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Abstract

This thesis addresses the representation of and reasoning on musical

knowledge in the Semantic Web. The Semantic Web is an evolving

extension of the World Wide Web that aims at describing information

that is distributed on the web in a machine-processable form. Exist-

ing approaches to modelling musical knowledge in the context of the

Semantic Web have focused on metadata. The description of musical

content and reasoning as well as integration of content descriptions and

metadata are yet open challenges. This thesis discusses the possibili-

ties of representing musical knowledge in the Web Ontology Language

(OWL) focusing on chord sequence representation and presents and

evaluates a newly developed solution.

The solution consists of two main components. Ontological mod-

elling patterns for musical entities such as notes and chords are in-

troduced in the (MEO) ontology. A sequence pattern language and

ontology (SEQ) has been developed that can express patterns in a

form resembling regular expressions. AsMEO and SEQ patterns both

rewrite to OWL they can be combined freely. Reasoning tasks such

as instance classification, retrieval and pattern subsumption are then

executable by standard Semantic Web reasoners. The expressiveness

of SEQ has been studied, in particular in relation to grammars.

The complexity of reasoning on SEQ patterns has been studied the-

oretically and empirically, and optimisation methods have been devel-

oped. There is still great potential for improvement if specific reasoning

algorithms were developed to exploit the sequential structure, but the

development of such algorithms is outside the scope of this thesis.

MEO and SEQ have also been evaluated in several musicological

scenarios. It is shown how patterns that are characteristic of musi-

cal styles can be expressed and chord sequence data can be classified,

demonstrating the use of the language in web retrieval and as inte-

gration layer for different chord patterns and corpora. Furthermore,

possibilities of using SEQ patterns for harmonic analysis are explored

using grammars for harmony; both a hybrid system and a transla-

tion of limited context-free grammars into SEQ patterns have been

developed. Finally, a distributed scenario is evaluated where SEQ and

MEO are used in connection with DBpedia, following the Linked Data

approach. The results show that applications are already possible and

will benefit in the future from improved quality and compatibility of

data sources as the Semantic Web evolves.
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1 Introduction

1.1 Motivation

This thesis addresses the representation of and reasoning on musical

knowledge in the Semantic Web. The Semantic Web is an evolving

extension of the World Wide Web (the Web) that aims at describ-

ing information on the web in machine-processable form (Berners-Lee

et al., 2001). Formal ontologies play a key role in this effort. They

are used to describe concepts of a domain and their relationships and

allow inferences on them. In the multimedia domain, ontology-based

semantic annotations enable many new applications such as content-

based querying and automatic media management (Stamou and Kol-

lias, 2005). However, the application of semantic technologies to the

musical domain is still in its beginnings and there are many non-trivial

challenges (Celma et al., 2006). Computational music representations

can roughly be categorised into audio representations (e.g. waveforms,

MP3), symbolic abstractions (e.g. score models, MIDI) and metadata

(e.g. editorial information). Several efforts have addressed the repre-

sentation of audio descriptors (Hunter, 2001; Tummarello et al., 2004)

and of musical metadata (Raimond et al., 2007; Raimond, 2009). How-

ever, the work on symbolic music representation and musical structures

is still in its early stages (Ibbotson, 2009).

This thesis explores an approach to representation of and reason-

ing on musical structure based on the Web Ontology Language OWL

using Description Logic. An ontology for musical entities, MEO, and

an ontology for sequential structures, SEQ, have been developed for

representing chord sequence patterns. In this way, chord sequence data

can be published on the Semantic Web. Further, Description Logic rea-

soners can use the logical relationships between musical entities that

are encoded in the ontologies to infer additional knowledge of musico-

logical interest such as harmonic information about chords sequences.

This representation enables many interesting applications using

standard Semantic Web technologies with some extensions and specific

tools. For example, chord sequence patterns that can be learnt from

corpora using machine learning techniques (cf. Conklin, 2010), can

be modelled and used in Web retrieval, e.g. for style-based queries.

Grammars for harmony can be modelled, within limits, (cf. Weyde,

1994; Weyde and Wissmann, 2007) for powerful queries and even to

perform automatic harmonic analysis. The more recent development

of Linked Data (cf. Bizer et al., 2009) can also be applied to music,
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which has been explored by linking corpora to data from the Web.

Musicologists are often interested in questions such as ”In which

pieces does this progression occur?”, ”Does this pattern occur in pieces

of a specific style?”, ”Which progressions have the Beatles used in dif-

ferent creative periods?”, ”Is this pattern a subtype a more general

pattern?”, ”Which chord variants does Charlie Parker use in his II V I

progressions?”. Answering these questions requires a language to ex-

press patterns, means for pattern-based analysis and retrieval from a

corpus or corpora, means to relate pattern and metadata as well as

means to compare patterns. The techniques developed in this work

provide these means for the case of chord sequences. The Semantic

Web approach offers further possibilities. Musicologists are often faced

with the laborious task to collect and prepare the data necessary for

their experiments. Using the Semantic Web platform potentially eases

this burden as researcher can access and contribute to a shared pool of

chord sequences, patterns and metadata. The growth of music data in

the web of linked data makes this scenario not unlikely. MEO/SEQ
can act as a shared ontology that can be combined together with al-

ready available music metadata ontologies in this scenario.

Additionally, the techniques for expressing and evaluating sequential

patterns can be of use for knowledge engineers in other domains such

as Bioinformatics.

1.2 Research Questions and Objectives

The Semantic Web comprises a set of currently quickly evolving stan-

dards and practices, among which the Description Logic based OWL

is the main standard for knowledge representation and reasoning. Yet

there is little work on whether and how this technology can be used

to represent musical knowledge and to solve musical queries using De-

scription Logic inferences. The research question underlying this thesis

is:

How can musical knowledge be represented in the Web Ontology Lan-

guage and how can queries and reasoning be applied to musical and

musicological tasks?

Answering this question requires a careful analysis of what musical

knowledge is and what the requirements for a music information system

are. We focus here on chord sequences as a starting point, as these

are a common abstraction of musical structure. As OWL does not

provide native constructs for representing temporal or sequential order,

a necessary sub-goal is the representation of order of musical elements.

Further, the representation should allow expressing different levels of

musical abstractions such as harmony and notes.

The representation needs to support relevant reasoning tasks, such

as classification and subsumption. In this context the possibilities and

limits of expressing complex patterns are of importance, for example

in comparison to grammars, which have been used often for harmony.

From the perspective of distributed music information systems it is

also interesting to interlink structural information with metadata (e.g.
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“Chord pattern C in piece P1 was originally conceived by artist A in

piece P2.”), and the system should run efficiently to support reasonable

sizes of datasets and patterns.

Based on these considerations the following objectives will be inves-

tigated in this thesis:

1. To provide an overview of the state of the art in music representation

on the Semantic Web.

2. To develop ontologies that allow expressing chord sequence pat-

terns and that support musicological queries and inferences on the

Semantic Web.

(a) To define constructs for musical entities that allow defining chords

and capturing their subsumption relationships.

(b) To define constructs for sequential relationships that can capture

the subsumption relationships.

(c) To define constructs to express harmonic grammatical structures

and techniques to enable automatic harmonic analysis

(d) To develop techniques for linking structural and metadata de-

scriptions.

(e) To develop an API to support software development based on

results 2a–2d.

3. To demonstrate how the developed ontologies allow integration of

different conceptualizations of corpora and description.

4. To demonstrate how harmonic analysis can be conducted automat-

ically with Semantic Web technology.

5. To demonstrate how the developed ontologies in combination with

Semantic Web techniques enable new query possibilities for musi-

cologists, especially with respect to federated queries over multiple

data sources and different kinds of musical information.

1.3 Method

The main approach employed in this thesis is the logical modelling of

musical structures, especially chord sequence patterns, in OWL-DL.

The developed model is applied to a set of modelling and reasoning

applications to provide a proof of concept and empirical results on

their feasibility.

First, the sequential pattern language SEQ is developed using a

formal modelling approach. The modelling is based on the Descrip-

tion Logic in OWL DL and follows the model of regular expressions.

This is motivated by the finding that regular expressions are a popular

means of computational music analysis, e.g. in the Humdrum toolkit

(Huron, 1995). New modelling constructs are introduced one by one,

analogous to those found in regular expressions. By staying within the

means of OWL DL decidability of satisfiability checking is guaranteed.
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It follows that reasoning support for the formalism is available. This in-

cludes for example instance classification that is useful for retrieval and

subsumption checking which is useful for analytical purposes. Parts of

the results have been published in Wissmann et al. (2010). A music

object language (MEO) is also provided.

Second, musical domain knowledge is modelled focusing on chords

and chord sequences. By establishing translations from other represen-

tations it is established that SEQ can express characteristic musical

patterns with the added benefit of reusing the patterns in Semantic

Web queries. One task has been the translation of viewpoint repre-

sentation for distinctive chord patterns (Conklin, 2010) and for Chord

Ontology patterns (Mauch et al., 2007; Anglade and Dixon, 2008). As

the translations lead to different conceptualisations of the respective

approaches in SEQ ontologies, the question arises of whether these con-

ceptualisations can be combined to become inter-operable. An initial

binding ontology has been discussed that describes mappings between

central concepts in the ontologies. It has been shown that certain

mappings cannot be directly expressed in OWL.

Third, an investigation into using grammars with SEQ/MEO has

been conducted. Grammars are a powerful formalism that has fre-

quently been used to model musical chord progressions. However, the

limited expressiveness of OWL-DL does not allow a full modelling of

context-free grammars. The limits of modelling grammars in SEQ have

been investigated and a translation of a grammar into a SEQ pattern

within these limits has been developed and tested on a grammar for

Jazz chord progressions (Weyde, 1994). The alternative approaches of

a hybrid system for using grammars has also been explored (Weyde

and Wissmann, 2007).

Fourth, APIs and tools for working with SEQ/MEO knowledge

bases, queries and grammars have been implemented in Java. These

tools and the ontologies have been used in several application scenarios.

1.4 Scope

Musically, the focus of the presented work is on representing chords

and their sequential progression. The discussed sequential patterns

can capture harmonic structures. Rhythm and melody are mostly

omitted. It is shown how automatic classification of patterns that

are characteristic for musical genres is possible with Semantic Web

reasoning techniques and how these can be used in query scenarios.

Ontologically, the patterns are expressed using the Web Ontology

Language OWL-DL, a decidable fragment of first order logic. It is not

intended to move beyond the scope of this representation language in

this work, i.e. by devising extensions of the underlying Description

Logic.

Technically, this work builds upon the OWL API Java framework

for processing of OWL.
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1.5 Outline

In Part I the foundations of knowledge representation with Semantic

Web technologies and Description Logics are introduced and topics in

music representation are reviewed.

Part II of this thesis describes the main modelling work. First, in

chapter 7, modelling constructs for musical entities such as notes and

chords are described. As musical patterns have a sequential character,

in chapter 8 representational means for sequential patterns in OWL

are provided. Here the focus is on developing a formalism that resem-

bles regular expressions in expressivity and syntax. Special attention

is given to issues of pattern subsumption (section 8.10) and concate-

nation (section 8.11). Grammar formalisms are a well-known means

of modelling harmonic structure. In chapter 10 we describe a trans-

formation procedure from grammars into SEQ patterns. Expressivity

and limitations of the translation are discussed. Part II is concluded

by chapter 11, which introduces an API for MEO/SEQ.

In Part III the complexity of reasoning on SEQ is addressed the-

oretically and empirically with current OWL reasoners. The use of

MEO/SEQ is evaluated for representing patterns learnt from data

and studying their subsumption relations. Another application is the

use of grammars, where a hybrid and a pure Semantic Web approach

are tested. Also, a Linked Data scenario has been realised linking the

Beatles chord data to metadata from DBpedia.

Finally, Part IV discusses the overall results, directions for future

work and reflections of the author.

Note. The author is referred to as ’we’ in the thesis, but this does

not imply collaborations. All work presented in this thesis has been

done by myself, except where stated otherwise.
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Part I

Foundations and

Literature Review
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In this part necessary technical foundations and relevant literature

in the areas of Semantic Web and music knowledge representation are

presented.

At the beginning, the Semantic Web approach to knowledge repre-

sentation is introduced (cf. chapter 2) focusing on the representation

of knowledge graphs in RDF and their application in creating linked

data on the world wide web. Ontologies are seen as a key ingredi-

ent in this approach that allows logical description of knowledge and

enables reasoning services. The foundations of ontological modelling

in Description Logics (DLs) are given in the following (cf. chapter 3)

and the web ontology language OWL that is based on DLs is presented

(cf. chapter 4). These means of modelling and reasoning will be applied

in the design of ontologies for musical structures in Part II.

As the Semantic Web approach is geared towards the description

of static knowledge it does not directly provide means to represent

temporal or sequential structures that naturally arise in music repre-

sentation. In chapter 5 several existing approaches are surveyed and

discussed. Notably, OWLList is presented in detail as it motivates the

SEQ approach in chapter 8.

Finally, chapter 6 presents the musicological perspective. A brief

general overview on types of musical knowledge is given. Afterwards,

the state of the art of music information with Semantic Web methods

is surveyed. The existing ontologies are mostly orthogonal to the work

in this thesis as they either focus on non-structural aspects of music

such as editorial metadata or do not focus on support for musicolog-

ical reasoning tasks. Yet, the common expression of these ontologies

and the later developed MEO and SEQ ontologies as RDF allows in-

teroperability via schema integration as well as federated queries over

different kinds of musical knowledge (cf. Part III). Additionally, ap-

proaches to automatic musical analysis tasks are discussed such as

harmonic analysis using grammars. These serve as a yardstick for pro-

viding similar expressive means and reasoning capabilities in MEO
and SEQ (cf. chapter 10 and chapter 15).
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2 Knowledge Representation in the Semantic Web

The work presented in this thesis relates to a number of subject areas,

which will be reviewed in this chapter. First an overview of knowl-

edge representation techniques in the Semantic Web is given. Then

approaches to representing temporal and sequential knowledge with

these techniques are discussed, and existing approaches to music rep-

resentation are described.

2.1 Knowledge Representation and Reasoning

Knowledge representation (KR) and reasoning is an area of artificial

intelligence that has the fundamental goal of representing knowledge

in a manner that facilitates automatic inferencing.

2.1.1 Scope of Knowledge Representation

Davis et al. (1993) outlines that computational knowledge representa-

tion can be best understood in terms of five important and distinctive

roles that a representation plays, each of which places different and, at

times, conflicting demands on the properties a representation should

have.

Surrogate A knowledge representation acts a surrogate, i.e. a substi-

tute for the thing itself that is to be represented, used to enable an

entity to determine consequences by thinking rather than acting,

i.e. by reasoning about the world rather than taking action in it.

Ontological Commitment Second, KR is a set of ontological commit-

ments, i.e., an answer to the question: In what terms should I think

about the world?

Theory of Intelligent Reasoning Third, KRs can be seen as (fragmen-

tary) theories of intelligent reasoning, expressed in terms of three

components: the representation’s fundamental conception of intel-

ligent reasoning, the set of inferences the representation sanctions,

and the set of inferences it recommends.

Medium of Efficient Computation Fourth, KR is a medium for prag-

matically efficient computation, i.e., the computational environment

in which thinking is accomplished. One contribution to this prag-

matic efficiency is supplied by the guidance a representation pro-

vides for organising information so as to facilitate making the rec-

ommended inferences.
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Medium of Human Expression Fifth, KR is a medium of human ex-

pression, i.e., a language in which we say things about the world.

The requirements of these applications can diverge. Therefore, to-

day there is no single unified knowledge representation language or

mechanism but many languages with individual trade-offs. This is also

the case in music knowledge representation. For example, Mathemati-

cal Music Theory (e.g. Mazzola, 2003) focuses on ontological commit-

ment and partially aims at providing a medium for human expression.

Cognitive models such as the cognitive model for rhythm and melody

segmentation by Weyde (2005) act as surrogates that are used to for-

mulate and test hypotheses about the real world phenomena, in this

case music perception.

2.1.2 Ontologies

The word ontology1 originally refers to a subfield of philosophy or 1 from Greek: Oντoλoγια “study of

being”metaphysics that studies the nature of being. More concretely, this

often involves the question of what entities can be said to exist, and

how such entities can be grouped, related within a hierarchy, and sub-

divided according to similarities and differences. The outcome of such

ontological research, i.e. a description of the world is also called an

ontology.

In Computer Science and Information Science, representations of

the world are needed in many applications, e.g. for description of the

knowledge of an artificial agent. Here, the concept of an ontology has

been adapted in a more pragmatic sense, defining ontologies as formal

descriptions of some entities of a domain of interest that are useful

for reasoning tasks such as inference of new knowledge or checking the

concepts for consistency.

The modern usage was coined by ? who defined the notion of an

ontology as an “explicit specification of a conceptualisation”. Borst

(1997) gives an extended definition of an ontology as a “formal specifi-

cation of a shared conceptualisation”. This definition additionally re-

quired that the conceptualisation should express a shared view. Also,

such conceptualisation should be expressed in a formal (i.e. machine

readable) format. Studer et al. (1998) merged these two definitions

stating that “an ontology is a formal, explicit specification of a shared

conceptualisation”.

2.2 Building blocks of the Semantic Web

The Semantic Web is an ongoing activity to provide a common frame-

work to describe share and reuse data on the World Wide Web. It

comprises a set of design principles, collaborative working groups, and

a variety of enabling technologies. The development is coordinated by

the World Wide Web consortium (W3C).2 The W3C has recommended 2 http://www.w3.org/2001/sw/

several standards that serve as building blocks for the Semantic Web.

They are often depicted as a stack of technologies (see Figure 2.1) that

now is habitually referred to as “the layer cake”.

http://www.w3.org/2001/sw/
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Figure 2.1: The latest “layercake” di-
agram of Semantic Web standards,

retrieved from http://www.w3.org/

2001/sw/ 30.09.2008

The bottom layers can be seen as syntactical layers that standardise

data structures and referencing using Universal Resource Identifiers

(URIs) and the data interchange format XML (eXtensible Markup

Language).

The next layer adds a way of making statements about resources

(RDF) in a graph-like format. Such knowledge graphs can be given

a formal semantics using the RDF-Schema language (RDFS) or the

more expressive Web Ontology Language (OWL) allowing for more

intelligent machine-processing.

Further layers that are still in the process of development add rule

reasoning (SWRL, RIF). The work on Logic and Proof layers is still

heavily under investigation. This is also the case for the Trust layer,

which is supposed to involve human judgement to estimate the quality

of knowledge distributed on the Semantic Web.

In the following, we will focus on an introduction to the standards

RDF (cf. Section 2.3) and OWL (cf. Section 4). XML and XML-

Schema play a minor role for the task of semantic interpretation that is

discussed in this work. It will, however, be relevant at some occasions,

as currently most of the relevant multimedia representation standards

(e.g. MPEG-7 or MPEG-SMR) are described as structured documents

using XML-Schema rather than described with semantic descriptions.

A basic knowledge of XML and XML-Schema will be assumed. For

further reference see the XML specifications3 or one of the many good 3 http://www.w3.org/XML/

introductions available on the web.4 4 e.g. http://www.w3schools.com/

xml/

2.3 Resource Description Framework RDF

The Resource Description Framework RDF is the foundation for knowl-

edge representation within the Semantic Web.5 Following the tradition 5 RDF is specified in a series of
documents accessible via http:

//www.w3.org/RDF/.
of Semantic Networks, RDF describes knowledge as graph structures.

http://www.w3.org/2001/sw/
http://www.w3.org/2001/sw/
http://www.w3.org/XML/
http://www.w3schools.com/xml/
http://www.w3schools.com/xml/
http://www.w3.org/RDF/
http://www.w3.org/RDF/


14

Language-Layer

Ontology-Layer

Instance-Layer

(Literals)

ex:JSBach ex:PreludeNo1
mo:composer

"Bach"^^xs:string

foaf:surname

http://www.example.com/prelude1.mp3

mo:download

mo:Composer

mo:composer

mo:Composition

rdfs:rangerdfs:domain

rdf:type rdf:type

rdfs:Classrdf:type rdf:Property

rdfs:subClassO f rdfs:subClassO f

Figure 2.2: An example of an RDF

graph

Definition 1 (RDF Abstract Syntax). Knowledge is repre-

sented using RDF Graphs, sets of statements in the form of triples

of information resources. An RDF triple is a tuple

(s, p, o) ∈ (U∪B) × U × (U∪B∪L)

where U is a set of explicit identifiers denoted using URIs (cf. Net-

work Working Group, 2005), B is a set of anonymous identifiers

called blank nodes, and L a set of literals. The components s, p,

and o of an RDF triple are conventionally referred to as subject,

predicate and object.

An RDF-graph G is a set of triples

G = {t1, . . . , tn ∣ ti ∈ T }

where T is the set of all possible triples.

Figure 2.2 shows an example of an RDF graph.

2.3.1 Serialisation

RDF can be serialised in different formats. Common formats are:

RDF/XML For web delivery an XML serialisation (RDF/XML) is

commonly used, as this format also can be embedded in other XML

based documents such as web pages (XHTML). A popular example

is the description of newsfeeds using RSS, that combine XHTML-

styled text with RDF metadata such as publication date or author-

ship.

Turtle For documentation purposes, a more easily readable plain text

serialisation called Turtle is widely used.

Some technical concepts that appear in most syntaxes are

URI. Identifiers are expressed as URIs. Full URIs are often enclosed

in angle brackets, i.e. ⟨http://...⟩.

http://www.example.com/prelude1.mp3
http://...
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QNames. URIs are where the namespace-prefix ns is defined in an

@prefix annotation.

either given full within brackets (http://...) or as qname of the

form ns:name,

Blank node identifiers use an underscore as prefix ( :id ).

Literals are given in quotes. There exist a number of syntactic short-

cuts, for example “;” to introduce another predicate and object for

the same subject. URIs are normally understood as being composed

of a namespace and name (QNAME), written ns:name.

Example 2.1 (Metadata in RDF Turtle) The following RDF

turtle fragment describes meta data on Bach’s Kunst der Fuge and a

performance of it:

@prefix dc: <http://purl.org/dc/elements/1.1/>.

@prefix mo: <http://purl.org/ontology/mo/>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix inst: <http://instrument.org/>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

ex:kunstderfuge

a mo:Score;

dc:title "Die Kunst der Fuge, composer’s score";

mo:published_as ex:publication1.

ex:publication1 dc:date "1751"^^xsd:year.

ex:emersonperf a mo:Performance;

mo:performer ex:emersonquartet;

mo:instrument [ inst:violin, inst:violin,

inst:viola, inst:cello ];

mo:performance_of bach:kunstderfuge.

(modified example from http: // www. musicontology. com/ )

2.3.2 RDF Semantics

RDF Schema (RDFS)6 provides vocabulary to specify RDF vocabu- 6 W3C Recommendation: http:

//www.w3.org/TR/rdf-schema/laries. This can be used for example to specify domain and range of

relationships, or to specify subsumption relationships (see language-

layer in Figure 2.2). The semantics of RDFS is defined through a set

of axiomatic triples and entailment rules (Hayes, 2004). They deter-

mine the full set of valid inferences from an RDF graph. Even though

the concrete logical apparatus is not trivial, the entailment rules can

be intuitively explained as follows. Each rule has a set of premises that

conjunctively define its body. The premises represent “extended” RDF

statements, where variables can occupy any of the three possible posi-

tions in the triple (that of a subject, of a predicate, or of an object).

http://...
http://www.musicontology.com/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
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The head of the rule comprises of one or more consequences, each of

which represents in its turn an RDF statement. The consequences may

not contain free variables, i.e. such that are not used within the body

of the rule. The consequences may contain blank nodes.

Example 2.2 (Axiomatisation of subclass in RDFS) In the

RDFS semantics the following rule (“rdfs9”) propagates superclass

membership to a resource:

u rdfs:subClassOf x

v rdf:type u => v rdf:type x

RDFS entailment is the only reasoning task supported by the RDFS

semantics. It is the process of entailment of one (target) RDF graph

from another (source) RDF graph by means of the set of rules that

define the semantics of RDFS. In other words, it is the process of

applying the entailment rules to RDF graphs in order to infer new

triples, which can be regarded as a logical consequence of the initial

(source) graph. The newly inferred triples can be denoted as inferred

closure of the source graph. Determining whether a specific statement

can be inferred from an RDF graph, therefore means to check if it is a

member of its inferred closure.

2.4 Linked data

In recent years the amount of data available on the web in RDF format

has been continuously increasing. For example, as for November 2008

the Semantic search engine Sindice7 indexes over 10 billion triples. 7 see http://sindice.com/

Though the quantity does not necessarily say something about the

quality of the information, it is interesting as research is challenged to

deal with such amounts of data8, for example in the design of reasoning 8 see http://challenge.

semanticweb.org/methods.

The Linking Open Data project (Bizer et al., 2009) hosted by the

W3C Semantic Web Education and Outreach group aims at publish-

ing a wide range of datasets on the Semantic Web, and creating links

between them. Figure 2.3 depicts the currently available datasets. No-

tably, there is a large set of music related metadata (encircled area).

An advantage of the Semantic Web linking approach is the possibility

of expressing queries over data sets from different domains, such as

song and artist information together with Wikipedia knowledge (DB-

pedia) or geographical information (GeoNames). We will later in Sec-

tion 6.1 discuss the the OMRAS2 music ontology (Raimond et al.,

2007) that plays a key role in this effort.

http://sindice.com/
http://challenge.semanticweb.org/
http://challenge.semanticweb.org/
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Figure 2.3: Data sets published in

the Linking Open Data community

project (top) and their underlying
ontologies (bottom). Music related

data sets and ontologies are encircled
with a red-dashed line. Retrieved

from http://linkeddata.org/

and http://www.umbel.org/lod_

constellation.html 2008-03-31

http://linkeddata.org/
http://www.umbel.org/lod_constellation.html
http://www.umbel.org/lod_constellation.html
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2.5 Summary

The W3C has developed standards for knowledge representation on

the Semantic Web. The resource description framework (RDF) plays

a central role as it allows expressing knowledge as graphs of relational

data that can be published and interlinked on the web. The web

ontology language OWL provides a way of adding logical descriptions

to RDF data and enables reasoning on the data. The continuously

growing web of linked data (LOD) in RDF already contains a large set

of editorial data about music.

In this thesis additional primitives for musical objects and struc-

tures are developed that can be used to express chord sequences and

chord sequence patterns in OWL, deploy them as RDF and perform

musicological queries on them (cf. chapter 16). Notably, the RDF and

LOD based approach has the benefit of enabling seamless combination

of new and existing information in queries. RDF notation will mainly

be used in the context of web deployment and web queries. OWL no-

tation will be used for knowledge modelling as it more directly reflects

the logical relationships and can be serialized to RDF.

The following chapters will focus on OWL and its theoretical foun-

dations in Description Logics as these form the basis for the formal

description of music knowledge developed in Part II.
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3 Description Logics

Description logics (DLs) are a family of knowledge representation lan-

guages, which can be used to represent the terminological knowledge

of an application domain in a structured and formally well understood

way. DLs have been applied in many domains, such as medical infor-

matics, software engineering, configuration of technical systems, nat-

ural language processing, databases, and web-based information sys-

tems.1 The name Description Logic refers, on the one hand, to concept 1 For details on these and other

applications, see Baader et al. (2003,
Part III).

descriptions used to describe a domain, and on the other hand, to the

logic-based semantics of DLs. They originated from research in se-

mantic networks (Quillian, 1967) and frame systems (Minsky, 1981),

and efforts to give these a formal basis (Woods, 1975; Brachman, 1977;

Hayes, 1977, 1979).

3.1 Description Logic Syntax

Description Logics formalise the vocabulary of a domain in terms of

individuals, concepts, and roles. They provide logical constructs that

can be used to formally describe the relationship between the vocab-

ulary. The “Handbook of Description Logics” (Baader et al., 2003)

discusses several Description Logics that provide different sets of con-

structs. Many DLs such as the Web Ontology language OWL DL

take the basic Attribute Language with Complements (ALC) that was

introduced by Schmidt-Schauß and Smolka (1991) as starting point

and extend it with further constructs. We will now discuss ALC as a

representative.

Concepts in ALC have the following form:

C,D→ A ∣ ⊺ ∣ �
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

atomic
concepts

∣ C⊓D ∣ C⊔D ∣ ¬C
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

boolean
constructs

∣ ∀R.C ∣ ∃R.C
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

role
restrictions

More formally, concepts are recursively defined as follows.

Definition 2 (Syntax of ALC concepts). Let NI, NC and NR be

disjunct sets of individual names, concept names and role names.

Then the set of ALC-concept descriptions is defined inductively as

follows:

1. Each atomic concept name A ∈ NC is an ALC-concept description.

2. The most general concept ⊺ and the unsatisfiable concept � are

ALC-concept descriptions.
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3. If C, D are ALC-concept descriptions, then the concept conjunc-

tion C⊓D, the concept disjunction C⊔D and the concept negation

¬C are also ALC-concept descriptions.

4. If C is an ALC-concept description and R ∈ NR, then the existen-

tial role restriction ∃R.C and universal role restriction ∀R.C are

also ALC-concept descriptions.

Concepts can be used to build definitions or state facts of the form

A ≡ C (concept definition)

C ⊑ D (concept inclusion)

a ∃C (concept assertion)

R(a,b) (role assertion)

In Appendix V a comprehensive list of further constructs that are

available in the more expressive Description Logic OWL is given.

As a simple example, consider the following descriptions:

Musician ≡ ∃performed.Music⊔∃wrote.Music

Composer ≡ ∃wrote.Music

These axioms define a musician as someone who performed or wrote

music, and a composer as someone who wrote music. Boolean con-

structs and property restrictions are used to form expressions. As DLs

have first order logic semantics we can think of these as complement,

intersection and union of sets (of instances). Quantification on roles

allows to define properties of the concept, e.g. that for an instance that

is a Composer there exists a property wrote with the range Music.

OWL Reasoners provide certain standard reasoning services. For

example, by subsumption reasoning a reasoner can infer that all com-

posers are necessarily musicians (Composer ⊑ Musician). In fact all

subsumption problems in DLs are decidable, i.e. we can do this for

any two concept descriptions. So the main challenge is to capture

the interesting aspects of a terminology as DL axioms, whereas the

reasoning is done automatically.

A further reasoner task is classification. Consider the facts

wrote(mozart,magic flute),

wrote(shakespeare,hamlet),

magic flute ∃Music,

shakespeare ∃∀wrote.Literature

Here, for example, Mozart will be classified as composer and musi-

cian. Shakespeare will not be classified as musician as he just wrote

literature.

