 + 9t4 + 37t8 + 29t12 + 32t20

−35t24 + 21t28 − 7t32 + t36)

{4,8}B (14,16) F [ : (1− t)−16(1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 7t6

−8t7 − 10t8 − 12t9 + 18t10)

IrrF [ : n/a

n/a Mmes : n/a

{4,12} (12,1) F [ : (1− t)−12

IrrF [ : (1− t)−12

(7,720) Mmes : (1− t6)−7(1 + 57t6 + 302t12 + 302t18 + 57t24 + t30)

{6,4} (14,2048) F [ : (1− t)−14(1 + 10t+ 55t2 + 196t3 + 488t4

+812t5 + 716t6 − 284t7 − 484t8 + 212t9 + 500t10

−276t11 + 117t12 − 18t13 + 3t14)

IrrF [ : n/a

n/a Mmes : n/a

{8,4}A (10,96) F [ : (1− t)−10(1 + 6t+ 21t2 + 40t3 + 39t4 − 30t5 + 19t6)

IrrF [ : n/a

n/a Mmes : n/a

{8,4}B (10,64) F [ : (1− t)−10(1 + 6t+ 21t2 + 40t3 + 39t4 − 30t5

−99t6 + 44t7 + 106t8 − 96t9 + 32t10)

IrrF [ : n/a

n/a Mmes : n/a

{8,8} (8,1) F [ : (1− t)−8

IrrF [ : (1− t)−8

(7,20) Mmes : (1− t)−7(1 + 9t2 + 9t4 + t6)

{12,4} (8,16) F [ : (1− t)−8(1 + 4t+ 10t2 + 8t3 − 6t4 − 20t5

+28t6 − 12t7 + 3t8)

IrrF [ : (1− t)−8(1 + 4t+ 6t2 + 4t3 + t4)
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(7,320) Mmes : (1− t2)−7(1 + 29t2 + 145t4 + 109t6 + 23t8

+19t10 − 9t12 + 3t14)

{14,7} (7,1) F [ : 1

IrrF [ : 1

(7,1) Mmes : (1− t)−7

3.2 Detailed results

Having seen the geometries of the various moduli spaces at a glance, we now study

the physics of the associated gauge theories in detail, genus by genus, and Schläfli

symbol by Schläfli symbol.

Since the same Riemann surface can be represented in the plane in many differ-

ent ways, we have carte blanche to choose whichever representation works best in

portraying the particular tiling we are interested in. Hence there will many different

looking representations of the same surface.

We represent the surfaces in which our tilings are embedded in brown, whereas the

edges of the tiling are represented by black lines. If the surface is represented by

identification of sides of a polygon, the arrows on the sides show both which sides

match up and the direction in which they do so. If the surface is represented as circles

which are identified with each other, then lowercase letters around these circles show

which circles match up and in which direction they do so. In the g = 2 case, because

we can conformally map things to the hyperbolic plane, the tilings are perhaps better

represented inside polygons, as was done in [29], which is no longer guaranteed for

general genus.

Also, to avoid too many over-crossings in the planar representation of the quiver

diagrams, we will often represent the quiver diagram as a 3D-drawing, so as to better

illustrate its symmetries. The topology of the graph should be clear from the context.
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3.2.1 Genus 0

For the Riemann sphere (genus 0), we choose as representation a disk with its entire

boundary identified to one point. We found the possible Schläfli symbols for regular

tilings in equation (2.20), which correspond to the five platonic solids. Note the cube

with {p, q} = {4, 3} is the only regular tiling that allows us to impose a bipartite

structure on it. This has been studied in the context of modular groups and dessins

in [14,30].

{p,q} = {4,3} This is the cube, with V = 8, E = 12, F = 4.

A

1

3

2

5

4

6

12

7

10

D

AF

F

C9 E 11 F

B

8

F

1

2

3

4

5

6

7
8

9

10

11

12

B E

C D

F

We have superpotential

W = Tr(Φ1Φ2Φ3 + Φ4Φ5Φ6 + Φ7Φ8Φ9 + Φ10Φ11Φ12

− Φ1Φ4Φ12 − Φ2Φ7Φ6 − Φ3Φ10Φ9 − Φ5Φ8Φ11) (3.1)

and 8 gauge invariants, which are exactly the superpotential terms:

r1 = Φ1Φ2Φ3, , r2 = Φ1Φ4Φ12, , r3 = Φ2Φ7Φ6, , r4 = Φ3Φ10Φ9,

r5 = Φ4Φ5Φ6 , r6 = Φ5Φ8Φ11 , r7 = Φ7Φ8Φ9 , r8 = Φ10Φ11Φ12 . (3.2)
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To find the master space F [, we define polynomial ring S = C[Φ1, . . . ,Φ12] and

ideal I1 = 〈∂iW 〉i=1,...,12. We then generate master space R = S/I1, and using singular

we find that I1 has dimension 6, degree 14 and Hilbert series

H(t,F [g=0, (p,q)=(4,3)) =
1 + 6t+ 9t2 − 5t3 + 3t4

(1− t)6
. (3.3)

Using primary decomposition with [43], we get that the variety given by I1 is the

union of those given by ideals of which: (a) 3 are trivial with degree 1, dimension 4

and Hilbert series 1
(1−t)4 ; these are just copies of C4; (b) the coherent component is of

degree 14, dimension 6 and has Hilbert series

H(t, IrrF [g=0, (p,q)=(4,3)) =
1 + 6t+ 6t2 + t3

(1− t)6
. (3.4)

This Hilbert series has a palindromic numerator, and thus by Stanley’s theorem [36]

the coherent component is an affine Calabi-Yau space, of complex dimension 6.

To find the full (mesonic) vacuum moduli space, we consider the ring R =

C [Φ1, . . .Φ12, y1, . . . , y8] and ideal I2 = 〈∂iW, yj − rj〉i=1,...,12;j=1,...,8. We then elim-

inate all the Φs and substitute the resulting ideal into ring R′ = C [y1, . . . , y8] to

get ideal V representing the vacuum moduli space. Using [43], we see that V has

dimension 1, degree 1 and after assigning weights to each yj equal to the degree of

the monomial they represent, we get Hilbert series

H(t,Mg=0, (p,q)=(4,3)) =
1

1− t3
. (3.5)

This shows that the full (mesonic) moduli space is nothing but C3 here.

3.2.2 Genus 1

The genus g = 1 situation is familiar to us as brane tilings which are dimer models on

the doubly periodic plane and constitutes all the so-called toric AdS5/CFT4 theories

[15]. Therefore, the gauge theories below will be familiar to us.

The tilings are represented as a (brown) fundamental domain imposed on an

infinite tiling of the plane.
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{p,q} = {6,3} This is the well-known, N = 4 SYM, or, the C3 theory with dimer

model and quiver as follows:

A

A

A

A

1
2

3

1

2

3

3

2

A

We have superpotential:

W = Tr (Φ1Φ2Φ3 − Φ1Φ3Φ2) (3.6)

with F-terms

[Φi,Φj] = 0 . (3.7)

We also see from the quiver that the adjoints fields Φi are themselves gauge invariants.

Working in the case of rank one for the gauge groups and thus over the complex

numbers for the fields, the master space is

S/I1 = C [Φ1, . . .Φ3] /〈∂iW 〉i=1,...,3 = C [Φ1, . . .Φ3] , (3.8)

and is thus freely generated.

To find the full (mesonic) vacuum moduli space, we consider the ring R =

C [Φ1, . . .Φ3, y1, . . . , y3] and ideal I2 = 〈∂iW, yi − Φi〉i=1,...,3, and we get that I2 =

〈yi − Φi〉i=1,...,3 as, for Φi ∈ C, all partials are zero. We then eliminate all the Φs and

substitute the resulting ideal into ring R′ = C [y1, . . . , y3] to get ideal V representing

the vacuum moduli space. We see that

R′/V ∼= C [y1, . . . , y3] , (3.9)
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which has degree 1, dimension 3 and Hilbert series

H(t,Mg=1, (p,q)=(6,3)) = H(t, MC3) =
1

(1− t)3
, (3.10)

which shows it is the Calabi-Yau 3-fold C3, as by construction.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3) , σW = (1 2 3) , σ∞ = (1 2 3) . (3.11)

Hence we have ramification structure {3, 3, 3}. A suitable Belyi pair [4] is: y2 = x3+1,

with β(x, y) = 1
2
(1 + y).

{p,q} = {4,4} This is the well-known conifold theory:

ABA

B3
1

A2

4

B

3 2

4

2,3

1,4

3

B

A

A

We have superpotential

W = Tr (Φ1Φ2Φ4Φ3 − Φ1Φ3Φ4Φ2) . (3.12)

As an illustration, the (cyclic) partials are listed here:

∂1W = Tr (Φ2Φ4Φ3 − Φ3Φ4Φ2) , ∂2W = Tr (Φ4Φ3Φ1 − Φ1Φ3Φ4)

∂3W = Tr (Φ1Φ2Φ4 − Φ4Φ2Φ1) , ∂4W = Tr (Φ3Φ1Φ2 − Φ2Φ1Φ3) ;

Henceforth, these F-terms shall be omitted. We also have 4 gauge invariants:

r1 = Φ1Φ2 , r2 = Φ1Φ3 , r3 = Φ4Φ2 , r4 = Φ4Φ3 . (3.13)
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We see that, working over the complex numbers, all partials vanish, so the master

space is

S/I1 = C [Φ1, . . .Φ4] /〈∂iW 〉i=1,...,4 = C [Φ1, . . .Φ4] . (3.14)

To find the full vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ4, y1, . . . , y4]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,4;j=1,...,4, and we get that I2 = 〈yj − rj〉j=1,...,4 as,

for Φi ∈ C, all partials are zero. We then eliminate all the Φs and substitute the

resulting ideal into ring R′ = C [y1, . . . , y4] to get ideal V representing the vacuum

moduli space. Using [43], we see that V has dimension 3, degree 2 and after assigning

weights to each yj equal to the degree of the monomial they represent, we get the

familiar Hilbert series [33]

H(t,Mg=1, (p,q)=(4,4)) =
1 + t2

(1− t2)3
. (3.15)

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1243) , σW = (1243) , σ∞ = (14)(23) . (3.16)

Hence we have ramification structure {4, 4, 22}. A suitable Belyi pair [4] is: y2 =

x(x− 1)(x− 1
2
) with β(x, y) = x2

2x−1
.

In fact, for genus equal to 1, the above are the only regular tessellations, corre-

sponding to the two symmetric cases of trivalent and quadrivalent tilings.

Let us now move onto the next genus.

3.2.3 Genus 2

The genus 2 situation is that of the two-handled tilings considered recently in [29].

We solve equation (2.21) with g = 2 and obtain the following solution set:

{p, q} ∈{{3, 7}, {3, 8}, {3, 9}, {3, 10}, {3, 12}, {3, 18}, {4, 5}, {4, 6}, {4, 12}, {5, 4}, {5, 5},
{5, 10}, {6, 4}, {6, 6}, {7, 3}, {8, 3}, {8, 4}, {9, 3}, {10, 3}, {10, 5},
{12, 3}, {12, 4}, {18, 3}} (3.17)
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{p, q} (V,E, F ) Exists? Mmes Calabi-Yau?

{4, 6} (4, 12, 6) Yes Yes

{4, 8} (16, 24, 6) Yes Yes

{6, 6} (2, 6, 2) Yes Yes

{8, 3} (16, 24, 6) Yes Yes

{8, 4} (4, 8, 2) Yes Yes

{10, 5} (2, 5, 1) Yes Yes

{6, 4} (6, 12, 4) Yes No

{10, 3} (10, 15, 3) No n/a

{12, 4} (3, 6, 1) ? -

{4, 12} (1, 6, 3) ? -

{4, 5} (8, 20, 10) No -

{12, 3} (8, 12, 2) No -

{18, 3} (6, 9, 1) No -

Table 2: Regular tilings for genus 2. Here n/a denotes the moduli space is currently
beyond computational powers.

