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Efficient Gain and Loss Amortization and Optimal

Funding in Pension Plans

Abstract

Efficient methods of amortizing actuarial gains and losses in defined benefit pension

plans are considered. In the context of a simple model where asset gains and losses emerge

as a consequence of random (independent and identically distributed) rates of investment

return, it has been shown that direct amortization of such gains and losses leads to more

variable funding levels and contribution rates compared with an indirect and proportional

form of amortization which ‘spreads’ the gains and losses. Stochastic simulations are per-

formed and they indicate that spreading remains more efficient than amortization with

simple AR(1) and MA(1) rates of return. Similar results are obtained when a more com-

prehensive actuarial stochastic investment model (which includes economic wage inflation)

is simulated. Proportional spreading is rationalized as the contribution control that op-

timizes mean square deviations in the contributions and fund levels when the funding

process is Markovian and the fund is invested in two assets (a random risky and a riskfree

asset). Efficient spreading and amortization periods are suggested for the U.S., the U.K.

and Canada.

JEL classification: D81; G23
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1 Introduction

1.1 Aims

Methods of funding defined-benefit pension plans and of amortizing actuarial gains and

losses are compared. A simplified model of a pension plan is described in section 1.2

in order to investigate the results of Owadally & Haberman (1999) who suggest that a

proportional form of amortization is preferable to the typical practice of direct amortization

of gains and losses. These results are reviewed in section 2. In section 3, the results of

stochastic simulations, with a more realistic treatment of investment returns and inflation,

are presented. Finally, in section 4, the efficiency of one method of amortization over the

other is explained by means of the optimization of a quadratic objective criterion.

1.2 Model and Notation

We consider a strictly defined benefit pension plan in which no discretionary benefit im-

provement is allowed except for benefit indexation. It is also assumed that provision is

made only for a retirement benefit at normal retirement age based on final salary and that

actuarial valuations are carried out with the following features:

1. Actuarial valuations take place at regular intervals of one time period.

2. The actuarial valuation basis is invariant in time.

3. The market value of pension plan assets is ft at time t (no smoothing is used).

4. An ‘individual’ actuarial cost method is used, generating an actuarial liability alt and

a normal cost nct at time t.

A simple model for such a pension plan may be projected forward based on the following:
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1. The pension plan population is stationary (deterministic) from the start.

2. Mortality and other decrements are assumed to be contingent as per a life table {l′x}.

3. A salary scale exactly reflects promotional, merit-based or longevity-based increases

in salaries (and may be incorporated in the life-table, lx = sxl
′
x).

Economic wage inflation (the general increase in wages as measured by a national wages

index) may be distinguished from the salary scale. The actuarial valuation basis includes

{lx} as well as a valuation discount rate and an assumption as to wage inflation (in order to

value final-salary benefits). Actual experience is in accordance with the actuarial valuation

assumptions except for inflation and returns on plan assets. The model described above

bears similarities to the models described by Trowbridge (1952), Bowers et al. (1979),

Dufresne (1988, 1989) and Owadally & Haberman (1999).

The funding level or funded ratio in the plan is defined as the value of plan assets as

a percentage of the actuarial liability. The unfunded liability (ult) at the start of year

(t, t + 1) is the excess of the actuarial liability over the value of plan assets (we assume

that cash flows occur at the start of the year): ult = alt − ft.

The outcome of an actuarial valuation at the start of year (t, t + 1) is to recommend a

contribution

ct = nct + adjt, (1)

where adjt is a supplementary contribution (or contribution adjustment) paid to amortize

past and present experience deviations from actuarial assumptions. These deviations result

in actuarial gains or losses.

The actuarial loss lt is the unanticipated change in the unfunded liability over year

(t − 1, t), that is, it is the excess of the unfunded liability at time t over the unfunded

liability anticipated at time t based on information and the valuation basis at time t− 1.

A gain is a negative loss.
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1.3 Treatment of Gains and Losses

The calculation of the contribution is crucial to the dynamics of the pension fund when

economic experience is volatile. For example, Winklevoss (1982) finds that “the correct

treatment of actuarial gains and losses is critical in stochastic simulations because the effect

of random fluctuations in salaries and plan assets impact on costs through the funding

of such deviations.” Typical practice is that the actuarial gain or loss in each year is

individually amortized over a fixed term m. The supplementary contribution in year (t, t+

1) is (Dufresne, 1989):

adjt =
m−1∑
j=0

lt−j/äm|. (2)

Alternatively, gains and losses may be spread by paying a proportion k of the unfunded

liability (Dufresne, 1988):

adjt = k ult = k (alt − ft), (3)

where k is typically defined as

k = 1/äm|. (4)

Equation (3) may be understood as follows. The unfunded liability in the plan is the

accumulation with interest of portions of previously incurred losses (as well as of any initial

unfunded liability) that have not been fully paid off and have been deferred. When the

supplementary contribution in equation (3) is made to the plan, a spread payment equalling

a fraction k of the deferred portion of each incurred loss is settled in respect of each loss

(as if the loss were taxed at rate k). Therefore, the excess of the unfunded liability over the

supplementary contribution in a given year must equal the present value of the unfunded

liability, less the newly emergent loss, in the following year: u(ult − k ult) = ult+1 − lt+1,

where u = 1+i and i is the rate at which cash flows in the plan are discounted. Ignoring any
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initial unfunded liability, it follows that ult =
∑∞

j=0(1− k)jujlt−j and, from equation (3),

adjt =
∞∑

j=0

k(1− k)jujlt−j. (5)

When k = m = 1, gains and losses are not deferred and the unfunded liability consists

only of the loss that emerged during the past year, that loss being paid off immediately:

ult = adjt = lt. See also Dufresne (1994).

Compare amortization in equation (2) with spreading in equation (5). Under amortiza-

tion, gains and losses are paid off in level amounts over a finite term m. Under spreading,

gains and losses are liquidated in perpetuity by means of exponentially declining payments.

A large k (or equivalently a short spreading period m from equation (4)) hastens funding

as smaller portions of the losses are deferred. Expressing k as 1/äm| in equation (4) is a

convenient device that enables gains and losses to be removed faster if future cash flows are

discounted at a higher rate. A loss is asymptotically liquidated when it is spread since the

present value of payments made in respect of a unit loss is
∑∞

j=0 k(1−k)j = 1 when m > 1

(since 0 < i(1 + i)−1 < k = 1/äm| < 1). Finally, note that initial unfunded liabilities are

disregarded in the following since they can be separately amortized and have no permanent

effect (Owadally & Haberman, 1999).