Knowledge Base. In DL systems information is stored in a knowl-

edge base. It can be seen as a logical theory. The knowledge base is
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usually divided into into a terminological part (TBox) and assertional

part (ABox) (see Figure 3.1). The TBox describes the terminology by

relating concepts and roles. The TBox contains all the concept and

role definitions, and also contains all the axioms of our logical theory

(e.g. “A father is a Man with a Child”). The axioms of a TBox can

be divided into definitions that can be used to state that a concept

C is equivalent to another concept D (C ≡ D), and subsumptions that

can be used to state that a concept C is a subclass of the concept D

(C ⊑ D). The ABox contains all the assertions (also called facts) of the

logic theory. An assertion is used to express a property of an individual

of the domain (for example Composer(Bach)). An assertion can also

assert a role, e.g. hasComposed(Bach,PreludeNo1).

Knowledge Base

TBox

Terminology (Concept Schema)

Guitar ⊑ Instrument
Musician ⊑ ∃plays.Instrument

Guitarist ≡ ∃plays.Guitar

⋮

ABox

Assertions (Instance Data)

John ∃Person

Fender ∃Guitar

plays(John,Fender)
⋮

In
fe

re
n
c
e

S
y
st

e
m

s

In
te

rf
a
c
e

Figure 3.1: Architecture of a simple

DL system

Definition 3 (Semantics of ALC). The semantics of ALC is

given by an interpretations I = ⟨∆I , ⋅I⟩ where ∆I is a non-empty

set, every concept A is mapped by the interpretation function ⋅I to a

set AI ⊆ ∆I and every role name R is mapped to a binary relation

RI ⊆ ∆I ×∆I . This function is extended to arbitrary concepts:

⊺I = ∆I (most general concept)

�I = ∅ (unsatisfiable concept)

(C⊓D)I = CI ∩DI (conjunction)

(C⊔D)I = CI ∪DI (disjunction)

(¬C)I = ∆I ∖CI (negation)

(∃R.C)I = {a ∣ ∃b.(a,b) ∈ RI ∧ b ∈ CI} (existential quantification)

(∀R.C)I = {a ∣ ∀b.(a,b) ∈ RI ⇒ b ∈ CI} (universal quantification)
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The semantics of the interpretation function is extended to axioms

such that

(A ≡ C)I if AI = CI (concept definition)

(C ⊑ D)I if CI ⊆ DI (concept inclusion)

(a ∃C)I if aI ∈ CI (concept assertion)

(R(a,b))I if (aI ,bI) ∈ RI (role assertion)

Let KB = (T ,A) be a knowledge base. I is a model of the knowledge

base iff I is a model of the TBox and I is a model of the ABox, i.e.

I ⊧ K iff I ⊧ T and I ⊧ A

where the interpretation of the TBox is defined as

I ⊧ C ⊑ D iff CI ⊆ DI

I ⊧ T iff I ⊧ α for every axiom α ∈ T

and the interpretation of the ABox is defined as

I ⊧ a ∃C iff aI ∈ CI

I ⊧ (a,b) ∃R iff (aI ,bI) ∈ RI

I ⊧ A iff I ⊧ α for every axiom α ∈ A

DLs such as ALC can be seen as decidable subsets of first-order logic

(FOL). Though FOL could (and is) also be used directly as means of

knowledge representation, not all FOL reasoning task are decidable

which is an obstacle for the implementation of automatic reasoners.

The development of DLs has thus started from using decidable subsets

of FOL and has been driven by the desire to push the expressivity

bounds of these knowledge representation formalisms while still main-

taining decidability and implementability. DLs have been continuously

extended to include more expressive constructs while still guarantee-

ing the decidability of the language. DLs are named according to the

constructs they provide to describe entities (see Table 3.1).

Entailment. Inference with OWL ontologies builds on the notion of

logical consequence, and we write O ⊧ α to mean that an ontology O
logically entails an axiom α, andO ⊧ {α1, . . . , αn} to express entailment

of several axioms.

Signature. The signature of an ontology O, denoted by Σ(O), is the

set of all individual, concept and role names occurring in O, and thus,

its vocabulary.

Deductive Closure. The deductive closure of an ontologyO, denoted ⟨O⟩,
is the set {α ∣ O ⊧ α} of all DL axioms α that are logical consequences

of O.
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DLs
Constructors Axioms [ Ax ]

Con Rol TBox ABox RBox

EL ⊺, A, R A ≡ C, a ∃C,

C1 ⊓C2, C1 ⊑ C2 R(a,b)
∃R.C

ALC -∥-, ¬C -∥- -∥- -∥-

S -∥- -∥- -∥- -∥- tra R

+ I R−

+ H R1 ⊑ R2

+ F fun R

+ N ∃≥nS

+ Q ∃≥nS.C
+ O {i}

+ R ∃R.Self
¬R
U

R ○ S ⊑̇ R

S ○R ⊑̇ R

ref R

irr R

asy R

Disj(R,S)

Table 3.1: Overview of common DLs
and their constructs

(adapted from Horrocks and Sattler

(2005) and extended with constructs
from Horrocks et al. (2006))

3.2 Standard Reasoning Services

A knowledge representation system based on DLs is able to perform

specific kinds of reasoning. The purpose of a knowledge representation

system goes beyond storing concept definitions and assertions. A DL

knowledge base has semantics that makes it equivalent to a set of ax-

ioms in first-order predicate logic. Thus, like any other set of axioms,

it contains implicit knowledge that can be made explicit through infer-

ences. For this purpose, several existing DL reasoners can be used such

as Pellet (Sirin et al., 2007), FaCT++ (Tsarkov and Horrocks, 2006),

and RACER (Haarslev and Möller, 2003). They are typically based on

tableau calculi (Baader et al., 2003, Chapter 2). DL reasoning services

can be distinguished between services for the TBox and services for

the ABox.

For a TBox T standard reasoning services are:

Satisfiability. This task verifies that a concept C is satisfiable with

respect to T, i.e. there exists a model I of T such that CI is nonempty.

In this case we say also that I is a model of C.

Subsumption. This task verfies that a concept C is subsumed by a

concept D with respect to T, i.e. CI ⊆ DI for every model I of T. In

this case we write C ⊑T D or T ⊧ C ⊑ D.

Equivalence. This task verifies that two concepts C and D are equiv-

alent with respect to T, i.e. CI = DI for every model I of T . In this

case we write C ≡T D or T ⊧ C ≡ D.
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Disjointness. This task verifies that two concepts C and D are disjoint

with respect to T, i.e. CI ∩DI = ∅ for every model I of T.

For an ABox A standard reasoning services are:

Consistency. This task verifies that an ABox is consistent with re-

spect to a given TBox.

Instance Checking. This tasks verifies if a given individual x belongs

to a particular concept C, i.e. A ⊧ C(x).

Instance Retrieval. This tasks returns the extension of a given con-

cept C, that is, the set of individuals belonging to C.

3.3 Characteristics of Description Logics

In the design of DLs and OWL choices and trade-offs have been made

that define the scope of the language. In the following we summarise

a few fundamental notions.

Decidability. A logical language is called decidable if there is an effec-

tive procedure that given a theory can check the validity of an arbitrary

formula. Famously, Gödel proved that there is no such procedure for

FOL. FOL reasoners therefore cannot guarantee to find an answer to

a given problem and heavily depend on heuristics. The expressivity of

most Description Logics and especially OWL DL are restricted such

that decidability is guaranteed and reasoning procedure can always

find an answer.

Soundness and Completeness. Consequence is a central concept of

logical languages. It describes that a logical statement follows from

other sentences in the language. Two kinds of consequence relation-

ships are distinguished. Deductive consequence, denoted Γ ⊢ S, indi-

cates that a sentence S can be deduced from a (possibly empty) class

of sentences Γ of the given language. Semantic consequence, denoted

Γ ⊧ S, means that S is true in every model of Γ. Soundness means that

all deducible sentences are also valid with respect to the semantics.

Completeness means that consequences that follow from the semantic

can be deduced.

Γ ⊢ S

soundness ⇑ ⇓ completeness

Γ ⊧ S

Monotonicity. Like FOL, Description Logics are monotonic. Mono-

tonicity means that adding new information to a knowledge base never

falsifies a previous conclusion.
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Open World Assumption. Most Description Logics and in particu-

lar OWL use the open world assumption (OWA), i.e. the assump-

tion that the truth-value of a statement is independent of whether or

not it is known by any observer to be true. It is the opposite of the

closed world assumption (CWA) which holds that any statement that

is not known to be true is false. For example, consider the knowledge

base containing the single statement “Bach is a composer.”. If we ask

whether “Beethoven is a composer”, OWA based reasoning procedures

will answer “unknown” as failure to derive a fact does not imply the

opposite. On the hand CWA based reasoning procedures (as common

in database languages such as SQL) will answer answer “no”. Due

to the non-monotonic nature of the closed-world assumption and the

ambiguities about what closing should actually mean, in Description

Logic inference systems usually there is no support for the closed-world

assumption.

Unique Name Assumption. Standard DLs and OWL do not assume

unique names, i.e. two individual names could signify the same indi-

vidual if not stated otherwise.

Tree Model Property. Like modal logics, most DLs enjoy some form of

tree model property (Grädel, 2001; Vardi, 1997), that is, every satisfi-

able concept or knowledge base has a model whose relational structure

is tree shaped. This is not to say that it does not have other, non-tree

shaped models, yet it tells us that we can concentrate on tree-shaped

ones in algorithms to decide satisfiability. In contrast, function-free

Horn rules are decidable because they lack existential quantification

(and thus full negation) and therefore can be said to have a (very)

small model property: a satisfiable set of such rules has a model whose

elements all occur explicitly (i.e., as individual names) in the rule set.

The relational structure of models, however, cannot be restricted.

Restriction vs. Constraint Semantics. The Description Logics used in

the present research model knowledge in terms of restrictions. Restric-

tions are very similar to constraints as both terms refer to some aspects

of a property, such as the cardinality or the range of the property. How-

ever, their logical behaviour is different. As constraint systems have

found application in music informatics research (see Anders, 2007) it

is useful to discuss the difference of the two methods.

From a logical point of view, a restriction applied to a class definition

can be seen as a first-order formula. Thus, a restriction restricts the

number of models of a logical theory. Restrictions are thus an integral

part of the logical theory. For an ontology O and a restriction r,

let M be the set of models of O and MO∪r be the set of models of

O ∪ r, then MO ⊇ MO∪r. Let ⟨O⟩ be the set of consequences of O
and ⟨O ∪ r⟩ be the set of consequences of O ∪ r, then ⟨O⟩ ⊆ ⟨O ∪ r⟩.
Thus, restrictions allow to infer additional information, because they

increase the number of consequences.

Constraints specify conditions which may not be violated by an in-
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terpretation of the logical theory. Constraints are not part of the logical

theory and thus they do not increase the number of consequences of

the theory. For ontology O and constraint c, if O /⊧ c we say that the

constraint is violated. However, since we don’t see c as part of the the-

ory, it does not affect the set of consequences. In summary, constraints

do not allow to infer additional information, instead, they can be used

to check the knowledge base with respect to certain conditions.

3.4 Tableaux Calculi

One prominent reasoning method to compute concept subsumption

for DLs are semantic tableaux. Tableaux algorithms build models

for concept descriptions. Subsumption can be tested by checking the

(un)satisfiability of the negated concept descriptions. E.g. C ⊑ D is

satisfiable iff C⊓¬D is unsatisfiable. To check this a tableaux algorithm

tries to build a tree-like model for the input concept by applying the

rules given in Table 3.2.

Note that the reasoning approach is based on set-theoretic opera-

tions. Therefore, though we can express and reason about sequential

patterns, it cannot be expected that this order is taken into account

when the tableaux is expanded.

⊓-rule: if 1. C1 ⊓C2 ∈ L(x), x is not blocked, and

2. {C1,C2} /⊆ L(x)
then set L(x) = L(x) ∪ {C1,C2}

⊔-rule: if 1. C1 ⊔C2 ∈ L(x), x is not blocked, and

2. {C1,C2} ∩L(x) = ∅
then set L(x) = L(x) ∪ {C} for some C ∈ {C1,C2}

∃-rule: if 1. ∃R.C ∈ L(x), x is not blocked, and

2. x has no R-successor y with C ∈ L(y),
then create a new node y

with L(⟨x,y⟩) = {R} and L(y) = {C}
∀-rule: if 1. ∀R.C ∈ L(x), x is not blocked, and

2. there is an R-successor y of x with C /∈ L(y),
then set L(y) = L(y) ∪ {C}

⊑-rule: if 1. C1 ⊑ C2 ∈ T , x is not blocked, and

2. C2 ⊔ ¬̇C1 /∈ L(x)
then set L(x) = L(x) ∪ {C2 ⊔ ¬̇C1}

Table 3.2: Tableau expansion rules for

ALC

3.5 Summary

This chapter introduced Description Logics. First, in section 3.1, syn-

tax and modelling means of DLs were described. Afterwards, in sec-

tion 3.2, several inference services such as concept subsumption and

instance classification that can be computed by DL reasoners were pre-

sented. Modelling and reasoning means are used in Part II to design

modelling primitives for musical knowledge and musicological infer-

ences.
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Section 3.3 described characteristics of DLs that determine their

modelling style, computational properties and (limits of) expressivity.

A tableaux algorithm was presented in section 3.4 as the most common

reasoning paradigm for DLs. The characteristics of DLs and DL rea-

soning mechanisms are introduced as reference for the later discussion

and evaluation.

For simplicity this chapter focused on the basic Description Logic

ALC. The next chapter will present OWL (DL), an extension of ALC
that is used in the Semantic Web to express knowledge in the form of

web ontologies.
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4 OWL Web Ontology Language

OWL is the second development of a standard for semantic metadata

by the W3C. RDFS was the first W3C approach for modelling on-

tologies and has been widely adopted in the community of practice.

However, concerns have been raised as to what extent it is a good

basis for more sophisticated reasoning tasks. It has been shown that

reasoning in RDFS is in some cases undecidable (ter Horst, 2005), and

thus modifications, extensions and alternatives have been proposed as

the basis for the further development of automatic reasoning within

the Semantic Web.

Currently, attention has focused on using Description Logics (DLs)

as a basis for ontological modelling. They have been used as formal

basis for the Web Ontology Language (OWL), the currently recom-

mended modelling standard within the Semantic Web.

This has led to very expressive DLs such as SHOIN , the logic

underlying the Web Ontology Language (OWL), SHOIQ, and more

recently SROIQ (Horrocks et al., 2006) which is the basis for the

standardisation of OWL2. On the other hand, more light-weight

DLs for which most common reasoning problems can be implemented

in (sub)polynomial time have also been sought, leading, e.g., to the

tractable DL EL++ (Baader et al., 2005).

4.1 Language Profiles

Often applications vary in their reasoning requirements. For exam-

ple, in a bibliographic search scenarios speed of query answering might

be more important than expressivity while in medical diagnosis one

is often interested in accuracy and thus expressive modelling while

reasoning performance is secondary. The OWL standard therefore dif-

ferentiates between sub-languages called profiles that make different

trade-offs regarding performance, expressivity and decidability.

The current OWL 1.0 language specification purposefully defines

three different OWL sub-languages: OWL-Lite, OWL-DL, and OWL-

Full. Each of the sub-languages has different usage limitations and has

different expressive power.

OWL Lite is based on the model theoretic semantics of the DL SHIF(D)
and a decidable subset of RDFS. It is a decidable and traceable sub-

set of FOL.

OWL DL extends OWL Lite with the expressivity of the DL SHOIN (D),
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thus becoming a larger but still decidable fragment of FOL, trading

more expressivity for less tractability. The provided constructs are:

{A,⊺,R,R+,C⊓ D,C⊔ D,¬C,∃R.C,∀R.C
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S

,R ⊑ S
±
H

,{i1, . . . , in}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

O

, R−1

°
I

,∃≥nR,∃≤nR}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

OWL Full extends full RDFS and includes OWL DL. It is however

not a DL any more but based on the axiomatic semantics of RDFS

leading to an undecidable subset of FOL.

OWL 2 defines three different profiles:

OWL 2 EL enables polynomial time algorithms for all the standard

reasoning tasks; it is particularly suitable for applications where

very large ontologies are needed, and where expressive power can

be traded for performance guarantees.

OWL 2 QL enables conjunctive queries to be answered in LogSpace

(more precisely, AC0) using standard relational database technol-

ogy; it is particularly suitable for applications where relatively

lightweight ontologies are used to organise large numbers of individ-

uals and where it is useful or necessary to access the data directly

via relational queries (e.g., SQL).

OWL 2 RL enables the implementation of polynomial time reasoning

algorithms using rule-extended database technologies operating di-

rectly on RDF triples; it is particularly suitable for applications

where relatively lightweight ontologies are used to organise large

numbers of individuals and where it is useful or necessary to oper-

ate directly on data in the form of RDF triples.

OWL2 DL is based on the logic SROIQ(D+) which is all of OWL DL

plus qualified number restrictions, local reflexivity for simple proper-

ties; reflexive, irreflexive, and anti-symmetric flags for simple prop-

erties; disjointness of simple properties; and regular property inclu-

sion axioms:

R ⊑ S,R ○ S, U,∃R.Self
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

R

,∃≤nR.C,∃≥nR.C
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Q

Also, OWL is integrated with other web standards.

XML Datatypes. OWL allows ontologies to use concrete domains us-

ing simple built-in datatypes from XML Schema. XML Schema has a

rich set of basic data types1 including various numeric types, strings, 1 see http://www.w3.org/TR/

xmlschema-2/#built-in-datatypesand date-time types. It also has several mechanisms for creating new

types out of the base types, e.g. defining an integer interval as a new

data type that extends the built-in integer type.

The Semantics of the DL variants of OWL is defined using interpre-

tation functions in a ALC. Details can be found in Table V where we

give a short summary of standard OWL 2 semantics based on Motik

et al. (2009c).

http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
http://www.w3.org/TR/xmlschema-2/#built-in-datatypes
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4.2 Modelling in the context of open world assumption

In the context of the open world assumption (cf. paragraph 3.3) lack

of knowledge of a fact does not immediately imply knowledge of the

negation of a fact. One common pattern to restrict the possible models

as needed are closure axioms (as e.g. discussed in Rector et al., 2004)

that close off the possibility of further additions for a given property.

In the following we will introduce notation for common patterns to

avoid unnecessary verbose axiomatisation in the later discussion.

Definition 4 (Concept Closure). A concept closure expresses

that a concept C is always one of the concepts Di

C ⊑ ⊔Di

Concept union is based on classical disjunction and therefore not

exclusive. For example, the genre definition Genre ⊑ Pop ⊔ Rock ⊔
Classic would also allow genres that are Pop and Classic at the

same time. One common way to avoid this is the use of disjoint union

in the concept definition to locally forbid concept intersection.

Definition 5 (Disjoint Union). The (pairwise) disjoint union of

a set of concepts C1, . . . ,Cn is the concept expression

3C1, . . . ,Cn ∶= ⊔
1≤i≤n

(Ci ⊓⊓
j≠i
¬Cj)

Using this construct we can redefine Genre concept as Genre ⊑
2Pop,Rock,Classic. This definition disallows any intersection of Pop,

Rock and Classic within the context of Genre. A further possibility

is to disallow such intersections globally by asserting class disjointness

axioms.

Closure axioms can be used to express a finite choice.

Definition 6 (Property Closure).

C ⊑ ∀R.⊔Di

4.3 Extensions to OWL

The challenge in the design of a DL is to offer a combination of con-

structs that is expressive enough to capture interesting aspects of a

given domain while still being decidable. In modelling musical knowl-

edge sometimes the expressiveness of OWL is not enough to capture

some musical notions. Particularly challenging is the limitation of
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most DLs that concepts can only describe tree-shaped models. DLs

and OWL allow only very limited forms of graph relationships as the

addition of constructs to describe graph relationships easily lead to

undecidability. Yet, as musical objects are highly structured we will

often want to express graph relationships. In the following therefore

we will discuss the possibilities of OWL2 and then discuss extensions

of OWL that have been found useful in the context of this work to

provide additional constructs for graph relationships.

4.3.1 Rules

Rule-based formalisms as found in logic programming (e.g. Prolog)

or deductive databases (e.g. Datalog) are popular paradigm of knowl-

edge representation. In our context, rules are interesting because rule

systems have also been used for music analysis and generation (e.g.

Schaffer and McGee, 1998). Like for DLs, there is a large body of

work on expressivity and complexity of rule languages (Dantsin et al.,

2001). Many decidable and tractable formalisms are known.

The integration of DL formalism with rule formalisms is an on-

going project within the Semantic Web. Several proposals have been

made, though not standardized. An idea underlying many of these

approaches is that as OWL has a first-order semantics it is straight-

forward to combine OWL with first-order Horn-logic rules (Horrocks

and Patel-Schneider, 2004).

Figure 4.1: Relationships between
DLs and other KR formalisms

The Semantic Web Rule Language SWRL2 is a proposed rule ex- 2 http://www.w3.org/Submission/SWRL/

tension to OWL that follows the union approach. SWRL rules are

implications of conjunctions with unary predicates, binary predicates

and constants corresponding to OWL concepts, role names and indi-

viduals. SWRL further has a library of built-in predicates and allows

user-defined predicates, e.g. to allow arithmetic tests:

Piece(?p) ∧ composed(?p, ?year) ∧ swrlb:greaterThan(?year, 1600)
∧ swrlb:lesserThan(?year, 1760)
⇒ BaroquePiece(?p)

As the combination is straightforward, many of the current DL rea-

soners also support SWRL. However, reasoning becomes undecidable

for the combination of OWL and SWRL. Therefore more restricted rule
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languages have been investigated. DL-safe rules (Motik et al., 2005)

restrict the applicability of rules to a finite set of named individuals

to retain decidability. Another approach is to identify the Horn-logic

rules directly expressible in OWL. This has first been done by Grosof

et al. (2003) for OWL-DL (i.e. SHOIN ) and this fragment has been

called Description Logic Programs (DLP).

Recently, Krötzsch et al. (2008) and Gasse et al. (2008) characterised

a large decidable fragment of SWRL called DL rules that can indirectly

be expressed in OWL 2 (i.e. SROIQ). The characterisation is based

on the observation that the rules can be expressed in OWL 2 iff they

have tree-like interdependencies of variables can be expressed. For

example the conjunct

worksAt(x, y) ∧University(y) ∧ supervises(x, z) ∧ PhDStudent(z)

that describes all people working at a university and supervising some

PhD student can be expressed as the DL concept

∃worksAt.University ⊓∃supervises.PhDStudent

Here variables form the nodes of a tree with root x, where edges

are given by binary predicates. Intuitively, DL rules are exactly those

SWRL rules, where premises (rule bodies) consist of one or more of

such tree-shaped structures. One could, for example, formulate the

following rule:

∀x∀y∀z worksAt(x, y) ∧ University(y)
∧ supervises(x, z) ∧ PhDStudent(z) → pro f O f (x, z)

For other rules the rewriting to DL axioms is less direct, but gives

rise to interesting modelling patterns.

Example 4.1 The fact that a woman that has a child is the mother

of this child can be expressed by the rule:

∀x, y.Woman(x) ∧ hasChild(x, y) → motherO f (x, y)

In order to express a binary property in the conclusion role inclusion

axioms have to be used. The inclusion axiom hasChild ⊑ motherO f
captures part of the rule but is still too general as it does not only

hold for mothers but all individuals that have a child. OWL 2 does

not provide direct means to restrict domain or range in role inclusion

axioms. Krötzsch et al. (2008) noted that the role chains (R1 ○R2 ⊑ S)

and local reflexivity restrictions (∃R.Self) as expressible in OWL 2

can be used to simulate such restrictions. For example, we can also

produce above conclusion using the rules

∀x.Woman(x) ↔ women(x, x)
∀x, y.woman(x, x) ∧ hasChild(x, y) → motherOf(x, y)
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using an additional reflexive predicate women. Given this form a

direct translation to OWL 2 axioms can be given:

Woman ≡ ∃woman.Self

woman ○ hasChild ⊑ motherOf

Note that restrictions on the range of a property can be expressed

in an analogous manner. Krötzsch et al. (2008) give other useful exam-

ples, but as their main aim is to investigate the expressivity of OWL2

they do turn it into a modelling pattern with additional new syntax.

Role restrictions are also known in other DLs. Baader et al. (2003,

p.105) denote a domain restriction by R∣C with its semantics defined

as

(R∣C)I = {(x,y) ∈ ∆I ×∆I ∣ (x,y) ∈ RI ∧ y ∈ CI}

Range restriction R∣D, and, domain and range restrictions R∣CD are

defined accordingly. The combination of this general form with OWL2

is undecidable. For convenience, we will use this syntax for the

modelling in this thesis and understand it under the semantics defined

by the rewritings of Krötzsch et al. (2008).

Definition 7 (Identity Role). Let C be a concept. The iden-

tity role of C is a role with role name idC interpreted w.r.t. C ≡
∃idC.Self.

Definition 8 (Restricted Role Subsumption). Let C be a con-

cept, R be a role or role chain R1, . . . ,Rn, and S a role, then

R∣C ⊑ S = idC ○R ⊑ S

R∣C ⊑ S = R ○ idC ⊑ S

R∣CD ⊑ S = idC ○R ○ idD ⊑ S

Further interesting constructs can be simulated using restricted role

subsumptions together with the universal role U that holds between

all individuals of the domain (cf. Rudolph et al., 2008). By restricting

the universal role to U∣CD we can describe a role that exists between

all instances of C and all instances of D. For example the fact that all

mice are bigger than elephants can be expressed as

U∣MouseElephant ⊑ biggerThan

which according to Rudolph et al. (cf. 2008) captures the notation of

a concept product and which they thus denote:

Mouse× Elephant ⊑ biggerThan

Note that the underlying DL structure is a role chain and that role

chains are just allowed on the left-hand side of a role inclusion.
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To simulate a concept product on the right side, we can The idea is

to define domain and range for an inferred anonymous relation.

Definition 9 (Concept Product (Rudolph et al., 2008)).

C×D ⊑ R = idC ○U ○ idD ⊑ R

How about concept products on the right-hand side of a role sub-

sumption? In analogy to set operations, the expression R ⊑ C×D could

be used denote that R is a relation between instances of type C and D.

We can directly express this in OWL by using a domain and a range

restriction.

4.3.2 Graph-shaped descriptions

Motik et al. (2009b) recognized limitations of the modelling means of

DLs in the medical domain:

“the expressivity [of DLs] is often insufficient to accurately describe

structured object — objects whose parts are interconnected in ar-

bitrary, rather than tree-like ways. DL knowledge bases describing

structured objects are therefore usually underconstrained, which pre-

cludes the entailment of certain consequences and causes performance

problems during reasoning.”

To address this problem, they proposed an extension of DL languages

with description graphs — a knowledge modelling construct that can

accurately describe objects with parts connected in arbitrary ways.

Consider the description of the anatomical structure of a hand de-

picted in Figure 4.2. This structure can be straightforwardly encoded

in a DL ABox, but in this case would just describe one instance while

we are interested in giving a general concept description that can be

used to classify and match instances. A schema-level interpretation of

the graph can be given by treating vertices as concepts and arrows as

participation constraints between the concepts. For example, vertices

1 and 6 would correspond to concepts Hand and Index finger, whose

instances would be all hands and all index fingers, respectively. Fur-

thermore, the arrow from 1 to 6 would be interpreted as a statement

that each hand has an index finger as its part:

Hand ⊑ ∃=1part.Index finger

Index finger ⊑ ∃=1part.Distal phalanx oif

Index finger ⊑ ∃=1part.Middle phalanx oif ⇚
Index finger ⊑ ∃=1part.Proximal phalanx oif

Distal phalanx oif ⊑ ∃=1attached to.Middle phalanx oif ⇚
Middle phalanx oif ⊑ ∃=1attached to.Distal phalanx oif

Middle phalanx oif ⊑ ∃=1attached to.Proximal phalanx oif

Proximal phalanx oif ⊑ ∃=1attached to.Middle phalanx oif

The two marked axioms imply the existence of middle phalanxes

of the index finger, but this axiomatisation does not capture the fact



36

Figure 4.2: Anatomy of a hand as an

example for a conceptual model that

requires graph relationships
(from Motik et al., 2009b)

that, for any given index finger, these two middle phalanges must be

the same object. In fact, OWL(2) offers no means to express this kind

of relationships. Therefore Motik et al. (2009b) introduce description

graphs as an extension to OWL in order to express additional graph-

like relationships in DL concepts. The formalism introduces the mod-

elling constructs graph specialisation and graph alignment to capture

these relationships.

4.4 Non-standard Reasoning Services

Additional reasoning services have been developed that are commonly

referred to as “non-standard” reasoning services.

4.4.1 Module Extraction

Techniques of module extraction are used to obtain a fragment of an

ontology that is semantically relevant for entailments over a given sig-

nature. Despite containing only a subset of the original ontology’s

axioms, a module preserves all entailments with regard to this signa-

ture. We adapt the definition of a module based on the notion of

conservative extension from Cuenca Grau et al. (2008).

Definition 10 (Module). Let O and Om be ontologies with Om ⊆ O
and Σ be a signature. Then, Om is a module for Σ in O if for every
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ontology O′ with Σ(O′) ∩Σ(O) ⊆ Σ, we have that O′ ∪O ⊧ α if and

only if O′ ∪Om ⊧ α for any axiom α with Σ(α) ⊆ Σ.

4.4.2 Justifications

Justifications are a means to provide explanations for given entail-

ments. For example, we might be interested why exactly a piece does

(or does not) fit a blues pattern such as the twelve-bar blues. Assum-

ing that the chord sequence of the piece is represented as a DL instance

s and that we can capture the blues pattern by a DL concept P, fit is

defined by an instance-of relationship s ∃P. A justification is then the

minimal set of all axioms in the ontology that make this relationship

true (or false).

A (regular) justification is a minimal subset of an ontology that sup-

ports a given entailment, captured by the following definition adapted

from Kalyanpur et al. (2008):

Definition 11 (Justification). For an ontology O and an axiom α

with O ⊧ α, a set OJ ⊆ O of axioms is a justification for α in O if

OJ ⊧ α and (entailment)

/∃ (OJ ′ ⊆ O).(OJ ′ ⊂ OJ ) ∧ (OJ ′ ⊧ α) (minimality)

So called laconic justifications extend the notion to more fine-

grained explanations and were introduced in Horridge et al. (2008).

They are justifications whose axioms are maximally weak and do not

contain any superfluous parts irrelevant for the respective entailment

to hold. The core idea for computing laconic justifications is to first

perform a structural transformation which flattens complex axioms

into several simpler ones.

4.4.3 Reductions

For an ontology it is often desirable to derive a minimal version that

does not contain any redundancy in its axioms but has the same“mean-

ing” semantically. An ontology contains redundancy in terms of ex-

pressed axioms if any of the axioms it contains is entailed by other

axioms contained. The removal of such a redundant axiom would pre-

serve the deductive closure of the ontology due to this entailment. This

is captured by the following definition.