We now discard all solutions with p odd, since we need to be able to impose bipartite

structure on it and impose that V is an even number, so there can be equal numbers of

black and white vertices. We also discard all solutions with q > 4g = 8, in accordance

with (2.16). Using equation (2.18), we can compile the summary in Table 2.

There are no balanced, regular bipartite tilings for the following solutions:

• {p, q} = {4, 5}: this tiling would have E = 20, so its rotational symmetry group

G would be of order 40. Let n2 be the number of Sylow-2-subgroups of G. We

note the tiling’s faces have 4 = 22 sides, so by considering rotating the vertices of

a single square, we see that n2 ≥ F = 10. However, by another Sylow theorem,

n2 ≡ 1 mod 2. Looking at the prime factorization of 40 = 23 · 5, we see that

we must then have n2 = 5, which is impossible. So this tiling does not exist.

• {p, q} = {12, 3}: we have here that F = 2, q = 3. Noting that F < q, we

see that at each vertex, at least one face borders itself. However, as F, q are

coprime, there must be at least one face that borders a different face. Hence we
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do not have edge-transitivity.

• {p, q} = {10, 3}: consider the associated graph. Note this is a graph with

10 vertices and where each vertex is of valency 3. A classification of all such

graphs exists [50] and all but the Petersen graph are easily seen to not be edge-

transitive. To see the Petersen graph cannot be the required graph, we simply

note it is not bipartite as it contains cycles of length 5.

• {p, q} = {12, 4}: using equation 2.21, we see that this tiling, if it existed,

would have (V,E, F ) = (3, 6, 1). As each vertex is connected to at least one

other vertex, we see that by regularity, all vertices are connected to each other.

Hence it would be impossible to impose a bipartite structure on it.

• {p, q} = {4, 12}: using equation 2.21, we see that this tiling, if it existed, would

have (V,E, F ) = (1, 6, 3). As it only has one vertex, it cannot be a balanced

bipartite tiling, so it is not of interest to us.

• {p, q} = {18, 3}: we note that this tiling exists if and only if its dual, with

{p, q} = {3, 18}, exists. Now note that this dual tiling has V = 1, E = 9, F = 6.

Consider now the adjacency graph of its triangular faces. No face can border

itself (as by edge-transitivity it would then have to do this at least three times,

which is impossible) and no face can border the same face twice (otherwise we

have again a violation of edge-transitivity). As the graph certainly needs to be

regular, we see that it is a regular graph with six vertices of degree three. Only

two such graphs exist [50] and are pictured below:

γ

β

α

B

A

C

Note the right-hand graph cannot be our graph, as it violates edge transitivity:

three edges seperate two squares, whereas the other six seperate a square and

a triangle.

To see the left-hand graph (the Thomsen graph or utility graph) can also be

ruled out, we need to consider the tiling {p, q} = {3, 18}. If we go clockwise
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around its vertex, we must travel through each face three times, traversing each

edge exactly once in each direction and never going from face A to face B to

face A again (as each face can only border another face once).

This path corresponds to an Eulerian circuit in the directed graph pictured

below, with 18 edges:

Cγ

β

α

B

A

(An Eulerian circuit is a path that traverses each edge exactly once and has the

same start point and end point).

We note that the BEST theorem guarantees the existence of Eulerian paths in

this graph [51]. However, we will show no such circuit satisfies our constraint

of not double-backing on ourselves.

To see this, we pick an arbitrary starting point A. We note that our circuit

contains 18 edges and that we need to return to A three times. Hence we can

denote the number of edges until return for these three cycles as n1, n2, n3, with

the constraint n1 + n2 + n3 = 18. We note the ni are even and ni ≥ 4 and

without loss of generality, we can suppose n1 ≥ n2 ≥ n3.

By simple elimination, we see that the only solutions are

(n1, n2, n3) ∈ {(6, 6, 6), (8, 6, 4), (10, 4, 4)}. We consider these seperately:

– (n1, n2, n3) = (6, 6, 6). Starting in α, we see that after suitable relabelling

of vertices, we start as follows: (α,A, β,B, γ). To then return to α in six

steps, we must visit C and α, or visit A and α. Note if we did the latter, we

have gone from A to itself in four steps, which is impossible as all ni = 6

and the cycles should be the same for each starting vertex. Hence we see
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our first cycle is of the form (α,A, β,B, γ, C, α). For the second cycle, we

must go to B (C would be double-backing). Continuing similarly with our

constraints, we see the second cycle must be (α,B, β, C, γ, A, α) and the

third one (α,C, β,A, γ, B,A, α) to give total path:

(α,A, β,B, γ, C, α,B, β, C, γ, A, α, C, β, A, γ, B,A, α) . (3.18)

Note now that the cycles of return for α, β, γ all have length 6, but for

A,B,C they are of length 10, 4, 4. Hence this path is not the path we are

looking for.

– (n1, n2, n3) = (8, 6, 4). Using the same procedure as before, we see the first

cycle must be, after suitable relabelling of vertices, (α,A, β,B, γ, C, β, A, α).

We then wish to perform the 6-cycle. If we first go to B, the cycle must

be (α,B, β, C, γ,B, α). However, if we then look at the final cycle, we see

it must start as (α,C, α), which is not allowed.

So we must then first go to C. After that we must go to γ, where we notice

we can only go to A. However, we get stuck at A, as we cannot double-back

on ourselves.

So we see no path with these ni exists.

– (n1, n2, n3) = (10, 4, 4). We proceed as before. We see that, after suitable

relabelling, our first cycle has to be (α,A, β,B, γ, C, β, A, γ, B, α). Now

note that we have returned from B to itself in six steps, which is not

allowed (in fact, if we continued, we would create the same path as in the

case (n1, n2, n3) = (6, 6, 6)).

So we see this path does not suffice.

Hence we see that no adjacency graph of the right form exists for {p, q} =

{3, 18}. Hence it, and its dual {p, q} = {18, 3}, cannot exist as regular tilings.

{p,q} = {10,5} This is the solution with V = 2, E = 5, F = 1:
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A
1

3

2

4 5

A

A

A

A

A

A

A

A

1

2

3

5

4

2

3

4

We have superpotential

W = Tr (Φ1Φ2Φ3Φ4Φ5 − Φ1Φ5Φ4Φ3Φ2) . (3.19)

We also see from the quiver that the Φi are themselves the gauge invariants. We see

that, working over the complex numbers, all partials vanish, so the master space is

S1/I1 = C [Φ1, . . .Φ5] /〈∂iW 〉i=1,...,5 = C [Φ1, . . .Φ5] . (3.20)

To find the vacuum moduli space, we consider the ring R = C [Φ1, . . .Φ5, y1, . . . , y5]

and ideal I2 = 〈∂iW, yi − Φi〉i=1,...,5, and we get that I2 = 〈yi − Φi〉i=1,...,5 as, for

Φi ∈ C, all partials are zero. We then eliminate all the Φs and substitute the resulting

ideal into ring R′ = C [y1, . . . , y5] to get ideal V representing the vacuum moduli space.

We see that

R′/V ∼= C [y1, . . . , y5] , (3.21)

which has dimension 5, degree 1 and Hilbert series

H(t,Mg=2, (p,q)=(10,5)) =
1

(1− t)5
. (3.22)

Of course, the above is an over-kill but is a good check of our algorithms. The moduli

space - as is indicated by the Hilbert series - is nothing but C5 and our gauge theory

is the pentapetalous generalization of the “clover” theory of N = 4 SYM in four

dimensions, in agreement with Model 5.2 of [29].
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We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5) , σW = (1 2 3 4 5) , σ∞ = (1 4 2 5 3) , (3.23)

with ramification structure {5, 5, 5}.

{p,q} = {6,6} Here we have V = 2, E = 6, F = 2:

B
1

5

A

A

A

A B

B

B

B

B

6 2

3

4

2
6

5
3

4A

1,3,5

2,4,6

A

We have superpotential

W = Tr (Φ1Φ2Φ3Φ4Φ5Φ6 − Φ1Φ6Φ5Φ4Φ3Φ2) (3.24)

and 9 gauge invariants:

r1 = Φ1Φ2 , r2 = Φ1Φ4 , r3 = Φ1Φ6 , r4 = Φ3Φ2 , r5 = Φ3Φ4 ,

r6 = Φ3Φ6 , r7 = Φ5Φ2 , r8 = Φ5Φ4 , r9 = Φ5Φ6 . (3.25)

We see that, working over the complex numbers, all partials vanish, so the master

space is

S/I1 = C [Φ1, . . .Φ6] /〈∂iW, 〉i=1,...,6 = C [Φ1, . . .Φ6] . (3.26)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ6, y1, . . . , y9]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,6;j=1,...,9, and we get that I2 = 〈yj − rj〉j=1,...,9 as,
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for Φi ∈ C, all partials are zero. We then eliminate all the Φs and substitute the

resulting ideal into ring R′ = C [y1, . . . , y5] to get ideal V representing the vacuum

moduli space. Using [43], we see that V has dimension 5, degree 6 and after assigning

weights to each yj equal to the degree of the monomial they represent, we get Hilbert

series

H(t,Mg=2, (p,q)=(6,6)) =
1 + 4t2 + t4

(1− t2)5
. (3.27)

The palindromic numerator indicates it is a Calabi-Yau 5-fold and is in agreement

with the results found in [29]. This is, of course, a tri-saggital generalization of the

conifold theory. It is interesting to note that unlike the conifold, which is a quadric

hypersurface in C4, this is not a complete intersection.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5 6) , σW = (1 2 3 4 5 6) , σ∞ = (1 5 3)(2 6 4) . (3.28)

So we note we have ramification structure {6, 6, 32}.

{p,q} = {8,4} Here we have V = 4, E = 8, F = 2:

BA

7

8

A

A

A

B

B

A

B

4

4

2

3
A

1

B 6

3

B
5

7

6

8
B

3

6 4

B

B

2,4,5,6

1,3,7,8

We have superpotential

W = Tr (Φ1Φ2Φ3Φ4 + Φ5Φ7Φ6Φ8 − Φ1Φ5Φ3Φ6 − Φ2Φ8Φ4Φ7) (3.29)
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and 16 gauge invariants:

ri,j = ΦiΦj with i ∈ {1, 3, 7, 8}, j ∈ {2, 4, 5, 6} . (3.30)

To find the master space, we define ring S = C[Φ1, . . . ,Φ8] and ideal I1 =

〈∂iW 〉i=1,...,8. We then generate master space R = S/I1, and using [43] we find

that I1 has dimension 6, degree 4 and Hilbert series

H(t,F [g=2, (p,q)=(8,4)) =
1 + 2t+ 3t2 − 4t3 + 2t4

(1− t)6
. (3.31)

Using primary decomposition in [43], and we get that the curve given by I1 is the

union of those given by ideals of which 2 are trivial with degree 1, dimension 4 and

Hilbert series 1
(1−t)4 . The coherent component is of degree 4, dimension 6 and has

Hilbert series

H(t, IrrF [g=2, (p,q)=(8,4)) =
1 + 2t+ t2

(1− t)6
. (3.32)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ8, y1, . . . , y16]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,8;j=1,...,16. We then eliminate all the Φs and substi-

tute the resulting ideal into ring R′ = C [y1, . . . , y16] to get ideal V representing the

vacuum moduli space. Using [43], we see that V has dimension 5, degree 24 and after

assigning weights to each yj equal to the degree of the monomial they represent, we

get Hilbert series

H(t,Mg=2, (p,q)=(8,4)) =
1 + 11t2 + 11t4 + t6

(1− t2)5
, (3.33)

its palindromic numerator indicating it is a Calabi-Yau 5-fold.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4)(5 7 6 8) , σW = (1 6 3 5)(2 7 4 8) , σ∞ = (1 8 3 7)(2 6 4 5) .

