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Abstract

This note shows the equivalence of different instrumental variables estimators to
solve the endogeneity problem in linear models when valid instruments are available.
We demonstrate that the exclusion restriction estimator proposed by Chernozhukov
and Hansen (2006) is equivalent to the two-stage least squares and the control function
estimators for linear models.
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1 Introduction

The problems of endogeneity and causality occupy a substantial amount of research in theo-

retical and applied econometrics. One of the most popular approaches to solve endogeneity

and achieve causal interpretation is the instrumental variables (IV) estimator, (see, e.g.,

Hausman, 1983; Angrist, Imbens, and Rubin, 1996; Angrist and Krueger, 2001; Angrist and

Pischke, 2009). This note shows that the exclusion restriction estimator proposed by Cher-

nozhukov and Hansen (2006) (CH) to solve endogeneity in quantile regression (QR) models

also applies to estimate conditional average models. Using an analogue least-squares (LS)

version of the CH estimator, we demonstrate that the CH estimator for the endogeneous

variables coefficients is equal to the standard two-stage LS (2SLS) estimator for linear mod-

els. Given that for linear models, the control function (CF) approach is also equivalent to

the 2SLS, this note thus illustrates the equivalence of the three estimators: 2SLS, CF and

CH. We also show that the equivalence does not hold in general for the exogeneous variables

coefficients, unless the model is exactly identified with the same number of instruments as

endogenous variables.

Chernozhukov and Hansen (2005, 2006) proposed a variant of the IV approach, called

the inverse approach, for QR models. Their estimator uses the exclusion restriction imposed

by the IV, which does not belong to the outcome equation of the structural model but has

a key role in constructing the conditioning set. CH estimator is one of an extensive list

of estimators for semiparametric QR structural models with endogeneity. This method has

been extensively used in the literature to accommodate different problems of endogeneity in

QR models, e.g., Chernozhukov and Hansen (2008) develop robust inference procedures, Jun

(2008) develops a testing procedure that is robust to identification quality, Galvao (2011)

extends the QR IV to dynamic panel data models, Su and Yang (2011) propose a spatial

quantile autoregression model, among others.

Although we show that the estimators are equivalent for conditional average models with

endogeneity, the result does not extend trivially to conditional quantile models. As argued

by Lee (2007) different estimators (i.e. IV, CF, CH, etc.) are in general only suitable for

a particular QR structural model. Depending on the assumptions on a given structural

model, different alternative approaches have been proposed for identification in structural

QR models, and the corresponding estimators are not equivalent.1

1Three major approaches can be considered. First, an IV approach as those proposed by Hong and
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2 The linear two-stage model and CH estimator

Suppose we have a linear structural model given by

y = dα +Xβ + u, (1)

d = XδX + ZδZ + v,

where y is an outcome scalar variable, d is a scalar endogenous variable, X a vector of kX

exogenous covariates, and Z is a vector of kZ IV. Moreover, u is a scalar random variable

that aggregates unobserved factors in the outcome equation, and v is a scalar containing

unobserved disturbances determining d and correlated with u. Due to the dependence of v

and u, d is also sampled depending on u, and thus is endogeneous. We assume that Z is

independent of both u and v. This is a particular case of the structural models listed in Lee

(2007) and CH.

Consider the following QR model for (1),

Qy(τ |d,X) = dα(τ) +Xβ(τ), τ ∈ (0, 1). (2)

Note that without endogeneity equation (2) can be written as

y = dα(w) +Xβ(w), w|d,X ∼ U(0, 1),

where U(0, 1) is a standard uniform distribution.

When the variable d is endogenous and valid instrument Z is available, the structural

model is still given by (2), but it can be represented as

y = dα(w) +Xβ(w), w|X,Z ∼ U(0, 1). (3)

Thus, the valid instrument Z is not part of the structural model, but it allows one to write

the random coefficients representation of the QR model as in (3).