Definition 12 (Redundancy). An ontology O is redundant if it

contains an axiom α such that O∖{α} ⊧ α. An ontology Ô ⊆ O is a

reduction of O if

/∃ α ∈ Ô ∶ Ô ∖ {α} ⊧ α and (irredundancy)

⟨Ô⟩ = ⟨O⟩ (semantic equivalence)
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Grimm and Wissmann (2011) defined algorithms to efficiently com-

pute all possible reductions of an ontology.

4.4.4 Learning DL concepts

Least Common Subsumer Though several tasks can be achieved with

above reasoning services, all knowledge that is inferred and classified is

already implicit in the logical model and does not add new knowledge

in terms of classes or properties. Additional (sometimes called non-

standard) reasoning services for DLs exist that can be used to learn

new concepts form given data and concepts. Here we are interested in

computing a concept L that generalises some other concepts C1, . . . ,Cn,

i.e. that is a common subsumer of them. Not all common subsumers

are interesting though. For example ⊺ is a trivial common subsumer

as it subsumes any DL concept. Normally, there are more specific de-

scriptions just generalize as much as to capture the commonalities of

C1, . . . ,Cn. The notion of a least common subsumer (lcs) (Baader and

Küsters, 2006; Baader et al., 2007) captures this idea. Intuitively, an

lcs L generalises all concepts C1, . . . ,Cn while there is no other general-

isation L′ that is more specific then L.

Definition 13 (Least Common Subsumer). A concept descrip-

tion L is a least common subsumer (lcs) of concept descriptions

C1, . . . ,Cn towards a TBox T iff it satisfies the following two con-

ditions:

∀i ∈ {1, . . . , n} ∶ T ⊧ Ci ⊑ L and

∀L′ ∶ i f ∀i ∈ {1, . . . , n} ∶ T ⊧ Ci ⊑ L′ and L′ /= L then T /⊧ L′ ⊑ L

Least common subsumers have been used to support the bottom-

up construction of DL knowledge bases. Other interesting subsumers

such as partial and informative subsumers have been discussed in the

literature (Colucci et al., 2008). Programmatic support for DL learning

tasks has for example been implemented in the DL-Learner API3. 3 http://aksw.org/Projects/

DLLearner

4.5 Querying

The query languages for Semantic Web ontologies can be classified

under two categories:

1. RDF-based and

2. DL-based query languages.

RDF-based query languages, such as the W3C recommendation

SPARQL4, are based on the notion of RDF triple patterns and their 4 http://www.w3.org/TR/

rdf-sparql-query/semantics is based on matching triples with RDF graphs. RDF-based

query languages offer flexibility similar to SQL but offers no guarantees

to the consistency or well-formedness of results with respect to OWL.

http://aksw.org/Projects/DLLearner
http://aksw.org/Projects/DLLearner
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
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DL-based query languages such as the queries of DIG protocol

(Bechhofer et al., 2003), on the other hand, have well-defined semantics

based on the DL model theory. While they make explicit guarantees

to the consistency of the results they are more limited in the possible

query constructs.

4.5.1 Relational Queries

The RDF query language SPARQL5 allows to query RDF data by 5 W3C recommendation: http://

www.w3.org/TR/rdf-sparql-query/means of graph pattern matching. Graph patterns are expressed using

turtle syntax and can be used in query statement similar to SQL such

as the select-statement to retrieve information form RDF graphs:

Example 4.2 (SPARQL Select Query) A list of Beatles albums

is retrieved using a SELECT query :

PREFIX mo: <http://purl.org/ontology/mo/>

PREFIX dbp: <http://dbpedia.org/resource/>

SELECT ?album

WHERE { ?album a mo:Record ;

mo:releaseType mo:album ;

dc:creator dbp:the_beatles . }

ORDER BY ?album

Intuitively, SPARQL queries are RDF graphs where variables can

occur in triples. A query is then comparing the triples with a data

graph and binding the variables if the pattern matches. More formally,

de Bruijn et al. (2005) defines the semantics of a query as follows :

Definition 14 (Semantics of basic SPARQL).

A SPARQL query basic graph pattern to an RDF graph S is a (pos-

sibly ground) RDF graph Qx where, in addition to URIs and bnodes,

variables are allowed; the elements in the set x (possibly empty) of n

variables of a query are called distinguished variables, and the bnodes

play the role of non-distinguished variables. The answer set of Qx

is the set of all substitutions of the distinguished variables with some

arbitrary URI from RDFU (the set of all URIs and canonical liter-

als) such that for each substitution the instantiated query is entailed

by S, i.e.,

{⟨c1 . . . cn⟩ ∈ (RDFU)n ∣ S ⊢ Q[x1↦c1,...,xn↦cn]}.

From an expressiveness point of view SPARQL is equivalent to Re-

lational Algebra as shown by Angles and Gutierrez (2008). On the

one hand this is of advantage for knowledge engineers as it provides

them with powerful means to express interesting queries. On the other

hand the language cannot guarantee decidability or soundness of the

returned results. This can lead to problems for automatic reasoning

and quality management.

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
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4.6 Summary

The web ontology language OWL is a major standard for describing

the formal meaning of vocabulary used in RDF. When using OWL

to support reasoning on the web an increase of expressivity when de-

scribing knowledge models comes often at the cost of higher complex-

ity. Language profiles of OWL help to make trade-offs by offering

pre-defined subsets of OWL vocabulary with well-defined complexity

(cf. section 4.1). In the context of this thesis we focus on the DL pro-

file as it the most expressive OWL profile that still offers decidable

reasoning.

OWL has certain characteristics as a modelling language that influ-

ence style and limitations of modelling in OWL. In section 4.2 some

modelling constructs are discussed that become relevant in the con-

text of the open world assumption. Section 4.3 discusses limitations of

OWL in comparison to rule reasoning and graph shaped models and

ways to deal with these within OWL and via extensions of OWL.

Standard reasoning tasks supported by OWL reasoners are consis-

tency, satisfiability and subsumption checking. Next to these, further

“non-standard” reasoning tasks have been developed that are poten-

tially interesting for musicological queries and for organisation of a

musical knowledge base. Section 4.4 discusses module extraction, jus-

tifications and reductions. In this thesis they are mainly used as means

of optimization (e.g. section 12.3).

A major use of a knowledge basis is querying. Query paradigms for

OWL can be distinguished between RDF-based and DL-based (cf. sec-

tion 4.5). The RDF-based approach as found in SPARQL offers ex-

pressive relation queries on RDF graphs. This approach is primarily

syntactic and formal properties such as consistency are not guaran-

teed though a reasoning engine can be used to provide additional in-

ferences. The DL-based approach directly uses reasoning and makes

formal guarantees whereas the query expressivity is restricted.
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5 Representation of Sequences

“The world to be modelled is full of sequences” (Drummond et al.,

2006b). Due to the temporal nature of music, ordered sequences are a

natural and ubiquitous data type in the models of musical data such

as note sequences and chord progressions.

In first order logic, sequences are often modelled as n-ary predicates.

Currently, only the highly expressive DLs of the DLR family (Lutz

et al., 1999) have native support for n-tuples and recursive fixed-point

structures, from which one can build lists, trees, etc. In contrast most

common DLs and OWL are subsets of FOL that are restricted to two

or three variables.

Being restricted to these means, modelling of sequences as linked

structures remains as an option. We are aware of three such ap-

proaches. The first is the vocabulary provided in RDF itself. Second,

Hirsh and Kudenko (1997) described a DL pattern based on suffix

trees. And third, Drummond et al. (2006b) used a linked list pattern

in OWL. We will describe these in the following.

5.1 Sequence Representation in RDF

5.1.1 rdf:List and rdf:Seq

RDF provides two constructs for list, rdf:List and rdf:Seq. An rdf:List
is essentially a linked list, constructible using rdf: f irst (referring to list

head), rdf:rest (referring list tail) and rdf:nil (denoting list end). A list

with three elements ex:a, ex:b, ex:c could for example be written as the

statements

:1 rdf: f irst ex:a .

:1 rdf:rest :2 .

:2 rdf: f irst ex:b.

:2 rdf:rest :3 .

:3 rdf: f irst ex:c.

:3 rdf:rest rdf:nil.

The notation “ : . . . ” indicates anonymous identifers and their name

have no additional meaning.In Turtle syntax (as used in SPARQL) this

statement could therefore be abbreviated

[ex:a ex:b ex:c]
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The axiomatisation of RDF provides an infinite set of properties

rdf: i with i ∈ N

that is used rdf:Seq to express order. Using this pattern, the “abc”

could also be expressed

:aSeq rdf:type rdf:Seq .

:aSeq rdf: 1 ex:a .

:aSeq rdf: 2 ex:b .

:aSeq rdf: 3 ex:c .

However, the usage scope of these RDF patterns is very limited.

For technical reasons rdf:List cannot be used in OWL. It is used for

the RDF-serialization of OWL constructs and is therefore disallowed

as role name1. The rdf:Seq construct is not disallowed but its logical 1 see http://www.w3.org/TR/

owl-semantics/mapping.html#

rdf_List_mapping
semantics cannot be accessed within OWL. Further, this construct does

not offer means to define the semantics of the structures, e.g. defining

a “list of notes”.

5.1.2 N-ary Predicates

RDF data and ontologies are represented as triples. While this uni-

form representation exhibits some advantages with respect to apply-

ing means of graph processing, modelling and visualisation, many data

structures can not be directly but have to be broken down into triples.

While unary and binary relationships can be directly expressed us-

ing triples, modelling of containment structures or n-ary relationships2 2 see http://www.w3.org/TR/

swbp-n-aryRelations/is more indirect, as is sequence representation.

5.2 Suffix Trees

Hirsh and Kudenko (1997) describe how strings and string pattern can

be rewritten as suffix trees and represented in a DL. Figure 5.1 shows

an example pattern that matches the string “RFFB”. Every suffix of

the string corresponds to a path from the root of the tree to some leaf,

and each path from the root to some leaf corresponds to a suffix of the

string. Substrings can be matched by using subtrees.

http://www.w3.org/TR/owl-semantics/mapping.html#rdf_List_mapping
http://www.w3.org/TR/owl-semantics/mapping.html#rdf_List_mapping
http://www.w3.org/TR/owl-semantics/mapping.html#rdf_List_mapping
http://www.w3.org/TR/swbp-n-aryRelations/
http://www.w3.org/TR/swbp-n-aryRelations/
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●

● ● ● ●BFF

R

● ● ●BF

●

B

F

●

B

NODE⊓∀R.(NODE⊓∀F.(NODE⊓∀F.(NODE⊓∀B.NODE)))
⊓∀F.(NODE⊓∀F.(NODE⊓∀B.NODE)

⊓∀B.(NODE)
⊓∀B.NODE)

Figure 5.1: Suffix tree representation
of the string “RFFB”

5.3 OWLList

Drummond et al. (2006b,a) proposed an OWL pattern for lists in OWL

that allows for instance classification and subsumption reasoning. It is

based on the idea of a linked list representation. The scaffold for this

representation are the roles hasNext, isFollowedBy and hasContents.

OWLList OWLList OWLList EmptyListhasNext hasNext hasNext

A B C

hasContent hasContent hasContent

isFollowedBy

ABCList ≡OWLList⊓∃hasContents.A⊓∃hasNext.(
OWLList⊓∃hasContents.B ⊓∃hasNext.(
OWLList⊓∃hasContents.C ⊓∃hasNext.

EmptyList))

Figure 5.2: Example of a pattern ex-

pressed as OWLList

Figure 5.2 illustrates how a “ABC list” pattern can be defined, i.e. a

pattern for a list with exactly three subsequent components where the

first component is restricted to be of class A, the next to be of class B

and the final component of class C. While the pattern explicitly used

the hasNext relationship, the isFollowedBy relationship is inferred.

A class for a ABC list, i.e. a list with just three elements where the

first element is restricted to be of class A, the next to be of class B
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and the final element of class C, can be defined as follows:

OWLList ≡ ∀isFollowedBy.OWLList (5.1)

hasNext ∈ fun (5.2)

hasNext ⊑ isFollowedBy (5.3)

isFollowedBy ∈ tra (5.4)

isFollowedBy ⊑ OWLList× OWLList (5.5)

EmptyList ≡ OWLList⊓¬∃isFollowedBy.⊺⊓ ∃≤0hasContents.⊺
(5.6)

hasContents ∈ fun (5.7)

hasContents ⊑ OWLList×⊺ (5.8)

Table 5.1: Axiomatisation of the
OWLList concept

The EmptyList construct acts as terminal symbol. Leaving out the

terminal symbol, it is also possible to define list that starts with a

defined sequence (here ABC) and is followed by arbitrary elements.

Using different DL constructs, this definition can be used to define

more complex expressions such as given in Table 5.2.

The patterns can be used for classification tasks. Given a list of

patterns described using OWLList and instances, e.g. hasNext(a,b)
and hasNext(b, c), a DL reasoner can determine which classes sub-

sume the instances. Further, the subsumption hierarchy of (explic-

itly defined) list patterns can be automatically inferred, e.g given list

patterns for “AB. . . ”, “ABC” and “ABC. . . ”, the reasoner would infer

“AB. . . ” subsumes “ABC. . . ” subsumes “ABC”. Such reasoning sup-

port gets more interesting for more expressive patterns, e.g. if content

is defined in terms of its properties (see pattern 8, table 5.2).

As the direct DL notation of complex OWLList patterns like in

the above example is hard to read, Drummond et.al. illustrated their

examples by a simplified notation that resembles regular expressions.

Unfortunately, this notation has not been formalised.

We will later use OWLList as a starting point to represent chord se-

quence patterns (cf. section 14). Some representational issues regard-

ing instance labelling and chord subsumption are discussed, eventually

leading to an extended sequence language that we call SEQ. Further,

continuing the idea of providing a readable syntax that resembles reg-

ular expressions, a succint yet formal notation that integrates with DL

syntax (cf. chapter 8) and an API (cf. chapter 11) is developed.

Suffix trees and OWLLists both demonstrate the use of DL for pat-

tern based classification. Such a classification is provided as a standard

reasoning service by DL reasoners. Hirsh and Kudenko (1997) further

state the possibility of learning suffix tree patterns using the least com-

mon subsumer algorithm described by (Cohen et al., 1992). In how far

such services are possible for the more expressive OWLList pattern has

not been studied, yet. This could for example be useful for discovery

of common patterns in chord sequences.
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informal notation meaning examples

1 (A, B, C) Exactly ABC (terminated) abc

2 (A∗) A list consisting only of As aaa, aa (or empty)

3 (A, B, C, . . . ) Starting with ABC (nonterminated) abc, abcx

4 (. . . , A, B, C) Ending With ABC (terminated) abc, xabc

5 (. . . , A, B, C, . . . ) Containing ABC abc, xabc, xabcx, abcx

6 (A+, B, . . . ) One or more As followed by B ab, aaab

7 ([A∣B∣C], B, C) A or B or C, followed by B then C abc, bbc, cbc

8 (hasProp some X, B, C) Restriction followed by B then C Any abc where a hasProp x

9 not(A, B, C, . . . ) Not starting ABC cbaxx

10 ((A, B, C, . . . ), (D, E, F, . . . )) Starting ABC, followed by anything,

followed by DEF, followed by any-

thing

abcdef, abcxxdefx

11 (A, B, C, . . . ) and (. . . , A, B) Starting ABC, and ending AB abcab, abcxxab

12 () Empty list (nil)

Table 5.2: Informal summary of

OWLList expressivity (adapted from

Drummond et al. (2006b))
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5.4 Ordered List Ontology

The Ordered List Ontology (OLO) Specification3 provides basic con- 3 http://purl.org/ontology/olo/

orderedlistontology.htmlcepts and properties for persisting ordered lists as RDF graphs. It pro-

vides vocabulary to describe sequential order and indexing elements of

the list. However, it is weakly axiomatised in the sense that neither or-

der and indexing nor their interaction is captured in OWL but only the

existence of order-related properties is defined as shown in Table 5.3.

OrderedList ⊑ ∃=1index⊓∃≤1next⊓∃≤1previous (5.9)

⊓∃≥1item⊓∃≤1ordered list

Slot ⊑ ∃=1length (5.10)

Table 5.3: Summary of the Ordered
List Ontology in DL notation (v0.72,

2010-07-23)

Example 5.1 (LOD using OLO)

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix olo: <http://purl.org/ontology/olo/core#> .

@prefix mo: <http://purl.org/ontology/mo/> .

@prefix ex: <http://example.org/> .

ex:FunkyPlaylist a olo:OrderedList ;

dc:title "Funky Playlist" ;

dc:description "A playlist full of funky legends" ;

dc:creator <http://foaf.me/zazi#me> ;

olo:length 2 ;

olo:slot [

olo:index 1 ;

olo:item ex:SexMachine

] ;

olo:slot [

olo:index 2 ;

olo:item ex:GoodFoot

] .

ex:SexMachine a mo:Track ;

dc:title "Sex Machine" ;

dc:creator dbp:James_Brown .

ex:GoodFoot a mo:Track ;

dc:title "Good Foot" .

http://purl.org/ontology/olo/orderedlistontology.html
http://purl.org/ontology/olo/orderedlistontology.html
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5.5 Representation of Time

Time plays an important role in music. In the context of knowledge

representation several theories of time have been developed. Several

choices of temporal primitives have been discussed: intervals (Allen,

1984), points (McDermott, 1982) or events (Kowalski and Sergot,

1989). The choice of primitives emphasises the dimension of time

considered as fundamental in the problem solving context, but have

been proved equivalent in terms of expressiveness (Tsang, 1987).

Efforts have been made to express temporal models as OWL ontolo-

gies. However, these theories cannot directly be expressed in OWL DL

as they are undecidable and the expressivity of OWL DL is restricted

to guarantee decidability. Thus many interesting temporal reasoning

tasks are not supported by standard OWL reasoners. Language ex-

tensions that include restricted forms of temporal reasoning have been

proposed. More pragmatically, some ontologies provide vocabulary for

temporal relationships without fully capturing their semantics.

Time as domain. Time can also been treated as a domain within a

given DL. Allen’s Interval Algebra (Allen, 1984) is a calculus for tem-

poral reasoning that defines 13 base relations to capture the possible

relations between two intervals such as “X begins before Y” or “X over-

laps with Y”. Allen’s temporal relationships have been adapted in the

DOLCE top ontology, and ported to OWL-DL (SHI)4. 4 http://www.loa-cnr.it/

ontologies/TemporalRelations.owl

OWL-Time. The OWL-Time ontology5 was initially developed to 5 http://www.w3.org/2001/sw/

BestPractices/OEP/Time-Ontology,

W3C working draft, as of September

27th, 2006

represent the temporal content of Web Pages and the temporal prop-

erties of Web Services, but is currently also used as basis for the OM-

RAS2 Music Ontology (see section 6.1). The ontology is built around

the class TemporalEntity and the relations describing its individuals.

Temporal entities may be of two types: Instant (point-like moments in

time) and Interval (time descriptions having a duration, represented as

ordered pairs of Instant individuals). Additionally, the ontology con-

tains classes meant to describe several other temporal concepts, such as

duration (DurationDescription), dates and times (DateTimeDescrip-

tion), temporal units (TemporalUnit) and alternative representations

for the days of the week (DayOfWeek).

The main relations describing individuals of type Instant are the

functional properties begins (the beginning, same as the end in case

of an instant) and ends (the end, same as the beginning in case of an

instant). The range of the properties are objects of type InstantThing.

The actual time belonging to these individuals can be expressed as

of the internal type CalendarClockDescription or as xsd:dateTime of

XML Schema. Intervals exhibit, amongst others, the same properties

as instants, with the same flexibility in the representation of the actual

date and/or time. Additionally, the property inside may be defined

in the case of individuals of type Interval, and describing a relation

between an Instant and an Interval, equivalent to asserting that some

individual of type Instant is within the bounds of the individual of

http://www.loa-cnr.it/ontologies/TemporalRelations.owl
http://www.loa-cnr.it/ontologies/TemporalRelations.owl
http://www.w3.org/2001/sw/BestPractices/OEP/Time-Ontology
http://www.w3.org/2001/sw/BestPractices/OEP/Time-Ontology
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type Interval.

In the context of designing a temporal language, the expressiveness

offered by OWL-Time addresses mainly the issue of the representation

of time in its qualitative nature. However, as Milea et al. (2008) point

out, due to a lack of representational power of OWL-DL the reasoning

possibilities remain limited. For example, it cannot be represented in

OWL DL that the left bound of an interval should always be smaller

than its right bound. The semantic limitation regarding temporal as-

pects translates to little or no reasoning support in such contexts.

An approach presented in Welty and Fikes (2006) incorporates per-

durants through the use of timeslices and fluents in OWL-DL. Per-

durants are those entities for which only a part exists if we look at

them at any given snapshot in time. When we freeze time we can

only see a part of the perdurant. Taking ‘running’ as an example, one

can observe that if we freeze time then we only see a part of the run-

ning, without any previous knowledge one might not even be able to

determine the actual process as being a process of running. The fun-

damental building blocks of the OWL-DL representation are timeslices

and fluents. Timeslices represent the temporal parts of a specific entity

at clear moments in time and the concept itself is then defined as all

of its timeslices. Fluents are nothing more than properties that hold

at a specific moment in time, may this time be an instant (point-like

representation of time) or an interval.

The approach in Welty and Fikes (2006) comes to address a rele-

vant issue, namely the representation of change in OWL ontologies.

However, as in the case of OWL-Time, relying solely on OWL-DL for

such a goal limits in several ways the power of the approach. The se-

mantic limitation regarding temporal aspect translates to little to no

reasoning support in such contexts.

Temporal Extensions of DLs. The work on temporal DLs has focused

on combining DLs with well known temporal logics such as linear tem-

poral logic (LTL).

For surveys on temporal extensions of temporal DLs see Artale and

Franconi (2001); Lutz et al. (2008).

As we have seen, there exist different notions of time. In the context

of DLs mainly point-based and interval-based notions of time have been

investigated. The approaches to adding a notion of time to a DL can

further be differentiated into an implicit and an explicit approach. In

the former, temporal information is only implicit in the language. In

the later, an explicit notion of time is adopted.

Explicit representations of time in DLs take either an external or

internal point of view. In the external view the same individual can

have different snapshots in different moments describing various states

of the individual at these times. In the internal point of view different

states of an individual are seen as different individual components.

In summary, temporal reasoning based on numerical representations

is currently difficult with DLs in the Semantic Web and has mainly

been discussed in the literature in terms of extensions of DLs.
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Figure 5.3: 13 possible relationships
between two intervals (Allen, 1984)

5.6 Summary

RDF provides vocabulary to describe sequences (cf. section 5.1). This

lacks however means to specify sequential patterns that can describe

the content of a sequence and can constrain its structure. Further

technical issues exist that make it incompatible with OWL. Several

alternatives have been proposed that reflect different modelling ap-

proaches. OWLList uses a successor-role representation for sequences

and allows to define sequential patterns that resemble regular expres-

sions (cf. section 5.3). Another approach is to label the roles of a

suffix tree with a string (cf. section 5.2). This representation allows

for substring matching. In the context of linked web data (LOD)

ontologies have been provided that contain vocabulary for expressing

sequential relationships while not supporting formal reasoning (cf. sec-

tion 5.4). Reasoning based on numerical representations is currently

difficult with DLs in the Semantic Web though several temporal ex-

tensions for DLs have been discussed in the literature (cf. section 5.5.

Of the surveyed approaches OWLList and suffix trees are most inter-

esting for the design of sequential patterns as they provide high expres-

sivity and have reasoning support. Suffix trees have limited means to

describe the elements of a sequence in comparison to OWLList which

is a limitation for the use case of combining sequential abstraction

with abstractions of musical entities such as chords. In chapter 8 the

new sequential pattern language SEQ will be specified that addresses

shortcomings of OWLList and further extends its expressivity.
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6 Music representation

In music applications and research several forms of representations

are used that deal with different aspects of music. The representation

can be roughly categorised as audio representations, symbolic repre-

sentations and metadata representations (see Figure 6.1).
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Figure 6.1: Brief overview of Music

Representations

Audio. Audio representations such as wave format or MP3 represent

sound waves more or less directly in numerical stream formats.

Symbolic representation. Symbolic forms encode music in terms of the

discrete objects of action or perception, most notably common west-

ern music notation and MIDI. In music notation the main objects are

notes, which contain pitch and metrical timing information1. Metrical 1 For a more information see e.g.
Gehrkens (1914).timing is expressed relative to a grid of beats and bars, which can be

performed with varying tempo, rater then absolute time. The MIDI

format is more closely related to performance, as is was originally de-

signed to control a synthesisers with external keyboard2. In addition 2 For the technical specification see
International MIDI Association

(1983).
to note information, there are lyrics and harmony symbols which com-

monly appear in symbolic representations, providing information for

singers and players.
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Metadata. Information that are not directly part of the music, but re-

lated, such as the composer’s name, the date of composition, copyright

information etc. are generally referred to as metadata. The distinction

between data and metadata is not always clear and can depend on the

use case.

6.1 OMRAS2 Music Ontology

The OMRAS2 Music Ontology project3 develops a formal framework 3 http://www.musicontology.com/

for dealing with music-related information on the Semantic Web, in-

cluding “editorial, cultural and acoustic” information (Raimond et al.,

2007). The ontology is intended to act as “a grounding for more

domain-specific knowledge representation”. The OMRAS2 Music On-

tology Specification aims at providing main concepts and properties for

describing music (i.e. artists, albums, tracks, but also performances,

arrangements, etc.) on the Semantic Web.

The music ontology is based on OWLTime (see section 5.5). The

timeline concept of OWLTime has been extended to been able to ex-

press multiple timelines and relationships between them.

The vocabulary of Music Ontology4 is clustered around the three 4 http://purl.org/ontology/mo/

categories:

Level 1 aims at providing a vocabulary for simple editorial information

(tracks/artists/releases, etc.)

Level 2 aims at providing a vocabulary for expressing the music cre-

ation workflow (composition, arrangement, performance, recording,

etc.)

Level 3 aims at providing a vocabulary for complex event decompo-

sition, to express, for example, what happened during a particular

performance, what is the melody line of a particular work, etc.

The core specification of the Music Ontology does not provide vo-

cabulary for symbolic music representations. However, different drafts

exist that describe symbolic music concepts, namely the chord ontol-

ogy5 and tonality ontology6. 5 see http://motools.sourceforge.

net/chord_draft_1/chord.html
6 see http://motools.sourceforge.

net/doc/tonality.html

As concrete chords (e.g. Cmaj7) are modelled as individuals, this

definition cannot directly be used for classification tasks such as chord

subsumption.

A further effort in the direction of symbolic music representation

has been made with the OMRAS2 chord ontology draft.

6.2 Harmony OWL

Ibbotson (2009) developed Harmony OWL, an ontology that provides

vocabulary for the use of harmonic annotation in a real-time event pro-

cessing system. In this ontology, musical note, chord and key objects

together with their relationships are described.

Harmony OWL has not been adopted widely yet. The representa-

tion and reasoning capabilities are not well explored. Ibbotson (2009,

http://www.musicontology.com/
http://purl.org/ontology/mo/
http://motools.sourceforge.net/chord_draft_1/chord.html
http://motools.sourceforge.net/chord_draft_1/chord.html
http://motools.sourceforge.net/doc/tonality.html
http://motools.sourceforge.net/doc/tonality.html
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TBox:
concepts

Chord, Event, Interval, Modi f ier, Note

ChordEvent ⊑ Event

Natural ⊑ Note

ScaleInterval ⊑ Interval

SemitoneInterval ⊑ Interval

roles

degree ⊑ ⊺ × ⊺

interval ⊑ Chord × Interval

without interval ⊑ Chord × ScaleInterval

root ⊑ Chord × Note

chord ⊑ ChordEvent ×Chord

degree ⊑ ScaleInterval ×N

modi f ier ⊑ Note ⊓ ScaleInterval × Modi f ier

natural ⊑ Note × Natural

semitone interval ⊑ SemitoneInterval ×N

ABox:
f lat, sharp, double f lat, doublesharp ∶ Modi f ier

Cb ∃Note, modi f ier(Cb, f lat), natural(Cb, C)

C ∃Natural

Cs ∃Note, modi f ier(Cs, sharp), natural(Cs, C)

⋮

Bb ∃Note, modi f ier(Bb, f lat), natural(Bb, C)

B ∃Natural

Bs ∃Note, modi f ier(Bs, sharp), natural(Bs, C)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

pitch
definitions

Table 6.1: Summary of the OMRAS2

Chord Ontology in DL notation

ABox excerpt:

Ds:min7(*b3,9)/5 ∶ Chord

/* root description */

root(Ds:min7(*b3,9)/5, root1) root1 ∃Note
modi f ier(root1, sharp)
natural(root1, note/D)

bass ∃ScaleInterval degree(bass, 5)
base chord(Ds:min7(*b3,9)/5, min7)

without interval(Ds:min7(*b3,9)/5, wout)

wout ∃ScaleInterval degree( wout, 3)
modifier( wout, flat )

interval(Ds:min7(*b3,9)/5, int1) int ∃ScaleInterval degree( int1, 1)

interval(Ds:min7(*b3,9)/5, int5) int5 ∃ScaleInterval degree( int5, 5)
interval(Ds:min7(*b3,9)/5, int7) int7 ∃ScaleInterval degree( int7, 7)

modi f ier( int7, flat)
interval(Ds:min7(*b3,9)/5, int9) int9 ∃ScaleInterval degree( int9, 9)

Table 6.2: Example Chord De-
scription in DL notation (translated

from example in RDF/Turtle notation

from http://motools.sourceforge.

net/chord_draft_1/chord.html)

http://motools.sourceforge.net/chord_draft_1/chord.html
http://motools.sourceforge.net/chord_draft_1/chord.html
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p.115) suggests to explore “longer-lasting” chord structures, which is

supported by the abstraction techniques developed in this work.

6.3 Chord Symbols and Chord Sequences

Chords symbols can be found in a broad range of data on the web,

e.g. song collections in text format (alternating lines of text and chord

symbols), music notation with chord symbols, guitar tablatures, and

there is even a specific markup language for adding chord symbols to

lyrics, called ChordML (Frederico, 2002). There is no formal standard

for symbols and their meaning in music theory, but there are some

widely accepted conventions in mainstream music theory, such as using

scale degrees and functions.

At the lowest level, chord symbols classify the notes sounding si-

multaneously or within a short time. Chords symbols describe the

root and type (or mode) of chords and alterations or extensions of the

basic structure of these types. Although these notes may be arranged

differently with regards to their distribution over voices and octaves,

this specification is sufficient to ensure that it fits with a given melody.

This level of description is used in Jazz and Pop music (e.g. in lead-

sheets and guitar songbooks).