(3.34)

So we note we have ramification structure {42, 42, 42}.

{p,q} = {6,4} Here we have V = 6, E = 12, F = 4:

39



A B

4

3

3

5

8

9

5

9

9

7

10

11

11

12

4,5,9
2,6,10

1,8,12
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C

We have superpotential

W = Tr (Φ1Φ2Φ3Φ4 + Φ5Φ8Φ6Φ7 + Φ9Φ12Φ10Φ11 − Φ1Φ6Φ3Φ5 − Φ2Φ11Φ4Φ12 − Φ7Φ9Φ8Φ10)

(3.35)

and 81 gauge invariants:

ri,j,k,l = ΦiΦjΦkΦl with i ∈ {1, 8, 12}, j ∈ {2, 6, 10}, k ∈ {3, 7, 11}, l ∈ {4, 5, 9}.
(3.36)

To find the master space, we define the ring S1 = C[Φ1, . . . ,Φ12] and ideal I1 =

〈∂iW 〉i=1,...,12 to generate the master space R = S1/I1. We find using singular that I1

has dimension 8, degree 16 and Hilbert series

H(t,F [g=2, (p,q)=(6,4)) =
1 + 4t+ 10t2 + 8t3 − 6t4 − 20t5 + 28t6 − 12t7 + 3t8

(1− t)8
. (3.37)

Using primary decomposition in [43], we get that the curve given by I1 is the

union of those given by ideals of which: 3 are trivial of degree 1, dimension 4 and

Hilbert series 1
(1−t)4 ; 2 are trivial of degree 1, dimension 6 and Hilbert series 1

(1−t)6 ; 12

are of degree 2, dimension 6 and have Hilbert series 1+t
(1−t)6 . The coherent component
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is of degree 16, dimension 8 and has Hilbert series

H(t, IrrF [g=2, (p,q)=(6,4)) =
1 + 4t+ 6t2 + 4t3 + t4

(1− t)8
. (3.38)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ12, y1, . . . , y81]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,12;j=1,...,81. We then eliminate all the Φs and substi-

tute the resulting ideal into ring R′ = C [y1, . . . , y81] to get ideal V representing the

vacuum moduli space. Using [43], we see that V has dimension 5, degree 216 and

after assigning weights to each yj equal to the degree of the monomial they represent,

we get Hilbert series

H(t,Mg=2, (p,q)=(6,4)) =
1 + 47t4 + 114t8 + 62t12 − 11t16 + 3t20

(1− t4)5
. (3.39)

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4)(5 8 6 7)(9 12 10 11)

σW = (1 5 3 6)(2 12 4 11)(7 10 8 9)

σ∞ = (1 8 12)(2 10 6)(3 7 11)(4 9 5) (3.40)

So we note we have ramification structure {43, 43, 34}.

{p,q} = {8,3} Here we have V = 16, E = 24, F = 6:
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8
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F

We have superpotential

W = Tr(Φ1Φ2Φ3 + Φ8Φ10Φ11 + Φ9Φ12Φ15 + Φ6Φ16Φ17 + Φ19Φ21Φ18 + Φ7Φ13Φ22

+ Φ4Φ23Φ24 + Φ5Φ14Φ20 − Φ1Φ5Φ4 − Φ2Φ7Φ6 − Φ3Φ9Φ8 − Φ12Φ14Φ13

− Φ15Φ18Φ16 − Φ10Φ20Φ19 − Φ21Φ23Φ22 − Φ11Φ24Φ17) (3.41)

and 64 gauge invariants of the form:

ri,j,k = ΦiΦjΦk . (3.42)

To find the master space, we define ring S1 = C[Φ1, . . . ,Φ24] and ideal I1 =

〈∂iW 〉i=1,...,24. We then generate master space R = S1/I1, and using singular we find

that I1 has dimension 10, degree 594 and Hilbert series

H(t,F [g=2, (p,q)=(8,3)) =
1 + 14t+ 81t2 + 233t3 + 268t4 − 45t5 − 63t6 + 105t7

(1− t)10
. (3.43)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ24, y1, . . . , y64]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,24;j=1,...,64. We then eliminate all the Φs and substi-

tute the resulting ideal into ring R′ = C [y1, . . . , y64] to get ideal V representing the

vacuum moduli space. Using [43], we see that V has dimension 5, degree 96 and after

assigning weights to each yj equal to the degree of the monomial they represent, we
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get Hilbert series

H(t,Mg=2, (p,q)=(8,3)) =
1 + 20t3 + 54t6 + 20t9 + t12

(1− t3)5
, (3.44)

its palindromic numerator indicating this is a Calabi-Yau 5-fold.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3)(4 23 24)(5 14 20)(6 16 17)(7 13 22)(8 10 11)(9 12 15)(18 19 21)

σW = (1 4 5)(2 6 7)(3 8 9)(10 19 20)(11 17 24)(12 13 14)(15 16 18)(21 22 23)

σ∞ = (1 20 18 6)(2 22 19 8)(3 15 21 4)(5 24 16 12)(7 17 10 14)(9 11 23 13) . (3.45)

So we note we have ramification structure {38, 38, 46}.

{p,q} = {4,8} Here we have V = 16, E = 24, F = 6:
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We have superpotential

W = Tr (Φ1Φ2Φ3Φ4Φ5Φ6Φ7Φ8 − Φ1Φ6Φ3Φ8Φ5Φ2Φ7Φ4) (3.46)
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and 16 gauge invariants of the form:

ri,j,k,l = ΦiΦjΦkΦl with i ∈ {1, 5}, j ∈ {2, 6}, k ∈ {3, 7}, l ∈ {4, 8} . (3.47)

If we consider the ring S = C [Φ1, . . .Φ8, y1, . . . , y16] and ideal I = 〈∂iW, yj − rj〉i=1,...,8; j=1,...,16,

we get that I = 〈yi − Φi〉i=1,...,8 as, for Φi ∈ C, all partials are zero.

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ8, y1, . . . , y16]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,8;j=1,...,16, and we get that I2 = 〈yj − rj〉j=1,...,16 as,

for Φi ∈ C, all partials are zero. We then eliminate all the Φs and substitute the

resulting ideal into ring R′ = C [y1, . . . , y16] to get ideal V representing the vacuum

moduli space. Using [43], we see that V has dimension 5, degree 24 and after assigning

weights to each yj equal to the degree of the monomial they represent, we get Hilbert

series

H(t,F [g=2, (p,q)=(4,8)) =
1 + 11t4 + 11t8 + t12

(1− t4)5
. (3.48)

Its palindromic numerator indicates this is a Calabi-Yau 5-fold and is in agreement

with the results found in [29].

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5 6 7 8) , σW = (1 4 7 2 5 8 3 6) , σ∞ = (1 5)(2 6)(3 7)(4 8) .

(3.49)

So we note we have ramification structure {8, 8, 24}.

{p,q} = {4,6} Here we have V = 4, E = 12, F = 6:
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We have superpotential

W = Tr (Φ1Φ2Φ3Φ4Φ5Φ6 + Φ7Φ11Φ9Φ10Φ8Φ12 − Φ1Φ9Φ3Φ8Φ5Φ7 − Φ2Φ10Φ4Φ12Φ6Φ11)

(3.50)

and 64 gauge invariants of the form:

ri,j,k,l,m,n = ΦiΦjΦkΦlΦmΦn

with i ∈ {1, 11}, j ∈ {2, 9}, k ∈ {3, 10}, l ∈ {4, 8},m ∈ {5, 12}, n ∈ {6, 7} . (3.51)

To find the master space, we define the ring S = C[Φ1, . . . ,Φ12] and ideal I1 =

〈∂iW 〉i=1,...,12 to generate the master space R = S/I1. We find using [43] that I2 has

dimension 10, degree 9 and Hilbert series

H(t,F [g=2, (p,q)=(4,6)) =
1 + 2t+ 3t2 + 4t3 + 5t4 − 6t5 − 8t6 + 8t7

(1− t)10
. (3.52)

Using primary decomposition in [43], we get that the curve given by I1 is the

union of those given by ideals of which 18 are trivial of degree 1, dimension 8 and

Hilbert series 1
(1−t)8 . The coherent component is of degree 9, dimension 10 and has

Hilbert series

H(t, IrrF [g=2, (p,q)=(4,6)) =
1− 2t3 + t6

(1− t)12
=

(1 + t+ t2)2

(1− t)10
. (3.53)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ12, y1, . . . , y64]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,12;j=1,...,64. We then eliminate all the Φs and substi-

tute the resulting ideal into ring R′ = C [y1, . . . , y64] to get ideal V representing the
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vacuum moduli space. Using [43], we see that V has dimension 5, degree 216 and

after assigning weights to each yj equal to the degree of the monomial they represent,

we get Hilbert series

H(t,Mg=2, (p,q)=(4,6)) =
1 + 44t6 + 126t12 + 44t18 + t24

(1− t6)5
, (3.54)

its palindromic numerator indicating it is a Calabi-Yau 5-fold.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5 6)(7 11 9 10 8 12)

σW = (1 7 5 8 10 9)(2 11 6 12 4 10)

σ∞ = (1 11)(2 9)(3 10)(4 8)(5 12)(6 7) . (3.55)

So we note we have ramification structure {62, 62, 26}.

3.2.4 Genus 3

We use Matlab to find solutions to equation (2.21) with g = 3, discarding all solutions

with p odd, as we need to be able to impose bipartite structure on it. We impose

that V is an even number, so there can be equal numbers of black and white vertices.

We also discard all solutions with q > 4g = 12, in accordance with (2.16).

As before, we compile the summary solutions in Table 4.

To see no regular tiling exists with:

• {p, q} = {4, 5}: same reasoning as for {4, 5} in the genus 2 case, now with

E = 40.

• {p, q} = {6, 5}: this exists if and only if its dual {5, 6} exists. To see this does

not exist, let G be its rotational symmetry group. Then note that |G| divides

2E = 30. Noting its faces have 5 sides, we see there are n5 Sylow 5-subgroups of

G, where n5 ≥ F = 6. However, a Sylow theorem states that n5 ≡ 1 mod 5 and

that n5 divides |G|/5 = 6. This together means n5 = 1, which is a contradiction.

• {p, q} = {6, 9}: same as above. Consider its dual {9, 6} and look at n3, the
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{p, q} (V,E, F ) Exists? Mmes Calabi-Yau?

{4,12} (2,12,6) Yes Yes

{8,8} (2,8,2) Yes Yes

{14,7} (2,7,1) Yes Yes

{4,6} (8,24,12) Yes E too large

{6,4} (12,24,8) Yes E too large

{8,3} (32,48,12) Yes E too large

{12,3} (16,24,4) Yes E too large

{4,8} Model A (4,16,8) Yes No

Model B (4,16,8) Yes |R| too large

{14,3} (14,21,3) Yes |R| too large

{8,4} Model A (8,16,4) Yes |R| too large

Model B (8,16,4) Yes |R| too large

{12,4} (6,12,2) Yes No

{6,6} (4,12,4) Yes Not bipartite

{4,5} (16,40,20) No n/a

{6,5} (6,15,5) No n/a

{6,9} (2,9,3) No n/a

{10,3} (20,30,6) No n/a

{10,5} (4,10,2) No n/a

{18,3} (12,18,2) No n/a

{30,3} (10,15,1) No n/a

Table 4: Regular tilings for genus 3. By “E too large” or “|R| too large” we mean that the
number of edges, or the number of gauge invariants, respectively, was too big to complete
calculations on the moduli space.

number of Sylow 3-subgroups of its rotational groups. As the dual has 2 faces,

n3 ≥ 2 but a Sylow theorem implies n3 = 1.

• {p, q} = {10, 3}: this exists if and only if its dual {3, 10} exists. To see this does

not exist, let G be its rotational symmetry group. Then note that |G| divides

2E = 60. Noting its faces have 3 sides, we see there are n3 Sylow 3-subgroups
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of G, where n3 ≥ F = 20. However, a Sylow theorem states that n3 ≡ 1 mod 3

and that n3 divides |G|/3 = 20. It is clearly impossible to satisfy all three of

these conditions simultaneously.