1.4 Volatility of Funding Process

If actuarial assumptions are unbiased and are realized on average, the loss in any year

is expected to be zero and (once any initial unfunded liability is completely amortized)

the unfunded liability (an accumulation of unpaid losses) is also expected to be zero,

whether gains and losses are amortized or spread. The uncertain nature of deviations from

assumed experience (particularly economic experience) means that gains and losses are

volatile, however, and the consequent variability of the funding level and of the required

contributions must be examined.
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The pension plan is regarded in this paper as an entity, set up under trust, whose

financial management is separate from that of the company sponsoring pension benefits

for its employees. Trustees (who represent plan members) and sponsor are assumed to

have convergent, albeit non-identical, interests in funding the plan on a going-concern

basis. One purpose of funding benefits in advance is to maximize the security of benefits

(McGill, 1996, p. 592). This is an important objective for trustees but also indirectly for

the plan sponsor as it plays a part in the recruitment and remuneration of employees. A

reasonable objective of an actuarial funding method is therefore to minimize the variability

of the funding level or of the unfunded liability in the plan. An ideal measure of security

would be based on second and higher moments and would allow for solvency requirements,

but the variance is a reasonable and tractable approximation.

Another motivation for pre-funding pension benefits is to spread the required future

pension contributions and hence reduce the strain on the sponsor’s cash flows. This is also

of interest to the trustees since employees may be contributing to the fund and since suc-

cessful financial management of the firm benefits not only shareholders but also employees

(in terms of continued employment). Trowbridge & Farr (1976, p. 62) thus refer to the

”smoothness of contributions” as a desirable objective. This is often expressed relative

to the total payroll for plan members. Minimizing the variability of the contribution or

contribution rate (that is, total contribution per payroll dollar) is also a reasonable objec-

tive. Funding methods therefore seek to reconcile the objectives of both plan trustees and

sponsor and achieve stable funding levels as well as stable contribution rates.

In the rest of this paper, the choice between amortizing and spreading volatile gains

and losses is discussed in terms of these objectives and under the modeling assumptions

of section 1.2. Gains and losses in the pension plan model arise only as a consequence

of unforeseen economic variation from actuarial assumptions, that is, in the returns on

plan assets and in inflation on plan liabilities. Contributions may be determined as a level
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percentage of payroll. The annuities in equations (2) and (4) are then calculated at the

valuation discount rate net of assumed inflation on wages.

2 Efficient Amortization: Review of Mathematical Results

The treatment of gains and losses and the volatility of funding are studied by Dufresne (1988,

1989) in a simple mathematical model, whose main features are as in the model described

in section 1.2. In addition, Dufresne (1988, 1989) assumes that (1) pensions in payment

are indexed with wage inflation, so that all monetary quantities can be expressed net of

wage inflation (as a consequence of the assumptions made, payroll, actuarial liability etc.

are constant when deflated by wage inflation), and (2) the rate of return on the fund (net

of wage inflation) is independent and identically distributed from year to year. The sec-

ond assumption permits mathematical tractability, parsimony and a search for optimal or

robust performance.

The market value of plan assets ft and the contribution rate ct are random variables

and are governed by the recurrence relation ft+1 = (1 + it+1)(ft + ct − B), where it is

the rate of return on the fund and B is the benefit outgo. The moments of ft and ct are

derived by Dufresne (1988, 1989) when gains and losses are spread (equation (3)) as well

as amortized (equation (2)). The plan is expected to be fully funded eventually: Eult → 0

and Eadjt → 0 as t → ∞, provided actuarial assumptions are unbiased. Dufresne (1988,

1989) shows that the stochastic pension funding process is stationary in the limit as t →∞
provided that gains and losses are not spread or amortized over very long periods. Since the

payroll and actuarial liability are constant (net of wage inflation), lim Varft and lim Varct

represent the long-term variances of the contribution rate and funding level respectively.

The following results pertain to the stationary stochastic pension funding process and

are obtained by Dufresne (1988) (in the spreading case) and Owadally and Haberman
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(1999) (in the amortization case).

Result 1 (Variance of funding level) The variance of the funding level increases

as gains and losses are spread over a longer period. It also increases as gains and losses

are amortized over a longer period. Funding levels are less variable under amortization

over a fixed term than under spreading over the same term.

Gains and losses are volatile. Spreading or amortizing them over shorter periods and

recognizing them faster ensures that full funded status is reached faster and is maintained.

This should improve the security of benefits as confirmed by Result 1.

Result 2 (Variance of contribution rate) As the period over which gains and losses

are spread increases, the variance of the contribution rate initially decreases, attains a

minimum (at m∗
s, say) and then increases. The same occurs as the amortization period

increases, with a minimum at m∗
a > m∗

s. Contribution rates are less stable under amorti-

zation over a fixed term m < m∗
a than under spreading over the same period.

A graph of the variance of contribution rate against spreading or amortization periods

exhibits a minimum. It may be thought that spreading or amortizing, and therefore defer-

ring, gains and losses over longer periods leads to a smoother and more stable contribution

rate pattern. Result 2 partly contradicts this: for spreading periods longer than m∗
s (or

for amortization periods longer than m∗
a), increasing the spreading period (or amortization

period) causes increased volatility in the funding level which feeds back as more volatile

gains and losses and, since supplementary contributions are required to liquidate the gains

and losses, also as more volatile contribution rates.

Result 3 (Spread and Amortization Periods) Based on the criterion of minimiz-

ing the variances of contribution rate and funding levels, an efficient range of spread periods

is [1,m∗
s] and an efficient range of amortization periods is [1,m∗

a].
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For spread periods m > m∗
s (and amortization periods m > m∗

a), there will always be a

shorter period in the efficient range that yields the same variability in the contribution rate

together with less variable funding levels. Dufresne (1988) concludes that, under modern

economic conditions, spreading gains and losses over a period m ∈ [1, 10] is efficient. This

result has had some influence on actuarial practice in the United Kingdom. See Wilkie in

Dufresne (1994, p. viii). Thornton & Wilson (1992) recommend short spreading periods

based partly on Dufresne’s (1999) conclusion. Owadally & Haberman (1999) conclude that

the common North American practice of amortizing gains and losses over 5 years is also

efficient. Faster defrayal of gains and losses arising from amendments to benefits or to

valuation bases, rather than experience deviations, have also been promoted (Kryvicky,

1981; Colbran, 1982).

Result 4 (Efficiency) According to the criterion of minimizing the variances of fund-

ing level and contribution rate, it is more efficient to spread gains and losses than to

amortize them: for any two spread and amortization periods such that the funding level

has the same variance, the variance of the contribution rate is less under spreading than

under amortization.