A typical example of a chord symbol is Am7, which means that the

chord has the root A, is of type minor (that defines it contains the

pitches A, C, and E) and a 7th is added (the note G).

Chord sequences are a widely used notation for harmonic progres-

sions. (Harte et al., 2005) proposed a text representation for musical

chord symbols that is closely resembles the notation used by (jazz) mu-

sicians for musically trained individuals to write and understand, yet

highly structured and unambiguous to parse with computer programs.

6.4 Harmonic Analysis

Harmony is a major topic in music analysis. Harmonic analysis is

taught to musicology students, and it has been the subject of computer

based research (e.g. Temperley (1997), Hiraga (1989)). However, com-

puter music software and standard data formats provide little means

for representing harmonic structure of music. The interest in the se-

mantic annotation of music, especially automatic annotation, has in

recent years mainly focused on music information retrieval based on

audio-related features and the classification of genres, styles, or artists.

The musical content and structure as it is represented in traditional

musical notation and analysis is rarely dealt with.

The harmonic structure of music is important to both music theory

and practice, as chord symbols are used by musicians in jazz and pop

music, they appear in figured bass in baroque music, and they are used

in music theory for all styles.

In music theory, an analysis of the harmonic structure of a piece

is started by subsuming simultaneous or successive notes to chords,

chords to chord classes, chords classes to functions and functions to
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progression patterns. This structure provides condensed information

on the harmonic characteristics of a piece, helping musicians to under-

stand, memorise, and play the music. Therefore, the creation of these

kinds of annotation is very useful for applications in musicology, music

education, and music information retrieval.

Music theorists often speak of the ’rules’ of harmony, e.g. Fux’

gradus (Fux, 1967), or preference rules as used by Lerdahl and Jack-

endoff (Lerdahl and Jackendoff, 1983) or Temperley (Temperley, 2001).

Although these rules are not formally specified (the works mentioned

before are insofar exceptions as they do formalise their rules to some

degree), it is desirable for a musical knowledge representation to rep-

resent these rules. In music as a form of art rules can be broken,

but they can still give a description of relevant harmonic structures

at least within a given style. Appropriately formalised, rules can be

specified to a degree where they can be used as the basis for automatic

music analysis to generate harmonic structural descriptions. Annotat-

ing music manually can be tedious, therefore a method for automatic

annotation can support a musical expert in creating a machine read-

able representation of musical knowledge, and it helps understand the

structure of music better.

6.5 Harmonic Structure

Harmony in general describes the sounding of several notes simulta-

neously. For analytical purposes, the harmonic dimension of music is

represented by symbols that abstract from the actual notes to classes of

chords. This abstraction occurs on the pitch dimension, as octave reg-

isters are mostly not taken into account, and on the time dimension, as

the harmonic symbols are normally assigned to measures or half mea-

sures, which may have notes arranged differently over time. The first

abstraction is to classify a set of notes or a time period by assigning

a chord symbol, which we assume to be given. The chord symbols are

often provided in scores for Jazz or Pop Music. The higher levels put

these symbols into a structural context. In tonal music, this context

consists of progression patterns and cadences, which are modelled in

the rule system we describe here.

6.6 Higher Structural Levels

Based on the low level chord symbols, structural patterns have been

identified, that describe the relationships between different harmonies

in a given context. The first level of these are scale degrees, that put

a chord in relation to a key, respectively its root note. E.g. I Im7
describes a chord on the second degree of a scale, again in minor with

an added 7th. The chord on the first degree (i.e. the root note) is

called the tonic.

In a piece of music, the chord progression usually departs from the

tonic and returns to it several times. The departing and returning to

the tonic is called a cadence according to (Riemann, 1877). Although
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music theorists use the term cadence in different ways, it will be used

only with this meaning here. Within a cadence, chords are classified as

having certain functions. The tonic is the most stable function, while

the dominant (mainly the V7 chord) implies a sense of tension leading

to the tonic.

A harmonic analysis starts with the marked up chords symbols

(which are often given on metrical units such as whole or half bars)

and interprets them as a sequence of cadences. By doing that, a key

is implied. This key is often stable but in many pieces of music it will

change at some point in a modulation. A modulation is created by

chords that cannot be interpreted in the current key and imply there-

fore a change of key that is often designed in a way that the key is

ambiguous over some chords.

A simple typical example of a cadence in jazz is Dm7 − G7 − Cj.
The m7 after the D indicates a minor triad with a minor 7th added.

The j after the C indicates a major triad with a major seventh to be

added, which makes it a typical tonic chord. In Jazz, the first m7
chord is in this constellation seen as closely coupled with the following

dominant chord as a dominant function to the key a fifth below the

dominant chord (Jungbluth, 1981; Haerle, 1980). This chord sequence

is therefore normally (depending on the context) analysed as a Cadence

in C major, consisting of the degrees II, V, and I. The analysis can be

represented as a tree in this form:

Cadence

Tonic

Imaj

Cmaj7

Dominant

V7

G7

IIm7

Dm7

6.7 Grammars for Automatic Harmonic Analysis

While traditional music theory treats harmony on an intuitive level,

some efforts have been made to develop more formal models of har-

mony. The analysis can even be created automatically, when a suffi-

cient set of rules is defined. This can be done using a formal grammar,

that defines, how symbols on different levels can be related. They have

proven useful for describing natural and formal languages.

Grammars have been used in various musical contexts, see for in-

stance Eberlein (1992), Sundberg and Lindblom (1976), and Roads

(1987). The grammar implemented here is a subset of that defined

by Weyde (1994), which extends the works by Steedman (1984) and

Ulrich (1977) on grammars for jazz harmony. The main difference to

Ulrich’s work is that his system tries to find regions within a piece,

where one scale can be used. This is not necessarily identical to the

cadences within one key. The grammar introduced by Steedman does
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introduce more harmonic structure, but it mixes harmony with met-

rical structure, and it is not strictly context-free, which makes the

processing potentially more demanding.

The grammar by Weyde (1994) includes IIm-V patterns, substi-

tutions, and recursive circle-of-fifth cadences. It has variables that

regulate the use of style-specific features, such as the use of the bVII7

in BeBop, cf. Potter (1989), or the use of dominant-7 chords on the

tonic in Blues.

As there are patterns, which occur with variations and extensions,

it is necessary to include additional levels, which may seem redundant

here. E.g. a dominant can be repeated (with its dependant IIm7), so

that an intermediate level has to be included that we called a dominant

range.
In a basic grammar notation, a rule for simple cadences consisting

of dominant and tonic could look like this:

Cadence -> DominantRange TonicRange

TonicRange -> Tonic

DominantRange -> Dominant

DominantRange -> Dominant Dominant

The third rule uses two dominant symbols which may relate to dif-
ferent realisations of the dominant function, e.g. using a D7 and a
D79. To make sure that the chords in the Cadence actually relate to
the same key, information about the root needs to be added:

Cadence(Root) -> DominantRange(Root) TonicRange(Root)

DominantRange -> Dominant(Root) Dominant(Root)

DominantRange -> Dominant(fifth(Root)) Dominant(Root)

The second rule now describes a sequence of two dominants, while

the third contains the dominant to the dominant, which is a fifth

higher.

Cadence(C,j)

TonArea(C,j)

Maj7(C,j)

Cj

DomArea(C,j,1)

Dom −V(G,j,2)

Dom7(G,j)

G7

DomChain(G,j,2)

Dom−V(G,j,4)

Dom7(D,j)

D7

SubDomArea(C,j)

Maj7(F,j)

Fj7

DomArea(F,j,1)

Dom−V(F,j,4)

Dom7(F,j)

C7
Figure 6.2: Example Harmonic Anal-
ysis by a DCG

6.8 Summary

This chapter presented approaches to music representation and rea-

soning. First, a brief overview of music knowledge representation was
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given. Notably, the focus on different aspects of music such as score,

audio or metadata often results in specialised representations that are

not necessarily interoperable. Chord sequences are interesting as they

are at the intersection of several approaches and have been used for

example as generalisation of score representations and audio streams,

as well as building block of harmonic models.

Afterwards, the state of the art of music representation on the Se-

mantic Web was discussed. The OMRAS2 Music Ontology provides

an ontology for editorial metadata in RDF/OWL and has been largely

adopted in the linked web data community for publishing and querying

metadata (cf. section 6.1). In this context symbolic music represen-

tation has been addressed with the OMRAS2 Chord Ontology that

provides a large catalogue of decomposed chord symbols. Harmony

OWL (cf. section 6.2) provides a description of keys, chords and sim-

ple temporal relationships for use as datatypes in a distributed event

processing system. Both the OMRAS2 Chord Ontology and Harmony

OWL do not formally describe the logical relationships between the

represented entities and thus have limited support for automated rea-

soning tasks such as chord classification. The approach taken in Part II

is orthogonal to the existing ontologies as it focuses on modelling of

structural patterns and reasoning support in OWL. Yet, a major bene-

fit of Semantic Web technologies is the possibility to reuse and integrate

existing data and schemata. Schema integration with OMRAS2 Chord

Ontology and reuse of musical metadata in federated queries is shown

in chapter 13 and chapter 16.

Harmonic representation and analysis are major areas of musicolog-

ical research and several techniques to automate analytical tasks have

been developed in the symbolic AI community (cf. sections 6.4–6.6).

Especially grammars have been successfully used to describe and infer

the harmonic structure of chord sequences (cf. section 6.7). The meth-

ods presented in these sections are used as yardstick for developing the

expressive means of SEQ leading to a formalisation of grammars in

SEQ (cf. section 10.5). In chapter 15, they will be applied to analyse

jazz chord sequences.
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Part II

Modelling





61

This part introduces the original contributions in terms of concepts,

ontologies and algorithms for working with chord sequence patterns in

the Semantic Web.

The first chapters develops musical and sequential constructs in a

modular fashion independent of each other. In chapter 7 theMEO on-

tology is developed that models basic musical entities such as pitches,

notes, intervals and chords. In chapter 8 the SEQ ontology is developed

which provides expressive means for modelling sequential patterns re-

sembling regular expressions. Notably, both MEO and SEQ allow

the comparison of entities and patterns in terms of subsumption rela-

tionships. In chapter 9 the two modelling aspects are combined and

examples are presented of how MEO and SEQ can be used together

to describe chord sequence patterns such as the twelve bar blues.

To support the modelling of harmonic grammars, chapter 10 presents

an algorithm to rewrite grammars to SEQ patterns.

The part finishes with a description of parts of the implementation

of an API for MEO and SEQ in chapter 11.

The developed model will be applied to a set of musicological ap-

plications in Part III.
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7 Musical Entities and Simultaneities

In this chapter basic musical concepts are formalised in OWL. We

focus on elementary concepts such as pitches, notes and intervals that

are used as building blocks to define chords. In later chapters these

definitions are used together with sequential patterns to define chord

sequence patterns.

Note on Ontological Commitment. The goal of our formalisation is

to support web retrieval and analysis of chord sequences using OWL

reasoning, for example, by providing small inferences such as translat-

ing MIDI to score pitches, chords subsumption relationships between

chords or checking if concepts and sequences are well defined. The

development of a complete catalogue of musical terminology or of au-

thoritative formal definitions for musicological concepts is outside the

scope of this thesis.

7.1 Notes

A note is a sign used in musical notation to represent the relative du-

ration and pitch of a sound. This representation is mainly used by

musicians and is a central concept of music theory. Nattiez (1990,

p. 81), for example, calls notes the “atoms” of much Western music:

discretisations of musical phenomena that facilitate performance, com-

prehension, and analysis.

The qualities of a note unfold in time. In musical discourse it is

common to distinguish between perceptional qualities of a note such as

pitch and temporal qualities such as duration. We follow this distinc-

tions and conceptualise a note as being constituted of pitch properties

and temporal properties. We may express this in a DL as

Note ≡ ∃=1pitch.Pitch

⊓∃=1duration.Duration

Several conventions to label pitches exist that reflect different as-

pects of the underlying phenomenon. Score notes are used as nota-

tional abstraction in classical sheet music. In technical settings MIDI

pitch encoding is frequently used. We can thus specialise the Note

concept to include these different forms of description:

MIDINote ⊑ Note
ScoreNote ⊑ Note
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This definition allows for existence of other note types. Pitches are

physical phenomena that are characterised by their frequency. So in

settings of acoustic studies or audio processing they are often expressed

in Hertz (Hz). For example, we can add a class for the physical prop-

erties of notes

PhysicalNote ⊑ Note
PhysicalNote ⊑ ∃frequency.R

In order to restrict the allowed types closure axioms can be used

Note ≡ MIDINote⊔ ScoreNote (c1)

Note ≡ MIDINoteF ScoreNote (c2)

Both axioms define that a note has to be a MIDI or score note, but

axiom (c1) still allows instances that are of both types at the same

time while axiom (c2) is more restrictive. Which commitment is made

depends on the application.

Pitch and duration are basic properties of notes.

MIDINote ≡ ∃pitch.MP

⊓∃hasDuration.Tiks

ScoreNote ≡ ∃pitch.SP

⊓∃hasMetricDuration.Q+

7.1.1 Pitch and Pitch Class

Pitches represent the perceived fundamental frequencies of a sound. A

listener assigns perceived tones to relative positions on a musical scale

based primarily on the frequency of vibration.

The MIDI specification assigns a number 0 . . . 127 for every possible

note pitch (C, C♯, D etc.), and this number is included in the message.

MP ≡ ∃pitchNumber.{0 . . . 127}

In common score notation, seven pitch names are distinguished that

correspond to a C major scale.

G
MIDI pitch:

score pitch:

0

c

ˇ
2

d

ˇ
4

e

ˇ
5

f

ˇ
7

g

ˇ
9

a

ˇ

11

b

ˇ

Natural ⊑ Pitch
{c,d, e, f,g,a,b} ∃Natural

In common notation, the modifiers sharp (♯), flat (♭), and natural (♮)

indicate a change of the pitch. A sharp symbol raises the pitch (of a

natural note) by one half step; a flat symbol lowers it by one half step.
G

flat
♭

1

2̌

natural
♮

2

ˇ

sharp
♯

3

4ˇ
Figure 7.1: Accidentals
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SP ≡ ∃base.{c,d, e, f,g,a,b}
⊓ ∃accidental.N

⊓ ∃octave.{0 . . . 8}

7.1.2 Pitch Classes

A pitch class is a set of all pitches that are a whole number of octaves

apart, e.g. the score pitch class C consists of the Cs in all octaves. As

we can view a pitch class as an abstraction of a pitch w.r.t. octave

information we can define it as follows:

SPC ≡ ∃base.{c,d, e, f,g,a,b}
⊓ ∃accidental.N

From the definitions it follows that pitches are subsumed by pitch

classes, i.e. it is satisfied that SP ⊑ SPC.

Analogously we can define a MIDI pitch class

MPC ≡ ∃pitchClassNumber.{0 . . . 12}

Here, the subsumption between pitch and pitch class do not directly

follow as the arithmetic relationship between the two classes is not

captured yet. Ideally, we want to express these relationships using

arithmetic operations, as a pitch class can be calculated from a pitch

by division modulo 12. However, in many cases we can reduce the

problem by focusing on arithmetic equations with finite solutions that

can be enumerated algorithmically. In this case, the solutions of p
mod 12 are restricted by the finite number of MIDI pitches. This

suggests to enumerate the possible cases.

In the following, we will use a template notation with embedded

arithmetic expressions in quill brackets ‘  . . . ¡’ and that is used to gen-

erate OWL axioms. The template consists of a header that introduces

variables. Each variable is required to be defined on a finite domain.

The template body consists of a scaffold for an OWL axiom. Axioms

are generated by replacing the expressions in quill brackets with their

solutions for all possible variable bindings.

The relationship between MIDI pitches and pitch classes can be

expressed as

∀p ∈ [0 . . . 127] ∶
∃pitchNumber. p¡ ⊑ ∃pitchClassNumber. p mod 12¡
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This template generates a set of OWL axioms:

∃pitchNumber.0 ⊑ ∃pitchClassNumber.0

∃pitchNumber.1 ⊑ ∃pitchClassNumber.1

⋮
∃pitchNumber.12 ⊑ ∃pitchClassNumber.0

∃pitchNumber.13 ⊑ ∃pitchClassNumber.1

⋮
∃pitchNumber.127 ⊑ ∃pitchClassNumber.7

7.2 Pitch Type Relationships

Pitch types can be ordered according to their generality. In both the

enharmonic and non-enharmonic case pitch classes can be seen as gen-

eralisations of pitches that abstract the octave information. Our for-

malisation supports this relationship as MP ⊑ MPC and SP ⊑ SPC follow

from the definitions of the concept.

MPC

MP

SP

SPC

Figure 7.2: Subsumption lattice for
pitches (assuming enharmonic equiv-

alence)

Enharmonic Equivalence. In modern music and notation, an enhar-

monic equivalent is a note (enharmonic tone), interval (enharmonic

interval), or key signature which is equivalent to some other note, in-

terval, or key signature, but ”spelled”, or named, differently.

Given a SPC, the corresponding MPC can be inferred. This can be

achieved by adding mapping axioms from enharmonic to numeric rep-

resentation:

∀nat ∈ NaturalI ,∀alt ∈ {−ε . . . ε} ∶
∃diatonic.{ nat¡} ⊓ ∃alteration. alt¡ ⊑ ∃midiValue.{ mpval(nat) − alt¡}

where nat is a natural pitch alt is the number of accidentals within

an ε-neighbourhood (two will be sufficient for most classical pieces),

and mpval is the following map from naturals to pitch class numbers:

mpval ∶Natural→N

c ↦ 0

d ↦ 2

e ↦ 4

f ↦ 5

g ↦ 7

a ↦ 9

b ↦ 11

The distribution of values reflects that natural pitches are associated

with the ionic tone scale.

Mathematical representations of pitch conversions often don’t re-

strict the above and we thus cannot express an infinite axiomatisa-

tion. However, in common score notation we rarely find accidentals

with higher cardinality than double sharps or double flats. It is thus
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reasonable to limit the possible values for accidentals to ±2 (or ±3),

and generate the respective 12 ⋅ 5 (or 12 ⋅ 7) enharmonic equivalence

axioms.

7.3 Intervals

In music theory, the term interval describes the relationship between

the pitches of two notes. Intervals may be described as:

– vertical (or harmonic) if the two notes sound simultaneously, or

– horizontal (or melodic, linear), if the notes sound successively.

The semitone is smallest interval in Western music.

Corresponding to the classification of different types of pitches

(cf. section 7.2), we can distinguish four interval types:

mpcInt ⊑ MPC× MPC
mpInt ⊑ MP× MP
spcInt ⊑ SPC× SPC
spInt ⊑ SP× SP

Further we can construct a corresponding property subsumption lat-

tice:

mpcInt

mpInt

spInt

spcInt

Figure 7.3: Subsumptions between in-

terval relations

The quality of an interval is determined by comparison with the

intervals found in the major scale. When compared with a major scale,

a whole step is found to be equal to the distance from the first to the

second note, giving us yet another name for it: the major second.

G ¯ ¯ ¯ ¯ ¯ ¯ ¯
¯

Interval relationships between MIDI pitches have the form

∀n, m ∈ {0 . . . 127} ∶
MPC n¡× MPC m¡ ⊑ mpcInt (m − n) mod 12¡

giving a finite set of 122 axioms.

7.3.1 Expressible pitch range

Figure 7.4: Pitch range of a piano.

For our approach it is practical to restrict ourselves to a finite amount

of pitches that can be formalised in a finite set of DL axioms. The

restriction which pitches are chosen has a certain degree of arbitrari-

ness but can be based on common music practices on and perceptual

limits of human pitch recognition. Reasonable choices are for example

the 88 pitches A0 to C8 (cf. subsection 7.3.1) that form the range of a

modern piano. Another choice would be the range of MIDI pitches C−1

to G9 (1 . . . 127) though the additional pitches can be seen as technical

artifacts of the seven bit encoding that will hardly be used in perfor-

mances. The human ear can roughly perceive pitches between 20Hz
and 20kHz.
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7.3.2 Minor, Diminished, and Augmented Intervals

Consider the half step interval as an example. A chromatic half step

is a half step written as the same note twice with different accidentals

(i.e. G − G♯) while a diatonic half step is a half step that uses two

different note names (i.e. G♯ − A).

G ¯ 4¯ ¯ ¯

Figure 7.5: Chromatic and diatonic

half step

To formalise this situation, we first assert an equalNatural role

between pitches with the same natural. For each pitch label l ∈
{c,d, e, f,g,a,b} we define a mapping axiom

∃hasNatural.{ l¡} × ∃hasNatural{ l¡} ⊑ equalNatural

equalNatural ∈ sym
equalNatural ⊑ SPC× SPC

Further inequality is asserted using a role negation:

¬equalNatural ≡ unequalNatural

We then can use boolean role conjunctions to infer the harmonic in-

terpretation of a half step (i.e. spcInt1):

equalNatural⊓ spcInt1 ⊑ chromaticHalfStep

unequalNatural⊓ spcInt1 ⊑ diatonicHalfStep

This definition can analogously be defined for the remaining interval

classes.

7.4 Simultaneities

Simultaneities are musical events that occur at the same time. For

example a chord can be described as a simultaneity of pitches, though

not all pitch simultaneities are necessarily chords.

A simultaneity can be formalised using a container/containment

pattern. We define a concept Simultaneity , roles contains and its

inverse containedIn to capture containment, and a role sibling to

hold between neighbour elements in a simultaneity.
◯Simultaneity

◯

◯

◯

containedIn

containedIn

containedIn

sibling

sibling

Figure 7.6:

Pattern for representing simultaneities

Simultaneity ≡ ∃containedIn.Note

contains ⊑ Simultaneity× Note
contains ≡ containedIn−

contains ○ containedIn ⊑ sibling (sibling)

sibling ○ containedIn ⊑ containedIn (containment)

Axiom (sibling) assert the existence of simultaneity relationships be-

tween individuals that are contained in the same structure.

7.5 Chords

A chord in music is a set of notes that is heard as if sounding simulta-

neously, i.e.

Chord ⊑ Simultaneity,
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and has certain characteristics.

The most frequently encountered chords in theory and music are

triads, so called because they consist of three distinct notes. Further

notes may be added to give seventh chords, extended chords, or added

tone chords. The most common chords are the major and minor triads

and then the augmented and diminished triads. They constitute the

basic chordal quality.

Chord ≡ ∃triad.{maj,min,aug,dim}

Tonal centricity is an ubiquitous phenomenon in Western music.

Chords invoke the perception of having a tonal centre called the root

note of the chord. In musical training students learn verbal labelling

of the root note as a basic skill. The root of a chord is the note or

pitch upon which the chord is tonally centred. Note that the root note

is not not necessarily the lowest note of a chord. The lowest note of a

chord is called the bass.

7.5.1 Chord Subsumption

An interesting aspect of chords in music analysis is the question as

to whether a given chord is subsumed by another chord. This means

that it has the same root and contains the same notes added to the

root. The advantage of modelling a chord as a simultaneity is that

the notes contained in the chord are explicitly modelled, not just the

symbol used to describe it.
G

C

ˇˇˇ
C△7

ˇˇˇ
ˇ

C△9

ˇˇˇ
ˇˇ

Figure 7.7: Chord Extensions

The music example in Figure 7.7 illustrates the relevance of describ-

ing relationships between chord extension. The second chord is clearly

a superset of the first, therefore the first concept should subsume the

second. The third chord is a superset of the second, and therefore

the second and first concept should subsume the third. Using the

OMRAS 2 Chord Ontology, only the first subsumption would be de-

tected by a reasoner, while the third chord symbol does not contain

the 7 which is part of the second chord. In MEO both subsumptions

would be detected, because the notes are compared rather than the

symbols. This is an important feature for harmonic analysis in Jazz,

where C△7 and C△9 are both treated as acceptable realisations of a

major chord.

7.6 Summary

This chapter described the OWL ontology MEO for musical entities.

Basic musical entities — pitches, notes, intervals and chords — have

been modelled. Notably, subsumption can be used to describe and de-

duce musical relationships such as assigning MIDI pitch classes to score

pitches, or organising chord variants according to their extensions.

The next chapter will describe SEQ constructs — means to describe

sequential structures. chapter 9 introduces examples of howMEO and

SEQ can be combined to describe chord sequence patterns such as the
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twelve bar blues. Further, Part III uses MEO in various application

scenarios such as harmonic analysis and web queries.
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8 Sequential Patterns

This chapter introduces modelling constructs for sequential patterns in

OWL, we call SEQ. Constructs that resemble regular expression are

introduced. Further, the possibilities to use subsumption reasoning

to compare and classify sequential patterns are investigated. Parts of

these results have also been published in Wissmann et al. (2010).

8.1 Modelling sequences in OWL

The wish to model sequences arises naturally in the music domain,

given its temporal nature. Unfortunately, there are no native con-

structs within OWL DL to express sequence patterns. Drummond

et al. (2006b) proposed to use a linked list approach. We extended

this approach and developed SEQ, an ontological representation of

sequence patterns.

In the following we describe the axiomatisation of basic SEQ pat-

terns and give examples. The axiomatisation of the linked list structure

follows the ideas of Drummond et al. (2006b). One difference is that we

introduce an initial component because this is crucial for the behaviour

of pattern subsumption and for the creation of more complex pattern

constructs. Further we introduce a notation to express sequences in a

more intuitive (yet formal) way.

The core structure of a SEQ pattern is similar to a linked list.

Figure 8.1 shows an example. Components of patterns are linked by

solid dots. Each component can be associated with linking and con-

tent properties: Linking is expressed by using the functional property

seq:hasNext (solid arrow) that connects a component to its immediate

successor or by using the transitive property seq:followedBy (dashed

arrow) that connects a component to all following components. A pat-

tern is characterised by restricting these properties. As the subprop-

erty relationship seq:hasNext ⊑ seq:followedBy is asserted for SEQ
patterns, seq:followedBy relationships are are implicitly defined be-

tween all connected components (dotted arrows).

The property seq:hasContent can be used to describe the content

of a pattern component. Finally, we introduce an intital component

(α) with no precursor and no content and a final component (ω) with

no successor and no content (see following section for definitions). A

sequence pattern SP1 that describes sequences that consist of “some

instances of W, then X, then Y, then followed by Z” (as shown in Fig-
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●
α

●

W

●

X

●

Y

●

Z

●
ω

seq:followedBy seq:hasNext

seq:hasContent

seq:hasNext

seq:hasContent

seq:followedBy

seq:hasContent

seq:followedBy

seq:hasContent

Figure 8.1: Structure of an example

sequential pattern

ure 8.1) can be described by the DL concept

SP1 ≡ ⊓ ∃seq:followedBy.(∃seq:hasContent.W

⊓ ∃seq:hasNext.(∃seq:hasContent.X

⊓ ∃seq:hasNext.(∃seq:hasContent.Y

⊓ ∃seq:followedBy.(∃seq:hasContent.Z

⊓ ∃seq:followedBy.ω))))

For simplification, we can state this expression equivalently in SEQ
notation as

SP1 ≡ [W] ⊳ [X] ⊳ [Y]⋯[Z]

with α and ω not explicitly stated and arrows, dots and square brackets

capturing the details of the succeeds, follows and content restrictions.

Consider, the pattern

SP2 ≡ [W] ⊳ [X] ⊳ [Y] ⊳ [Z]

The difference with SP1 here is that Y has to be directly followed by

Z. Intuitively we expect that SP2 is more specialised than SP1 and all

instances of SP2 will also be instances of SP1. As we have formalised

SEQ patterns as DL concepts, we can directly use the machinery for

computing DL concept subsumption to automatically compute pat-

tern subsumption. In this case a standard DL reasoner will infer the

subsumption relationship SP2 ⊑ SP1 (taking into consideration that

seq:hasNext is a subproperty of seq:followedBy).

The possibilities of subsumption reasoning get more interesting

when we use concept expressions (such as we have done in the Musician

example on page 20) rather than simple concept names. For example

we could define a chord by its properties, e.g.

⎡⎢⎢⎢⎢⎢⎢⎣

∃ root . C
⊓ ∃ triad . Maj
⊓ ∃ seventh . b7

⎤⎥⎥⎥⎥⎥⎥⎦
where the pattern characterises a chord by the properties root, triad

and seventh. Given another more general pattern that for example
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only restricts root and triad a reasoner could infer a subsumption re-

lationship such as

⎡⎢⎢⎢⎢⎢⎢⎣

∃ root . C
⊓ ∃ triad . Maj
⊓ ∃ seventh . b7

⎤⎥⎥⎥⎥⎥⎥⎦

⊑ [ ∃ root . C
⊓ ∃ triad . Maj

]

In the work described in the following section we restrict ourselves

to patterns that describe their content as a conjunction of features

(functional properties) as we can discover patterns of this form auto-

matically using the pattern discovery method by Conklin (2010). Note,

that in principle it is also possible to make use of further DL operators

when defining patterns. For example, the pattern

[ ∃ root . ¬(F⊔ G)
⊓ ∃ triad . Maj

]

matches major chords that have a root other then F or G, and given

our previous example pattern would give rise to the subsumption re-

lationship:

⎡⎢⎢⎢⎢⎢⎢⎣

∃ root . C
⊓ ∃ triad . Maj
⊓ ∃ seventh . b7

⎤⎥⎥⎥⎥⎥⎥⎦

⊑ [ ∃ root . ¬(F⊔ G)
⊓ ∃ triad . Maj

]

Naturally the question arises how such patterns can be created in

practise. As manual modelling is often costly and time consuming, it

is interesting to investigate methods for automatic pattern creation.

In the following section we will outline the relationship of the SEQ
formalism to the established viewpoint approach to automatic pattern

discovery.

8.2 Approach to defining SEQ constructs

Concepts, roles and individuals are the modelling primitives of De-

scription Logics. SEQ constructs translate into one of these types and

additionally to a set of axioms that further describe these. We use the

notation ‘∶=KB’ for the translation from SEQ constructs to DL entities,

where KB is a knowledge base that the translation is operating on. For

some SEQ constructs the translation requires additional axioms to be

included into the knowledge base. We then state that some axioms αi

are included into a knowledge base KB by writing KB ⊇ {αi}.

8.3 Sequence Pattern

In the following we define syntax and semantics of the SEQ constructs

that were informally introduced in the previous section.

Definition 15 (Content Restriction). A content restriction [C]
is defined as a concept expression

[C] ∶=KB ∃seq:hasContent.C
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with KB ⊇ {fun seq:hasContent}.