• {p, q} = {10, 5}: similar to {12, 3} with genus 2. We have F = 2, q = 5, so

F < q means that at each vertex, some face must border itself. However, F, q

are coprime, so at least one face must border a different face, so we don’t have

edge-transitivity.

• {p, q} = {18, 3}: we note F = 2, q = 3, so F < q and F, q are coprime, meaning

there is no edge-transitivity.

• {p, q} = {30, 3}: consider the associated graph. This has 10 vertices, all of

valency 3. We saw in the case of genus g = 2, {p, q} = {10, 3} that no regular

bipartite graph of this form exists. Hence no such bipartite tiling exists.

{p,q} = {14,7} This is the regular tiling with V = 2, E = 7, F = 1:
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We have superpotential

W = Tr (Φ1Φ2Φ3Φ4Φ5Φ6Φ7 − Φ1Φ7Φ6Φ5Φ4Φ3Φ2) . (3.56)
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We note the gauge invariants are simply the Φi. We see that, working over the

complex numbers, all partials vanish, so the master space is

S/I1 = C [Φ1, . . .Φ7] /〈∂iW 〉i=1,...,7 = C [Φ1, . . .Φ7] . (3.57)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ7, y1, . . . , y7]

and ideal I2 = 〈∂iW, yi − Φi〉i=1,...,7, and we get that I2 = 〈yi − Φi〉i=1,...,7 as, for

Φi ∈ C, all partials are zero. We then eliminate all the Φs and substitute the resulting

ideal into ring R′ = C [y1, . . . , y7] to get ideal V representing the vacuum moduli space.

We see that R′/V ∼= C [y1, . . . , y7], which has degree 1, dimension 7 and Hilbert series

H(t,Mg=3, (p,q)=(14,7)) =
1

(1− t)7
. (3.58)

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5 6 7) , σW = (1 2 3 4 5 6 7) , σ∞ = (1 6 4 2 7 5 3) . (3.59)

So we note we have ramification structure {7, 7, 7}.

{p,q} = {4,12} This is the tiling with V = 2, E = 12, F = 6:
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We have superpotential

W = Tr (Φ1Φ2Φ3Φ4Φ5Φ6Φ7Φ8Φ9Φ10Φ11Φ12 − Φ1Φ8Φ3Φ10Φ5Φ12Φ7Φ2Φ9Φ4Φ11Φ6)

(3.60)

and 64 gauge invariants of the form

ri,j,k,l,m,n = ΦiΦjΦkΦlΦmΦn

with i ∈ {1, 7}, j ∈ {2, 8}, k ∈ {3, 9}, l ∈ {4, 10},m ∈ {5, 11}, n ∈ {6, 12} . (3.61)

We see that, working over the complex numbers, all partials vanish, so the master

space is

S/I1 = C [Φ1, . . .Φ12] /〈∂iW 〉i=1,...,12 = C [Φ1, . . .Φ12] . (3.62)

To find the vacuum moduli space, we consider the ring R = C [Φ1, . . .Φ12, y1, . . . , y64]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,12;j=1,...,64. We then eliminate all the Φs and substi-

tute the resulting ideal into ring R′ = C [y1, . . . , y64] to get ideal V representing the

vacuum moduli space. Using [43], we see that V has dimension 7, degree 720 and

after assigning weights to each yj equal to the degree of the monomial they represent,

we get Hilbert series

H(t,Mg=3, (p,q)=(4,12)) =
1 + 57t6 + 302t12 + 302t18 + 57t24 + t30

(1− t6)7
, (3.63)

its palindromic numerator indicating it is a Calabi-Yau 7-fold.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5 6 7 8 9 10 11 12)

σW = (1 6 11 4 9 2 7 12 5 10 3 8)

σ∞ = (1 7)(2 8)(3 9)(4 10)(5 11)(6 12) . (3.64)

So we note we have ramification structure {12, 12, 26}.

{p,q} = {12,4} This is the regular tiling with V = 6, E = 12, F = 2:
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We have superpotential

W = Tr (Φ1Φ2Φ3Φ4 + Φ5Φ8Φ6Φ7 + Φ9Φ12Φ10Φ11 − Φ1Φ6Φ3Φ5 − Φ2Φ12Φ4Φ11 − Φ7Φ9Φ8Φ10)

(3.65)

and 36 gauge invariants:

ri,j = ΦiΦj with i ∈ {1, 3, 7, 8, 11, 12}, j ∈ {2, 4, 5, 6, 9, 10} . (3.66)

To find the master space, we define the ring S = C[Φ1, . . . ,Φ12] and ideal I1 =

〈∂iW 〉i=1,...,12 to generate the master space R = S/I1. We find using [43] that I1 has

dimension 8, degree 16 and Hilbert series

H(t,F [g=3, (p,q)=(12,4)) =
1 + 4t+ 10t2 + 8t3 − 6t4 − 20t5 + 28t6 − 12t7 + 3t8

(1− t)8
. (3.67)

Using primary decomposition in [43], we get that the curve given by I1 is the

union of those given by ideals of which: 3 are trivial of dimension 4, degree 1 and

have Hilbert series 1
(1−t)4 ; 2 are trivial of dimension 6, degree 1 and have Hilbert series

1
(1−t)6 ; 12 are non-trivial of dimension 6, degree 2 and have Hilbert series 1+t

(1−t)6 . The

coherent component is of dimension 8, degree 16 and has Hilbert series

H(t, IrrF [g=3, (p,q)=(12,4)) =
1 + 4t+ 6t2 + 4t3 + t4

(1− t)8
. (3.68)
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To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ12, y1, . . . , y36]

and ideal I2 = 〈∂iW, yj − Φj〉i=1,...,12; j=1,...,36. We then eliminate all the Φs and sub-

stitute the resulting ideal into ring R′ = C [y1, . . . , y36] to get ideal V representing

the vacuum moduli space. Using [43], we see that V has dimension 7, degree 320 and

after assigning weights to each yj equal to the degree of the monomial they represent,

we get Hilbert series

H(t,Mg=3, (p,q)=(12,4)) =
1 + 29t2 + 145t4 + 109t6 + 23t8 + 19t10 − 9t12 + 3t14

(1− t2)7
.

(3.69)

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4)(5 8 6 7)(9 12 10 11)

σW = (1 5 3 6)(2 11 4 12)(7 10 8 9)

σ∞ = (1 11 7 3 12 8)(2 6 10 4 5 9) . (3.70)

So we note we have ramification structure {43, 43, 62}.

{p,q} = {8,8} This is the tiling with V = 2, E = 2, F = 8. Now we encounter

two different theories, which though sharing the same moduli space, have different

bipartite graphs which are non-isomorphic. We will call the models A and B to

distinguish them.

Model A We begin with the first theory, which has the following tessellation

and quiver:
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We have superpotential:

W = Tr (Φ1Φ2Φ3Φ4Φ5Φ6Φ7Φ8 − Φ1Φ8Φ7Φ6Φ5Φ4Φ3Φ2) (3.71)

and 16 gauge invariants:

ri,j = ΦiΦj with i ∈ {1, 3, 5, 7}, j ∈ {2, 4, 6, 8} . (3.72)

We see that, working over the complex numbers, all partials vanish, so the master

space is

S/I1 = C [Φ1, . . .Φ8] /〈∂iW 〉i=1,...,8 = C [Φ1, . . .Φ8] . (3.73)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ8, y1, . . . , y16]

and ideal I2 = 〈∂iW, yj − Φj〉i=1,...,8; j=1,...,16, and we get that I2 = 〈yj − Φj〉j=1,...,16

as, for Φi ∈ C, all partials are zero. We then eliminate all the Φs and substitute the

resulting ideal into ring R′ = C [y1, . . . , y8] to get ideal V representing the vacuum

moduli space. We see that V has dimension 7, degree 20 and has Hilbert series

H(t,Mg=3, (p,q)=(8,8)) =
1 + 9t2 + 9t4 + t6

(1− t2)7
, (3.74)

its palindromic numerator indicating it is a Calabi-Yau 7-fold. We can also write

down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5 6 7 8) , σW = (1 2 3 4 5 6 7 8) , σ∞ = (1 7 5 3)(2 8 6 4) . (3.75)

So we note we have ramification structure {8, 8, 42}.

Model B Next, we have the alternative theory, with tessellation and quiver
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W = Tr (Φ1Φ2Φ3Φ4Φ5Φ6Φ7Φ8 − Φ1Φ8Φ3Φ6Φ5Φ4Φ7Φ2) . (3.76)

We note that, over the complex numbers, all partials vanish. Also, all gauge invariants

are the same as those in model A (up to permutation of the indices) and hence the

master and vacuum moduli space are the same.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5 6 7 8)

σW = (1 6 3 8 5 2 7 4)

σ∞ = (1 3 5 7)(2 4 6 8) . (3.77)

So we note we have ramification structure {8, 8, 42}. We see that though the ramifi-

cation structure is the same, the actual triple, as elements of the permutation group,

cannot be changed to that of Model A via redefinition.

{p,q} = {4,8} This is the tiling with V = 4, E = 16, F = 8. Again, we have two

theories, which we will call Models A and B.

Model A Here the quiver and tessellation are:
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We have superpotential

W = Tr(Φ1Φ2Φ3Φ4Φ5Φ6Φ7Φ8 + Φ9Φ15Φ10Φ16Φ11Φ13Φ12Φ14

− Φ1Φ12Φ7Φ11Φ5Φ10Φ3Φ9 − Φ2Φ16Φ8Φ15Φ6Φ14Φ4Φ13) (3.78)

and 16 gauge invariants:

r1 = Φ1Φ12Φ7Φ8 , r2 = Φ1Φ2Φ16Φ8 , r3 = Φ1Φ2Φ3Φ9 , r4 = Φ1Φ12Φ14Φ9 ,

r5 = Φ2Φ3Φ4Φ13 , r6 = Φ2Φ16Φ11Φ13 , r7 = Φ3Φ4Φ5Φ10 , r8 = Φ3Φ9Φ15Φ10 ,

r9 = Φ4Φ5Φ6Φ14 , r10 = Φ4Φ13Φ12Φ14 , r11 = Φ5Φ6Φ7Φ11 , r12 = Φ5Φ10Φ16Φ11 ,

r13 = Φ6Φ7Φ8Φ15 , r14 = Φ6Φ14Φ9Φ15 , r15 = Φ7Φ11Φ13Φ12 , r16 = Φ8Φ15Φ10Φ16 .

(3.79)

To find the master space, we define the ring S = C[Φ1, . . . ,Φ16] and ideal I1 =

〈∂iW 〉i=1,...,16 to generate the master space R = S/I1. We find using [43] that I1 has

dimension 14, degree 16 and Hilbert series

H(t,F [g=3, (p,q)=(4,8)A
) =

1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 7t6 − 8t7 − 10t8 − 12t9 + 18t10

(1− t)14
.

(3.80)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ16, y1, . . . , y16]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,16;j=1,...,16. We then eliminate all the Φs and substi-
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tute the resulting ideal into ring R′ = C [y1, . . . , y16] to get ideal V representing the

vacuum moduli space. Using [43], we see that V has dimension 7, degree 88 and after

assigning weights to each yj equal to the degree of the monomial they represent, we

get Hilbert series

H(t,Mg=3, (p,q)=(4,8)A) =
1 + 9t4 + 37t8 + 29t12 + 32t20 − 35t24 + 21t28 − 7t32 + t36

(1− t4)7
.

(3.81)

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5 6 7 8)(9 15 10 16 11 13 12 14)

σW = (1 9 3 10 5 11 7 12)(2 13 4 14 6 15 8 16)

σ∞ = (1 15)(2 12)(3 16)(4 9)(5 13)(6 10)(7 14)(8 11) . (3.82)

So we note we have ramification structure {82, 82, 28}.