Consider now the sample counterpart of the random variables (y, d,X, Z) of model (1)

given by a sample of size n, {yi, di, Xi, Zi}ni=1. Given the intuition above, CH proposed the

Tamer (2003), Chen, Linton, and van Keilegom (2003), and Honoré and Hu (2004). Second a “fitted value”
approach builds on the papers by Amemiya (1982) and Powell (1983), in which a first step fits the endogeneous
variable(s) as a function of exogeneous covariates and IV, and this is then plugged in a second-stage. Third,
Lee (2007) adopts a two-step CF approach where in first step consists of estimation of the residuals of the
reduced-form equation for the endogenous explanatory variable. Abadie, Angrist, and Imbens (2002) and
Chernozhukov and Hansen (2005) develop IV estimators of quantile treatment effects estimators.
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following estimator based on the exclusion restriction given by Z,

α̂CH(τ) = arg min
α
‖γ̂(α, τ)‖A(τ), (4)

(β̂(α, τ), γ̂(α, τ)) = arg min
(β,γ)

1

n

n∑
i=1

ρτ (yi − diα−Xiβ(τ)− Ziγ(τ)), (5)

where ‖x‖A =
√
x′Ax, A(τ) is any uniformly positive definite matrix, and ρτ (u) = u(τ−1[u <

0]) the usual QR check function. The final inverse or exclusion restriction estimator is thus

(α̂CH(τ), β̂CH(α̂CH(τ), τ)). The intuition behind this estimator is that Z does not belong

to the structural (outcome equation) model. However, by including Z, this plays a crucial

role in the conditioning set used to estimate the structural parameter α(τ). Note that an

attractive feature of this model, which shares with the some semiparametric IV estimators, is

that it does not need to specify a ‘first-stage’. The estimator is implemented in the following

way: (i) Consider a grid A for possible values of α. (ii) for each value α ∈ A model (5) is

estimated. (iii) Then α̂CH is selected by finding the minimum of (4) over the pre-specified

grid.

The analogue estimator for the conditional mean model (1) is then defined as

α̂CHLS = arg min
α
γ̂(α)′Ωγ̂(α), (6)

(β̂(α), γ̂(α)) = arg min
(β,γ)

1

n

n∑
i=1

(yi − diα−Xiβ − Ziγ)2, (7)

where Ω is a positive definite matrix (also quadratic and with the corresponding dimensions

of γ). We show that the estimator defined in (6)-(7), which we define as CHLS, is equivalent

to the 2SLS estimator when valid instruments are available and when the optimal Ω is used.

3 Two-stage least squares equivalence

In the 2SLS procedure, the mean regresion parameters of the endogeneous variables are

estimated by imposing a linear ‘first-stage’, where the conditional expectation of d on (X,Z)

is,

E[d|X,Z] = XδX + ZδZ .

Consider now matrix (y,d,X,Z) of dimension n× (1, 1, kX , kZ). Let d̂ ≡ X δ̂X + Z δ̂Z ,

where δ̂X = (X ′MZX)−1X ′MZd and δ̂Z = (Z ′MXZ)−1Z ′MXd, with M· = I − ·(·′·)−1·′
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the standard residual projection (square and idempotent) matrix on the space spanned by

the variables ·. Then, the 2SLS IV estimator is obtained from the ‘second-stage’ regression

model

y = d̂α̂2SLS + Xβ̂2SLS + r2SLS,

where r2SLS means simply the difference between the regressand and the rest of the right

side of the regression.

The CF approach applied to the linear two-stage model (1) uses the same ‘first-stage’

but a different ‘second-stage’. Define v̂ ≡ d− d̂ as the ‘first-stage’ residual. Then in the CF

‘second-stage’, this residual is included as an additional regressor, together with d and X.

That is,

y = d̂α̂CF + Xβ̂CF + v̂η̂CF + rCF ,

where rCF is the resulting regression residual.

A well known result is that α̂CF = α̂2SLS and β̂CF = β̂2SLS. The simple proof follows

from the Frisch-Waugh-Lovell theorem in which if we run a regression of (d,X) on v̂ we

obtain (X, d̂). See the illustrative notes by Imbens and Wooldridge (2007).

The main result of this note is that α̂CF = α̂2SLS = α̂CHLS thus completing the equiva-

lence between the CHLS and 2SLS IV and CF estimators for linear models with endogeneity.

The following proposition formalizes the result.

Proposition 1 Under model in equation (1), let Z be a set of valid instruments for d, i.e.

d′MXZ(Z′MXZ)−1Z′MXd and Z′MXZ are invertible. If Ω = Z ′MXZ,

(i) the 2SLS IV and CHLS estimators for α are equivalent, and

(ii) the estimators for β are not equal unless the model is exactly identified, i.e. kZ = 1 in

which case γ̂(α̂CHLS) = 0.