Definition 16 (Succession). For two concepts C and D a direct

successor restriction is defined as concept expression

C ⊳ D ∶=KB C⊓∃seq:hasNext.D

and a general successor restriction is defined as

C⋯D ∶=KB C⊓∃seq:followedBy.D

Analogously we define corresponding precursor restrictions using in-

verse role as

C ⊳− D ∶=KB C⊓∃seq:hasNext−.D

C⋯−D ∶=KB C⊓∃seq:followedBy−.D

and successor negation restriction using concept negation as

C /⊳ D ∶=KB C⊓¬∃seq:hasNext.D

C /⋯ D ∶=KB C⊓¬∃seq:followedBy.D

We use the symbol ⊙ ∈ {⊳,⋯} as a notational shortcut in definitions

that are defined for each type of succession but do not differ otherwise.

Definition 17 (Initial and Terminal Component). A sequence

is enclosed by an initial component α and a terminal component ω,

defined as the concepts:

α ∶=KB ¬∃seq:followedBy−.⊺⊓ ∃≤0seq:hasContent.⊺
ω ∶=KB ¬∃seq:followedBy.⊺⊓ ∃≤0seq:hasContent.⊺

8.4 Sequence Instances

Definition 18 (Successor Assertion). A (direct) successor asser-

tion is an individual

c1 ▸ . . . ▸ cn ∶=KB c1

together with a set of assertions

KB ⊆ {seq:hasNext(ci, ci+1) ∣ 1 ≤ i < n}

Note that we can omit additional type assertions to state that c1 and c2

are instances of seq:Component here as their type is implicitly defined

by assertions of domain and range of the seq:hasNext relationship.
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Definition 19 (Content Assertion). A content assertion is a

fresh anonymous individual

[t] ∶=KB :c

for which is asserted that

{seq:hasContent( :c, t)} ⊆ KB

Note that by definition of seq:hasContent this implies also the as-

sertion that :c ∃seq:Component.

Some knowledge representation formalism provide means to specify

an object by a list of types and features. One example is frames (Min-

sky, 1981). The following notation uses a frame-like style to express

properties of the content of a component.

Definition 20 (Content Properties Assertion). A content

properties assertion is a content assertionl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∃ C1

⋮
∃ Cn

R1 . a1

⋮ ⋮
Rm . am

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∶=KB [ :t]

where the content :t is described by

KB ⊇ { :t ∃

n
⊓
i=1

Ci} ∪
m
⋃
i=1

{Ri( :t,ai)}

We introduced the concepts α and ω as markers for the initial and

terminal component. These can be used to “close” a sequence by as-

serting individuals of type α and ω at the beginning and end of the

list. We incorporate this in our definition of a sequence instance:

Definition 21 (Sequence Assertion). A sequence assertion be-

tween individuals c1, . . . , cn is defined as

2c1 ▸ . . . ▸ cn7 ∶=KB :a ▸ c1 ▸ . . . ▸ cn ▸ :o

together with the assertions :a ∃α and :o ∃ω.

We are interested in being able to refer to a sequence as a whole

in order to make statements about a sequence such as adding editorial

metadata or relating it to another sequence. In OWL DL we cannot

directly refer to a structure as would be possible in a higher order

logic. Rather we are restricted to single individuals and roles between

these. Therefore we have to provide an individual that represents
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a sequence and then either explicitly relate this individual to every

component contained in the sequence are point somewhere into the

sequence and provide means to compute the contained elements by

following role paths. Note that these requirements are already met by

our definition of α as it is related to every component of the sequence

via a seq:followedBy role — either explicitly given or inferable.

We can now assert additional statements about the sequence by

referring to the representative individual. For example, we can give

the sequence an explicit name:

Example 8.1 (Naming a Sequence) Given above definition we

can assert a name for a sequence by writing:

n ∶=KB 2[c1] ▸ . . . ▸ [cn]7

The sequence closure assertion 2[c1] ▸ . . . ▸ [cn]7 is translated to an

anonymous individual :a with the additional axioms that define

structure and content. The expression then becomes an equality state-

ment between the named and the anonymous individual, i.e. n = :a.

Further, we can assert a pattern to a sequence:

Example 8.2 (Assigning a pattern) A sequence type assertion

2c1 ▸ . . . ▸ cn7 ∃C

denotes a sequence closure assertion together with an individual equal-

ity assertion on its initial component, i.e.

8.5 Sequence construction and Pattern Labelling

Finding occurrences of a pattern in a list is a typical query use case.

Such a use case requires to relate a pattern either to the whole list or

to substructures such as segments or components. Examining the DL

concept OWLList, we find that it does not correspond to a list in its

totality. Rather it describes a component in a linked list pattern. SEQ
uses the concept name Component instead of OWLList to clarify this

and after a discussion of some preliminaries a concept Sequence that

identifies a single individual as “being” the list will be introduced.

As patterns are DL concept, i.e. unary FOL predicates, they assign

the property of being instances of the pattern concept to single individ-

uals. In the examples by Drummond et al. (2006b), the relationship of

this assignment does not always correspond to the intended meaning.

Figure 8.2 illustrates the possible effect of different starting constructs

on list classification.

The pattern P1 ≡ [A] ⊳ [B] is a simple pattern construct that Drum-

mond et al. (2006b) paraphrases as “starts with”. In the example
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:i ▸ [x] ▸ [a] ▸ [b] ▸ [y] ▸ :t

with :i ∃α, t ∃ω, a ∃A, b ∃B, :x ∃X

P4 ≡ α⋯[A] ⊳ [B]

P5 ≡ α ⊳ [X] ⊳ [A] ⊳ [B]

P3 ≡ P1⊔ P2

P2 ≡ ⊺⋯[A] ⊳ [B]

P1 ≡ [A] ⊳ [B]
matching not matching

α ⊳ [A] ⊳ [B]

[A] ⊳ [B] ⊳ ω

Figure 8.2: Examples for the effect of

different starting constructs on type-

classifications. Arrows denote type-
relationships.

sequence instance it is just assigned to the single component [a]. Clas-

sifying or labelling the first component instance in this way seems to

capture the intended meaning. We call this a γ-labelling. P2 labels

“something followed by A B”. We call the resulting labelling a pre-
labelling as it labels all concepts that precede the first named compo-

nent (here [A]). P3 is an extension of P2 that also includes the named

component. Drummond et al. (2006b) discusses this type of construct

(in L5) as expressing the meaning of list containment. This formal-

isation seems not intuitive to us. In particular, one would expect a

query for pattern-in-list-occurrence to return a single reference to a

list rather then several references to components. We address this

problem in SEQ by adding a starting construct α that behaves sym-

metrically to the ω construct in that it disallows content and preceding

components. In our example, α is such a start construct. We can see

that given such individual that is guaranteed to proceed all other com-

ponents, we can now express patterns as P4 and P5 that exactly label

this component. Moreover, P5 now captures the notion of contain-

ment. Queries for containment would return just this component. We

call this an α-labelling.

8.6 Separation of sequential structure and containment

The hasContent role separates instances that represent the sequen-

tial structure and instances that represent content. To illustrate its

necessity, consider the pattern type relationships

(a ▸ b) ∃ (A ⊳ B)

and

([a] ▸ [b]) ∃ ([A] ⊳ [B])
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where a ∃A and b ∃B. Both patterns are satisfiable. Yet, they differ

in the degree of separation between sequence structure and content

domain. In the first case we implicitly specialised the type of a and b

as the succession relationship is defined between components. Hence,

it follows that

a ∃(A⊓ seq:Component)
b ∃(B⊓ seq:Component)

This style of definition adds additional inferences to the content

domain which may be unwanted. For example, a sequence a▸b▸a that

contains the same individuals at different positions in the sequence will

lead to an inconsistency with the acyclic defined Sequence concept,

whereas a sequence [a] ▸ [b] ▸ [a] may contain same individuals as

content while the three distinct anonymous individuals that represent

the components ensure the acyclic order.

8.7 Repetition

Definition 22 (One or more C).

C+ ⊳ D ∶=KB :R w.r.t. KB ⊇ { :R ≡ C ⊳ (D⊔ :R)}
C+⋯D ∶=KB :R w.r.t. KB ⊇ { :R ≡ C⋯(D⊔ :R)}

Definition 23 (None or more C).

C∗ ⊳ D ∶=KB D⊔ (C+ ⊳ D)
C∗⋯D ∶=KB D⊔ (C+⋯D)

Drummond et al. (2006b) gave examples of how to model repetitions

in OWLList and informally introduced star (∗) and plus (+) notation

repetitive pattern. They first discussed a list of just A’s (A∗) that

they formalised L2 ≡ [A]∀⋯[A]. As obvious in the SEQ notation, the

meaning of this definition is different from a regular expressions, as it

actually does not allow an empty list. Further, it is not composable, for

example in order to define a pattern of As and then a B as the universal

quantifier would disallow a B to follow. SEQ therefore models star-

repetition differently based on plus-repetition.

Drummond et al. (2006b) show how a recursive definition can be

used to construct a list of “As then B”: L6 ≡ [A] ⊳ ([B] ⊔ L6). This

is a nice definition though it leaves open the question how to deal

with compositional cases. For the example of the definition of a list of

“As then Bs” would require two recursions. The main idea to enable

complex composition is to generate new recursive axioms for each plus
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or star construct. A star pattern is defined based on the observation

that all star instances can also be classified either by a corresponding

plus pattern or a pattern that omits the star component.

8.8 Number Restrictions

Number restrictions are useful patterns for sequence definition. For

example, we are interested in expressing to describe the minimal,
maximal or exact number of occurrences of a kind of component such

as a certain kind of chords. Further, we distinguish restrictions about

the number of successive components (e.g. “minimally three succes-

sive major chords”) or about the number distributed components. (e.g.

“minimally three major chords distributed in the whole sequence”).

Number restrictions for subsequent (Cn) or distributed components

(Cn
⋯) are modelled by writing them out as n components connected by

seq:hasNext and seq:followedBy relationships respectively.

8.8.1 Number Restriction of Successive γ-Components

To restrict the minimal number of successive components of a certain

type it is sufficient to state that the component type occurs n-times

successively and not impose any further restrictions about what follows

Definition 24 (Successive γ Minimal Number Restriction).

C≥1 ∶=KB C

C≥n ∶=KB C ⊳ C≥n−1 for n ∈ N, n ≥ 2

We can specialise this definition to express a restriction of the exact

number of successive components by explicitly disallowing a compo-

nent of the same type after a certain number of successive components.

Definition 25 (Successive γ Exact Number Restriction).

C=1 ∶= C /⊳ C

C=n ∶= C ⊳ C=n−1 for n ∈ N, n ≥ 2

Finally we can describe a maximal number restriction by noting

that it describes the possibility of a number of different exact-length

sequences. We combine the possibilities using disjunction.

Definition 26 (Successive γ Maximal Number Restriction).

C≤1 ∶=KB C=1

C≤n ∶=KB C=n ⊔C≤n−1 for n ∈ N, n ≥ 2



80

8.8.2 Number Restriction of Distributed γ-Components

Restrictions of the minimal number of following γ-components of a

certain type can be defined analogously to the definition of successive

γ number restrictions by replacing seq:hasNext with seq:followedBy.

Definition 27 (Following γ Minimal Number Restriction).

C≥1 ∶=KB C

C≥n ∶=KB C⋯C≥n−1 for n ∈ N, n ≥ 2

Definition 28 (Following γ Exact Number Restriction).

C=1 ∶=KB C /⋯ C

C=n ∶=KB C⋯C=n−1 for n ∈ N, n ≥ 2

Definition 29 (Following γ Maximal Number Restriction).

C≤1 = C=1

C≤n = C=n ⊔C≤n−1 for n ∈ N, n ≥ 2

8.8.3 Number Restrictions in α-pattern

“Global” number restrictions, i.e. restrictions of the number of occur-

rences of a component type throughout the whole sequence, can be

expressed as restricted α-pattern.

Definition 30 (Exact Distributed Cardinality in α ).

α ⊳ C=n ∶=KB α⋯Cn
⋯ ⊓¬⋯Cn

⋯ for n ∈ N, n ≥ 1

α ⊳ C=0 ∶=KB α ⊳ ¬⋯C

Definition 31 (Maximal Distributed Cardinality in α).

α ⊳ C≤n ∶=KB C=n ⊔ α ⊳ C≤n−1 for n ∈ N, n ≥ 1

α ⊳ C≤0 ∶=KB α ⊳ C=0

8.9 Sequence Definition

Having focused on elements to specify sequential structure up to now,

we can now attempt to formalise the concept of sequence. A sequence

should be specified in a way that enables:
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Referring to a sequence. It should be possible to refer to a sequence

using a unique reference or name.

Referring to the content of the sequence. Given the sequence name it

should be possible to retrieve its elements.

Guaranteeing integrity of sequential structure. The definition should

capture well-formedness constraints of sequential structure and thus

enable verification.

In order to reference to a sequence as a whole, it sufficient to pro-

vide a concept seq:Sequence that is independent of other domain con-

cepts, especially components and contents. With respect to sequential

structure we introduced concepts for beginning (α) and end (ω) of a

sequence. These concepts can be related in an expression α⋯ω that

defines boundedness of a sequence. These ideas can be merged into a

single definition:

seq:Sequence ≡ α⋯ω

In this case the individual of type α would be the identifier of a

sequence as a whole iff it is additionally followed by an end. This defi-

nition still allows underspecified ABox instances where seq:followedBy

relationships are used instead of seq:hasNext as, for example, in the

ABox, such as α ▸ [a]⋯[b] ▸ω. Further, the type of the components

is not specified, e.g. there can be sequences with components without

content.

Additional restrictions can be imposed to define stronger notions

of valid sequential structure. For example, the following definition

enforces the existence of direct successors and of contents:

seq:Sequence ≡ α ⊳ γ∗ ⊳ ω with KB ⊇ {γ ≡ [⊺]}

8.10 Pattern Subsumption

Sequence pattern can be organised according to their degree of gener-

ality. Conklin (1994) uses the notion of“contains”-semantics of pattern

subsumption for multiple viewpoint patterns, where a pattern P is sub-

sumed by a pattern Q iff all sequences described by P are also described

by Q. As an example, consider the subsumptions of String patterns

defined by a substring matcher for ‘ab’ and a wildcard ‘⋆’ as illustrated

in the following subsumption lattice:

⋆

⋆ab⋆

⋆ab

ab

ab⋆
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As we have defined sequential patterns as DL concepts, we are also

able classify them w.r.t. general DL concept subsumption (C ⊑ D).

Concept subsumption captures above notion of“contains”subsumption

to some extent. Considering the examples

KB ⊧ [A] ⊳ [B] ⊳ ω ⊑ [A] ⊳ [B]
KB ⊧ [A] ⊳ [B] /⊑ [A] ⊳ [B] ⊳ ω

KB ⊧ [A] ⊳ [B] ⊳ [X] ⊑ [A] ⊳ [B]
KB ⊧ [A] ⊳ [X] /⊑ [A] ⊳ [B]

we find that we can specialise a pattern by appending it while altering

some of the pattern components breaks the subsumption. Note that

all of these examples start with the same type of component, in this

case [A]. Unfortunately, when we use patterns that start with different

component types we find a different subsumption behaviour:

KB ⊧ α ⊳ [A] ⊳ [B] /⊑ [A] ⊳ [B]
KB ⊧ [X] ⊳ [A] ⊳ [B] /⊑ [A] ⊳ [B]
KB ⊧ . . . [A] ⊳ [B] /⊑ [A] ⊳ [B]

From the point of view of sequence subsumption we would have

expected a symmetric subsumption behaviour when we append to the

left or to the right. Similar problems occur when we express our initial

example with SEQ-expressions as follows:

α γ

[A] ⊳ [B]⋯ω

α ⊳ [A] ⊳ [B]⋯ω [A] ⊳ [B] ⊳ ω

α ⊳ [A] ⊳ [B] ⊳ ω

The root of the problem becomes apparent if we recall that from the

point of view of DL subsumption reasoning we compare tree-shaped

patterns. For example, a pattern [C1] ⊳ [C2] ⊳ . . . ⊳ [Cn] ⊳ ω corre-

sponds to a tree pattern

γ

C1

[]

γ

Cn

[]

ω

⊳

⊳

Observe, that appending to the right of a sequence corresponds to

specialising the root concept [C1] which is reflected in the DL sub-

sumption just in the way we want for sequence subsumption, but that



sequential patterns 83

we change the root when we append to the left of the sequence, thus

leading to the unsatisfiable subsumptions in the examples.

One strategy to establish a symmetric subsumption behaviour when

appending left or right is to “fix the root’ ’. One idea is based on the

observation that in the case of α-patterns there are (by definition of α)

no preceding components, and that α therefore is a candidate for a

common pattern-root:

α

γ

C1

[]

γ

Cn

[]

ω
⊳

⊳

⊳

Naturally, we do not want to restrict our selves to compare the com-

ponent directly after the α and thus use seq:hasNext and seq:followedBy

as appropriate. For every γ-pattern Γ we can define an α-pattern α⋯Γ
that states that the Γ pattern is occurring at some place in the se-

quence. By translating all γ-patterns in our example into α-patterns

we can thus capture the intended subsumption behaviour

KBSEQ ⊧ α⋯ [A] ⊳ [B] ⊳ [X] ⊑ α⋯[A] ⊳ [B]
KBSEQ ⊧ α⋯[X] ⊳ [A] ⊳ [B] ⊑ α⋯[A] ⊳ [B]

Depicted as subsumption lattice:

α

α⋯[A] ⊳ [B]⋯ω

α ⊳ [A] ⊳ [B]⋯ω α⋯[A] ⊳ [B] ⊳ ω

α ⊳ [A] ⊳ [B] ⊳ ω

We have thus demonstrated a way to express “contains”-semantics

based on α-patterns (eventually combined with a seq:followedBy re-

striction).
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Definition 32 (α-subsumption). We call a concept subsumption

an α-subsumption, denoted C ⊑α D iff C ⊑ D and C,D ∃α.

Definition 33 (γ-subsumption). We call a concept subsumption

a γ-subsumption, denoted C ⊑γ D iff C ⊑ D and C,D ∃γ .

Note that in α-patterns the reference to the matched content is less

obvious than in γ-patterns. For example, a pattern [A] ⊳ [B] would

directly refer to an individual [A], while a pattern α⋯[A] ⊳ [B] would

not. Sometimes this is not satisfying as we want to maintain the rela-

tionship between a pattern and the place it occurs inside the sequence.

Thus, a pattern definition that match the γ-individual and does not

change subsumption behaviour when left-appending is required. We

can achieve this behaviour by constructing a concept using inverse

roles. For example, consider the pattern

α ⊳ [C1] ⊳ . . . ⊳ [Ci] ⊳ . . . ⊳ [Cn] ⊳ ω

that has an α-component as root and describes all elements as succes-

sors. We can describe a pattern that would match the same instances

but has the γ-component with content Ci by defining all precursors

using inverse roles

[Ci] ⊳ . . . ⊳ [Cn] ⊳ ω

⊓ ⊳− . . . ⊳− [C1] ⊳− α

which we can depict as follows:

γ

γ

γ

α

⊳−

C1

[]

⊳−

⊳−

Ci

[]

γ

γ

Cn

[]

ω

⊳

⊳

⊳

For convenience we introduce additional syntax:

Definition 34 (Inverse construction). Let C0, . . . ,Cn be compo-

nents. Then an inverse construction is defined as

Cn ⊙n . . .C1⊙1←ÐÐÐÐÐÐÐÐÐ
C0 ∶=KB C0 ⊙−1 C1 ⊙−2 . . .⊙−n Cn

where ⊙i ∈ {⊳,⋯}.
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Using γ-patterns with inverse constructions we can now express our

initial example such that a symmetric subsumption for γ-patterns can

be found:

γ

α⋯←Ð[A] ⊳ [B]⋯ω

α ⊳←Ð[A] ⊳ [B]⋯ω α⋯←Ð[A] ⊳ [B] ⊳ ω

α ⊳←Ð[A] ⊳ [B] ⊳ ω

Example 8.3 (Classification using Inverse Construction)

Inverse constructions can be helpful to define the position in a

pattern. The patterns [C] ⊳ [D] ⊳ [E], [C] ⊳
←ÐÐÐ

[D] ⊳ [E] and

[C] ⊳ [D] ⊳
←ÐÐÐÐÐÐÐ

[E] all impose the same restrictions with regard to type

and succession of the contents of a sequence but will match different

individuals within a sequence:

[x
]
▸

[c
]

∃[C] ⊳ [D] ⊳ [E]

▸
[d

] ∃[C] ⊳
←ÐÐÐ

[D] ⊳ [E]

▸
[e
]

∃[C] ⊳ [D] ⊳
←ÐÐÐÐÐÐÐ

[E]

▸
[y

]

Example 8.4 (Subsumption of progression patterns)

Musical progression often develop towards a stable state such

as a tonic chord. In this situation the use inverse construction to

capture musically interesting subsumptions. For example, given the

circle progressions

P1 ≡ [VIm] ⊳ [IIm9] ⊳ [V9♯13♭] ⊳
←ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ

[I]

P2 ≡ [IIm] ⊳ [V] ⊳
←ÐÐÐÐÐÐÐÐ

[I]
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and some background knowledge about chord relationships it con be

inferred that P2 ⊑ P1. The subsumption would not be inferred without

inverse constructs here as the patterns would be compared left to right

beginning with to the first component.

8.11 Concatenation of Sequential Patterns

Motivation. Concatenation of sequential patterns is the combination

of two arbitrary predefined patterns to a new composed pattern. The

previously defined sequential constructs (⊳, ⋯) behave as a head-tail

concatenation that does not exhibit the desired semantics if the first

pattern is of length greater than 1.

To solve this we introduce a new concatenation construct C
⊳++D

together with an algorithm that (1) introspects the expression C,

(2) identifies the subconcepts in C that represent the terminal γ-

components and (3) appends the expression D to them.

Remark 8.1 (Blending effect) The succession constructs ⊳ and

⋯ do not capture concatenation. For example, given two defined pat-

terns

P ≡ P1 ⊳ . . . ⊳ Pm

Q ≡ Q1 ⊳ . . . ⊳ Qn

we would like to define a new pattern by concatenating P and Q.

Using succession P ⊳ Q it holds that

P ⊳ Q ≡ P ⊳ Q1 ⊳ . . . ⊳ Qn

A correct concatenation behaviour would now be achieved if P ⊳ Q

would imply a restriction of Pm to ∃seq:hasNext.Q. However,

P ⊳ Q /≡ P1 ⊳ . . . ⊳ Pm ⊳ Q1 ⊳ . . . ⊳ Qn

as the pattern defines a restriction relative to the root concept of P,

i.e. on P1.

P ⊳ Q ≡ P1 ⊳ (P2 ⊓Q1) ⊳ . . . ⊳ (Pm ⊓Qn−1) ⊳ Qn

In order to express a concatenation, we need to restrict the ⊳-

role of the last component of P to the range Q. Therefore we define

the semantics the concatenation construct C
⊳++D using a recursive

algorithm that identifies the last components.

Outline of the Concatenation Process. A concept that represents a

concatenation C
⊳++D is algorithmically constructed. The algorithm

The proposed concatenation process for a construct C
⊳++D is that

the it is a specialised concept τD(C) derived
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1. the concept C is traversed along ⊳/⋯paths.

2. The traversal simply copies the concept until it reaches the last

γ-components on the ⊳/⋯paths.

3. These last γ-components Γ1, . . . , Γn are replaced by a specialised by

append of C to Γi ⊳ D.

During the process bookkeeping of traversed concepts has to be done

in order to define blocking conditions in case of cyclic concepts such

as C+.

A normal form for path traversal. In order to identify the last com-

ponents the algorithm traverses the sequence pattern C along the se-

quential role restrictions (⊳/⋯). There can be more than one pos-

sible path and many last components. For example, the concept

C ≡ C1 ⊳ (C2 ⊔C′2) defines a choice of possible successors using disjunc-

tion. Hence, the algorithm needs to consider different paths. Further,

care has to be taken regarding conjunctions of sequence role restric-

tions. Consider the pattern C ≡ (C1 ⊳ C2 ⊳ C3) ⊓ (C′1 ⊳ C′2). In this

example we can see that C3 is a last component while C′2 is not a

last component as it is conjunct to C2 and thus followed by C3. If we

restate the concept as C ≡ (C1 ⊓C′1) ⊳ (C2 ⊓C′2) ⊳ C3 the interrela-

tionship between sequence constructs and intersection becomes more

structurally accessible and we can directly follow the seq:hasNext.

We therefore introduce a normal form which allows to traverse ad-

ditive pathes as one path while branching at disjunctions.

Definition 35 (Disjunctive Normal Form). A statement is in

disjunctive normal form (DNF) if it is a disjunction consisting of one

or more disjuncts, each of which is a conjunction of possibly negated

concept names or role restrictions, i.e. has the form

dnf(C) = ⊔
i
⊓

j
(¬)Cij

A concept C can be transformed into dnf(C) by applying the fol-

lowing procedure:

1. Distribute negation over any conjunctions or disjunctions ac-

cording to deMorgan’s laws

¬(C⊓D) ↝ ¬C⊔¬D
¬(C⊔D) ↝ ¬C⊓¬D

until negation is only applied to atomic concepts. Remove

double negations where these arise.

2. Let disjuncts(C) ∶= {Ci ∣ C1 ⊔C2 ⊔ . . .⊔Cm} denote the set of

disjuncts within a concept expression C. The disjunctive nor-

mal form is computed by exhaustively applying the following

rules:

dnf(C⊔D)↝ dnf(C)⊔dnf(D)

dnf(C⊓D)↝ ⊔ Ci∈disjuncts(dnf(C))
Dj∈disjuncts(dnf(D))

Ci ⊓Dj
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3. Remove duplicates of atomic concepts and negated atomic con-

cepts in an “inner” conjunction. Finally if the exact same

“inner” conjunction appears more than once in the “outer”

disjunction, that duplication can be eliminated by removing

one copy.

4. Finally, simplify the SEQ property restrictions by exhaustively

applying the following rules:

∃seq:hasNext.C⊓∃seq:hasNext.D↝ ∃seq:hasNext.C⊓D
∃seq:followedBy.C⊓∃seq:followedBy.D↝ ∃seq:followedBy.C⊓D

Definition 36 (Sequence Concatenation). The concatenation

of two concepts C and D, denoted C
⊳++D, is defined as

C
⊳++D ∶= τσ(dnf(C))

where σ is a specialisation function σ ∶= Γ ↦ Γ ⊳ D and the transfor-

mation τσ is recursively defined as follows:

τσ(C1 ⊔ . . . ⊔Cn) = τσ(C1) ⊔ . . . ⊔ τσ(Cn)

τσ(C1 ⊓ . . . ⊓Cn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if ∣C⋯∣ > 0 ⊓
Ci∈C

⋯
τσ(Ci) ⊓ ⊓

Cj∈C∖C
⋯
Cj

else if ∣C⊳∣ > 0 ⊓
Ci∈C

⊳
τσ(Ci) ⊓ ⊓

Cj∈C∖C
⊳
Cj

otherwise σ(C1 ⊓ . . . ⊓Cn)
where C ∶= {C1, . . . ,Cn},

C⋯ ∶= {Ci ∣ Ci ∈ C and Ci is a ⊳-expression},

C⊳ ∶= {Ci ∣ Ci ∈ C and Ci is a ⋯-expression}
τσ(qR.C) = τσ(dnf(C))

A concatenation C
⋯++ D that appends a component via a

seq:followedBy restriction can be computed analogously using a spe-

cialisation function σ = Γ ↦ Γ⋯D.

Expansion behaviour. The concatenation operator identify the leaves

of the concept tree of its first operand and specialises with a succession

restriction to the second operand. Therefore the second operand is

duplicated as often as there are leaves.

8.12 Summary

This chapter described the SEQ representation for chord sequence pat-

terns in OWL-DL based on the OWLList representation by Drummond
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et al. (2006b). Notation and expressivity are similar to regular ex-

pressions, and allow the expression of different levels of abstraction

with respect to subsumption of chords. Several reasoning services on

such a representation can be implemented using OWL reasoners. In

a web retrieval scenario, for example, instance checking can be used

to find chord sequences that match or contain a search pattern (cf.

chapter 16). Subsumption checking can be used to compare pattern

inclusion (cf. section 14.3).

Summarising, we have defined the following constructs:

Notation Meaning

C ⊳ D C then directly D (head-tail composition)

C⋯D C followed by D (head-tail composition)

C
⊳++D C then directly D (concatenation)

C
⋯++D C followed by D (concatenation)

C+ one or more C

C∗ none or more C

C≤n maximally n C

C≥n minimally n C

C=n exactly n C

α initial component

γ component with content

ω terminal component

Table 8.1: Summary of SEQ con-
structs

Care has to be taken regarding the intended labelling and subsump-

tion behaviour of sequence patterns. In order to avoid non-symmetric

subsumption behaviour, the notions of α-patterns and γ-patterns have

been introduced, which by restricting general DL subsumption to

C ⊑α D and C ⊑γ D

guarantee well-behaved subsumption.
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9 Examples of combining SEQ and MEO

With the possibilities to represent musical entities and sequential struc-

tures we can now model chord sequence patterns.

9.1 Musical Forms

We can now define musical forms as pattern. For example a 12-bar

blues

C7

F7 C7

G7 F7 C7 C7

could be represented

TwelveBarBlues ≡ α ⊳ [C7]4

⊳ [F7]2 ⊳ [C7]2

⊳ [G7] ⊳ [F7] ⊳ [C7] ⊳ [C7] ⊳ ω

While the blues example is rigid regarding the number of succes-

sive components, we can also define musical patterns in a more flexible

way. For example, Kostka and Payne (2003) describe a simple and

interesting way to model diatonic progressions using a diagrammatic

representation resembling a state space. Figure 9.1 shows this repre-

sentation. A valid progression can be generated by starting at any

given point in the diagram and following the arrows until reaching a

desired state.

I iii vi

IV

ii

vii°

V

I

Figure 9.1: Chart of tonal progressions

(drawn from Kostka and Payne, 2003)
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We can restate the transitions in the diagram as a SEQ concept

KP Progression ≡ α ⊳ Transition+ ⊳ ω

where the Transition concept is defined by interpreting the node labels

as class names and the edges as ⊳-restrictions:

Transition ≡ [I] ⊳ [iii]
⊔ [ii] ⊳ [V⊔ vii○]
⊔ [iii] ⊳ [vi⊔ IV]
⊔ [IV] ⊳ [I⊔ V⊔ vii○]
⊔ [V] ⊳ [I]
⊔ [vi] ⊳ [IV⊔ ii⊔ V]
⊔ [vii○] ⊳ [I]

For both examples DL reasoning can then be used to identify chord

sequences that satisfy the harmonic pattern or to validate if a sequence

agrees with a musical form.

9.2 Conceptual Graphs

Conceptual graphs are notation for logic introduced by John F. Sowa,

inspired by the existential graphs of Charles Sanders Peirce and the

semantic networks. They were first used to represent the conceptual

schemas in database systems and later applied to a wide range of topics

in artificial intelligence, computer science, and cognitive science (Sowa,

1984). Conceptual graphs have been standardised as interchange for-

mat within the Common Logic ISO-standard (ISO/IEC 24707).