Model B The tesselation and quiver are:
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We have superpotential

W = Tr(Φ1Φ2Φ3Φ4Φ5Φ6Φ7Φ8 + Φ9Φ13Φ12Φ14Φ11Φ15Φ10Φ16

− Φ1Φ12Φ3Φ11Φ5Φ10Φ7Φ9 − Φ2Φ14Φ4Φ15Φ6Φ16Φ8Φ13) (3.83)
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and 256 gauge invariants:

ri1,...i8 =
8∏
j=1

Φij

with i1 ∈ {1, 13}, i2 ∈ {2, 12}, i3 ∈ {3, 14}, i4 ∈ {4, 11},
i5 ∈ {5, 15}, i6 ∈ {6, 10}, i7 ∈ {7, 16}, i8 ∈ {8, 9} . (3.84)

To find the master space, we define the ring S = C[Φ1, . . . ,Φ16] and ideal I1 =

〈∂iW 〉i=1,...,16 to generate the master space R = S/I1. We find using singular that I1

has dimension 14, degree 16 and Hilbert series

H(t,F [g=3, (p,q)=(4,8)B
) =

1 + 2t+ 3t2 + 4t3 + 5t4 + 6t5 + 7t6 − 8t7 − 10t8 − 12t9 + 18t10

(1− t)14
.

(3.85)

So we see we have the same master space as in model A. This should be expected, as

we see that for Φi ∈ C, the superpotentials are the same in models A and B.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5 6 7 8)(9 13 12 14 11 15 10 16)

σW = (1 9 7 10 5 11 3 12)(2 13 8 16 6 15 4 14)

σ∞ = (1 13)(2 12)(3 14)(4 11)(5 15)(6 10)(7 16)(8 9) . (3.86)

So we note we have ramification structure {82, 82, 28}.

{p,q} = {8,4} This is the tiling with V = 8, E = 16, F = 4. There are again two

models, A and B:

Model A The tesselation and quiver are:
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1,9,13,16
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C
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B

C

D

C

C

B

4

3

5
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14
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2,7,11,15
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We have superpotential

W = Tr(Φ1Φ2Φ3Φ4 + Φ5Φ16Φ15Φ12 + Φ6Φ14Φ13Φ11 + Φ7Φ8Φ10Φ9

− Φ1Φ7Φ6Φ5 − Φ2Φ8Φ14Φ16 − Φ3Φ10Φ13Φ15 − Φ4Φ9Φ11Φ12) (3.87)

and 256 gauge invariants:

ri,j,k,l = ΦiΦjΦkΦl

with i ∈ {1, 9, 13, 16}, j ∈ {2, 7, 11, 15}, k ∈ {3, 6, 8, 12}, l ∈ {4, 5, 10, 14} . (3.88)

To find the master space, we define the ring S = C[Φ1, . . . ,Φ16] and ideal I1 =

〈∂iW 〉i=1,...,16 to generate the master space R = S/I1. We find using [43] that I1 has

dimension 10, degree 96 and Hilbert series

H(t,F [g=3, (p,q)=(8,4)A
) =

1 + 6t+ 21t2 + 40t3 + 39t4 − 30t5 + 19t6

(1− t)10
. (3.89)

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4)(5 16 15 12)(6 14 13 11)(7 8 10 9)

σW = (1 5 6 7)(2 16 14 8)(3 15 13 10)(4 12 11 9)

σ∞ = (1 9 13 16)(2 7 11 15)(3 8 6 12)(4 10 14 5) . (3.90)
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So we note we have ramification structure {44, 44, 44}.

Model B The tesselation and quiver are:

3,7,11,15
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We have superpotential

W = Tr(Φ1Φ2Φ3Φ4 + Φ5Φ8Φ6Φ7 + Φ9Φ12Φ10Φ11 + Φ13Φ16Φ14Φ15

− Φ1Φ6Φ3Φ5 − Φ2Φ15Φ4Φ16 − Φ7Φ9Φ8Φ10 − Φ11Φ13Φ12Φ14) (3.91)

and 256 gauge invariants:

ri,j,k,l = ΦiΦjΦkΦl

with i ∈ {1, 8, 12, 16}, j ∈ {2, 6, 10, 14}, k ∈ {3, 7, 11, 15}, l ∈ {4, 5, 9, 13} . (3.92)

To find the master space, we define the ring S = C[Φ1, . . . ,Φ16] and ideal I1 =

〈∂iW 〉i=1,...,16 to generate the master space R = S/I1. We find using [43] that I1 has

dimension 10, degree 64 and Hilbert series

H(t,F [g=3, (p,q)=(8,4)B
) =

1 + 6t+ 21t2 + 40t3 + 39t4 − 30t5 − 99t6 + 44t7 + 106t8 − 96t9 + 32t10

(1− t)10
. (3.93)
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We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4)(5 8 6 7)(9 12 10 11)(13 16 14 15)

σW = (1 5 3 6)(2 16 4 15)(7 10 8 9)(11 14 12 13)

σ∞ = (1 16 12 8)(2 6 10 14)(3 15 11 7)(4 5 9 13) . (3.94)

So we note we have ramification structure {44, 44, 44}.

{p,q} = {14,3} This is the tiling with V = 14, E = 21, F = 3:
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We have superpotential

W = Tr(Φ1Φ2Φ3 + Φ4Φ5Φ6 + Φ7Φ8Φ9 + Φ10Φ11Φ12 + Φ13Φ14Φ15

+ Φ16Φ17Φ18 + Φ19Φ20Φ21 − Φ1Φ4Φ15 − Φ2Φ16Φ19 − Φ3Φ7Φ12

− Φ5Φ11Φ20 − Φ6Φ18Φ9 − Φ8Φ21Φ13 − Φ10Φ17Φ14) (3.95)

and 343 gauge invariants:

ri,j,k = ΦiΦjΦk

with i ∈ {1, 6, 7, 11, 13, 17, 19}, j ∈ {2, 4, 8, 12, 14, 18, 20}, k ∈ {3, 5, 9, 10, 15, 16, 21} .
(3.96)

60



To find the master space, we define the ring S = C[Φ1, . . . ,Φ21] and ideal I1 =

〈∂iW 〉i=1,...,21 to generate the master space R = S/I1. We find using [43] that I1 has

dimension 9, degree 232 and Hilbert series

H(t,F [g=3, (p,q)=(14,3)) = (1− t)−9(1 + 12t+ 57t2 + 120t3 + 57t4− 72t5 + 57t6) . (3.97)

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)

σW = (1 15 4)(2 19 16)(3 12 7)(5 20 11)(6 9 18)(8 13 21)(10 14 17)

σ∞ = (1 6 17 13 7 11 19)(2 18 8 20 4 14 12)(3 9 5 10 16 21 15) . (3.98)

So we note we have ramification structure {37, 37, 73}.

{p,q} = {6,4} This is the tiling with V = 12, E = 24, F = 8:
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We have superpotential

W = Tr(Φ1Φ2Φ3Φ4 + Φ5Φ6Φ7Φ8 + Φ9Φ10Φ11Φ12 + Φ13Φ14Φ15Φ16

+ Φ17Φ18Φ19Φ20 + Φ21Φ22Φ23Φ24 − Φ1Φ22Φ6Φ20 − Φ2Φ11Φ5Φ16

− Φ3Φ18Φ8Φ24 − Φ4Φ14Φ7Φ9 − Φ12Φ19Φ15Φ23 − Φ10Φ21Φ13Φ17) (3.99)

and 24 gauge invariants:

r1 = Φ1Φ13 , r2 = Φ2Φ21 , r3 = Φ3Φ10 , r4 = Φ4Φ17 ,

r5 = Φ5Φ23 , r6 = Φ6Φ15 , r7 = Φ7Φ19 , r8 = Φ8Φ12 ,

r9 = Φ9Φ18 , r10 = Φ11Φ24 , r11 = Φ14Φ22 , r12 = Φ16Φ20 ,

r13 = Φ1Φ2Φ3Φ4 , r14 = Φ10Φ21Φ13Φ17 , r15 = Φ1Φ22Φ6Φ16 , r16 = Φ13Φ20Φ15Φ14 ,

r17 = Φ2Φ11Φ5Φ14 , r18 = Φ21Φ22Φ23Φ24 , r19 = Φ3Φ18Φ12Φ24 , r20 = Φ8Φ9Φ10Φ11 ,

r21 = Φ4Φ20Φ7Φ9 , r22 = Φ16Φ17Φ18Φ19 , r23 = Φ5Φ6Φ7Φ12 , r24 = Φ8Φ19Φ15Φ23 .

(3.100)

To find the master space, we define the ring S = C[Φ1, . . . ,Φ24] and ideal I1 =

〈∂iW 〉i=1,...,24 to generate the master space R = S/I1. We find using [43] that I1 has

dimension 14, degree 2048 and Hilbert series

H(t,F [g=3, (p,q)=(6,4)) =

(1− t)−14(1 + 10t+ 55t2 + 196t3 + 488t4 + 812t5 + 716t6 − 284t7

− 484t8 + 212t9 + 500t10 − 276t11 + 117t12 − 18t13 + 3t14) . (3.101)

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)

σW = (1 20 6 22)(2 16 5 11)(3 24 8 18)(4 9 7 14)(10 17 13 21)(12 23 15 19)

σ∞ = (1 21 16)(2 10 24)(3 17 9)(4 13 20)(5 15 22)(6 19 14)(7 12 18)(8 23 11) .

(3.102)

So we note we have ramification structure {46, 46, 38}.
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{p,q} = {4,6} This is the tiling with V = 8, E = 24, F = 12:
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We have superpotential

W = Tr(Φ1Φ2Φ3Φ4Φ5Φ6 + Φ7Φ8Φ9Φ10Φ11Φ12 + Φ13Φ14Φ15Φ16Φ17Φ18

+ Φ19Φ20Φ21Φ22Φ23Φ24 − Φ1Φ19Φ12Φ4Φ22Φ9 − Φ2Φ18Φ21Φ5Φ15Φ24

− Φ3Φ7Φ14Φ6Φ10Φ17 − Φ8Φ23Φ16Φ11Φ20Φ13) . (3.103)

We have 64 gauge invariants, all of degree 6. Due to the high number, we will only

show those containing Φ5, to illustrate the loops in the quiver:

r1 = Φ5Φ6Φ1Φ2Φ3Φ4, r9 = Φ5Φ6Φ1Φ2Φ18Φ21

r2 = Φ5Φ15Φ24Φ2Φ3Φ4, r10 = Φ5Φ15Φ24Φ2Φ18Φ21

r3 = Φ5Φ6Φ10Φ17Φ3Φ4, r11 = Φ5Φ6Φ10Φ17Φ18Φ21

r4 = Φ5Φ15Φ16Φ17Φ3Φ4, r12 = Φ5Φ15Φ16Φ17Φ18Φ21

r5 = Φ5Φ6Φ10Φ11Φ12Φ4, r13 = Φ5Φ6Φ10Φ11Φ20Φ21

r6 = Φ5Φ15Φ12Φ11Φ16Φ4, r14 = Φ5Φ15Φ16Φ11Φ20Φ21

r7 = Φ5Φ6Φ1Φ19Φ12Φ4, r15 = Φ5Φ6Φ1Φ19Φ20Φ21

r8 = Φ5Φ15Φ24Φ19Φ12Φ4, r16 = Φ5Φ15Φ24Φ19Φ20Φ21 . (3.104)

To find the master space, we define the ring S = C[Φ1, . . . ,Φ24] and ideal I1 =

〈∂iW 〉i=1,...,24 to generate the master space R = S/I1. We find using [43] that I1 has
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dimension 18, degree 896 and Hilbert series

H(t,F [g=3, (p,q)=(4,6)) =

(1− t)−18(1 + 6t+ 21t2 + 56t3 + 126t4 + 228t5 + 335t6 + 390t7 + 300t8 − 70t9 − 543t10

− 660t11 − 187t12 + 282t12 + 1329t14 − 1340t15 + 894t16 − 384t17 + 139t18 − 30t19 + 3t20) .