Graphs of the variance of contribution rate against the variance of funding level for spread-

ing and for amortization both exhibit minimum, but the graph for spreading lies under the

graph for amortization (except in the trivial case where m = 1 and gains and losses are

paid off immediately, in which case spreading and amortization coincide).

Compare Result 1 (amortization leads to less variable funding levels than spreading

over the same period), Result 2 (spreading leads to less variable contribution rates than

amortization over the same period m < m∗
a), Result 3 (there exists an efficient spread

period range as well as an efficient amortization period range), and Result 4 (overall,

spreading is more efficient than amortization).
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3 Efficient Amortization: Simulations

3.1 Description of Stochastic Simulations

The results of section 2 are limited in a number of ways. The first limitation concerns

the assumption of independent real rates of return on the pension fund from year to year.

First, there is considerable debate in the economics literature about serial correlation in

equity returns over long horizons (e.g. Fama & French, 1988). Serial correlation is also

demonstrated in the actuarial literature by Panjer & Bellhouse (1980) and Wilkie (1995)

among others. Second, debt securities are often held to match certain liability cash flows

and dependence in the returns from such securities will occur (Vanderhoof, 1973).

Another limitation of the results in the previous section concerns the fact that inflation

and different asset classes were not explicitly modeled. Maynard (1992, p. 245) shows

that nominal rates of return have been more volatile than rates of return net of price

inflation and that this adds to the volatility of funding for benefits that are not indexed

with inflation. Modeling separate asset classes is also more realistic than modeling the

return on the whole fund and allows for differences in asset allocation.

It is of interest to consider whether Results 1–4 hold when these limitations are relaxed.

Stochastic simulations under two different models were carried out for this purpose. Details

of these simulations are given in Appendix A.

Simulation Model 1. The model of Dufresne (1988) (see section 2) was simulated, the

only difference being that the logarithmic rate of return (net of wage inflation), denoted

by δt, is projected as a stationary Gaussian autoregressive process of order 1 or AR(1):

δt+1 − δ = ϕ(δt − δ) + et+1, (6)
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where {et} is a sequence of zero-mean independent and identically normally distributed

variables. The process is stationary from the start and |ϕ| < 1. The AR model is used by

Panjer & Bellhouse (1980) and Dhaene (1989) among others.

Simulation Model 2. An asset-liability projection basis described by Wilkie (1995) was

used to carry out projections for three countries: the United States, the United Kingdom

and Canada. The statistical methodology, historical data and economic theory employed

by Wilkie (1995) are exhaustively discussed in the actuarial literature (see Wilkie (1995)

for relevant references). This projection model was used because it gives a fairly realis-

tic indication of the relationship between various economic variables that are relevant to

pension funding.

There are two noteworthy features of the asset-liability projections. First, stochastic

inflation on prices and wages is assumed and pensions are a fraction of final salary and are

not indexed with inflation. This is more realistic than considering real rates of return, as

was done in section 2. The distinction between inflation on wages and on prices, which is

important for final-salary pensions, is also made in the projections.

Second, two asset classes (equity and long-term Government debt) are considered. A

proportional rebalancing strategy between the two asset types is assumed, with income

from an asset being reinvested in that asset. McGill et al. (1996, p. 665) state that “a

60-40 split between equities and fixed [income securities] is common” in North America

and this was assumed for all the projections. 40:60 and 80:20 equity:bond portfolios were

also investigated. These portfolios are typical in practice and no suggestion as to their

being optimal or otherwise is being made.
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3.2 Simulation Results

More details about the simulations are given in Appendix A. The results are discussed

here. For model 1 (AR(1) and equation (6)), the scaled standard deviations of the funding

level and contribution rate are given in Table C.1 (ϕ = +0.3), Table C.2 (ϕ = +0.5), and

Table C.3 (ϕ = −0.1). For model 2 (asset-liability projections), the standard deviations

of the funding level and contribution rate at the time horizon of the simulation study are

shown in Tables C.4 and C.6 for the U.S. and Canada projections respectively (assuming

a 60:40 equity:bond portfolio). The same results for the U.K. projection with an 80:20

equity:bond portfolio are shown in Table C.5.

Variance of the Funding Level (Result 1). The variance of the funding level in

Tables C.1–C.6 increases as spreading and amortization periods increase. This is true both

for the AR(1) model (including values of ϕ not tabulated here for the sake of brevity) and

for all three countries in the asset-liability simulations. Result 1 appears to be borne out.

Variance of the Contribution Rate (Result 2). Numerical results, not tabulated

here for the sake of brevity, indicate that when the rate of return is highly positively (resp.

negatively) autocorrelated at lag 1, contribution rate variability increases (resp. decreases)

monotonically as both spreading and amortization periods increase. See for example the

graphs for ϕ = +0.8 and -0.3 in Figure 1. This feature is also reported by Haberman (1994)

in the case of spreading.

For AR(1) rates of return that are moderately autocorrelated at lag 1 (Tables C.1–

C.3), the variance of contribution rates decreases and then increases as spreading and

amortization periods increase, as stated in Result 2. This is also true for all three countries

in the asset-liability projections (Tables C.4–C.6). For the U.S. projections in Table C.4,
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the variance of the contribution rate is minimized at a spreading period of m∗
s ≈ 7 years

and an amortization period of m∗
a ≈ 13 years. For m < 13, contribution rates are higher

under amortization than under spreading. The same feature is reproduced in the other

Tables. Result 2 thus appears to hold under practical conditions.

Spread and Amortization Periods (Result 3). The simulations therefore indicate

that there exists an efficient range of spreading periods and amortization periods under

practical conditions (for moderately autocorrelated rates of return). Table C.4 suggests

that gains and losses in the U.S. should be spread over periods no longer than 7 years

and amortized over no more than 13 years. (The corresponding numbers for the U.K.

are 15 and 35, and for Canada they are 13 and 20.) The gain/loss amortization period

range of up to 5 years prescribed by the Employee Retirement Income Security Act, 1974,

for single-employer pension plans is well within our suggested range, but the range of

gain/loss amortization periods for multi-employer plans under ERISA is between 1 and 15

years (source: McGill et al., 1996, p. 597).

Efficiency (Result 4). The variance of the contribution rate is plotted against the

variance of the funding level in Figure 1 for the AR(1) model and in Figure 2 for the asset-

liability projections. The ‘spreading’ curve lies below the corresponding ‘amortization’

curve in all the cases considered. Ignoring country-specific regulatory requirements, we

conclude that, for the most stable funding levels and contribution rates, gains and losses

should be paid off by being spread rather than amortized. Result 4 appears to hold.