Figure 9.2 and Figure 9.3 are examples that represent musical score

and succession rules using the graphical formalism.

Conceptual graphs can be translated to closed first order formulae.

As full first order logic can be expressed, it follows that subsumption

checking is undecidable in the general case. On the other hand work

has been done on identifying decidable subsets and especially such

subsets that coincide with Description Logics. Baader et al. (1998)

concludes that while shared fragments of the underlying first order se-

mantics can be found, no“natural” fragments that allow direct transla-

tion of the graphical notation to Description Logic syntax are obvious.

However, the given examples can be expressed using MEO/SEQ as

follows.



examples of combining seq and meo 93

G444 ˇˇ ˇˇ ˇ˘ ˇ
Figure 9.2: Conceptual Graph for
two voices singing in harmony (Sowa,

1984, p. 37)



94

The CG in Figure 9.2 corresponds to the FOL formular:

(∃x1, x2, x3, x4, x5, x6, x7 ∶ Note)
(∃y1, y2, y3, y4, y5 ∶ Interval)
(tone(x1, B) ∧ dur(x1, y1) ∧ hasAmount(y1, 1beat) ∧ next(x1, x2) ∧
tone(x2, C) ∧ dur(x2, y2) ∧ hasAmount(y2, 1beat) ∧ next(x2, x3) ∧
tone(x3, D) ∧ dur(x3, y3) ∧ hasAmount(y3, 2beat) ∧
tone(x4, G) ∧ dur(x4, y1) ∧ next(x4, x5) ∧
tone(x5, A) ∧ dur(x5, y2) ∧ next(x5, x6) ∧
tone(x6, B) ∧ dur(x6, y4) ∧ hasAmount(y4, 1beat) ∧ next(x6, x7) ∧
tone(x7, G) ∧ dur(x7, y5) ∧ hasAmount(y5, 1beat) ∧
part(y3, y4) ∧ part(y3, y5))

As only binary relationships are used we can translate this as a set of

ABox assertions where predicates (tone, dur, . . . ) are understood as

functional roles and constants (B, 1beat, . . . ) as individuals. Exis-

tentially quantified variables can directly be expressed in the ABox as

blank nodes.

Figure 9.3: Rule for the harmonious

resolution of a dissonance (Sowa, 1984,
p. 38)

The CG in Figure 9.3 describes a rule for the harmonious resolution

of a dissonance. Sowa (1984, p. 38) translates this to the following

FOL formula:

(∀x, y ∶ Note)((simul(x, y) ∧ tone(x, Ti) ∧ tone(y, Fa) Ô⇒
(∃z, w ∶ Note)(next(x, z) ∧ tone(z, Do) ∧ next(y, w) ∧ tone(w, Mi)))

This formula can be understood as a subsumption relationship on

a simultaneity of two notes. DL role subsumption of the form R ⊑ S is

not sufficient as we additionally need to capture the conditions on x
and y in the antecedent as well as propagate the variable structure in

the consequent. The use of role chains to capture the information in

the antecedent and domain/range axioms to capture the information in

the consequent can fill this gap. We introduce an additional modelling

pattern for this purpose:
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Definition 37 (Concept Product Subsumption). A concept

product subsumption along a role R expresses that any two instances

c ∃C, d ∃D which are related by a role R are also of types C′ and D′

resp. We denote this

C×
R
D ⊑ C′ ×

R
D′

which is axiomatised as

idC ○R ○ idD ⊑ S

domain S = C′

range S = D′

where S is a fresh role name.

Finally, we can capture the resolution rule as follows:

[∃tone.Ti] ×
sim

[∃tone.Fa] ⊑ (⊳ [∃tone.Do]) ×
sim

(⊳ [∃tone.Mi])

9.3 Summary

MEO and SEQ can be combined in various ways to express chord

sequence patterns. This chapter discussed three examples. First, a

blues form was expressed using a regular expression like approach.

Second, we showed how to model diatonic progressions by expressing

state transitions in a pattern. A third example showed how a small

score excerpt can be represented together with a rule that described

harmonious resolution of a dissonance.
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10 Grammars as SEQ Patterns

Grammars have long been a part of the toolbox of computational mu-

sicologists. Already in the 19th century music theorists like Riemann

(1877) started to develop syntactic descriptions of music. In the second

half of the 20th century, the paradigm shift by generative grammars in

linguistics (see e.g. Chomsky, 1956) sparked a strong interest in sys-

tematic musicology too (see e.g. Roads, 1987). They have been used as

a means for generating musical structures — such as chord sequences

— using substitution rules as well as for creating musical analyses by

parse trees. Therefore it is desirable to express grammars in SEQ, in

order to make use of this work in a Semantic Web context. The lim-

ited expressiveness of Description Logics make it difficult to formulate

grammars directly in OWL or SEQ. In fact, for context-free grammars

a full translation is not possible. This is evident from the fact that it

is not generally decidable if two CFGs generate the same language

whereas DLs are restricted in expressivity such that concept equality

always remains decidable. After the following brief introduction of for-

mal grammars we will discuss possible approaches of using grammars

in the Semantic Web with SEQ with restrictions and partial transfor-

mations of the grammar and the parsing process. An algorithm for

partial transformation is developed and the scope and limitations of

this approach are then discussed.

10.1 Formal Grammars

This section introduces definitions and notations on formal grammar

that will be used in the following sections. For more details on gram-

mars and their properties, the reader is referred to Hopcroft et al.

(2003).

A grammar is a formal device that uses production rules to gen-

erate strings thus describing the language of possible strings. Noam

Chomsky (Chomsky, 1956, 1957) first proposed the notion of (gener-

ative) grammars and classified them into a hierarchy of incremental

specialisations (restrictions of the allowed forms of production rules),

with type 0 being the most general (unrestricted) form.

Definition 38 (Unrestricted Grammar (Type 0)).

A grammar G is a tuple (N, Σ, P, S) consisting of

– a finite set N of nonterminal symbols,
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– a finite set Σ of terminal symbols (with N ∩Σ = ∅),

– a finite set P of production rules, each rule

of the form (Σ ∪ N)∗ → (Σ ∪ N)∗
where ∗ is the Kleene star operator, and

– a distinguished start symbol S ∈ N.

Each production rule maps from one string of symbols to another,

where the first string (the head) contains at least one nonterminal

symbol.

non-terminal terminal either

single A, B ∈ N a, b ∈ Σ X, Y ∈ Σ ∪ N
sequence U, V ∈ N∗ u, v ∈ Σ∗ α, β ∈ (Σ ∪ N)∗

Table 10.1: Notational conventions for

types of grammatical symbols

Notation and Terminology. We follow the usual stylistic conventions

to denote kinds of symbols and symbol sequences as shown in Ta-

ble 10.1. Any production of the form A → α will be said to be an

A-production, and α will be said to be an expansion of A. The empty

string is denoted by the symbol ε. Productions of the form A → . . . ∣
ε ∣ . . ., that generate the empty string, are called ε-productions.

Derivation and generated language. Grammars define a set of strings,

i.e. the language of a grammar, that can be derived from the produc-

tion rules.

Definition 39 (Derivation). For a grammar G, one step deriva-

tion is defined as a binary relation on strings⇒ ⊆ (Σ∪N)∗ ×(Σ∪N)∗
such that α⇒ α′ iff

∃γ1, γ2 ∈ (Σ ∪ N)∗,∃β → β′ ∈ P ∶ (α = γ1βγ2) ∧ (α′ = γ1β′γ2).

By
∗⇒ we denote the transitive reflexive closure of ⇒ , i.e. the

derivation in zero or more steps. A grammar is called cyclic if there

is a derivation of the form A⇒ . . .⇒ A for any nonterminal A.

Types of grammars. Unrestricted grammars can exhibit undesirable

computational properties. For example, the decision problem of whether

a given string belongs to the language of some unrestricted grammar

is in general undecidable. Therefore several restricted forms of gram-

mars have been defined, such as context-sensitive (type 1) grammars

(CSGs).
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Definition 40 (Context-sensitive Grammar (Type 1)). A

context-sensitive grammar G is a grammar where the set P is

restricted to production rules of the form

(Σ ∪ N)∗N(Σ ∪ N)∗ → (Σ ∪ N)∗

Context-free (type 2) grammars (CFGs) allow the construction of

efficient parsing algorithms and are the basis for most practical appli-

cations of grammars.

Definition 41 (Context-free Grammar (Type 2)). A context-

free grammar G is a grammar where the set P is restricted to produc-

tion rules of the form

N → (Σ ∪ N)∗

A context-free grammar G is self-embedding (SE), if there exists a

derivation A
∗→ αAβ, with both α and β non-empty. G is non-self-

embedding (NSE) if it is not self-embedding. By a result of Chomsky

(1959), any NSE grammar generates a regular language.

Definition 42 (Regular Grammar (Type 3)). A regular gram-

mar is a context-free grammar where the set P is restricted to pro-

duction rules of one the following forms:

N → ΣN ∪Σ (right regular)

N → NΣ ∪Σ (left regular)

Apart from the types distinguished by Chomsky, further kinds of

grammars have been introduced in the literature. One distinction that

will be used in the following are linear grammars that are between

type 2 and 3 in the Chomsky hierarchy, i.e. specialise context-free and

generalise regular grammars.

Definition 43 (Linear Grammars). A linear grammar is a

context-free grammar where the set P is restricted to production rules

with at most one terminal in the expansion, i.e. of the form

N → Σ∗NΣ∗ ∪Σ

Special cases of linear grammars are left and right linear grammars

that generalise regular grammars to allow sequences of terminal sym-

bols:

N → Σ∗N ∪Σ∗ (right linear)

N → NΣ∗ ∪Σ∗ (left linear)
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10.2 Grammars for Chord Sequences

As mentioned earlier, grammars have been applied in music analysis

and generation. With respect to chord sequences, there has been the

use of grammars for harmonic analysis (see Sundberg and Lindblom,

1976; Ulrich, 1977; Baroni and Callegari, 1984; Steedman, 1984; Giomi

and Ligabue, 1991; Weyde, 1995; Pachet, 1997) and also for generation

of new sequences in improvisatory and interactive systems (Chemilier,

2001; Chemillier, 2004).

These grammars typically describe a sequence of chords as one or

more cadences, which are structured relative to one or possibly several

keys. A cadence of minimal size could be a sequence of two chords

like G7 Cj, where upper case letters represent major chords, and the

7 and j represent seventh and major chord types respectively. This

notation is found in so-called ’lead-sheets’ which are commonly used

in Jazz.

Here is a small example of a grammar to parse such chord sequences:

Cadence -> D T

D -> V7

T -> Ij

These rules describe the structure of a simple cadence consisting of

tonic and dominant parts, which are realised by a seventh chord on

degree V and a major chord on degree I.

Depending on the key there may be rules like the following for the

key of C:

Ij -> Cj

V7 -> G7

These rules allow the generation and analysis of sequences of chord

symbols as in the example above. The last rules illustrate one problem

of this approach: to extend this approach to other keys it is necessary

to repeat the last two rules and also the previous ones to avoid the

unintended mixing of keys in one cadence. For this reason, grammars

in practical applications are often extended with facilities like the use

of variables or logical conditions to make the notation more expressive.

Typically, grammars are implemented in logic-oriented programming

languages like Prolog or Lisp, and use the facilities of these languages.

When applied for analysis, it is interesting, which rules were applied

where. This information is represented in a parse-tree, which can be

produced as a by-product of the parsing process. For the generation of

sequences, it is more interesting to control the generation process by

limiting the potentially huge number of options given by the grammar.

In the context of the Semantic Web, the analysis case is more prevalent,

as the focus is on retrieving existing data.

Transforming a grammar into a SEQ pattern could enable the use

of established grammars on data sets in the Semantic Web without the

need for downloading and further preprocessing of data.
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10.3 Desirable transformation properties

For the use of grammars in SEQ, especially in musicological settings,

the following features are desirable for our transformation of grammars

to SEQ patterns:

� Preservation of language. A transformed SEQ pattern should de-

scribe the same set of strings as the original grammar.

� Expressivity. The transformation should work on a large set of

grammars, ideally all Context Free Grammars.

� Provision of parse tree information. The most direct applications

of formal grammars are the generation of sequences by expanding

production rules and the checking of a given sequence for being

described by the language. Parse-trees are byproducts of generation

or checking that capture the application of production rules. They

are interesting as the hierarchical structuring of the tree is often

used to capture a meaningful structuring of the sequence where

nonterminals are labels of the structural units.

� Additional processing features. In practical applications, grammars

are often extended with processing features, such as constraint

checks or arithmetic operations on variables during parsing or pro-

duction to control application of rules.

When converting a grammar into a DL pattern ideally the DL con-

cept should describe the set of possible sequences but also capture the

information of a parse tree.

10.4 Transformations of Productions

In the following we define a transformation procedure from grammars

into SEQ patterns. First we discuss how different kinds of production

rules can be transformed and which properties are preserved. In sec-

tion 10.5 these transformation steps are integrated into an algorithm.

Our initial intention is to directly transform context free rules of

the form

A → X1 . . . Xn

to DL concepts. Ideally, we want to capture the sequential structure

as well as the edge structure of the parse tree. We could separately

formalise these two aspects as concept definitions

A ≡ X1 ⊳ . . . ⊳ Xn (succession)

A ≡ ∃expansion1.X1 ⊓ . . . ⊓∃expansionn.Xn (tree shape)

where the first definition captures the sequential succession and the

second models the parse tree edges as expansion roles. However,

the tree model restriction and lack of variables in OWL (cf. subsec-

tion 4.3.2) do not allow us to equate the corresponding Xi that occur

along seq:hasNext and expansion pathes.
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Therefore, we weaken our requirements and only use (succession).

This definition still allows to retain some relationship between non-

terminal and first component in the expansion via subsumption.

We introduce the transformation starting with simple forms of pro-

duction rules without non-terminals, then discuss substitution and re-

cursion.

Remark 10.1 We assume that grammatical symbols directly corre-

spond to a concept name or concept expression, i.e. Σ∪N ⊆ C where

C is the set of possible concept expressions. The idea is to be able

to perform a stepwise transformation of parts of the grammar into

concept expressions.

10.4.1 Variable-free productions

For a sequence of terminal symbols a1 . . . an ∈ Σ∗ we can form a concept

expression a1 ⊳ . . . ⊳ an that captures the succession of the symbols.

We can transform a variable-free production of the form

A → a1 . . . an

that describe a sequence without substitution into a concept of the

form

A ≡ a1 ⊳ . . . ⊳ an

We use equivalence as it encompasses the possibility to assign or check

1. the sequential structure of a type (A ⊑ a1 ⊳ . . . ⊳ an) as well as

2. the type of a sequential structure (a1 ⊳ . . . ⊳ an ⊑ A).

Note that in this definition pattern type assignment and checking are

relative to the first symbol a1 (cf. discussion in section 8.5), i.e. in

contrast to a parse tree where the relationship between head symbol

and every expanded symbol is retained we only retain the relation-

ship to the first expanded symbol explicitly. Further, in section 8.11

we showed the limitations of the ⊳-operator if the first operand is it-

self a sequential pattern and introduced the
⊳++-operator as a remedy.

Therefore we modify the transformation to use concatenation:

A ≡ a1
⊳++ . . .

⊳++ an

10.4.2 Non-recursive productions

Let us consider general non-recursive context-free productions, i.e.

productions of the form

A → X1 . . . Xn

where A
∗

/⇒ αAβ. The approach we have taken for final productions

would suggest a transformation to a concept

A ≡ X1
⊳++ . . .

⊳++Xn
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The concatenation operator is defined on sequential patterns. If we

substitute a variable by a pattern we achieve the desired result, e.g.

assuming X1 to be a variable replace X1 by a ⊳ b. Yet, the problems

discussed in section 8.11 still arises if we transform the variable to a

concept name and express the sequential structure of X1 in a further

definition, e.g. X1 ≡ a ⊳ b. In this example, the concatenation algo-

rithm will just append the names, giving A ≡ X1 ⊳ X2 . . . ⊳ Xn and

blending effects can occur, in this case b ⊓ X2. Notably, for the last

operand in a concatenation no blending effects can occur such that Xn

can be safely concatenated and the Xn-productions can be transformed

into separate axioms. This motivates the following definition:

Definition 44 (Safe Concatenability). An expansion is called

safely concatenable if it is of the form Σ∗(Σ ∪ N).

A safely concatenable string a1 . . . anX can be directly transformed

to a SEQ concept a1
⊳++ . . .

⊳++ an
⊳++X.

In productions that are not safely concatenable, variables at non-

final position can be treated by replacing the variable by its expansions.

This is partial materialisation of the grammar. Note, that in some

cases productions that are not safely concatenable can be transformed

into safely concatenable productions. For example, in the next section

we will transform left recursive (non-safe) into right recursive (safe)

grammars. We have not fully characterised which non-safe productions

can be rewritten to safely concatenable expansions. This suggests a

direction for optimisation that we leave for future work.

For one variable A there can be many A-productions. Separate

A-productions are interpreted as disjunctions that describe options

for substitution. Separate definitions in a Description Logic on the

other hand are understood as conjunctions that together restrict the

possible models for a concept. Therefore, our transformation has to

explicitly combine the expansions in disjunctive concept expression. To

achieve this, we first normalise the grammar and then add disjunctions.

Every context-free grammar can be rewritten to Chomsky normal form

where each production is of the form A → α1 ∣ . . . ∣ αn. Assuming we

have transformed all αi into concepts, we can transform the expansion

α1 ∣ . . . ∣ αn into disjunction α1 ⊔ . . . ⊔ αn.

Repetitive structures naturally arises in music, for example in ca-

dential structure. Grammars can express repetition by means of recur-

sion. OWL2 allows recursive concept definitions as we have seen in the

definition of C+ repetition in SEQ and we can use this to transform

recursive productions.

In the following we will see that right recursive grammars can di-

rectly converted to SEQ. Due to the restriction of safe concatenability,

grammars with a recursive symbol in the centre of an expansion can

not be transformed. For left recursive grammars we can circumvent the

restrictions as they can be transformed into right recursive grammars.

We can differentiate between left-recursive and right-recursive pro-
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duction rules, for example,

A → a A ∣ b describes sequences a∗b right-recursively,

A → A a ∣ b describes sequences a∗b left-recursively.

The production rules in these example are direct recursive rules, i.e.

rules where the recursive head symbol also occurs in the rule expan-

sion. In the case of indirect recursion a recursive head symbol re-

occurs in another expansion recursive nonterminal. For nonterminals

A0, A1, . . . , An, indirect left recursion can be defined as being of the

form:

A0 → A1α1 ∣ . . .

A1 → A2α2 ∣ . . .

⋯
An → A0αn+1 ∣ . . .

where α1, α2, . . . , αn are sequences of nonterminals and terminals.

We can define recursive concept expressions in OWL. In section 8.7

we used recursive concepts to define repetition operators such as

C+ ⊳ D that are transformed into a fresh concept R and an axiom

R ≡ C ⊳ (D ⊔R). Here D can be an arbitrary sequential concepts.

Left and center recursion are not directly expressible. Though we can

place the recursive concept at other positions in a DL definition this

will lead to blending of sequential definitions rather than embedding,

for example such as in the definition R ≡ C ⊳ (D⊔R) ⊳ E. Essentially

we cannot append to a recursive concept.

Thus this definition allows expressing right recursion. Left and cen-

tre recursion is not in general possible.

Our approach is to directly transform right recursive grammars to

SEQ expressions. While left and centre recursive grammars can not

be directly transformed they can in some cases be translated into a

weakly equivalent right recursive form that suits our transformation

procedure. Weakly in this context means that the set of described

sequences is preserved while the variables and production rules change.

This usually does not involve removal of variables but introduction of

new variables.

Removing Left Recursion. The requirement of safe concatenability re-

stricted the scope of our SEQ transformation to right recursive gram-

mars. Moore (2000) describes how every left recursive CFG can be

transformed into a (weakly) equivalent right-recursive CFG using Al-

gorithm 1. By applying Moore’s transformation as a preprocessing

step we can extend the scope of our transformation to left recursive

grammars. Algorihm 2 further allows to remove indirect left recursion

in grammars that are non-cyclic and contain no ε-productions.

Moore (2000) describe further improvements to these algorithms

that can reduce the number of newly introduced productions. For our

purpose it is sufficient to note that the resulting productions have the

form for which we previously described steps for conversion into DL
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Algorithm 1:
removeDirectLR ∶ 2Rule → 2Rule

Removing direct left-recursions

(adapted from Moore, 2000)
Require: A non-cyclic grammar G with no ε-productions.

Ensure: A grammar with no direct left recursions.

for each rule of the form A → Aα1 ∣ . . . ∣ Aαn ∣ β1 ∣ . . . ∣ βm do

replace the A-production by the production

A → β1 A′ ∣ . . . ∣ βm A′

and create a new nonterminal

A′ → ε ∣ α1 A′ ∣ . . . ∣ αn A′

end for
Algorithm 2:

removeIndirectLR ∶ 2Rule → 2Rule

Removing indirect left-recursions
(adapted from Moore, 2000)

Require: A non-cyclic grammar G with no ε-productions, with non-

terminals A1, . . . An.

Ensure: A grammar with no indirect left recursions.

for i = 1 to n do

for j = 1 to i - 1 do

let the current Aj-production be

Aj → α1 ∣ . . . ∣ αk

replace each production Ai → Ajβ by

Ai → α1β ∣ . . . ∣ αkβ

end for

remove direct left recursion for Ai

end for

concepts. Thus with the described methods left-recursive concepts can

be rewritten into SEQ patterns as well.

Self-Embedding grammars Finally, we consider recursion symbols in

other places than left and right corner of a production. The corre-

sponding subtypes of context-free grammars are called self-embedding

grammars. Though it would be desirable to reduce the problem of

representing self-embedding grammars in SEQ by reducing them to

regular grammars this is in general not possible. ? discuss and present

results on transformations of self-embedding to regular grammars. In

general, it is undecidable if an arbitrary context-free grammar has

a regular solution. Nevertheless, there are self-embedding grammars

that can be transformed and ? have characterised some transformable

sublanguages. For example, languages with self-embeddedness terms

of the form XαX and γXγ can still be reduced to regular languages.

10.5 Algorithm

Algorithm 10.5 realises the transformation of a grammar to a SEQ
combining the transformations steps that have been developed in the

previous section.

Example 10.1 illustrates how the algorithm proceeds. In a first step,

the productions are rewritten to Chomsky normal form. The algorithm

only excepts left or right recursive grammars as input. Left recursive

grammars are transformed into right recursive grammars.

Within the main loop the algorithm proceeds to transform expan-
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Algorithm 3: Rewriting of production

rules to SEQ expressions.
transform ∶ 2Rule → 2DLAxiomRequire: a set of context-free rules P without self-embedding

Ensure: a set of SEQ patterns P′

// normalise rules to Chomsky normal form A → α1 ∣ . . . ∣ αn (1)

P ∶= {(A → α1 ∣ . . . ∣ αn) ∣ {A → αi} ⊆ 2P}
// remove left-recursion using Algorithm 2

P ∶= removeIndirectLR(P)
// transform expansions into concepts (2)

repeat

// concatenate safely concatenable expansions (a)

for each production p ∈ P of the form A → a1 . . . anX do

P ∶= (P ∖ p) ∪ {A → a1
⊳++ . . .

⊳++ an
⊳++X}

end for

// form concept unions for single-terminal expansions: (b)

for each pair of single terminals a, b
in rules of the form A → a ∣ b ∣ α1 ∣ . . . ∣ αn do

P ∶= (P ∖ p) ∪ {A → a ⊔ b ∣ α1 ∣ . . . ∣ αn}
end for

// non-right-corner variables are substituted if (c)

// there is an expansion with only one terminal symbol

for each production of the form B → a do

for each production of the form A → αBβX∣γ1 ∣ . . . ∣ γn do

replace the A-production by A → αaβX∣γ1 ∣ . . . ∣ γn

end for

end for

until all production are of the form A → a
// create concept definitions (3)

P′ ∶= {A ≡ a ∣ A → a ∈ P}



grammars as seq patterns 107

sion to concepts. By definition grammatical symbols directly corre-

spond to a concept names or concept expression (Σ ∪ N ⊆ C). There-

fore a production of the form A → a can be directly rewritten to a

concept definition. The rewriting process in the main loop finishes if

all productions have this form. Within the loop expansions are contin-

uously reduced until the expansion has only one (DL) concept by the

following applying rewriting patterns: (a) Safely concatenable expan-

sions are concatenated. (b) in rules of the form A → a ∣ b ∣ . . . concept

unions a ⊔ b are formed for the single terminal expansions a and b.

(c) Non-right-corner variables are substituted if there is an expansion

with only one terminal symbol.

Example 10.1 (Transformation of a non-recursive grammar)

A set of production rules

A → B C B → a C → d

B → b c C → e f

can be rewritten to SEQ concepts

A ≡ (a ⊳ C) ⊔ (b ⊳ c ⊳ C)
C ≡ d ⊔ (e ⊳ f )

by applying the following transformation steps:

1. Production rules are normalised.

A → B C, B → a ∣ b c, C → d ∣ e f

2. Apply the following steps until all expansions are of the form N →
Σ:

(a) Safely concatenable expansions are transformed to concepts:

i. A → B C, B → a ∣ (b
⊳++ c), C → d ∣ (e

⊳++ f )
ii. A → B C, B → a ∣ (b ⊳ c), C → d ∣ (e ⊳ f )

(b) Concept unions are formed for choices of single-terminal expan-

sions:

A → B C, B → a ⊔ (b ⊳ c), C → d ⊔ (e ⊳ f )
(c) Right-hand side non-right-corner variables are substituted if

their expansion is a single terminal.

In this example only B is non-right-corner :

A → (a ⊔ (b ⊳ c)) C C → d ⊔ (e ⊳ f )

Second iteration.

(a) The A-production is now safely concatenable as well:

A → (a ⊔ (b ⊳ c)) ⊳++C C → d ⊔ (e ⊳ f )
A → (a ⊳ C) ⊔ (b ⊳ c ⊳ C) C → d ⊔ (e ⊳ f )

All expansions are now of the form N → Σ.
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3. Finally concept definitions are formed:

A ≡ (a ⊳ C) ⊔ (b ⊳ c ⊳ C) C ≡ d ⊔ (e ⊳ f )

This example also shows that the transformation performs a partial

materialisation. In this case B is substituted and C is retained.

10.6 Transformability

Our transformation focused on the types of productions that occur in

context-free grammars as well as on restrictions of these. Figure 10.1

sketches the relationship of grammar formalisms and SEQ patterns.

Figure 10.1: Relationship between

grammars and SEQ patterns with re-
spect to describable sequences

Our method can transform all finite context-free grammars to SEQ
patterns. Our current algorithm transforms only safely concatenable

productions directly while other forms of productions lead to a partial

materialisation of (parts of) sequences.

Regarding infinite grammars we find that right recursive grammars

can directly be transformed to SEQ patterns. Generally, left recur-

sive context-free grammars can be transformed into (weakly equiva-

lent) right recursive grammars (Moore, 2000). Therefore our trans-

formation fully covers the types of productions that occur in regular

grammars. Further, the special cases of left and right linear grammars

can be transformed. Self-embedding grammars can not generally be

expressed in our approach as they are not generally reducible to a reg-

ular grammar. Furthermore, it is not decidable if a self-embedding

grammar is reducible. This is however possible in special cases, some

of which have been characterised by ?. We have not incorporated these

special cases in our algorithm but this is an option for future work if

it is interesting in the context of our application.

Other forms of grammars. OWL2-DL supports expressive means that

are not directly available in CFGs such as boolean constructs or means

for underspecification. The algorithm allows to mix DL concepts and

grammar syntax.

Future research could be investigating the relationship between SEQ
and other forms of grammars. While CFGs only support disjunction as

logical operation, recently developed grammar formalisms such as con-

junctive grammars (Okhotin, 2001) and boolean grammars (Okhotin,

2003) include further logical operators.
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10.7 Optimisation of concept size

The number of expansions that are materialised can be reduced by

introducing new variables.

A concatenation C
⊳++D restricts the leaves of the concept-tree of

its first operand C to be succeeded by its second operand D. In this

process the concept D is duplicated as often as there are leaves of C.

Note that for D it is sufficient to provide the root of the succeeding

sequential structure. If D is a complex expression, we can always intro-

duce a fresh concept name D′ ≡ D. In this case just the name D′ is du-

plicated whereas the potential verbose D still remains non-redundant

as part of a single definition axiom. This suggests a way to optimise

the transformation with respect to redundancy of concept parts by

introducing new concept names. As less productions are materialised

the resulting knowledge base will have many interrelated shorter defi-

nitions instead of few very long independent definitions. We can expect

that higher interrelation is beneficial for classification times as results

can be reused.

The current algorithm does not include this optimisation, but could

be extended. One option is to introduce new concept definitions di-

rectly when concatenating. Note, that right-regular grammars by def-

inition have the desired form. This suggest to transform a given set of

productions if possible to a right-regular productions in a preprocessing

step.

10.8 Summary

In this chapter an algorithm to rewrite grammars to SEQ patterns was

developed with the focus on context-free grammars as these are popular

means to express harmonic analysis. Although context-free grammars

are not generally translatable to DLs, a partial transformation has

been described in section 10.4 that allows instance classification with

SEQ patterns for many types of production rules as characterized in

section 10.6. Notably, right-recursive linear grammars can directly be

transformed to SEQ patterns. Left-recursive grammars can be trans-

formed to right-recursive grammars in a preprocessing step. Additional

types of production rules can be treated by partial materialisation.

An application of this formalism to a musicological problem is pre-

sented in chapter 15.
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11 API for MEO/SEQ

We implemented an API for MEO/SEQ based on the OWL API1, 1 http://owlapi.sourceforge.net/

a Java API and reference implementation for creating, manipulating

and serialising OWL ontologies that is supported by most standard

reasoners. We added object representations forMEO/SEQ constructs

along with algorithms to transform them into OWL expressions as

described in the previous chapters. The implementation is provided

online.2 2 http://www.j3w7.de/phd/

As complexity depends on the choice of constructs we can control

worst-case complexity by restricting use to a selected subset of concepts

with desirable properties.

One approach taken by many ontology providers is to offer special

fragments of an ontology. For example, the upper-ontology DOLCE

has, next to the fully axiomatised standard version, several “light” ver-

sions (e.g, DOLCE-Lite-Plus) with better reasoning behaviour. How-

ever, this approach is not flexible as a user does not have fine-grained

control over which combination of constructs are needed.