(3.105)

Due to the high number - and high degrees - of the partials and gauge invariants, we

were unable to complete computations on primary decomposition of the master space

and on the moduli space.

We can write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)

σW = (1 9 22 4 12 19)(2 24 15 5 21 18)(3 17 10 6 14 7)(8 13 20 11 16 23)

σ∞ = (1 24)(2 17)(3 12)(4 21)(5 14)(6 9)(7 13)(8 22)(10 16)(11 19)(15 23)(18 20) .

(3.106)

So we note we have ramification structure {64, 64, 212}.

{p,q} = {8,3} This is the tiling with V = 32, E = 48, F = 12:
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We have superpotential

W = Tr(Φ1Φ2Φ3 + Φ4Φ5Φ6 + Φ7Φ8Φ9 + Φ10Φ11Φ12 + Φ13Φ14Φ15 + Φ16Φ17Φ18

+ Φ19Φ20Φ21 + Φ22Φ24Φ23 + Φ25Φ26Φ27 + Φ28Φ29Φ30 + Φ31Φ32Φ33 + Φ34Φ35Φ36

+ Φ37Φ38Φ39 + Φ40Φ41Φ42 + Φ43Φ44Φ45 + Φ46Φ47Φ48 − Φ1Φ13Φ12 − Φ2Φ47Φ39

− Φ3Φ4Φ16 − Φ5Φ38Φ42 − Φ6Φ7Φ19 − Φ8Φ41Φ45 − Φ9Φ10Φ22 − Φ11Φ44Φ48

− Φ14Φ18Φ29 − Φ30Φ31Φ43 − Φ17Φ21Φ32 − Φ33Φ34Φ46 − Φ20Φ24Φ35 − Φ25Φ36Φ37

− Φ15Φ26Φ23 − Φ27Φ28Φ40) (3.107)

and quiver:
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We have drawn the tesselation and quiver in this way to emphasise the similarities

of this tiling with the g = 2, {p, q} = {8, 3} case.

We have 8960 gauge invariants of degrees d ∈ {3, 6, 9, 12}.
To find how many there are, we fix a degree d and count the number Nd of gauge

invariants rj of degree d that start at quiver node A. We then multiply Nd by 12 (the

number of quiver nodes) and divide by d to obtain the number of gauge invariants of

degree d. Note we divide by d as two loops F1F2 . . . Fd, F
′
1F
′
2 . . . F

′
d in the quiver give

the same gauge invariant if and only if they are related by a cyclic permutation, such

as ABCDE and CDEAB.

• d = 3: Example: ACB(A)

Starting at A, we have 4 choices to leave A (e.g. to C). We then have 4 choices

from the next node (e.g. B) to then have 1 choice to return to A. So we have
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N3 = 16.

This gives a contribution of 16 · 12
3

= 64 gauge invariants.

• d = 6: Example AEDLCB(A)

Starting at A, we have 4 choices to leave A (e.g. to E). We then have 4 choices

from the next node (e.g. to D). We can then choose from 3 choices (avoiding

A), to e.g. L. From there we have 3 choices (avoiding E), to e.g. C. Then we

have 3 choices (avoiding D), to e.g. B, after which we have one way to return

to A. So we have N6 = 42 · 33 = 432.

This gives a contribution of 432 · 12
6

= 864 gauge invariants.

• d = 9: Example AGFJEDLCB(A)

We continue the process set out in d = 6, avoiding any nodes we have already

passed, to get N9 = 42 · 33 · 23 = 3456

This gives a contribution of 3456 · 12
8

= 5184 gauge invariants.

• d = 12: Example AIHKGFJEDLCB(A)

We get that N12 = N9 = 3456.

This gives a contribution of 3456 · 12
12

= 3456 gauge invariants.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB =(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)

(25 26 27)(28 29 30)(31 32 33)(34 35 36)(37 38 39)(40 41 42)(43 44 45)(46 47 48)

σW =(1 12 13)(2 39 47)(3 16 4)(5 42 38)(6 19 7)(8 45 41)(9 22 10)(11 48 44)

(14 29 18)(15 23 26)(17 32 21)(20 35 24)(25 37 36)(27 40 28)(30 43 31)(33 46 34)

σ∞ =(1 15 25 39)(2 46 32 16)(3 6 9 12)(4 18 28 42)(5 37 35 19)(7 21 31 45)

(8 40 26 22)(10 24 34 48)(11 43 29 13)(14 17 20 23)(27 30 33 36)(38 41 44 47) .

(3.108)

So we note we have ramification structure {316, 316, 412}.

This concludes our treatment of the regular cases up to genus 3. We now move

onto the more intricate semi-regular cases.
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4 Semi-Regular Tessellations

4.1 Results

As in section 3.1, the table below shows a summary of the results, with more detailed

results in the relevant subsections. Note that with the exception of g = 0 and g = 1,

this is not a complete classification.

g x (dim,deg)F[ Hilbert series

(dim,deg)Mmes

0 (6, 6, 4) (13,38200) F [ : (1− t)−13(1 + 23t+ 240t2 + 1484t3 + 5923t4

+15381t5 + 24218t6 + 17689t7 − 4145t8

−14970t9 − 6947t10 − 604t11 − 53t12 − 40t13)

IrrF [ : n/a

n/a Mmes : n/a

1 (8, 8, 4) (6,14) F [ : (1− t)−6(1 + 6t+ 9t2 − 5t3 + 3t4)

IrrF [ : (1− t)−6(1 + 6t+ 6t2 + t3)

(3,7) Mmes : (1− t)−3(1 + 5t3 + t6)

(12, 6, 4) (8,92) F [ : (1− t)−8(1 + 10t+ 37t2 + 47t3

−15t4 + 7t5 + 5t6)

IrrF [ : n/a

(3,6) Mmes : (1− t)−3(1 + 4t3 + t6)

2 (12, 12, 12, 4) (6,4) F [ : (1− t)−6(1 + 2t+ 3t2 − 4t3 + 2t4)

IrrF [ : (1− t)−6(1 + 2t+ t2)

(5,10) Mmes : (1− t2)−3(1− t)−2(1 + 2t+ 4t2 + 2t3 + t4)

(8, 4, 8, 8, 4) (8,6) F [ : (1− t)−8(1 + 2t+ 3t4 + 4t4 − 5t4 − 3t5 + 4t6)

IrrF [ : (1− t)−8(1 + 2t+ 2t2 + t3)

(5,197) Mmes : (1− t3)4(1− t2)4(1 + 4t3 − 13t5 + 2t6 + 8t7

−8t8 − 2t9 + 13t10 − 4t12 − t15)
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3 (18, 18, 18, 6) (8,16) F [ : (1− t)−8(1 + 4t+ 10t2 + 8t3 − 6t4

−20t5 + 28t6 − 12t7 + 3t8)

IrrF [ : (1− t)−8(1 + 4t+ 6t2 + 4t3 + t4)

(7,118) Mmes : (1− t2)−5(1− t)−2(1 + 4t+ 14t2 + 30t3 + 41t4

+18t5 − 10t6 − 2t7 + 25t8 + 6t9 − 12t10 + 3t12)

(12, 4, 12, 4, 12, 4) (10,9) F [ : (1− t)−10(1 + 2t+ 3t2 + 4t3 + 5t4

−6t5 − 8t6 + 8t7)

IrrF [ : (1− t)−10(1 + 2t+ 3t2 + 2t3 + t4)

(7,24) Mmes : (1− t2)−7(1 + 5t2 + 12t4 + 5t6 + t8)

4.1.1 Genus 0

x = (6,6,4) This is a tiling with V = 24, E = 36, F = 14.

36

E

K

L

F

M

B

H

C

I

J

D

A

G

N

31

10

19

21

20

29

18

30 28

26

25

34

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35 36

I

E

D

C

H

B

G

F

K

L

J

N

N

A

N

N

N

N

M

2

3

2

11

13

14

17

27

33

1

4

6

8

7

16

9 15

5

123

24

22

23

35

32

1
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We have superpotential

W = Tr(Φ1Φ2Φ3 + Φ4Φ5Φ6 + Φ7Φ8Φ9 + Φ10Φ11Φ12 + Φ13Φ14Φ15 + Φ16Φ17Φ18

+ Φ19Φ20Φ21 + Φ22Φ23Φ24 + Φ25Φ26Φ27 + Φ28Φ29Φ30 + Φ31Φ32Φ33 + Φ34Φ35Φ36

− Φ1Φ4Φ12 − Φ2Φ16Φ7 − Φ3Φ10Φ19 − Φ5Φ13Φ24 − Φ6Φ8Φ15 − Φ9Φ17Φ27

− Φ11Φ22Φ33 − Φ14Φ25Φ35 − Φ18Φ20Φ29 − Φ21Φ31Φ28 − Φ23Φ36Φ32 − Φ26Φ30Φ34) .

(4.1)

To find the gauge invariants, we simply note that the monomial terms in the super-

potential are exactly the 24 gauge invariants.

To find the master space, we define the ring S = C[Φ1, . . . ,Φ36] and ideal I1 =

〈∂iW 〉i=1,...,36 to generate the master space R = S/I1. Using [43], we find that I1 has

dimension 13, degree 38200 and Hilbert series

H(t,F [g=0, x=(6,6,4,)) = (1− t)−13(1 + 23t+ 240t2 + 1484t3 + 5923t4 + 15381t5 + 24218t6

+ 17689t7 − 4145t8 − 14970t9 − 6947t10 − 604t11 − 53t12 − 40t13) .

(4.2)

We can also write down a permutation triple such that σBσWσ∞ = id:

σB =(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)

(25 26 27)(28 29 30)(31 32 33)(34 35 36)

σW =(1 12 4)(2 7 16)(3 19 10)(5 24 13)(6 15 8)(9 27 17)(11 33 22)(14 35 25)

(18 29 20)(21 28 31)(23 32 36)(26 34 30)

σ∞ =(1 6 7)(2 18 19)(3 12)(4 11 24)(5 15)(8 14 27)(9 16)(10 21 33)(13 23 35)

(17 26 29)(20 28)(22 32)(25 34)(30 36 31) . (4.3)

Hence we have ramification structure {312, 312, 27 37}.

4.1.2 Genus 1

x = (8,8,4) This is the tiling with V = 8, E = 12, F = 4.
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1

3

7

8

9

10

912

12

11
2

46

11
8

5

B

D

C B

C

D

D

D

A
1,5,7,10

2,6

3,4

9,11

8,12

A

B

C

D

We can recognise this dimer as the previously studied Hirzebruch Phase II, sometimes

denoted F0 [3].

We have superpotential W and 32 gauge invariants r as:

W = Tr(Φ1Φ2Φ3 + Φ4Φ5Φ6 + Φ7Φ8Φ9 + Φ10Φ11Φ12

− Φ1Φ9Φ12 − Φ2Φ4Φ10 − Φ3Φ7Φ6 − Φ5Φ11Φ8); (4.4)

ri,j,k = ΦiΦjΦk with

i ∈ {1, 5, 7, 10}, j ∈ {3, 4}, k ∈ {2, 6}

i ∈ {1, 5, 7, 10}, j ∈ {8, 12}, k ∈ {9, 11} .