Further Comments. Simulations were also carried out with the logarithmic rate of

return process (net of wage inflation) being projected as a stationary Gaussian moving

average process of order 1 or MA(1): δt−δ = et−φet−1, where {et} is as in the AR(1) model
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and |φ| < 1 (for invertibility). The results in the MA(1) case were very similar to those

in the AR(1) case. (The detailed results of these simulations are not shown here for the

sake of brevity.) For φ = -0.5, -0.3, 0, +0.1, +0.3, Results 1–4 all appear to hold. Finally,

Wilkie’s (1995) economic time series are essentially linear and autoregressive. It is not

entirely surprising that similar results are obtained from the AR(1) and the asset-liability

simulations. The feature of an efficient range of spreading periods is indeed reproduced by

Haberman & Smith (1997) who perform simulations of Wilkie’s (1995) time series based

on U.K. economic data.

4 Optimal Funding when Returns are Independent

4.1 An Optimization Problem

The efficiency of spreading as compared to direct gain/loss amortization may be explained

by the fact that, in the former, the supplementary contribution is proportional to the

contemporaneous unfunded liability in the plan (equation (3)). Proportional adjustment

represents an optimal form of contribution control when a quadratic measure of the vari-

ability of contribution and market value of plan assets is to be minimized. This result

is obtained by O’Brien (1987) and Haberman & Sung (1994) assuming random rates of

investment return on the plan assets. Boulier et al. (1995) obtain a similar result when

asset allocation between two assets is also a decision variable and when the pension plan

is being valued continuously and indefinitely.

A linear contribution adjustment is also obtained when regular valuations and cash

flows occur at discrete intervals and a finite time horizon is assumed. Consider the pension

plan model of section 1.2. Assume that the fund is invested in two assets: a risk-less asset

earning risk-free rate r and a risky asset earning r + αt+1 in year (t, t + 1), where αt+1 is a

random risk premium. Let yt be the proportion of the fund invested in the risky asset in
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year (t, t + 1), and 1− yt be the proportion invested in the risk-less asset. The arithmetic

rate of return on the fund in year (t, t + 1) is r + ytαt+1. It is further assumed that {αt}
is a sequence of independent and identically distributed random variables over time, with

mean α > 0 and variance σ2. It is also simpler to disregard inflation at this stage. Since

the plan population is assumed to be stationary, the payroll, actuarial liability and benefit

payout are constant. The variability of contributions corresponds to the contribution rate

variability while the variability of market values of plan assets corresponds to funding level

variability.

The pension fund can be considered as a random system,

ft+1 = (1 + r + ytαt+1) (ft + ct −B), (7)

where the market value of plan assets ft is a state variable and ct and yt are contribution

and asset allocation control variables respectively. B represents the retirement benefits

paid out yearly. By virtue of the independence over time of {αt}, ft exhibits the Markov

property: E[ft+1|Wt] = E[ft+1|ft, yt, ct], where Wt represents information available up to

time t.

The objectives of the funding process are to stabilize contributions, defray any unfunded

liabilities and pay off actuarial losses and gains as they emerge. The performance of

the pension fund may be judged in terms of the deviations in the values of plan assets

and contributions from their desired levels (say FTt and CTt respectively) relating to the

actuarial liability and normal cost. The ‘cost’ incurred for any such deviation at time

0 ≤ t ≤ N − 1 may be defined as

C(ft, ct, t) = θ1(ft − FTt)
2 + θ2(ct − CTt)

2 (8)

Different weights (θ1 > 0 and θ2 > 0) are placed on the twin long-term objectives of fund

security and contribution stability. The cost in equation (8) reflects a quadratic utility
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function. Minimizing the cost also minimizes the risks of contribution instability and of

fund inadequacy.

The performance of the fund may be given different importance over time. At the

end of the given control period N , a closing cost is incurred if an unfunded liability still

exists: CN = θ0(fN − FTN)2. The discounted cost of deviation occurring t years ahead is

βtC(ft, ct, t), where β is a time preference rate and 0 < β < 1. For 0 ≤ t ≤ N − 1, the

discounted cost-to-go or discounted cost incurred from time t to N is

Ct =
N−1∑
s=t

βs−tC(fs, cs, s) + βN−tCN . (9)

An objective criterion for the performance of the pension funding system over period

N may therefore be defined to be

E[C0|W0] = E

[
βNCN +

N−1∑
s=0

βsC(fs, cs, s)

∣∣∣∣ W0

]
. (10)

Define the value function J(ft, t) as the minimum, over the remaining asset allocation

and contribution decisions, of the expected discounted cost-to-go from time t given infor-

mation at time t: J(ft, t) = minπ E[Ct|Wt], where π = {ct, yt, ct+1, yt+1, . . . , cN−1, yN−1}.
Objective criterion (10) may be minimized using the Bellman optimality principle (see e.g.

Bertsekas, 1976): the minimizing values of ct and yt (say, c∗t and y∗t respectively) in the

optimality equation,

J(ft, t) = min
ct,yt

{
C(ft, ct, t) + β E[J(ft+1, t + 1) | ft, ct, yt]

}
, (11)

with boundary condition J(fN , N) = CN = θ0(fN − FTN)2, are the optimal contribution

and asset allocation controls.

The pension planning objectives above were set over a finite period N . The plan

is assumed to remain solvent and not discontinued during these N years, so that the

funding process does not terminate unexpectedly. When the pension plan is regarded as
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a going concern, an infinite planning horizon may be usefully envisaged as a reasonable

approximation to long-term funding.

No closing cost is incurred in the infinite horizon case. Suppose that the funding process

is time-homogeneous, in that the fund and contribution targets are constant. The instan-

taneous cost at time t is as in equation (8) with FTt = FT , CTt = CT ∀t. The discounted

cost-to-go and objective criterion are as in equations (9) and (10) respectively, except that

CN = 0 and an infinite summation of discounted costs is taken. One naturally expects

that the control rules that are optimal at time t based on the infinite discounted cost-to-go

are also the optimal control rules at times t+1, t+2,. . . since the same infinite discounted

cost-to-go exists at all times. The dynamic programming algorithm in equation (11) can

in fact be shown to converge as N→∞ (see Bertsekas, 1976, p. 251) as it involves a con-

traction mapping and the instantaneous costs in equation (8) are non-negative and are

discounted. The optimal contribution and asset allocation over an infinite horizon (say,

c∞t and y∞t respectively) are the minimizing values of ct and yt in equation (11) when the

value function and the control variables are fixed or time-invariant functions of the state

variable ft.