We propose an alternative approach that generates the required

ontology at modelling time. The API is aware of the dependencies

between constructs and background knowledge and dependencies are

collected during concept construction. For example, the construct

C ⊳ D is translated to C⊓ ∃seq:hasNext.D with the additional axioms

{fun hasNext}. When reusing this concept in other constructs the ad-

ditional axioms are propagated. In this way all the needed axioms are

aggregated during the process of concept and knowledge base construc-

tion. Moreover, axioms that are not relevant are not included. This

is important as many DL constructs such as disjunction or transitive

roles raise the reasoning complexity significantly.

Within the class OWLDataFactoryImpl the OWL API provides

methods to compose complex concepts from simple concepts and ax-

ioms from concepts are provided. In our implementation we augment

these “make” methods such that they propagate a set of additional ax-

ioms. As there are around 200 methods, a manual extension of each

method would be laborious and hard to maintain if the OWL API is ex-

tended in future. However, the augmentation can be expressed in a uni-

form way as a transformation of simple make functions into augmented

make functions. In contrast to functional programming languages,

Java does not directly provide means to transform functions. How-

ever, libraries exists provide functional programming concepts within

Java to achieve composition-oriented development. We used the li-

http://owlapi.sourceforge.net/
http://www.j3w7.de/phd/


112

brary functionaljava3 for this purpose and wrapped all OWL API into 3 http://functionaljava.org/

Function objects. For conciseness of presentation we use usual math-

ematical notation for function composition in the following. Further

we focus on a small set of methods and abstract technical details of

Java implementation. Here are some examples of the “make” methods

in functional form:

make¬ ∶ Concept → Concept

C ↦ (¬C)
make⊓ ∶ Concept ×Concept → Concept

C, D ↦ (C⊓D)
make∃ ∶ Role ×Concept → Concept

R, C ↦ (∃R.C)
make≡ ∶ Concept ×Concept → Axiom

C, D ↦ (C ≡ D)

Attachment of background knowledge. SEQ syntax is embedded in DL

syntax. SEQ constructs are translated to DL entities with additional

axiomatisation. We extended the make functions to carry around

augment(make ⊓) ∶ Concept+ ×Concept+ → Concept+

(C, axioms1), (D, axioms2) ↦ (C⊓D, axioms1 ∪ axioms2)

We refer to concepts, roles and individuals collectively as entities.

We define the type defined by the set

Entity ∶= Concept ∪ Role ∪ Individual

We define a new type Entity+ ∶= Entity × 2Axiom that represents an

entity that is augmented with a set of axioms. A plain entity can then

be axiomatised using functions

augment ∶ Entity → Entity+

e ↦ (e,∅)
augment ∶ Entity × 2Axiom → Entity+

e axioms ↦ (e, axioms)

Entities and axiomatisation can be recovered using the projection func-

tions π1 (get the entity) and π2 (get the axioms) that return the first

resp. second component of the product.

The predefined make functions of the OWL API have to be extended

to operate on augmented entities. The construct composition of the

new augment function remains as in the plain make functions. In

the unary augmented function axioms are merely propagated. In the

binary augmented function axioms are joined.

http://functionaljava.org/
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augment ∶ (Entity → Entity) → (Entity+ → Entity+)
make ↦ (make ○π1) ×π2

augment ∶ (Entity × Entity → Entity) → (Entity+ × Entity+ → Entity+)
make ↦ (make ○ (π1 ×π1)) × (∪ ○ (π2 ×π2))

11.1 Summary

This chapter described parts of the implementation ofMEO and SEQ
focusing on the mechanism of pattern composition. In contrast to pro-

viding a fixed ontology with axioms forMEO and SEQ constructs, the

API allows to flexibly gather axioms during pattern creation, rewrit-

ing and composition. This way, a minimal ontology can be generated

for given patterns that potentially avoid unnecessary complexity of

axiomatisation and incompatible axiom types.





115

Part III

Evaluation and

Applications





117

In this part, MEO/SEQ are evaluated with respect to reasoning

performance and applied in case studies for music analysis and music

information retrieval.

First, the complexity of sequence classification and retrieval using

OWL reasoning is discussed based on theoretical considerations on

the impact of the used modelling constructs on worst-case complexity

and based on performance experiments with generated pattern and

sequences (cf. chapter 12).

Then, the integration of existing musical data sets withMEO/SEQ
is described (cf. chapter 13). Semantic integration using OWL is

achieved by developing a binding ontology between the OMRAS2

Chord Ontology and SEQ. The 9GDB corpus of chord sequences

is translated into MEO/SEQ format and mappings between the Iso-

phonics corpus and DBpedia are provided.

In chapter 14 we show how patterns that have been discovered using

machine learning techniques (Conklin, 2010; Anglade and Dixon, 2008)

can be represented as SEQ patterns. The patterns are then organised

by computing their subsumption relationships using OWL reasoning.

In chapter 15 we discuss the possibility of harmonic analysis of music

on the web. We consider grammars as means to create such analysis.

can be described and computed using grammars. Initially, we discuss

a hybrid approach that produces a harmonic annotation in RDF by

means a Prolog DCG grammar. Then we take a purely Semantic

Web based approach based on the translation of a grammar into SEQ
patterns and the use OWL classification.

Finally, in chapter 16, we show web retrieval of musical informa-

tion using federated SPARQL queries . Especially we demonstrate the

combination of different kinds of musical information, i.e. cadential

patterns and metadata.





119

12 Profiling of SEQ Retrieval and Classification

An important aspect of knowledge representation and reasoning tech-

nologies are requirements in terms of computation time and memory,

which determine limits of applications (e.g. length of patterns) and

environments where the technology can be used (e.g. mobile devices).

This section addresses the complexity of typical tasks performed on

the SEQ representation.

12.1 Theoretical Considerations

12.1.1 Worst-Case Complexity

The complexity of Description Logics is well studied. Usually the worst

case complexity of reasoning problems in a language is discussed, but

running times may be better when they are evaluated empirically for

a given knowledge base and reasoner.

The complexity of DLs differs with the combination of constructs

used (cf. Baader et al., 2003). Initially, studies about the complexity

of reasoning problems in DLs were mainly focused on polynomial-time

versus intractable problems in order to guarantee timely answers. How-

ever, once very expressive DLs with exponential-time reasoning prob-

lems were implemented, it was found that knowledge bases of realistic

size could still be processed in reasonable time (Horrocks, 1998).

In order to allow knowledge engineers to find the appropriate trade-

off for their application, different language fragments of OWL have

been defined. OWL 2 DL is currently the most expressive logic while

OWL 2 EL, RL and QL are less expressive subsets of DL but show

better complexities. For satisfiability checking within the standard-

ised OWL fragments we find the following worst-case complexities (cf.

Motik et al., 2009a):

OWL 1 DL (SHOIN ) is NExpTime-complete

OWL 2 DL (SROIQ) is 2NExpTime-complete

OWL 2 EL (EL++) is PTIME-complete

OWL 2 RL (DLP) is PTIME-complete

OWL 2 QL (DL-Lite) is in AC0 w.r.t. size of data

OWL 2 Full is semi-decidable

Table 12.1: Complexity of satisfiabil-
ity checking in OWL fragments

The worst-case complexity of reasoning on a given knowledge base

withMEO/SEQ can be determined by identifying the OWL language

constructs that occur in the knowledge base.
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The basic sequential construct is direct succession that by definition

uses the following constructs:

{⊳}
depends on
ÐÐÐÐÐÐ→ {C⊓D ∃R.C fun }

These constructs are contained in all lightweight fragments (EL, RL

and QL) and can we can thus satisfiability checking can be guaran-

teed PTIME complexity. The use of seq:followedBy introduces the

following dependencies:

{⋯}
depends on
ÐÐÐÐÐÐ→ {⊳ R ⊑ S tra}

This forces use to move to the DL variants of OWL in order to express

role subsumption (in H/R) and transitivity (in S) and exponential

complexities may arise. The omission of seq:followedBy in order to

keep reasoning tractable is difficult as it is not only used to define more

expressive sequential patterns but also to express sequential closure

(beginning and end) that is relevant in the context of the open world

assumption:

α/ω
depends on
ÐÐÐÐÐÐ→ {⋯ ∃≤nR.C ¬C}

We therefore need a language that allows negation and qualified num-

ber restrictions (Q). Again only the OWL-DL fragment offers this.

12.1.2 Effects of set-based DL Semantics

A Description Logic knowledge base is defined as a set of axioms.

There is no prescribed ordering mechanism in the OWL specifica-

tion. Accordingly, typical definitions of reasoning procedures such as

tableaux algorithms for DLs (cp. section 3.4) do not consider order.

Reasoners might implement indexing and ordering mechanisms on the

knowledge base for optimisation purposes.

In a procedural implementation the evaluation of a regular expres-

sion is typically an iterative process that starts from the beginning of

a sequence and will take longer if the matching part occurs later in

the sequence. Given the set-based specification of DL, the reasoning

algorithm can start at an any component and the impact of match-

ing position and sequence length will depend on the behaviour of the

given reasoner implementation. Therefore an empirical evaluation is

necessary to assess the actual behaviour of OWL reasoners.

12.2 Performance tests

While the worst-case behaviour of the developed techniques can be

characterised theoretically, empirical tests are necessary to observe the

actual behaviour of reasoners. In the following we describe profiling ex-

periments for sequence classification and retrieval based on generated

abstract patterns and data.

Technical setup. The experiments were implemented using the Java

OWL-API v3.2.21, conducted using the reasoner FACT++ 1.4.12 and 1 http://owlapi.sourceforge.net/
2 http://owl.man.ac.uk/

factplusplus/

http://owlapi.sourceforge.net/
http://owl.man.ac.uk/factplusplus/
http://owl.man.ac.uk/factplusplus/
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performed on a notebook computer with 1GB RAM allocated to the

reasoner.

12.2.1 Performance of Instance Retrieval

Experiment 1. The knowledge base consisted of single sequences vary-

ing in length n. The components of a sequence assert to be of type A

except for one component that was of type M and was supposed to be

the matching position of the pattern. We use [M] as pattern and varied

the position pos of the component of type M in the sequence with the

intention to measure how the position affects the retrieval time. I.e. a

test sequence had the form:

2 :c1 ▸ . . . ▸ :cn7 with :ci ∃{ M if i = pos
A otherwise

The results in Figure 12.1 show that while the length of the classified

sequences (n ∈ {100, 200, 300}) had an impact on the retrieval time, no

effect for position has been found. This indicates that the reasoner

does not take sequential order into account when retrieval as was ex-

pected from the set-based definition of DL semantics and reasoning

(cp. subsection 12.1.2).

Figure 12.1: Time needed to retrieve

instances of a pattern [M] from se-

quences of varying length n and vary-
ing matching position pos of [M]. Re-

trieval times rise with length of se-

quence but stay constant relative to
matching position.

Experiment 2. A further experiment investigated the effect of the pat-

tern length. We modified the initial setup such that we used matching

pattern [M]len of varying length len and sequences contains matching

parts of varying length, i.e.

2 :c1 ▸ . . . ▸ :cn7 with :ci ∃{ M if i ∈ [pos . . . pos + len]
A otherwise

The position pos was randomly chosen as pattern matches an in-

stance component has no effect on the retrieval time.

The results in Figure 12.2 indicate a linear effect of pattern length

on matching. With longer sequences the effect remains linear while

the gradient increases. The dips result from memory management

strategies of the reasoner and can be neglected.
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Figure 12.2: Time needed to retrieve
instances of a pattern [M]len where the

length len of the pattern as well as the

length n of the sequences was varied.

12.3 Optimisations

We have developed two new approaches to enhance the reasoning per-

formance, which are described in the following two sub-sections. These

approaches have been implemented and successfully tested, but an em-

pirical evaluation remains for future work.

12.3.1 Precomputing assertions and reasoning w.r.t. a simpli-

fied the TBox

Reasoning on a knowledge base that contains the full set ofMEO/SEQ
axiomatisation and a large set of instance data can be highly costly.

One major source of reasoning complexity is role transitivity. Remov-

ing all transitivity axioms from a TBox will improve reasoning per-

formance but at the expense of loosing expressive means and relevant

inferences. For example, we use the transitive seq:followedBy role in

a pattern α⋯P to retrieve the sequences in which P occurs. Note, how-

ever, that all instances of α⋯P can be retrieved even if seq:followedBy

is not transitive iff all seq:followedBy relationships between instances

of α and P have been made explicit.

Following this considerations, one approach to optimize is thus to

1. divide the ABox into partitions that contain one or few sequences,

2. materialise implicit knowledge in these partitions, especially such

knowledge that is derived by transitivity,

3. simplify the TBox by removing transitivity axioms and

4. recombine the simplified TBox with the expanded partitions to a

new knowledge base.

More formally, consider a knowledge base KB ∶= T ∪A where T is

a TBox with SEQ and MEO and A ∶= S1 ∪ . . . ∪ Sn is an ABox that

is partitioned into sets of sequence axiomatisations S(i). A simplified

knowledge base KB− for KB is defined

KB− ∶= T − ∪A+

where T − is a simplified TBox

T − ∶= T ∖ {tra R ∣ R ∈ Σ(T )}
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in which for all roles R transitivity has been removed and A+ is an

expanded ABox

A+ ∶= S+1 ∪ . . . ∪S+n

with expanded partitions S+
(i). Different approaches can be taken to

defining and computing these expansions. One approach is to ma-

terialise the deductive closure of each fragment with respect to the

original TBox T , i.e. S+
(i) ∶= ⟨T ∪S(i)⟩ ∖ ⟨T ⟩. Note that we assume the

deductive closure to be finite.

Computing the deductive closure might expand the knowledge base

considerably and has still its expenses to compute. While the restric-

tion to reasoning over ABox fragments already improves the feasibility

of reasoning, we achieve further optimisation by considering only rele-

vant subsets T(i) ⊆ T for the computation of the deductive closure, i.e.

S+
(i) ∶= ⟨T(i) ∪ S(i)⟩ ∖ T . The partitioning of the ABox along sequence

axiomatisations is possible as we assume that these assertions not log-

ically interact which each other. The interaction of TBox axioms on

the other hand might be neither obvious nor trivial and hand-picking

of relevant axioms might be error-prone. A solution for this problem is

automatic module extraction technique (e.g. Cuenca Grau et al., 2008),

which can be used to select for a given ontology and signature all ax-

ioms from the ontology that are necessary to preserve all entailments

that involve the entities of the signature.

S+(i) ∶= ⟨Module(T , Σ(i))⟩ ∪ S(i) ∖ T

No new axioms are added during the process and by monotonicity of

OWL reasoning the deductive closure (cf. section 3.1) of the resulting

knowledge base is a subset of the original one, i.e. ⟨KB−⟩ ⊆ ⟨KB⟩.

12.4 Summary

In this chapter the performance of sequential reasoning in OWL was

examined. As the worst-case reasoning complexity for an ontology de-

pends on the constructs used it has bene discussed theoretically in sec-

tion 12.1 based on the OWL constructs used in SEQ constructs. Only

simple succession can be expressed in the lightweight fragments (EL,

RL and QL) with PTIME complexity. Sequential closure (beginning

and end) or the use of seq:followedBy introduces constructs that are

only expressible in OWL-DL thus exponential worst-case complexities

are possible. Given the set-based definition of DLs it can be further

assumed that retrieval and classification times do not depend on the

matching position of a pattern. The experiments in subsection 12.1.2

confirmed this assumption. Further, the experiments showed that the

total number of sequential components increased retrieval and classifi-

cation times regardless of whether the components belong to different

sequences. The experiments suggest possibilities to optimisation by

exploiting order information during reasoning.

While many optimisations require a modification of reasoning al-

gorithms, section 12.3 introduced optimisations that can be carried
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out in preprocessing steps. Especially, performance can be increase by

modularising the KB into partitions on which reasoning is performed

separately. Further costly inferences such as computing transitive re-

lationships can be precomputed and online reasoning tasks can then

be performed with a simplified TBox on the materialised knowledge.
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13 Data Integration

In the following chapters we demonstrate analysis and querying of

chord sequences with SEQ and MEO. Quality controlled chord data

sets are available, yet for using SEQ and MEO with them questions

of data integration have to be addressed at two levels:

Structural Integration Corpora should be represented in the same syn-

tactic format in order to be queried with the same query language.

For example, using RDF for data representation allows federated

SPARQL queries on distributed data sets on the web.

Semantic Integration Ontologies assign meaning to syntactic struc-

tures. If different ontologies are used the relationship between their

terminologies has to be described.

Figure 13.1: Overview of data sets and

ontologies.

Figure 13.1 gives an overview of corpora and ontologies that have

been integrated in order to allow retrieval and classification with

MEO/SEQ patterns. We used annotated Jazz and Beatles corpora as

ground-truth data. Parts of these were given in textual formats (xlab,

9gdb) and had to be converted into RDF and described byMEO/SEQ
terminology. On the other hand corpora that were available in RDF
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format (Beatles) and described by music ontology needed to be inte-

grated withMEO/SEQ by providing bindings between the ontologies.

We now describe some of the concrete steps.

13.1 Structural Integration

13.1.1 9GDB Corpus

The 9GDB (9 genres database)1 provides a corpus of chord progres- 1 http://grfia.dlsi.ua.es/cm/

projects/prosemus/database.phpsions from nine different genres taken from three domains: popular,

jazz, and academic music. Categories have been defined with the help

and advice of music experts who have also collaborated in the task

of assigning metadata tags to the files and rejecting outliers in order

to have a reliable ground truth (Pérez-Sancho et al., 2009). Popular

music data have been separated into three sub-genres: pop, blues, and

celtic (mainly Irish jigs and reels). For jazz, three styles have been

established: a pre-bop class grouping swing, early Jazz, and Broadway

tunes, bop standards, and bossa novas as representatives of latin jazz.

Finally, academic music has been categorised according to historic pe-

riods: baroque, classicism, and romanticism.

Academic 235 Jazz 338 Popular 283

Baroque 56 Pre-bop 178 Blues 84

Classical 50 Bop 94 Pop 100

Romanticism 129 Bossa nova 66 Celtic 99

Table 13.1: Number of chord se-

quences per genre and subgenre.

Transformation to MEO/SEQ. The 9GDB corpus is represented in

a textual format that has to be transformed to MEO/SEQ data.

The sequences in the 9GDB corpus are given in four different vari-

ants spanned by the dimensions root-note/degree form and triad/full

form as shown in Table 13.2.

Am G#dim Gm F#dim F Bb Bdim E Am G# Gm F#dim F ...

Am7 G#dim Gm7 F#m7b5 Fmaj7 Bbmaj7 Bm7b5 E7 Am7 G#7 Gm7 F#m7b5 Fmaj7 ...

Im VII#dim VIIm VI#dim VI IIb IIdim V Im VII# VIIm VI#dim VI ...

Im7 VII#dim VIIm7 VI#m7b5 VImaj7 IIbmaj7 IIm7b5 V7 Im7 VII#7 VIIm7 VI#m7b5 VImaj7 ...

Table 13.2: Beginning of “How Insen-
sitive” by Antonio Carlos Jobim rep-

resented in the 9GDB formatTo translate this representation into RDF, a parser was imple-

mented based on the grammar given in Table 13.3. The parse tree

is then mapped to a MEO description.

13.2 Semantic Integration

Knowledge engineers might follow different modelling patterns for the

same use case. For example, OMRAS2 as well as SEQ provide con-

structs to order chords. We can use OWL axioms to capture the logical

http://grfia.dlsi.ua.es/cm/projects/prosemus/database.php
http://grfia.dlsi.ua.es/cm/projects/prosemus/database.php
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<chordseq> := (<chord>’ ’)*

<chord> := (<root>|<degree>)(<triad>|<>)<extension>*

<root> := <natural><alteration>

<degree> := <roman><alteration>

<natural> := C|D|E|F|G|A|B

<roman> := I|II|III|IV|V|VI|VII

<triad> := dim|aug|sus|(b5)|(+5)|m(+5)|m

<alteration> := (b)*|(#)*

<extension> := 4|6|7+|7|9|#9|#11|13|b5|alt|maj7|maj9|maj|whole

Table 13.3: EBNF grammar for 9GDB
chord sequences

triad version: dim aug sus (b5) (+5) m(+5)

full version: m7b5 7+|7alt|whole 11|4|13sus 7alt|whole #5 m#5

Table 13.4: Corresponding triad and

full variants of extensions as used in
the 9GDB corpusrelationship between the corresponding constructs in the two ontolo-

gies and thus make them interoperable.

13.2.1 Isophonics Beatles Corpus

The Centre for Digital Music (C4DM) at Queen Mary, University of

London, provides several ground truth song collections of the OMRAS2

Metadata Project 2009 (Mauch et al., 2009) on the Isophonics.net web-

site.2 2 http://www.isophonics.net

The Beatles corpus3 contains 174 reference chord transcriptions. 3 http://isophonics.net/content/

reference-annotations-beatlesFor all songs audio-aligned reference chord and key annotations as

well as annotations of musical structural segmentation are provided.

Chords are represented following Harte et al. (2005) in an RDF variant

using “The Music Ontology”. and “The Chord Ontology”4 4 http://motools.sourceforge.net/

chord_draft_1/chord.html

13.2.2 A binding ontology for OMRAS 2 Chord Ontology

Within the OMRAS2 Music Ontology effort (Raimond and Sandler,

2008) The Chord Ontology has been developed5 that recently gained 5 cf. http://motools.sourceforge.

net/chord_draft_1/chord.htmlincreasing research interest and in which chord data sets have been

made available. As discussed in section 6.1, the descriptions are not

sufficiently formalised to query their internal structure with OWL rea-

soning. It is therefore interesting to use the chord ontology data to-

gether with SEQ-patterns. One way would be to convert the sequences

from a chord ontology ABox into a SEQ sequence assertions. Another

approach is to reason over the data with a TBox of the form

ChordOntology ∪ BindingOntology ∪SEQ

where BindingOntology is a set of OWL axioms that describe how

Chord Ontology concepts formally relate to SEQ concepts. The ad-

vantage of this approach is that the ABox does not need any alteration.

Given this TBox an OWL reasoner will recognise the ABox individuals

as instances of SEQ concepts so that SEQ patterns can classify the

data.

http://www.isophonics.net
http://isophonics.net/content/reference-annotations-beatles
http://isophonics.net/content/reference-annotations-beatles
http://motools.sourceforge.net/chord_draft_1/chord.html
http://motools.sourceforge.net/chord_draft_1/chord.html
http://motools.sourceforge.net/chord_draft_1/chord.html
http://motools.sourceforge.net/chord_draft_1/chord.html
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One possible binding ontology can be defined using the axioms:

chord:ChordEvent ⊑ seq:Component

chord:chord ⊑ seq:hasContent

time:time ○ time:intervalAfter ○ time:time− ⊑ seq:hasNext

chord:ChordEvent chord:ChordEvent

time:Interval time:Interval

chord:Chord chord:Chord

time:time time:time

chord:chord chord:chord

time:intervalA f ter

seq:Component seq:Component
hasNext

seq:hasContent seq:hasContent

Figure 13.2: Mapping from OMRAS2
Music Ontology to SEQ Representa-

tionThe additional assertions are illustrated in figure 13.2. SEQ is

treated as more general, i.e. definitions are provided to interpret Chor-

dOntology concepts as SEQ concepts but not vice versa. The idea is

to interpret a ChordEvent as a Component. The content roles then

find a natural correspondence. The seq:hasNext relationship can be

inferred from a role path between the ChordEvents.

Note that due to the discussed limited reasoning possibilities of the

current ChordOntology and the underlying OWL-time ontology (cf.

section 5.5), it is not guaranteed that all information is given or can be

inferred. Especially, the time:intervalA f ter relationship was missing

in some of the data and cannot be inferred by OWL reasoners. We

saturated the ABox with this relationship using SWRL-rules and Java

Build-ins for number comparision in such cases.

13.2.3 Representation of Chord Ontology Four-Chord Patterns

Recently there has been an interest in learning patterns of four suc-

ceeding chords from the OMRAS2 Chord Ontology data. Mauch et al.

(2007) used a statistical approach to describe. Anglade and Dixon

(2008) used an inductive logic programming approach. Both used the

same corpus and pattern representation. As the patterns themselves

have not been expressed with Semantic Web techniques, they can not

directly be reused to find pattern instances in a web retrieval scenario.

This issue can be resolved by expressing the patterns in SEQ. The

patterns can then directly be used to retrieve any SEQ instances such

as the reinterpreted Chord Ontology instances described in the previ-

ous section.

The pattern representation used by Mauch et al. (2007) considers
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the chord type and the chromatic root movement. The pattern

maj
+11ÐÐ→ min

+5Ð→ maj
+5Ð→ min

that corresponds to the opening sequence of Yesterday is discussed

as an example. The author sees it as an interesting example for how

chord sequences for known idioms can help to find evidence for the

songwriters’ influences as it is unique within the Beatles Database,

but occurs in 17 songs in the Real Book including the Charlie Parker

standard Confirmation and Like Someone in Love by Johnny Burke.

Anglade and Dixon (2008) uses an inductive logic programming

(ILP) approach. She uses the four chord pattern structure as above,

but a different set of transitions. Notably, she uses different descrip-

tors, namely root note progression, bass note progression, chord cat-

egory progression, root interval progression, bass interval progression

and degree progression, computed by Prolog predicates.

maj
maj6th
ÐÐÐ→ min

per f 4th
ÐÐÐÐ→ min

per f 4th
ÐÐÐÐ→ dom

As the patterns correspond to four chord sequences of Chord On-

tology chord symbols, we can treat them as specialisation of a general

SEQ pattern

[chord:chord]=4

As a first step, we could now specialise the chord:base chord role,

that is provided by the Chord Ontology and is filled by the chord

type. As the Chord Ontology models chord types as individuals and

not as concepts, we use the nominal constructor6 (indicated by squared 6 Provided by DLs that support
nominals (the “O” in the naming

scheme. This is supported OWL-DL,

but not OWL Lite.

brackets) to specialise the pattern:

[∃chord:base chord{maj}]
⊳ [∃chord:base chord{min}]
⊳ [∃chord:base chord{maj}]
⊳ [∃chord:base chord{min}]

Note that while musicologists normally would expect such a pattern

to match chord types such as maj7 or maj9, such instances would not

match here as the Chord ontology currently does not formalise a nota-

tion of chord subsumption. This is quite a surprising omission as this

is an important musicological concept and as subsumption modelling

is a primary use case of DLs. Further, Mauch et al. (2007) as well as

Anglade and Dixon (2008) use notions of chord subsumption in their

respective learning algorithms. However, as this knowledge is not de-

scribed in an ontology, it is not available for a DL reasoner. Mauch

et al. (2007) for example uses three sets of chord classes, representing

three different levels of generality. A workaround could be to define

classes such as

MajChord ≡ ∃chord:base chord.{maj, maj7, maj9, . . . }
MinChord ≡ ∃chord:base chord.{min, min7, . . . }
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and use these instead:

[MajChord] ⊳ [MinChord] ⊳ [MajChord] ⊳ [MinChord]

It is easy to see, that a more elaborated subsumption hierarchy is

desirable. The final translation step is the modelling of transition roles.

They could be modelled relative to the previous component as

[MajChord] ⊳ [ MinChord
⊓ root.maj6th

] ⊳ [ MinChord
⊓ root.per f 4th

] ⊳ [ MinChord
⊓ root.per f 4th

]

or as subrole of hasNext:

[MajChord] ⊳
maj6th

[MinChord] ⊳
per f 4th

[MajChord] ⊳
per f 4th

[MinChord]

In both cases, as most of the computed roles do not have a direct

correspondence in the OMRAS2 Chord Ontology data, the instance

data would need to be saturated or a method to automatically infer

these roles would need to be devised.

13.3 Summary

Data sets and ontologies were described that will be used in the fol-

lowing chapters to demonstrate several applications. Structural and

semantic interoperability of these was desirable in order to make full

use of Semantic Web query and reasoning technologies.

Structural interoperability can be established by using RDF as

common representation for all datasets. This enables, for example,

federated queries as will be shown in chapter 16. The nine genre

database (9GDB) is a rich source of harmonically annotated chord

sequences given in a textual representation which was translated into

MEO/SEQ-described RDF using our API.

Another concern that was addressed is semantic integration. The

Isophonics Beatles corpus is another dataset that we used for musical

queries. It is available as RDF but uses terminology from the OM-

RAS2 Music Ontology (MO). In order to enable MEO/SEQ patterns

to match these MO-described sequences a reasoner needs to have ac-

cess to background knowledge of how entities in one ontology can be

interpreted in terms of the other. Our approach is to capture the trans-

lations in OWL axioms in a separate ontology that can be provided to

a reasoner on demand. Such a binding ontology was defined to inter-

pret MO entities as MEO/SEQ entities. Further, it was shown how

Four-Chord Patterns (Mauch et al., 2007; Anglade and Dixon, 2008)

can be represented with MEO/SEQ.
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14 Subsumption of Discovered Feature Patterns

In the following we will show how existing pattern representations for

chord sequences can be translated into SEQ patterns and how SEQ can

be used to analyse chord pattern subsumption and classify sequence

instances.

14.1 Representation of Feature Set Patterns

Although SEQ patterns can be specified in a top-down matter by a

knowledge engineer, it is interesting to learn them from a corpus of mu-

sic. Pattern discovery using multiple viewpoints is a machine learning

approach for discovering patterns in sequential musical data (Conklin,

2006). It has mainly been used for discovery of patterns in melodies,

but recently also for learning patterns in chord progressions (Conklin,

2008, 2010). Input and patterns are represented using a feature set

representation (Conklin and Bergeron, 2008).

For a sequence of musical events e1 . . . en (e.g. chords), viewpoints

are computed. A viewpoint τ is a function from events to values in a

specific range set. A feature f is defined as

τ ∶ v

where τ is a feature name and v a feature value. A feature set f then

is a conjunction of features

{τ1 ∶ v1, . . . , τn ∶ vn}

and a pattern is a sequence of feature sets

f1, . . . , fn

events Im7 IVm7 Vbm7b5 IV7 III#m7b5

fe
a
tu

re
s degree I IV I IV III#

triad m m m M minb5

rootmvt � 4n 5n 7+ 7n

function I IV V IV III

Table 14.1: Example of a instance se-
quence for viewpoint learning

Table 14.1 shows an example of how a chord progression is rep-

resented as a sequence of feature sets. The viewpoints degree, triad
and f unction directly relate to the chord symbol. Relationships be-

tween events are modelled as features that belong to a single event
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and have to be read as referring back to the previous event. The fea-

ture rootmvt ∶ 4n for example expresses that the current root event is

a fourth about the previous event. In the case of the first event e1

features of this kind take the value � as there is no previous event

they could refer to. We use further viewpoints in later examples

such as meeus that indicates harmonic function (Tonic, Dominant or

Subdominant) as described by Meeus (2000), kp that indicates chord

degree classes as described by (Kostka and Payne, 2003) and ratio(dur)
that indicates the duration of an event.