Proof. Note that from the 2SLS IV model we have

α̂2SLS = (d̂′MX d̂)−1d̂′MXy

=
(
(Z(Z′MXZ)−1Z′MXd)′MX(Z(Z′MXZ)−1Z′MXd)

)−1
(Z(Z′MXZ)−1Z′MXd)′MXy

=
(
d′MXZ(Z′MXZ)−1Z′MXd

)−1 (
d′MXZ(Z′MXZ)−1Z′MXy

)
,

where we are using the fact that MXX = 0. Moreover,

β̂2SLS = (X′Md̂X)−1X′Md̂y = (X′X)−1X ′(y − dα̂2SLS).
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The second equality determines that β̂2SLS can be obtained as an OLS estimator of a regression of
(y − dα̂2SLS) on X.

The CHLS estimator in (6)-(7) is implemented, for a given α, by considering the auxiliary
regression

y − dα = Xβ̂(α) + Zγ̂(α) + r(α),

where (β̂(α), γ̂(α)) is the OLS estimator of running a regression of y−dα on (X,Z) and r(α) the
resulting regression residual. Then, notice that

γ̂(α) =
(
Z′MXZ

)−1 (
Z′MX(y − dα)

)
,

β̂(α) =
(
X′MZX

)−1 (
X′MZ(y − dα)

)
.

The CHLS estimator is then given by

α̂CHLS = arg min
α

[(
Z′MXZ

)−1 (
Z′MX(y − dα)

)]′
Ω
[(
Z′MXZ

)−1 (
Z′MX(y − dα)

)]
= arg min

α

{
(y′MXZ)

(
Z′MXZ

)−1
Ω
(
Z′MXZ

)−1
(Z′MXy)

+(α′d′MXZ)
(
Z′MXZ

)−1
Ω
(
Z′MXZ

)−1
(Z′MXdα)

−2(y′MXZ)
(
Z′MXZ

)−1
Ω
(
Z′MXZ

)−1
(Z′MXdα)

}
.

Solving the minimization with respect to α, we obtain from the first order condition

α̂CHLS =
[
(d′MXZ)

(
Z′MXZ

)−1
Ω
(
Z′MXZ

)−1
(Z′MXd)

]−1
(d′MXZ)

(
Z′MXZ

)−1
Ω
(
Z′MXZ

)−1
(Z′MXy).

Now note that if Ω = Z′MXZ we obtain that α̂CHLS = α̂2SLS , as stated in (i).

Regarding (ii), by substituting the above equation into β̂(α) we obtain

β̂CHLS =
(
X′MZX

)−1
X′MZ(y − dα̂CHLS)

=
(
X′MZX

)−1
X′MZ(y − dα̂2SLS),

which is not necessarily equal to (X′X)−1X′(y − dα̂2SLS) = β̂2SLS .

Finally, note that when the model is exactly identified (same number of instruments as endoge-
nous variables) then

γ̂(α̂CHLS) =
(
X′MZX

)−1 (
X′MZ(y − dα̂CHLS)

)
=

(
X′MZX

)−1{
X′MZ

(
y − d

[
(d′MXZ)

(
Z′MXZ

)−1
(Z′MXd)

]−1
(d′MXZ)

(
Z′MXZ

)−1
(Z′MXy)

)}
=

(
X′MZX

)−1 {
X′MZ

(
y − d(d′MXZ)−1

(
Z′MXZ

)
(Z′MXd)−1(d′MXZ)

(
Z′MXZ

)−1
(Z′MXy)

)}
=

(
X′MZX

)−1 {
X′MZ

(
y − d(d′MXZ)−1(Z′MXy)

)}
= 0.
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Then β̂CHLS can be obtained from the regression

y − dα̂2SLS = Xβ̂CHLS + Zγ̂CHLS + r(α̂CHLS)

= Xβ̂CHLS + Z0 + r(α̂CHLS) = Xβ̂2SLS + r2SLS.

This concludes statement (ii) β̂CHLS = β̂2SLS for kZ = 1.

As a final important remark note that Ω weights the coefficient of each instrument in

the quadratic form γ̂(α)′Ωγ̂(α) of equation (6). Given that 2SLS is efficient the optimal

weighting scheme for CHLS thus requires Ω to be given by the variance of Z net of X.

When the model is exactly identified, i.e. kZ = 1, the result holds with the 2SLS being the

simple IV estimator. This follows immediately from Proposition 1. Note that if the number

of columns in d is the same as in Z, then d′MXZ(Z′MXZ)−1Z′MXd = d′(Z′MXZ)−1d

and d′MXZ(Z′MXZ)−1Z′MXy = d′(Z′MXZ)−1y, and we can simplify the 2SLS esti-

mator to α̂2SLS = (Z′MXd)−1Z′MXy.
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