4.2 Solution of the Optimization Problem

It is shown in Appendix B that the solution to the Bellman equation (11) in the finite-

horizon case is

J(ft, t) = Ptf
2
t − 2Qtft + Rt, (12)
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where

Pt = θ1 + θ2βσ2(1 + r)2P̃t+1Pt+1, (13)

P̃t+1 = [θ2(α
2 + σ2) + βσ2(1 + r)2Pt+1]

−1, (14)

Qt = θ1FTt + θ2βσ2(1 + r)P̃t+1[Qt+1 − Pt+1(1 + r)(CTt −B)], (15)

with boundary conditions PN = θ0 and QN = θ0FTN (with Rt representing some additional

terms independent of ft).

It is also shown in Appendix B that the equivalent solution in the infinite-horizon case

is

J(ft) = Pf 2
t − 2Qft + R, (16)

where P > θ1 is the positive root of the quadratic equation

P 2[βσ2(1 + r)2] + P [θ2(α
2 + σ2)− (θ1 + θ2)βσ2(1 + r)2]− θ1θ2(α

2 + σ2) = 0 (17)

and P = limt→∞ Pt, and where

Q = [θ1FT + (P − θ1)(B − CT )]P (1 + r)/(Pr + θ1) (18)

and Q = limt→∞ Qt, and R contains terms independent of ft.

Define Θt = θ2(α
2 + σ2)P̃t = θ2(α

2 + σ2)/[θ2(α
2 + σ2) + βσ2(1 + r)2Pt] in the finite-

horizon setting and correspondingly Θ = θ2(α
2 + σ2)/[θ2(α

2 + σ2) + βσ2(1 + r)2P ] in the

infinite-horizon setting. The following proposition is proven in Appendix B.

Proposition 1 For 0 ≤ t ≤ N − 1 over a finite horizon, the optimal contribution is

c∗t = Θt+1CTt + (1−Θt+1)[B − ft + Qt+1P
−1
t+1(1 + r)−1] (19)

and the optimal amount invested in the risky asset is

y∗t [ft + c∗t −B] = [Qt+1P
−1
t+1(1 + r)−1 − (ft + c∗t −B)]α(1 + r)(α2 + σ2)−1. (20)
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The corresponding optimal decisions over an infinite horizon are:

c∞t = ΘCT + (1−Θ)[B − ft + QP−1(1 + r)−1], (21)

y∞t [ft + c∞t −B] = [QP−1(1 + r)−1 − (ft + c∞t −B)]α(1 + r)(α2 + σ2)−1. (22)

4.3 Optimal Funding Decisions

The behavior of the optimal funding decisions as the fund level varies is described in the

following proposition, which is proven in Appendix B.

Proposition 2 The optimal contribution and asset allocation decisions are decreasing

functions of the fund level: in the finite-horizon case, ∂c∗t /∂ft < 0 and ∂y∗t /∂ft < 0; in the

infinite-horizon case, ∂c∞t /∂ft < 0 and ∂y∞t /∂ft < 0.

Proposition 2 states that the optimal proportion invested in the risky asset decreases as

ft increases, whatever the planning horizon. A similar result is obtained by Boulier et al.

(1995) and Cairns (1997) for an infinite horizon and for continuous pension plan valuations.

The better the investment performance of the risky asset, the better funded the plan is, the

more the pension fund should be invested in the risk-less asset. This is a contrarian strategy

that entails buying as the market falls and selling as the market rises. It is reasonable in

the sense that, first, liabilities need to be hedged so as to minimize the volatility of both

surpluses and contributions and, second, any available surpluses should be ‘locked in’ by

being invested in less risky assets (Exley et al., 1997). Conversely, the optimal strategy

requires that an underfunded plan takes a riskier investment position than an overfunded

plan, all other things equal. For instance, the assets of a poorly funded immature pension

plan (with a young membership) could arguably be invested more aggressively in the early

years than the assets of a comparable plan with a healthy surplus. The optimal strategy

here may be contrasted with portfolio insurance strategies (Black & Jones, 1988) that
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require riskier investment as the value of plan assets less some minimum value (possibly

determined by a solvency requirement) increases. The contrarian strategy is evidently a

consequence of the quadratic utility function implied in criterion (8), which is simplistic as

it is symmetric and continuous. and does not admit solvency and full funding constraints.

The risk that the plan sponsor winds up the plan or defaults on pension obligations was

also disregarded.

The optimal contribution is linear in ft, whatever the planning horizon: from equa-

tion (19), c∗t may be written as Λt − (1 − Θt+1)ft, where 1 − Θt+1 > 0 while, from equa-

tion (21), c∞t may be written as Λ− (1−Θ)ft, where 1−Θ > 0. The optimal contribution

at the start of year (t, t + 1) is therefore similar to the contribution calculated when gains

and losses are spread (equations (1) and (3)) in that they both depend in a decreasing

linear way on the current market value of assets. This result is based on the assumption of

serially independent rates of return and a Markovian funding process. The market value

of plan assets represents the state of the funding process and, conditional on knowing the

current state of funding and current funding decisions, the future evolution of the fund is

statistically independent of its past. The optimal contribution is therefore a function of

the current state only. This contrasts markedly with the amortization of gains and losses

where the contribution (equations (1) and (2)) is a function of unanticipated changes in

the state of the funding process over the past m years. This analysis helps to justify the

efficiency of spreading over amortization as stated in Result 4 (which was also based on

quadratic or second-moment criteria), despite the simplifying assumptions of a quadratic

utility function and of zero inflation.
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5 Conclusion

The funding of final-salary defined benefit pension plans was considered and methods of

amortizing actuarial gains and losses arising from unforeseen economic experience were

investigated within simple models. Dufresne (1988) and Owadally & Haberman (1999)

show that there exist efficient periods over which to spread or amortize gains and losses

Spreading the gains and losses by paying a proportion of the current unfunded liability

appears to yield less volatile funding levels and more stable contribution rates than amor-

tizing past and present gains/losses. These results depend on the assumption that rates of

return on the fund are independent from year to year. Stochastic projections simulating

Gaussian AR(1) and MA(1) logarithmic rates of return indicated that these results are

robust when rates of return are moderately autocorrelated. Further simulations of pension

plan assets and liabilities based on published actuarial stochastic time series models of

equities, long-term Government debt and wage inflation in three separate jurisdictions and

based on typical asset portfolios supported the results. Gains and losses in U.S. pension

plans should be amortized over no more than 13 years, but more stable funding levels and

contribution rates emerge if gains and losses are spread over suggested periods of no more

than 7 years. Finally, the efficiency of spreading over amortization was explained by the

fact that the optimal contribution, based on a quadratic utility function and irrespective of

the optimization period, for a pension fund invested in one risk-free and one random risky

asset resembles the contribution calculated when gains and losses are spread. Both are a

function of the current level of funding rather than the past and present gains or losses.