To find the master space, we define the ring S = C[Φ1, . . . ,Φ12] and ideal I1 =

〈∂iW 〉i=1,...,12 to generate the master space R = S/I1. Using [43], we find that I1 has

dimension 6, degree 14 and Hilbert series

H(t,F [g=1, x=(8,8,4)) =
1 + 6t+ 9t2 − 5t3 + 3t4

(1− t)6
. (4.5)

Using primary decomposition in [43], we get that the curve given by I1 is the

union of those given by ideals of which 2 are trivial of dimension 4, degree 1 and have

Hilbert series 1
(1−t)4 . The coherent component is of dimension 6, degree 14 and has
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Hilbert series

H(t, IrrF [g=1, x=(8,8,4)) =
1 + 6t+ 6t2 + t3

(1− t)6
. (4.6)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ12, y1, . . . , y32]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,12;j=1,...,32. We then eliminate all the Φs and substi-

tute the resulting ideal into ring R′ = C [y1, . . . , y32] to get ideal V representing the

vacuum moduli space. Using [43], we see that V has dimension 3, degree 7 and after

assigning weights to each yj equal to the degree of the monomial they represent, we

get Hilbert series

H(t,Mg=1, x=(8,8,4)) =
1 + 5t3 + t6

(1− t3)3
, (4.7)

its palindromic numerator indicating it is a Calabi-Yau 3-fold. However, we can check

that neither cM nor IrrF [ is a complete intersection.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3)(4 5 6)(7 9 8)(10 11 12)

σW = (1 12 9)(2 10 4)(3 6 7)(5 8 11)

σ∞ = (1 7 5 10)(3 8 4 12)(2 6)(9 11) . (4.8)

So we note we have ramification structure {34, 34, 42 22}.

x = (12,6,4) This is the tiling with V = 12, E = 18, F = 6.
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A

7 11

131

A A

B

B

C E D

F

F

A

9 12

14
8

5
4

3

2

6

10

18

16

16

18

15

17
15

17

We have superpotential

W = Tr(Φ1Φ17Φ2 + Φ5Φ15Φ6 + Φ3Φ7Φ4 + Φ8Φ14Φ9 + Φ10Φ11Φ18 + Φ12Φ13Φ16

− Φ1Φ18Φ6 − Φ2Φ3Φ8 − Φ4Φ5Φ16 − Φ7Φ10Φ9 − Φ11Φ17Φ12 − Φ13Φ15Φ14)

(4.9)

and quiver:

9

B

C
E

A

D

F
15,16

1

11

13

17,18

2,4,6
7,8

10,12,14

3

5
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We note we have 36 gauge invariants of degree 3.

Now if we relabel as follows:

Φ1 → q′1 Φ7 → p′1 Φ13 → X3

Φ2 → W2 Φ8 → p′2 Φ14 → W2

Φ3 → p1 Φ9 → p2 Φ15 →M2

Φ4 → W1 Φ10 → W ′
1 Φ16 → X13

Φ5 → q′2 Φ11 → X11 Φ17 → X9

Φ6 → q1 Φ12 → X8 Φ18 →M1 . (4.10)

we get a labelling that gives us the same quiver as phase IV of the del Pezzo surface

dP3 in [40].

We also get superpotential:

W = X3X13X8 −X8X11X9 −W1q
′
2X13 −M2W

′
2X13 + q′1X9W2 +M1W

′
1X11

−M1q1q
′
1 +M2q1q

′
2 +W1p1p

′
1 −W2p1p

′
2 −W ′

1p2p
′
1 +W ′

2p2p
′
2 (4.11)

which differs from the superpotential in [40] in the following terms:

X3X13X8 ↔ X3X8X13

−X8X11X9 ↔ −X8X9X11

−M2W
′
2X3 ↔ −M2X3W

′
2 (4.12)

Noting that in the case that the Φi ∈ C these terms are the same, we see that the

master space and vacuum moduli space are the same as phase IV of dP3.

To find the master space, we define the ring S = C[Φ1, . . . ,Φ18] and ideal I1 =

〈∂iW 〉i=1,...,18 to generate the master space R = S/I1. We find using [43] that I1 has

dimension 8, degree 92 and Hilbert series

H(t,F [g=1, x=(12,6,4)) =
1 + 10t+ 37t2 + 47t3 − 15t4 + 7t5 + 5t6

(1− t)8
. (4.13)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ18, y1, . . . , y36]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,18;j=1,...,36. We then eliminate all the Φs and substi-
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tute the resulting ideal into ring R′ = C [y1, . . . , y36] to get ideal V representing the

vacuum moduli space. Using [43], we see that V has dimension 3, degree 6 and after

assigning weights to each yj equal to the degree of the monomial they represent, we

get Hilbert series

H(t,Mg=1, x=(12,6,4)) =
1 + 4t3 + t6

(1− t3)3
, (4.14)

its palindromic numerator indicating it is a Calabi-Yau 3-fold.

It is nice to see a familiar theory such as the third del Pezzo emerge as one of the

semi-regular tessellations.

4.1.3 Genus 2

x = (12,12,12,4) This is a tiling with V = 4, E = 8, F = 2.

1,4,7,8

B

3,6

A

5

6

8

7

2

1

4

3

1

4

7

8

A

B
B

B

B
B

B

BB

2,5

We have superpotential

W = Tr(Φ1Φ2Φ3Φ4 + Φ5Φ6Φ7Φ8 − Φ1Φ7Φ2Φ6 − Φ3Φ8Φ5Φ4) (4.15)

and 8 gauge invariants:

r1 = Φ1 , r2 = Φ4 , r3 = Φ7 , r4 = Φ8 ,

r5 = Φ2Φ3 , r6 = Φ2Φ6 , r7 = Φ5Φ3 , r8 = Φ5Φ6 . (4.16)
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To find the master space, we define the ring S = C[Φ1, . . . ,Φ8] and ideal I1 =

〈∂iW 〉i=1,...,8 to generate the master space R = S/I1. We find using [43] that I1

has dimension 6, degree 4 and Hilbert series

H(t,F [g=2, x=(12,12,12,4)) =
1 + 2t+ 3t2 − 4t3 + 2t4

(1− t)6
. (4.17)

Using primary decomposition in [43], we get that the curve given by I1 is the

union of those given by ideals of which 2 are trivial of dimension 4, degree 1 and have

Hilbert series 1
(1−t)4 . The coherent component is of dimension 6, degree 4 and has

Hilbert series

H(t, IrrF [g=2, x=(12,12,12,4)) =
1 + 2t+ t2

(1− t)6
. (4.18)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ8, y1, . . . , y8]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,8;j=1,...,8. We then eliminate all the Φs and substitute

the resulting ideal into ring R′ = C [y1, . . . , y8] to get ideal V representing the vacuum

moduli space. Using [43], we see that V has dimension 5, degree 10 and after assigning

weights to each yj equal to the degree of the monomial they represent, we get Hilbert

series

H(t,Mg=2, x=(12,12,12,4)) =
1 + 2t+ 4t2 + 2t3 + t4

(1− t2)3(1− t)2
, (4.19)

its palindromic numerator indicating it is a Calabi-Yau 5-fold.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4)(5 6 7 8)

σW = (1 6 2 7)(3 5 4 8)

σ∞ = (1 5 4 8 2 7)(3 6) . (4.20)

So we note we have ramification structure {42, 42, 2 6}.

x = (8,4,8,4,4) This is a tiling with V = 4, E = 10, F = 4.
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A

C
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B
A

4

C B

1

9

2

B

D

10

6

B

C

B

7

9

8

10
3

8

5

4

3

2

D

B

C

B

D

5

6

1,7

4,8

9

2,10

We have superpotential

W = Tr(Φ1Φ2Φ3Φ4Φ5 + Φ6Φ7Φ8Φ9Φ10 − Φ1Φ4Φ9Φ2Φ6 − Φ3Φ8Φ5Φ7Φ10) (4.21)

and 12 gauge invariants:

r1 = Φ1Φ4Φ5 , r2 = Φ1Φ8Φ5 , r3 = Φ7Φ4Φ5 , r4 = Φ7Φ8Φ5 ,

r5 = Φ1Φ2Φ6 , r6 = Φ1Φ10Φ6 , r7 = Φ7Φ2Φ6 , r8 = Φ7Φ10Φ6 ,

r9 = Φ4Φ9 , r10 = Φ8Φ9 , r11 = Φ2Φ3 , r12 = Φ10Φ3 .

To find the master space, we define the ring S = C[Φ1, . . . ,Φ10] and ideal I1 =

〈∂iW 〉i=1,...,10 to generate the master space R = S/I1. We find using [43] that I1 has

dimension 8, degree 6 and Hilbert series

H(t,F [g=2, x=(8,4,8,4,4)) =
1 + 2t+ 3t4 + 4t4 − 5t4 − 3t5 + 4t6

(1− t)8
. (4.22)

Using primary decomposition in [43], we get that the curve given by I1 is the

union of those given by ideals of which 10 are trivial of dimension 6, degree 1 and

have Hilbert series 1
(1−t)6 . The coherent component is of dimension 8, degree 6 and

has Hilbert series

H(t, IrrF [g=2, x=(8,4,8,4,4)) =
1 + 2t+ 2t2 + t3

(1− t)8
. (4.23)
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To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ10, y1, . . . , y12]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,10;j=1,...,12. We then eliminate all the Φs and substi-

tute the resulting ideal into ring R′ = C [y1, . . . , y12] to get ideal V representing the

vacuum moduli space. Using [43], we see that V has dimension 5, degree 197 and

after assigning weights to each yj equal to the degree of the monomial they represent,

we get Hilbert series

H(t,Mg=2, x=(8,4,8,4,4)) =
1 + 4t3 − 13t5 + 2t6 + 8t7 − 8t8 − 2t9 + 13t10 − 4t12 − t15

(1− t3)4(1− t2)4
.

(4.24)

Note that while the numerator is not quite palindromic, multiplying both the numer-

ator and denominator by a factor of (1− t2) would make it palindromic.

We can also write down a permutation triple such that σBσWσ∞ = id:

σB =(1 2 3 4 5)(6 7 8 9 10)

σW =(1 6 2 9 4)(3 10 7 5 8)

σ∞ =(1 3 7 9)(2 10)(4 8)(6 5) . (4.25)

Hence we have ramification structure {52, 52, 23 4}.

4.1.4 Genus 3

x = (18,18,18,6) This is a tiling with V = 6, E = 12, F = 2.

3,4,6,7,11,12

A B

2

4

3

A

B

B

B

B

B

B
B

B

B

B

B

B

8

10

9

1

5

3

4

11

12

11

12

6

7

6

7

1,8,9

2,5,10
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We have superpotential

W = Tr(Φ1Φ2Φ3Φ4+Φ5Φ6Φ7Φ8+Φ9Φ10Φ11Φ12−Φ1Φ5Φ7Φ3−Φ2Φ4Φ11Φ9−Φ6Φ8Φ10Φ12)

(4.26)

and 15 gauge invariants:

r1 = Φ3 , r2 = Φ4 , r3 = Φ6 , r4 = Φ7 , r5 = Φ11 , r6 = Φ12 ,

r7 = Φ1Φ2 , r8 = Φ1Φ5 , r9 = Φ1Φ10 , r10 = Φ8Φ2 , r11 = Φ8Φ5 , r12 = Φ8Φ10 ,

r13 = Φ9Φ2 , r14 = Φ9Φ5 , r15 = Φ9Φ10 . (4.27)

To find the master space, we define the ring S = C[Φ1, . . . ,Φ12] and ideal I1 =

〈∂iW 〉i=1,...,12 to generate the master space R = S/I1. We find using [43] that I1 has

dimension 8, degree 16 and Hilbert series

H(t,F [g=3, x=(18,18,18,6)) =
1 + 4t+ 10t2 + 8t3 − 6t4 − 20t5 + 28t6 − 12t7 + 3t8

(1− t)8
.