Further work should address the fairly constraining modeling assumptions that were

made. In particular, gains and losses arising from uncertain mortality, withdrawal and

early retirement experience were ignored. Statutory and regulatory requirements were also

ignored. Other areas requiring investigation include: considering a more realistic utility
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function incorporating solvency and full funding constraints; modeling other asset classes,

particularly shorter-term and inflation-indexed bonds, and using asset allocation strate-

gies other than proportional rebalancing (e.g. constant proportion portfolio insurance);

introducing a dynamic valuation basis possibly based on corporate bond yields; and inves-

tigating efficient amortization mechanisms for expensing purposes.
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Appendix A

Details of Stochastic Simulations

2000 scenarios are simulated with a time horizon of 300 years each. The randomization

routine generates the same set of 300×2000 random numbers so that sampling error does

not occur when results are compared. The standard deviations of the funding level and

contribution rate at the time horizon are calculated.

Simulation Model 1. For the AR(1) rate of return model, a simple final-salary pension

plan as in section 1.2 is assumed. Pensions in payment are assumed to be indexed with

economic wage inflation. All quantities may therefore be considered net of wage inflation,

and since the pension plan population is stationary, the liability structure of the pension

plan is stable in time. The payroll in real dollars (net of wage inflation) is constant. The

valuation discount rate (net of wage inflation) is assumed to be 5%. The actuarial liability

(AL), normal cost (NC) and yearly benefit outgo (B) (all deflated by wage inflation) are

also constant and hold in equilibrium (B = NC +AL×4.76%). The standard deviation of

the funding level is calculated (
√

VarF/AL) while the standard deviation of the contribu-

tion rate (contribution per payroll dollar) is proportional to
√

VarC/NC. The arithmetic

rate of return (net of wage inflation) in year (t − 1, t) is exp(δt) − 1 and its mean is 5%

(that is, it is equal to the valuation discount rate net of salary inflation) and its standard

deviation is 20%. Similar modelling assumptions were made with the MA(1) model to

which allusion is made at the end of section 3.2.

Simulation Model 2. In the asset-liability projections, time series models fitted by

Wilkie (1995) for equity returns, long bond yields and price inflation in Canada, the United

Kingdom and the United States are used. Time series models, fitted by Wilkie (1995) and
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Sharp (1993) for economic wage inflation in the UK and Canada respectively, are also used.

Assets are valued at market and the Projected Unit Credit method with a time-invariant

valuation basis is used to value the liabilities. Contributions are calculated so as to be

a level percentage of payroll. The pension fund is invested in two asset classes, equities

and long bonds. For the US, payroll increases at a constant 4.5% every year. For the

UK, payroll increases in line with Wilkie’s (1995) economic wage inflation time series. For

Canada, payroll increases in line with Sharp’s (1993) model for Canadian wage inflation.

Economic valuation assumptions are as follows. For the US and Canada, wage inflation

is assumed at 4.5% and a real (net of wage inflation) discount rate of 4.5% is assumed.

For the UK, wage inflation is assumed at 6.5% and a real (net of wage inflation) discount

rate of 4.5% is assumed. No early retirement and no salary scale was assumed. For the

US and Canada, mortality follows the 1983 Group Annuitant Mortality table for males.

For the UK, mortality follows English Life Table No. 14 for males. Demographic valuation

and projection assumptions are identical. Demographic experience does not deviate from

the actuarial valuation basis and gains and losses emerge only as a result of unforeseen

economic experience.
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Appendix B

Solution of Bellman Equation and Proof of Proposition 1

Proof of Proposition 1: Finite Horizon. Consider first a finite horizon. Let

Φt = ft + ct −B, (23)

Ψt = 1 + r + ytα, (24)

and note that

y2
t = α−2Ψ2

t − 2α−2(1 + r)Ψt + α−2(1 + r)2, (25)

(ct − CTt)
2 = Φ2

t − 2(ft −B + CTt)Φt + (ft −B + CTt)
2. (26)

Since αt is independent and identically distributed over time, it follows from equa-

tion (7) that

E[ft+1|ft] = ΨtΦt, (27)

Var[ft+1|ft] = σ2Φ2
t y

2
t , (28)

and using equation (25)

E[f 2
t+1|ft] = (1 + σ2α−2)Φ2

t Ψ
2
t − 2σ2α−2(1 + r)Φ2

t Ψt + σ2α−2(1 + r)2Φ2
t . (29)

The Bellman optimality equation (equation (11)) is

J(ft, t) = min
ct,yt

J, (30)

where

J = θ1(ft − FTt)
2 + θ2(ct − CTt)

2 + β E[J(ft+1, t + 1)|ft], (31)

with boundary condition, at time t = N ,

J(fN , N) = θ0(fN − FTN)2. (32)
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A trial solution for equation (30) is

J(ft, t) = Ptf
2
t − 2Qtft + Rt. (33)

The boundary condition in equation (32) certainly satisfies the trial solution, with PN = θ0

and QN = θ0FTN .

Proceeding by induction, suppose that the right hand side of equation (33) is a solution

of the Bellman equation (30) at t + 1. Then,

E[J(ft+1, t + 1)|ft]

= Pt+1E[f 2
t+1|ft]− 2Qt+1E[ft+1|ft] + Rt+1

= (1 + σ2α−2)Pt+1Φ
2
t Ψ

2
t − 2[Qt+1Φt + σ2α−2(1 + r)Pt+1Φ

2
t ]Ψt

+ σ2α−2(1 + r)2Pt+1Φ
2
t + Rt+1. (34)

where use is made of equations (27) and (29).

J may be written as a quadratic expression in Ψt, Φt and ft, by substituting equa-

tions (26) and (34) into equation (31):

J = [β(1 + σ2α−2)Pt+1Φ
2
t ]Ψ

2
t − 2β[Qt+1Φt + σ2α−2(1 + r)Pt+1Φ

2
t ]Ψt

+ [θ2 + βσ2α−2(1 + r)2Pt+1]Φ
2
t − 2θ2(ft −B + CTt)Φt

+ βRt+1 + θ2(ft −B + CTt)
2 + θ1(ft − FTt)

2. (35)

Upon completing the squares in Ψt and Φt,

J = ΨA
t (Ψt −ΨB

t )2 + ΦA
t (Φt − ΦB

t )2 + Ptf
2
t − 2Qtft + Rt, (36)
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where Pt and Qt are as in section 4, Rt represents additional terms independent of ft, and

ΨA
t = β(1 + σ2α−2)Pt+1Φ

2
t , (37)

ΨB
t =

σ2α−2(1 + r)Pt+1Φt + Qt+1

(1 + σ2α−2)Pt+1Φt

, (38)

ΦA
t = P̃−1

t+1(α
2 + σ2)−1, (39)

ΦB
t = θ2(α

2 + σ2)P̃t+1(ft −B + CTt) + βσ2(1 + r)P̃t+1Qt+1], (40)

P̃t+1 = [θ2(α
2 + σ2) + βσ2(1 + r)2Pt+1]

−1. (41)

J has a unique minimum in Ψt and Φt provided ΨA
t > 0 and ΦA

t > 0. It is sufficient that

Pt > 0 for t ∈ [1, N ] for both these conditions to be satisfied (since Pt > 0 ⇒ P̃t > 0). (It

is assumed that the plan is partially funded and invests in the two assets at all times and

Φt = ft + ct −B > 0.) The minimum occurs when Ψt = ΨB
t and Φt = ΦB

t simultaneously.

There is a direct linear relationship between ct and Φt (equation (23)) and between yt and

Ψt (α > 0 in equation (24)). Therefore, minct,yt J = Ptf
2
t − 2Qtft + Rt which is in the

form postulated in the trial solution (33). Since the solution holds for t = N , it holds for

t ∈ [1, N ]. Since PN = θ0 > 0, then Pt > 0 for t ∈ [1, N ] and the sufficient condition for

the existence of a single minimum is satisfied.

Let Θt = θ2(α
2 + σ2)P̃t. Then, 1−Θt+1 = βσ2(1 + r)2P̃t+1Pt+1, from equation (41).

Φ∗
t = ΦB

t = Θt+1(ft + CTt −B) + (1−Θt+1)Qt+1P
−1
t+1(1 + r)−1. (42)

Using equation (23), c∗t = Φ∗
t + B − ft is readily obtained. Replacing Φt = Φ∗

t in the right

hand side of equation Ψt = ΨB
t gives

Ψ∗
t =

Qt+1 + σ2α−2(1 + r)Pt+1Φ
∗
t

(1 + σ2α−2)Pt+1Φ∗
t

. (43)

Now, [1 + r + αy∗t ][ft + c∗t − B] = Ψ∗
t Φ

∗
t = [Qt+1 + σ2α−2(1 + r)Pt+1(ft + c∗t − B)](1 +

σ2α−2)−1P−1
t+1, from which equation (20) follows.
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It is also possible to express y∗t independently of c∗t by using equations (24) and (43),

giving

αy∗t = Ψ∗
t − (1 + r) =

Qt+1 − (1 + r)Pt+1Φ
∗
t

(1 + σ2α−2)Pt+1Φ∗
t

, (44)

which, upon substitution of Φ∗
t from equation (42), readily yields

y∗t =
αΘt+1(1 + r)[Qt+1 − Pt+1(1 + r)(ft + CTt −B)]

(α2 + σ2)[(1−Θt+1)Qt+1 + Θt+1Pt+1(1 + r)(ft + CTt −B)]
. (45)

Proof of Proposition 1: Infinite Horizon. The proof for the infinite-horizon case

follows closely the preceding proof for the finite-horizon case and is only sketched.

CTt and FTt are constant and may be replaced by CT and FT . The value function

does not depend directly on time and J(ft, t) and J(ft+1, t + 1) may be written as J(ft)

and J(ft+1). The optimality equation has no boundary condition and backwards induction

is not necessary. Since the optimality equation does converge, its solution in the infinite-

horizon case is the steady-state or equilibrium solution of the finite-horizon case. A suitable

trial solution is J(ft) = Pf 2
t − 2Qft + R, where Pt → P , Qt → Q and Rt → R as t →∞.

All Pt, Qt and Rt in the preceding proof may be replaced by constant P , Q and R.

E[J(ft+1)|ft, ct, yt] and J are as in equations (34) and (35), with the appropriate constant

terms described above. J may be simplified to a quadratic in Ψt and Φt. It turns out that

J may be minimized, leaving a quadratic in ft, thereby confirming the trial solution.

J = ΨA(Ψt −ΨB)2 + ΦA(Φt − ΦB)2 + f 2
t [θ1 + θ2βσ2(1 + r)2P̃P ]

− 2ft[θ1FT + θ2βσ2(1 + r)P (Q− (1 + r)P (CT −B))] + R, (46)
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where

P̃ = [θ2(α
2 + σ2) + βσ2(1 + r)2P ]−1, (47)

ΨA = β(1 + σ2α−2)PΦ2
t , (48)

ΨB =
σ2α−2(1 + r)PΦt + Q

(1 + σ2α−2)PΦt

, (49)

ΦA = P̃−1(α2 + σ2)−1, (50)

ΦB = θ2(α
2 + σ2)P̃ (ft −B + CT ) + βσ2(1 + r)P̃Q], (51)

and R includes additional terms independent of ft and not required here.

By comparing the coefficients of f 2
t and ft in equation (46) with those in the trial

solution, it is clear that P satisfies P = θ1 + θ2βσ2(1 + r)2P̃P , which may be rewritten as

equation (17), while Q satisfies Q = θ1FT + θ2βσ2(1 + r)P̃ [Q− (1 + r)P (CT −B)]. This

may be simplified into the form given in equation (18) by noting that θ2βσ2(1 + r)P̃ =

(P − θ1)/(P + Pr) given that P = θ1 + θ2βσ2(1 + r)2P̃P .