(4.28)

Using primary decomposition in [43], we get that the curve given by I1 is the

union of those given by ideals of which: 3 are trivial of dimension 4, degree 1 and

have Hilbert series 1
(1−t)4 ; 2 are trivial of dimension 6, degree 1 and have Hilbert series

1
(1−t)6 ; 12 are of dimension 6, degree 2 and have Hilbert series 1+t

(1−t)6 . The coherent

component is of dimension 8, degree 16 and has Hilbert series

H(t, IrrF [g=3, x=(18,18,18,6)) =
1 + 4t+ 6t2 + 4t3 + t4

(1− t)8
. (4.29)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ12, y1, . . . , y15]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,12;j=1,...,15. We then eliminate all the Φs and substi-

tute the resulting ideal into ring R′ = C [y1, . . . , y15] to get ideal V representing the

vacuum moduli space. Using [43], we see that V has dimension 7, degree 118 and

after assigning weights to each yj equal to the degree of the monomial they represent,

we get Hilbert series

H(t,Mg=3, x=(18,18,18,6)) =

1 + 4t+ 14t2 + 30t3 + 41t4 + 18t5 − 10t6 − 2t7 + 25t8 + 6t9 − 12t10 + 3t12

(1− t2)5(1− t)2
. (4.30)
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We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4)(5 6 7 8)(9 10 11 12)

σW = (1 3 7 5)(2 9 11 4)(6 12 10 8)

σ∞ = (1 8 9)(2 3 4 10 11 12 5 6 7) . (4.31)

Hence we have ramification structure {43, 43, 3 9}

x = (12,4,12,4,12,4) This is a tiling with V = 4, E = 12, F = 4.

3,8

B

A

CD

A

D

D

C

B

B

D

B C

B

D

B

C

B

BC

B
10

68

4

7

1

2

8

9

10

11
12

9

311

5

3

4

5

6

6,11

5,10

2,7 1,12

4,9

We have superpotential

W = Tr(Φ1Φ2Φ3Φ4Φ5Φ6 + Φ7Φ8Φ9Φ10Φ11Φ12−Φ1Φ7Φ10Φ6Φ8Φ4−Φ2Φ5Φ11Φ3Φ9Φ12)

(4.32)

and 12 gauge invariants:

r1 = Φ1Φ2 , r2 = Φ1Φ7 , r3 = Φ12Φ2 , r4 = Φ12Φ7 , r5 = Φ3Φ4 , r6 = Φ3Φ9 ,

r7 = Φ8Φ4 , r8 = Φ8Φ9 , r9 = Φ5Φ6 , r10 = Φ5Φ11 , r11 = Φ10Φ6 , r12 = Φ10Φ11 .

(4.33)
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To find the master space, we define the ring S = C[Φ1, . . . ,Φ12] and ideal I1 =

〈∂iW 〉i=1,...,12 to generate the master space R = S/I1. We find using [43] that I1 has

dimension 10, degree 9 and Hilbert series

H(t,F [g=3, x=(12,4,12,4,12,4)) =
1 + 2t+ 3t2 + 4t3 + 5t4 − 6t5 − 8t6 + 8t7

(1− t)10
. (4.34)

Using primary decomposition in [43], we get that the curve given by I1 is the

union of those given by ideals of which 18 are trivial of dimension 8, degree 1 and

have Hilbert series 1
(1−t)8 ; The coherent component is of dimension 10, degree 9 and

has Hilbert series

H(t, IrrF [g=3, x=(12,4,12,4,12,4)) =
1 + 2t+ 3t2 + 2t3 + t4

(1− t)10
. (4.35)

To find the vacuum moduli space, we consider the ringR = C [Φ1, . . .Φ12, y1, . . . , y12]

and ideal I2 = 〈∂iW, yj − rj〉i=1,...,12;j=1,...,12. We then eliminate all the Φs and substi-

tute the resulting ideal into ring R′ = C [y1, . . . , y12] to get ideal V representing the

vacuum moduli space. Using [43], we see that V has dimension 7, degree 24 and after

assigning weights to each yj equal to the degree of the monomial they represent, we

get Hilbert series

H(t,Mg=3, x=(12,4,12,4,12,4)) =
1 + 5t2 + 12t4 + 5t6 + t8

(1− t2)7
. (4.36)

We can also write down a permutation triple such that σBσWσ∞ = id:

σB = (1 2 3 4 5 6)(7 8 9 10 11 12)

σW = (1 4 8 6 10 7)(2 12 9 3 11 5)

σ∞ = (1 12)(2 4 6 7 9 11)(3 8)(5 10) . (4.37)

Hence we have ramification structure {62, 62, 23 6}.
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5 Beyond Bipartite Tilings

Over the years it has become clear that in supersymmetric gauge theories “bipartite-

ness” (dimer models) and toric moduli spaces are intricately linked [2, 8, 15].

While classifying all regular tilings, the natural question arose of the possibility of

gauge theories arising from tilings that did not have bipartite structure. That is to

say if we relaxed the condition that the superpotential obeys the “toric condition” [1]

of having each field appearing only twice with opposite sign, we will lose the bipartite

representation of the gauge theory. Consequently, the vacuum moduli space will not

necessarily be a toric Calabi-Yau variety, but as far as the physics is concerned, this

is no obstruction; we simply move to moduli spaces beyond toric geometry.

The story becomes much more complicated and we make a few remarks here.

In our present context of tessellations, we can analyse these in a similar way as

described in section 2.4. As there was no longer a clear distinction between black

vertices, which give positive contributions to the superpotential and the negatively

contributing white vertices, we can impose arbitrary coefficients to each of the su-

perpotential terms. The master space analysis is similar as before, now using the

computer algebra system singular [44] to do the calculation for a large range of integer

and non-integer complex values of the coefficients. Generally in the tilings studied,

all choices of coefficients generated the same master space, with the exception of a

handful of choices. This is to be expected, as one generally expects there to be a few

combinations of coefficients that give “magical relations” between the partials of the

superpotential that exist merely due to the coefficients and not due to the structure

of the superpotential. This is “genericity” in complex structure [53].

As a toy model, suppose we had a superpotential:

W =
1

2
Φ2

1 + Φ1Φ2 +
1

2
Φ2

2 (5.1)

then it can be easily verified that W satisfies the relation ∂1W = ∂2W , whereas no

such a relation exists for the superpotential

W̃ = πΦ2
1 + Φ1Φ2 + e1Φ2

2 (5.2)

even after allowing for multiplication of the partials by some complex number - as we

are working with ideals over complex polynomial rings and ideals absorb multiplica-
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tion by units, i.e. if we consider complex polynomial ring R and ideal I = 〈ax, by〉
with x, y ∈ R and a, b ∈ C \ {0} then the ideal I does not depend on the choice of

a and b. Most of the “master spaces” were found to possess non-trivial geometries,

despite the arbitrariness of the coefficients.

These master spaces can then be analysed using primary decomposition, and

generally there was no Calabi-Yau component (with the exception of some trivial

linear pieces), nor was there a unique component (i.e. for any piece of the space, there

were usually multiple pieces that had the exact same dimension, degree and Hilbert

series), nor was there a top-dimensional component that had the same dimension and

degree of the master space. Hence a coherent component does not generally exist.

Indeed, we are loosing the nice control provided by toric geoemtry.

Another problem, clearly, is that it is not immediately obvious how to draw an

associated (directed) quiver diagram. First, it is no longer possible to use the colour

of the vertices to assign a direction to the edges in the quiver. Several proposals, such

as assigning an n-partite structure, naturally lead to the problem that our arbitrary

choice of n changes the whole theory, and in general lead to the problem that, when

imposing the structure, our choice which vertex gets which colour also changes the

theory, hence not making the structure unique. This does not arise for bipartite

structures, as an interchange of black and white vertices does not change the resulting

theory.

Furthermore, any tiling that contains a p-gon with p an odd number, cannot

possibly satisfy the Calabi-Yau condition that states that for every node in the quiver,

the number of incoming arrows must equal the number of outgoing arrows, which

comes about as an anomaly cancellation condition in 3+1 dimensions [3,25]. Though

tilings exist with polygons that all have an even number of sides, yet cannot have a

bipartite structure imposed on it (such as the g = 3, {p, q} = {6, 6} regular tiling,

which is pictured below), we may still have the problem that the quiver will not

satisfy this condition.
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Taking the g = 3, {p, q} = {6, 6} regular tiling as an example, we see that the

arrows between faces A and B both need to point in the same direction, as the edges

1, 4 seperating them connect the same two vertices, and they appear in the same cyclic

order around each vertex. Hence by regularity of the tiling, in the quiver diagram,

each node would either have 2 more incoming or 2 more outgoing arrows and hence

the quiver would not satisfy the Calabi-Yau condition. Therefore we see that despite

the non-trivial geometry of the analysed master spaces, to extract any gauge theory

data from non-bipartite remains an interesting challenge.

6 Conclusions and Outlook

We have studied the properties of field theories arising from regular and semi-regular

tilings on Riemann surfaces of different genera. We have classified both the master

space and mesonic moduli space arising from these tilings. Some interesting patterns

stand out:

• The master space is always of dimension F +2g, where F is the number of faces

of the brane tiling (or equivalently the number of nodes in the quiver) and g

the genus of the Riemann surface the graph is embedded on. The dimension

comes about as a contribution of F − 1 independent baryonic parameters and
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1 + 2g mesonic parameters, thus providing a generalisation of the well-known

F + 2 dimensional master space of toric tilings [36, 37].

• The coherent component IrrF [ is always a Calabi-Yau manifold of the same

dimension and degree as the master space, just as in the g = 1 case.

• The mesonic moduli space is always of dimension 1 + 2g, even when it is not

found to be Calabi-Yau. This formula, and that for the dimension in of the

master space, agree with the formulae found in [9] in the case of a Riemann

surface without boundary.

• For a consistent brane tiling, we expect the mesonic moduli space to be Calabi-

Yau. Roughly half of the tilings studied, however, generated mesonic moduli

spaces that were not Calabi-Yau. † Consistency for g = 1 brane tilings has

been extensively studied [41,42] and frequently uses geometric arguments such

as zig-zag paths. For example, [42] gives the following consistency check:

A dimer model is geometrically consistent if and only if the following conditions

hold:

– No zig-zag flow η̃ intersects itself.

– If η̃ and η̃′ are zig-zag flows and their homology classes [η̃], [η̃′] are linearly

independent, then they intersect in precisely one arrow.

– If η̃ and η̃′ are zig-zag flows and their homology classes [η̃], [η̃′] are linearly

dependent, then they do not intersect.

We found tilings however, that satisfy these conditions yet still do not lead to

mesonic moduli spaces that are Calabi-Yau, such as the g = 2 regular tiling with

{p, q} = {6, 4}. Finding consistency checks on dimers, such that they generate

Calabi-Yau manifolds as moduli spaces, should be a direction of further research.

Another thing to note is that in the case of the torus, we have a 1-1 correspondence

between brane tilings and double periodic tilings of the plane (with a fundamental

domain imposed). Here it is possible to enlarge the fundamental domain, which

corresponds to an orbifold action.

†Some tilings, such as the g = 2,x = (8,4,8,4,4), have a Hilbert series that does not have a
palindromic numerator, but can be transformed into one by simple multiplication (or division) by∏

i(1 − tni) for appropriate ni. Others though, such as g = 2, {p,q} = {6,4} have a Hilbert series
for which this is not possible, and hence are definitely not Calabi-Yau.
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However, this property seems to be unique to the torus, as can be seen by the fact

that the number of edges - and hence also the number of vertices and faces - of a

semi-regular tiling described by (p1, . . . , pq) of a genus g Riemann surface is fixed for

g 6= 1. Hence no operation similar to enlarging the fundamental domain exists for

these surfaces. It might be possible to relate different dimers on these surfaces through

orbifold actions, but any such relation would be far less obvious geometrically.

Due to the doubly exponential nature of the Buchberger algorithm in its input

size, we were unable to fully analyse all the tilings we found. As generally the number

of edges in a (semi-)regular tiling goes up with the genus (which can be observed from

equation 2.19 or 2.13), this soon leads to problems in analysing non-trivial tilings on

Riemann surfaces of higher genus. A numerical algorithm to analyse these spaces has

been proposed in [45], but has not yet been implemented in any program. Using this

algorithm, or any other that is able to analyse these spaces, is clearly a vast open

direction.
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