J in equation (46) has a unique minimum in Ψt and Φt provided that ΨA > 0 and

ΦA > 0. It is sufficient that P > 0 for both these conditions to hold. (The plan is

assumed to be partially funded at all times and Φt > 0.) Since the coefficient of P 2 and

the constant term in the quadratic equation (17) are positive and negative respectively, P

must have one negative real root and one positive real root, the latter being the admissible

solution. Then, P̃ > 0 in equation (47), and P > θ1 since P = θ1 + θ2βσ2(1 + r)2P̃P . J

is minimized when Ψt = ΨA and Φt = ΦA simultaneously and, exploiting again the direct

linear relationship between Φt and ct and between Ψt and yt, the minimizing values of ct

and yt, denoted respectively by c∞t in equation (21) and by y∞t in equation (22), may be

found as in the finite-horizon case. Again, y∞t may also be written as

y∞t =
αΘ(1 + r)[Q− P (1 + r)(ft + CT −B)]

(α2 + σ2)[(1−Θ)Q + ΘP (1 + r)(ft + CT −B)]
. (52)
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Proof of Proposition 2. Since PN = θ0 > 0, backward recursion in the Riccati dif-

ference equation for Pt formed by equations (13) and (14) shows that Pt > 0, P̃t > 0 for

t ∈ [1, N ]. Clearly, 0 < Θt < 1 for t ∈ [1, N ]. It is reasonable to assume that the fund and

contribution targets in any year are such that FTt > 0 and CTt < B (as otherwise there is

no sense to funding in advance for retirement benefits). Then, Qt > 0 for t ∈ [1, N ] from

equation (15) and the boundary condition QN = θ0FTN > 0. In the infinite-horizon case,

P > θ1 > 0 and clearly 0 < Θ < 1. With FT > 0 and B > CT , it follows that Q > 0

(equation (18)).

It is immediately observed that ∂c∗t /∂ft < 0 from equation (19). From equation (20), it

is easy to show that ∂y∗t /∂[ft +c∗t −B] is directly proportional to −Qt+1P
−1
t+1(1+r)−1 which

is negative. Since ∂[ft + c∗t − B]/∂ft = Θt+1 > 0, it follows that ∂y∗t /∂ft < 0. Likewise,

∂c∞t /∂ft < 0 and ∂y∞t /∂ft < 0.
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Appendix C

Tables

Standard Deviation

m Funding Level Contribution Rate

Spreading Amortization Spreading Amortization

1 19.1% 19.1% 95.26% 95.26%

3 34.6% 30.5% 61.24% 75.83%

m∗
s ≈ 5 51.0% 41.2% 54.77% 67.08%

m∗
a ≈ 7 69.3% 52.0% 56.57% 61.24%

10 109.5% 64.8% 67.08% 63.25%

15 273.9% 96.4% 122.47% 70.71%

20 ‡ 148.3% ‡ 89.44%

25 ‡ 214.5% ‡ 111.80%

Table C.1: AR(1) logarithmic rates of return, ϕ = +0.3. ‡ indicates nonstationarity.
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Standard Deviation

m Funding Level Contribution Rate

Spreading Amortization Spreading Amortization

1 19.1% 19.1% 95.26% 95.26%

2 31.3% 27.4% 80.62% 90.83%

m∗
s ≈ 3 43.6% 34.6% 77.46% 88.03%

4 57.4% 44.7% 79.06% 86.60%

m∗
a ≈ 5 74.2% 52.9% 82.16% 85.15%

6 97.5% 61.6% 90.83% 86.60%

7 122.5% 70.7% 104.88% 88.03%

8 167.3% 81.9% 122.47% 94.87%

Table C.2: AR(1) logarithmic rates of return, ϕ = +0.5.

Standard Deviation

m Funding Level Contribution Rate

Spreading Amortization Spreading Amortization

1 19.1% 19.1% 95.26% 95.26%

3 24.5% 23.5% 43.01% 54.77%

5 30.7% 27.6% 33.91% 43.87%

m∗
s ≈ 10 44.7% 37.4% 27.84% 34.28%

15 54.8% 44.7% 28.28% 31.62%

m∗
a ≈ 20 80.6% 53.9% 30.82% 31.22%

25 104.9% 63.2% 34.64% 32.02%

30 130.4% 72.1% 40.62% 33.17%

Table C.3: AR(1) logarithmic rates of return, ϕ = −0.1.
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Standard Deviation

m Funding Level Contribution Rate

Spreading Amortization Spreading Amortization

1 15.7% 15.7% 42.46% 42.46%

3 23.2% 22.1% 21.79% 28.87%

5 29.8% 27.1% 17.45% 23.54%

m∗
s ≈ 7 37.0% 30.8% 16.12% 21.04%

10 52.0% 35.9% 16.84% 17.84%

m∗
a ≈ 13 75.9% 42.0% 20.04% 17.40%

15 99.9% 46.4% 23.74% 17.41%

17 135.7% 51.4% 29.57% 17.56%

20 235.0% 60.8% 45.97% 19.00%

Table C.4: U.S. projections with a 60:40 equity:bond portfolio.
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Standard Deviation

m Funding Level Contribution Rate

Spreading Amortization Spreading Amortization

1 16.7% 16.7% 29.67% 29.67%

3 20.3% 20.1% 12.57% 16.82%

5 23.9% 22.9% 9.31% 12.83%

10 32.4% 28.0% 7.00% 8.83%

m∗
s ≈ 15 41.1% 33.0% 6.52% 7.74%

20 51.3% 37.7% 6.68% 7.16%

25 64.3% 42.3% 7.28% 7.01%

30 81.2% 47.0% 8.29% 6.97%

m∗
a ≈ 35 102.2% 51.8% 9.65% 7.11%

40 127.4% 57.0% 11.33% 7.41%

45 156.5% 62.3% 13.29% 7.46%

50 188.9% 67.6% 15.47% 8.09%

60 258.2% 83.8% 20.09% 10.25%

70 323.9% 111.1% 24.40% 11.84%

Table C.5: U.K. projections with an 80:20 equity:bond portfolio.
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Standard Deviation

m Funding Level Contribution Rate

Spreading Amortization Spreading Amortization

1 14.0% 14.0% 37.55% 37.55%

3 18.0% 17.6% 16.81% 22.50%

5 21.7% 20.5% 12.69% 17.47%

10 30.5% 25.6% 9.87% 12.57%

m∗
s ≈ 13 36.3% 28.5% 9.62% 11.46%

15 40.7% 30.4% 9.71% 11.02%

17 45.4% 32.3% 9.94% 10.66%

m∗
a ≈ 20 53.3% 35.0% 10.46% 10.29%

23 62.0% 38.1% 11.16% 10.64%

25 68.3% 40.3% 11.71% 10.69%

30 85.7% 46.9% 13.30% 11.21%

Table C.6: Canada projections with a 60:40 equity:bond portfolio.
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Figure 1: Projections with AR(1) rates of return for various values of ϕ. Spreading (dashed

lines) is more efficient than amortization (solid lines).
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US:

UK:

Canada:

Figure 2: Projections for the US (60:40 equity:bond portfolio), the UK (60:40 and 80:20)

and Canada (60:40 and 40:60). Spreading (dashed lines) is more efficient than amortization

(solid lines).
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