14.2 Translation of Feature Set Patterns

This representation can be translated into SEQ data and patterns

using translation functions T as described in following. Each feature

τ ∶ v can be translated into a DL role restriction

T(τ ∶ v) = ∃τ.v

where every viewpoint τ corresponds to a functional role τ and the

value v is the filler that the role is restricted to. A corresponding DL

axiom Funct(τ) has to be added to the TBox. A feature set f , i.e. a

conjunction of features is than described by a DL concept intersection

T( f ) = ∃τ1.v1 ⊓ . . . ⊓∃τn.vn

A feature set pattern { f1 . . . fn} can then be expressed using hasNext
relationships as

T( f1, . . . , fn) = [T( f1)] ⊳ . . . ⊳ [T( fn)]

In the following we will show examples of how genre-specific chord

sequence patterns that have been learnt from chord sequences tagged

with the genres jazz, classic and pop can be learnt from a corpus.

14.3 Maximally General Distinctive Chord Patterns

A maximally general distinctive chord pattern (MGDP) is a pattern

that is distinctive and not subsumed by any other distinctive pattern.

They are least likely to overfit the corpus and hence most likely to be

useful for classification. To measure distinctiveness the likelihood ratio

of a pattern P is employed. This is defined as

∆(P) de f= p(P∣⊕)
p(P∣⊖) = c⊕(P)

p(P∣⊖) × n⊕

where p(P∣⊕) is the probability of the pattern P in the corpus, p(P∣⊖)
is the probability of the pattern P in the anticorpus, c⊕(P) is the count

of the pattern in the corpus and n⊕ is the size of the corpus (Conklin,

2010).

Figure 14.2 illustrates three MGDP patterns. The were chosen from

a much larger set as highly distinctive patterns found in the corpus of

338 jazz chord sequences used by Pérez-Sancho et al. (2008).
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Figure 14.1: Regions of the pattern
space for MGDPs, with examples of

subsumption chains containing dis-

tinctive and non-distinctive patterns.
(source: Conklin, 2010)

At the top of the figure are the three patterns after translation from

viewpoint to SEQ format. The interest ∆(P) of the pattern is indi-

cated: for example, the first pattern is overrepresented by a factor of

12.45. The length of the pattern is 2 and it occurs in 65 jazz sequences

but only 8 sequences in the anticorpus. The pattern indicates a mi-

nor triad on degree I I I, followed by any triad on degree I I I (due to

the fact that the meuus role indicates the T (tonic) chord transforma-

tion). Note that despite this high level of abstraction captured by this

pattern, it remains highly distinctive in the corpus for the jazz genre.

In the bottom of Figure 14.2, instances of each of these patterns are

represented as fully saturated feature set sequences.

14.4 Subsumption of Distinctive Pattern

After translating patterns from feature set representation to SEQ
representation, subsumption relationships can automatically be in-

ferred by a DL reasoner. Figure 14.3 illustrates a small fragment

of a subsumption hierarchy of patterns, created from a larger set of

many MGDP patterns. In this case the subsumption relationships

were computed using the reasoner Pellet (Sirin et al., 2007). This fig-

ure has restricted the representation to five MGDP that appear on the

right-hand side of the hierarchy. Some internal concepts have been

constructed in SEQ and it can be seen how these capture commonal-

ities between the MGDP thereby providing richer structure to a flat

MGDP set. At the left-hand side of the figure are “primitive” features

contained in single component patterns. Substantial structure can be

seen. For example, triad.min can be seen to occur in four MGDPs and

in addition in one internal SEQ pattern.
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∆(P) =12.45 (2) (65 150) (8 25)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

kp . I I I
⊓ basedegree . I I I
⊓ triad . min

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⊳ [ meeus . T ]

∆(P) =9.04 (3) (59 107) (10 14)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

meeus . D
⊓ kp . I I/IV
⊓ triad . maj

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⊳ [ triad.min ] ⊳ [
kp . VI

⊓ basedegree . VI ]

∆(P) =7.66 (1) (60 146) (12 50)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

meeus . D
⊓ kp . VI
⊓ degree . VIb
⊓ basedegree . VI
⊓ rootmvt . 4n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Pattern

Look To The Sky

IIIm III♭ dim

⋯ ▸

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

meeus . D
kp . I I I

degree . I I I
basedegree . I I I

triad . min
rootmvt . 4+

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

▸

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

meeus . T
kp . I I I

degree . I I Ib
basedegree . I I I

triad . dim
rootmvt . 1n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

▸ ⋯

Tangerine
I IV7 IIIm7 VI7

⋯ ▸

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

meeus . D
kp . I

degree . I
basedegree . I

triad . maj
rootmvt . 4n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

▸

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

meeus . D
kp . I I/IV

degree . IV
basedegree . IV

triad . maj
rootmvt . 4n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

▸

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

meeus . S
kp . I I I

degree . I I I
basedegree . I I I

triad . min
rootmvt . 7n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

▸

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

meeus . D
kp . VI

degree . VI
basedegree . VI

triad . maj
rootmvt . 4n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

▸ ⋯

Quiet Now

III♭ maj VI♭ maj7

⋯ ▸

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

meeus . D
kp . I I I

degree . I I Ib
basedegree . I I I

triad . maj
rootmvt . 2n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

▸

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

meeus . D
kp . VI

degree . VIb
basedegree . VI

triad . maj
rootmvt . 4n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

▸ ⋯

Examples of matched instances

corpus ∶ 338 chord sequences (jazz)

anticorpus ∶ 518 chord sequences (pop, classical)

Figure 14.2: Example patterns and in-
stances found with viewpoint learning
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14.5 Summary

This chapter demonstrated the usage of SEQ to represent and analyse

chord patterns that were discovered from a corpus using viewpoint

learning. A DL reasoner can then use such patterns to classify instance

data. Further, the patterns can be classified automatically in terms of

their subsumption relationships as illustrated for distinctive patterns

from Conklin (2010).
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15 Harmonic Analysis with Grammars

In this chapter we address the harmonic analysis of jazz chord se-

quences using grammars with Semantic Web technology. We use the

DCG grammar based analysis system by Weyde (1995) as our model

and implement two approaches to use this in a Semantic Web context

with MEO/SEQ.

The first approach is a hybrid one, where the analysis is realised with

a Prolog DCG grammar and we show how sequences and annotations

can then represented as MEO/SEQ.

The second approach is purely based on web standards, where a

grammar is translated into a SEQ pattern using the method described

in chapter 10 and the analysis is realised by classifying data based

on these patterns using OWL reasoning. This has the advantage of

allowing the grammar to be used directly within a Semantic Web con-

text, which means potentially a greatly simplified application in a dis-

tributed data context.

15.1 Hybrid harmonic analysis

This section describes the work published in Weyde and Wissmann

(2007). There, a hybrid system was presented that used the DCG

grammar form Weyde (1994, 1995) implemented in Prolog for analysing

and an OWL ontology for annotating the input sequence with the an-

alytical results.

In this approach, a piece is understood as a sequence of cadences.

The cadences contain functional ‘ranges’ that then refer to individual

elements that identify the types of individual chords.

We used sequential concepts to model the upper levels of the analysis

hierarchy in an ontology called JazzOWL or short jowl. The top-level

sequence is CadenceSequence, which can contain Cadences that can

contain FunctionRanges. A sequence is modelled by using OWLList

as superclass and by restricting the isFollowedBy property to the

sequence type. Further the content of the sequence is defined by re-

striction:

CadenceSequence ≡ α ⊳ [Cadence]+ ⊳ ω

Cadence ≡ [FunctionRange]+

FunctionRange ≡ [Function]+

In Weyde (1995), a generative grammar is used to describe the har-

monic structure of jazz chord sequences. This grammar is given as a
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Prolog Definite Clause Grammar (DCG) that has been extended in

three aspects: 1. Additional arithmetic predicates capture and propa-

gate the root note relationships between branches. 2. The application

of grammar rules are traced such that a parse tree is constructed.

3. The order of alternative rules reflects a musically preferred analy-

sis. Additional predicates represent the root note, the mode and the

distance in fifths from the root in a chain of dominants. A typical

analysis of a cadence is shown graphically in figure 15.1.

Cadence(C,j)

TonArea(C,j)

Maj7(C,j)

Cj

DomArea(C,j,1)

Dom −V(G,j,2)

Dom7(G,j)

G7

DomChain(G,j,2)

Dom−V(G,j,4)

Dom7(D,j)

D7

SubDomArea(C,j)

Maj7(F,j)

Fj7

DomArea(F,j,1)

Dom−V(F,j,4)

Dom7(F,j)

C7

Figure 15.1: Example Harmonic Anal-

ysis by a DCG

15.1.1 Implementation

We have implemented the grammar rules and all necessary auxiliary

rules in SWI Prolog.1 A grammar implementation for Definite Clause 1 Cf. http://www.swi-prolog.org/

Grammars is readily available, as with most Prolog systems, and it

accepts grammar rules in a format very similar to the one described

above. The Prolog inference directly provides a parsing facility. Also

there are OWL and RDF packages, which we use to generate the RDF

description when a piece is parsed.

A typical rule for harmonic analysis now like this in the SWI/RDF

implementation:

i_chord(Root,Tree,URI,[T1,T2,T3|Triples])

-->

d7_chord(Root, ChordTag, ChordURI, Triples),

{atom_concat(’Blues I’,ChordTag,Tree),

rdf_db:rdf_bnode(URI),

T1=[URI,’rdf:type’,’jowl:iim7’],

T2=[URI,’jowl:root’,Root],

T3=[URI,’jowl:realizedAsChord’,ChordURI]

Here the i chord, which is used as part of the tonic range, is realised

as a dominant 7th chord, which is typical for Blues style. This infor-

mation is added to the textual output in Tree. The RDF information

is created in T1, T2, and T3, which are all collected in the list passed

as the last argument.
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This implementation can be used to analyse sequences of Chord

Symbols, and it outputs one or more analysis trees. When several

analyses are possible the order in which the analysis trees are generated

depends on the order of the rules.
A call for performing an analysis on a chord sequence looks like this:

analyse([’Dm7’,’G7’,’Cj’], Result, Root, Mode, URI, Triples).

Prolog then assigns to the variables possible values according to the

rules, and Triples will contain the RDF description. The triples it

produces have the graph structure shown in Figure 2.2.

Figure 15.2: Example Annotation of
the cadence Dm7, G7, Cj

Prolog can also be used to generate chord symbol sequences. It lists

all possible sequences that the grammar allows, which may be a very

large number. This is potentially interesting for composers looking

for inspiration or for students needing exercise material, but was not

attempted to evaluate in this context.

Discussion of JOWL JOWL uses OWL for annotations and the parse

tree; however, the grammar itself is not defined in OWL but in the Pro-

log system. This approach is practical, because Prolog has been used

frequently and successfully to implement grammars, while grammar

representation OWL entails several issues as described in section 10.

The first issue in the work with grammars is the lack of support

for sequential structures in OWL. This, we have addressed with SEQ
and the OWLList pattern. The OWL ontology could be refined to

include more specialised sequence types that model the grammar to
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some extent. By restricting the lst:hasContents and lst:isFollowedBy

properties, we can restrict the elements of a list. Using this approach, it

is also possible to define only parts of a sequence, for example stating

that a sequence ends with the Tonic. However, the propagation of

the root note from the bottom level (chord symbols) to the top levels

(cadence sequence level) would require the use of variables, which are

not part of Description Logics generally and OWL DL specifically.

Another, more desirable approach would be to represent the rules

using web standards, too. Unfortunately rule languages for the Seman-

tic web are still under development and currently available reasoning

engines seem to support only special subsets of the OWL. The most

likely candidate, the Semantic Web Rule Language (SWRL) (Horrocks

et al., 2003), which combines OWL-DL and OWL-Lite with RuleML,

lacks some features that we would require in order to translate our

Prolog rules to SWRL: Most notably there is no notion of rule order.

Rule order is a crucial element of our approach as we use it to model

musically preferred interpretations. That is, the topmost rules are the

preferred interpretations and are chosen first by Prolog’s back-tracking

algorithm. It has yet to be investigated whether other solutions such

as modelling preference using weights are possible. Further, problems

of list representation and reasoning seems to be inherited from OWL

and need further investigation.

From a musical point of view, the rules are useful to represent prop-

erties of music theory concepts and to allow the analysis of pieces

conforming to these concepts. For pieces that do not fit exactly into

these concepts, annotations can be made by hand. To automate this

process, it would be useful to have approximate matching or different

degrees of belonging to a concept.

15.2 Harmonic analysis using SEQ grammar patterns

Music scholars are often concerned with identifying the properties of

music that are typical for certain musical genres, styles or periods.

Although human experts are good at recognising patterns, it is desir-

able to have a method of quantifying the relations between a chord

progression and a genre, style or period. In the following, we will use

the grammar representation in SEQ described in section 10 to per-

form an example of a formalising and testing musicological query and

hypotheses.

15.2.1 Musical background

As example, we will here consider the case of the bVII7 chord as it was

described by Potter (1989, p. 35):

“bVII7 [...] is one chord which distinguishes bebop harmony from tonal

harmony in Western art music and from pre-bebop jazz harmony as

well.”

This statement would lead us to expect more occurrences in Bebop

pieces than in other styles of music. This kind of statement (chord
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sequence x is more typical for style s1 than for style s2) appears reg-

ularly in music harmony texts, but it is hard to quantify. Traditional

methods of counting by hand are tedious and error prone. Semantic

queries on web corpora can support researchers in gathering quanti-

tative evidence or finding counterexamples. We demonstrate this by

using queries on the genre-annotated 9GDB corpus to validate musi-

cological statements made in Potter (1989).

Potter (1989) addresses the role of the bVII7 chord in Bebop jazz.

The minor sub-dominant cadence in major keys is a type of cadence

that has been debated by several music theorists over time. This is an

example of this cadence type:

Cj7 Fj7 Fm6 Cj7

Ij IVj IVm Ij

Typically the major sub-dominant is followed by a minor sub-dominant,

followed by the tonic. This cadence can be seen as a variation of the

subdominant, which just adds some coloration by temporarily moving

to minor mode.

On the other hand, the IVm could be seen as a functionally different.

The third of the minor sub-dominant, which is normally lead down-

wards to the fifth of the tonic, has leading note character. Therefore

the minor sub-dominant can be seen as a substitute for the dominant.

The notes contained in the Sm6 are the same as in a V7/sus4/b9 with-

out root.

However, the following progression is also common:

Cj7 Fm7 Bb7/#11 Cj7

Ij7 IVj IVm Ij7

Here, the Fm7 Bb7 can be seen as a typical IIm V7 pattern, which

has normally the function of a dominant. Jungbluth (1981) therefore

views the bVII7 as a replacement for the V7. In contrast, Stanton

(1982) classifies the bVII7 as a ”Sub-Dminant Minor chord”. Yet, Pot-

ter (1989), considering both options concludes “Ultimately the bVII7

ought to be viewed as something of a subdominant-dominant hybrid.”

15.2.2 SEQ and grammar representation

There are two points made here, that we will address with SEQ and

the grammar facility. The first is that the bVII7 chord is specific to

bebop harmony. This is clearly verifiable querying for bVII chords in

corpora containing different styles where it should appear mostly in

Bebop pieces. We can also query for the related patterns mentioned

(IVj-IVm, IVm-bVII7), using have the sequential information provided

by SEQ.

The second point is the harmonic function of the bVII7 chord, i.e.

its role within the cadence. There is apparent disagreement about

whether the bVII7 chord is a dominant, a subdominant or has a role

different to both. We argue that by defining the contexts that would

correspond to these different hypotheses as SEQ patterns and counting

the matches in a relevant corpus, we can provide evidence for or against

these hypothesis, possibly also differentiated by stylistic context.
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To implement the approach described above, we have re-implemented

a sub-set of the grammar defined by Weyde (1995) with the grammar

approach presented earlier in section 10. We have created different

variants of the context in which the bVII7 chord occur. These variants

have been tested on the Alicante corpus on the subsets of Jazz/Bob,

Jazz/Prebop, Jazz/Bossanova and Academic/Baroque to see the fre-

quency of matches of the different grammar variants in the different

styles.

The original grammar is recursive and infinite, because it is meant

to analyse entire pieces of music, which would cause the problems in

the conversion described above. Here, however, we do not need the

whole power of the grammar, but we can limit ourselves to a finite

sub-grammar, that defines only limited contexts of the bVII7 chord

we are interested in. Therefore we do not need to specify limits to the

recursive depth.

Here we can reduce the grammar substantially compared to the

original, because we do not need to cover the whole sequence with the

grammar. Instead we remove all rules from the grammar that are not

necessary to match the desired patterns.

15.2.3 Association of the bVII7 chord with the Bebop style

We counted the number of bVII7 chords in the 9GDB sub-corpora

for Jazz (Bop, Prebop, Bossanova) (see subsection 13.1.1) and in the

Baroque corpus with SEQ queries. The latter was included as it was

remarked by Jungbluth (1981), that the bVII7 chord can also appear

as a local dominant to the bIII chord in a circle-of-fifth cadence, which

is typical for baroque.

The results in table 15.1 show the query results for the bVII7 chords

in section A. The first column shows the total number of pieces in the

sub-corpus and the Alpha and Gamma matches are given in absolute

and relative numbers to the size of the sub-corpus. Alpha matches in-

dicate the number of pieces containing a match, while Gamma matches

indicate the number of occurrences of bVII7 chords. Gamma/Pieces

indicates the average number of bVII7 chords per piece, Gamma/Al-

pha indicates the average number of bVII7 chords in those pieces that

contain at least one match.

The distribution of matches over the sub-corpora does not fully re-

flect the hypothesis that the bVII7 is specific to Bebop (row ’BOP’), as

the number of both Alpha and Gamma matches is higher in PREBOP

than BOP. The BOSSA sub-corpus shows a lower number of bVII7

chords than the BOP and PREBOP, which conforms to the expecta-

tion and the BAROQUE an even lower number of only one piece out

of 56 matching.

One possible explanation of the high frequency of the bVII7 in

PREBOP could be that it is used as a local dominant to bIII chords.

This can be considered to be the case whenever the bVII7 is directly

followed by the bIII. However, the query results for the sequence

[bVII7] ⊳ [bIII], as presented in section B: show that this sequence
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A: [bVII7] Pieces Alpha Alpha/Pieces Gamma Gamma/Piece Gamma/Alpha

BOP 94 35 37.23% 76 0.81 2.17

PRE BOP 178 91 51.12% 225 1.26 2.47

BOSSA 66 17 25.76% 44 0.67 2.59

BAROQUE 56 1 1.79% 4 0.07 4.00

SUM 394 144 36.55% 349 0.89 2.42

B: [bVII7] ⊳ [bI I I] Pieces Alpha Alpha/Pieces Gamma Gamma/Pieces Gamma/Alpha

BOP 94 8 8.51% 18 0.19 2.25

PRE BOP 178 12 6.74% 21 0.12 1.75

BOSSA 66 5 7.58% 7 0.11 1.40

BAROQUE 56 1 1.79% 3 0.05 3.00

SUM 394 26 6.60% 49 0.12 1.88

C: [IVm] Pieces Alpha Alpha/Pieces Gamma Gamma/Pieces Gamma/Alpha

BOP 94 31 32.98% 84 0.89 2.71

PRE BOP 178 121 67.98% 436 2.45 3.60

BOSSA 66 28 42.42% 124 1.88 4.43

BAROQUE 56 31 55.36% 192 3.43 6.19

SUM 394 211 53.55% 836 2.12 3.96

Table 15.1: Frequencies of A: bVII7

chords, B: [bVII7] ⊳ [bIII] progres-
sions, and C: IVm chords in 4 sub-

corpora of the 9GDB.does not appear often enough to account for the higher frequency of

bVII7 in PREBOP. The BAROQUE sub-corpus, where the circle-of-

fifths sequences should lead to an increased number of [bVII7] ⊳ [bIII]
matches, has only four bVII7 chords, but three out of these four are

followed by a bIII chord.

Another possible explanation of the relatively high number of bVII7

chords in PREBOP may be that the chord progressions used in the

9GDB corpus were not those used in the pre-Bebop era, but later re-

harmonisations, which were especially common in the Bebop period.

This hypothesis would require research into the sources of the data,

which is beyond the scope of this thesis.

An interesting aspect for comparison are IVm chords, which are

seen as closely related and part of similar harmonic patterns by all

Jungbluth (1981), Stanton (1982) and Potter (1989). The numbers

in section C: of table 15.1 show the frequencies of the IVm chord.

Compared to the bVII7 frequencies it is notable, that BEBOP is the

only style where bVII7 appears more often than IVm. At least in

terms of the bVII7/IVm ratio, the BOP sub-corpus stands out. In

BAROQUE corpus on the other hand, the IVm appears in 31 times

more pieces in 48 times more instances than the bVII7, supporting the

initial hypothesis of this bVII7 being specifically used as local dominant

in this style.

To summarise, the results of the one and two chord patterns tested
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here show that the use of the bVII7 chord is much more common in

Jazz than in Baroque in the 9GDB. Also, in Jazz the bVII7 chord is

only in a minority of cases followed by the bIII which indicates that is

is not normally used as a local dominant. Lastly, the bVII7 appears

more often than the IVm chord only in the BOP sub-corpus.

15.2.4 Role of the bVII7 chord: Formalisation

Potter (1989) listed three main hypotheses about the role of the bVII7

chord:

a) the bVII7 chord is a chord with its own specific use

b) the bVII7 chord is a substitute for the sub-dominant

c) the bVII7 chord is a substitute for the dominant

In case a) we assume that there is a specific cadence type that

contains a subdominant minor part.

Cad -> SMR TR

Given rules for realising the TR, we can then formalise our hypothesis

by adding the following rule:

SMR -> bVII7

As to the name suggests, the SMR part can normally also be realised

with a IVm chord, but we are not focusing on that chord here.

In case b) we expect the bVII7 chord to take the place of a sub-

dominant range in a cadence. The one cadence rule with sub-dominant

used in Weyde (1995) is

Cad -> SR DR TR

This rule corresponds to the classic cadence scheme SDT as defined

by Riemann (1877). The ’R’ is for ’range’ (in the German text it is

B for ’Bereich’) and indicates that SR, DR and TR do not represent

as specific chord but may be realised with different chords or chord

sequences, base on the rules of the grammar.

Given rules to produce chords for TR and DR, we can formulate

our hypothesis by using the following rule in our grammar for the SR:

SR -> bVII7

With this rule, the Cad pattern will only match when the bVII7 is

followed by a dominant range and a tonic range, therefore providing

support for hypothesis b). This pattern will not match, when the

bVII7 is followed directly by the tonic, as our rules do not allow the

DR to be replaced by an empty sequence (which is also not allowed

for a context-free grammar).

In hypothesis c) the bVII7 chord is a substitute for the dominant

seventh chord, that means it can appear in place of a dominant seventh

chord. The only cadence type we use in this grammar is

Cad -> DR TR
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In a very simple case, a D7 T cadence could then also be realised as

bVII7 I. A pattern modelling only this situation would match the same

sequences as hypothesis a). However, in Jazz it is very common to use

local dominants and circle-of-fifths movements, especially with IIm-V7

patterns relative to their following chords. Therefore, we can replace

other dominant seventh chords, e.g. in a cadence like this:

Cad -> DR(V) DR TR

This rule contains a dominant range relative to the V degree, indicated

by the brackets. The simplest realisation would be V7(V) V7 Ij or —

without the relative notation — the progression II7 V7 Ij, where in

chord symbols of the form *j the ‘j’ indicates a major chord. With

rules

DB -> D7

D7 -> bVII7

we can now generate a cadence bVII7(V) V7 Ij or IV7 V7 Ij respec-

tively.

This grammar matches more sequences compared to hypothesis a),

depending on whether such chord progressions are actually present

in the corpus. In other words, only a higher number of matches for

grammar c) would provide support for this being a good representation

of the style. One could argue that it is not problematic if the pattern

can match more sequences than actually occur in a style, as long as it

matches those that do occur. However, in that case that pattern would

not be as useful for distinguishing the style from others, e.g. in an

music information retrieval task; cf. also to the concept of distinctive

patterns by (Conklin, 2008, 2010), as discussed in section 14.3.

The original grammar allowed to match the same cadence several

times in some cases, by including different sections of the left context.

e.g. Dm G7 Cj could match as V7 I starting at the G7 or as IIm V7 Ij

starting at the Dm7. We developed an algorithm that avoided such

multiple counts. However it turned out that running the queries on

the 4 sub-corpora took already several hours, and this time was sub-

stantially increased by the single counting algorithm. Thus the task

became impractical. The solution used here was to modify the rules

such that the bVII7 would only appear as the left-most chord in any

sequence. This was possible, because the reduced grammar we used

did not actually restrict the left context of the bVII7 chords.

15.2.5 Role of the bVII7 chord: Results

The results for the different corpora are given in table 15.2. Variant

A allows only the Ij chord as tonic, while Variant B also allows the

mediants bIII and VI. The results show that grammar b) (bVII7 as

S) has fewer matches than a), while c) has exactly the same number

of matches as a). The difference becomes greater, when we add the

tonic mediants to the grammar. However it is not clear, whether this is

relevant, because the bVII7 could be interpreted as a local dominant to

both the bIII chord and the VI chord rather interpreting the mediants
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as substitutes for the Ij. In either case, the results indicates that the

use of the bVII7 before the tonic is more common, than before the

dominant which would indicate a subdominant character of the bVII7.

However, grammar c) which would allow the bVII7 to be used as a

general replacement for a dominant 7th chord, does not match any

more instances, and is therefore overly general for the corpora we are

studying here.

As an additional test we tested grammar b) variant A with the re-

striction to have IVm precede bVII7. A sequence that matches this

description indicates a subdominant minor cadence, because the IVm

as a degree IV chord is a more typical sub-dominant chord than the

bVII7. The results are shown in table 15.3. When comparing the re-

sults to the unrestricted grammar, we see that the restriction reduces

the matches for grammar b). The bigram [bVII7] ⊳ [bIII] match num-

bers, given for comparison in the table, show that this progression does

occur frequently, but evidently not with a DRTR following, as required

by grammar b). Thus there is no evidence from this experiment, that

the bVII7 fulfils a subdominant role.

Further we have tested grammar c) with the restriction that bVII7

has to be preceded by IIm. If this pattern would match frequently, it

could be seen as evidence for the bVII7 taking the role of a dominant

seventh chord, as IIm7 V7 is a very frequent realisation of a dominant

range (DR). The match numbers shown in table 15.4 show however

very few matches for this pattern. This is also the case for the bigram

pattern, the match counts for which are shown in the same table.

These low numbers indicate that the assumption of grammar c) that

the bVII7 can in general replace a V7 does not seem to apply, at least

on the basis of these sub-corpora of the 9GDB.

In summary, the evidence from the queries presented here, using

grammars, bigrams and individual chords supports the view given by

Potter (1989) that the bVII7 does not fulfil the role of a subdominant

or a dominant. For it to be a sub-dominant substitute, we would

expect it to appear before the dominant often. This is not the case,

especially not in combination with the IVm chord which would provide

additional support for the sub-dominant view. On the other hand, as

a general substitute for the V7 dominant chord the bVII7 would have

to appear as a replacement for local dominants, which happens only 3

times in the whole corpus.

Thus the representation of the bVII7 as a subdominant would not

match the majority of the bVII7 occurrences and the representation

as a general dominant substitute (like the bII7 for instance) would

be too general allowing sequences that do not appear in the corpus.

Therefore, a representation of the bVII7 as part of a special type of

progression, as suggested by Potter (1989), seems to be a good way of

including this specific chord in the theory of Jazz harmony.
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Table 15.2: Matching frequencies of

grammars a) b) c) variants A and B
in 4 sub-corpora of the 9GDB.
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IVm bVII7 grammar bigram

gamma alpha gamma alpha

BOP 0.04 2.13% 0.38 19.15%

PREBOP 0.07 3.37% 0.56 24.16%

BOSSA 0.00 0.00% 0.17 10.61%

BAROQUE 0.00 0.00% 0.04 1.79%

SUM 0.04 2.03% 0.38 17.51%

Table 15.3: Matching frequencies of
grammars a) b) c) restricted to IVm

preceding bVII7 in 4 sub-corpora of

the 9GDB.

IIm-bVII7 grammar bigram

gamma alpha gamma alpha

BOP 0.00 0.00% 0.03 1.06%

PREBOP 0.10 5.06% 0.12 6.18%

BOSSA 0.09 6.06% 0.11 6.06%

BAROQUE 0.00 0.00% 0.00 0.00%

SUM 0.06 3.30% 0.08 4.06%

Table 15.4: Matching frequencies of

grammars c) restricted to IIm pre-
ceding bVII7 in 4 sub-corpora of the

9GDB.

15.3 Summary

This chapter demonstrated the use of MEO/SEQ in the context of

harmonic analysis of jazz chord sequences.

Harmonic rules were encoded in a grammar. First, a hybrid ap-

proach was taken were the analysis was performed using a Prolog en-

gine and input and output were represented in MEO/SEQ. This

approach enables to perform the analysis on chord sequences from the

web, their annotation with harmonic information and deployment of

the results on the web. Second, a purely web standards based approach

was taken where the grammar was translated to a SEQ pattern using

the algorithm described in section 10. An OWL reasoner then au-

tomatically performed the analysis by classifying the data according

to the pattern. This approach potentially simplifies applications in a

distributed data context.

The scenario showed how musicologists can useMEO/SEQ to em-

pirically test hypotheses on a corpus. The analysis of the harmonic

meaning of the bVII7 chord Potter (1989, p. 35) served as an exam-

ple. It was shown that Potter’s different hypotheses could be encoded

in MEO/SEQ patterns and that OWL classification can be used to

classify chord sequences. The results support the hypothesis that a

bVII7 chord has a specific harmonic function that does not fit into the

roles of dominants or subdominant. Potter originally performed his

analysis manually on a small set of example sequences. A benefit of

our technique is the automation of the musicological task. Addition-

ally, the technique can help to enhance the methodology of musical

experiments as all relevant information are explicitly encoded in the

ontologies. Other musicologists can therefore easier understand the

experimental setting and are provided with the means to reproduce

the experiments identically or with their own modifications. Further,
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it is easier to extend the results to more corpora that are provided on

the web as RDF data.
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16 Federated queries

The original idea of Semantic Web as a concept is to allow the dis-

tributed interaction of agents, humans or software, in the world wide

web, based on common standards of represented knowledge (Berners-

Lee, 1999; Berners-Lee et al., 2001). The Semantic Web technologies

provide these common standards to express this knowledge and form

the Web of Linked Data, a term more recently coined (cf. Bizer et al.,

2009). This approach is also extended to music in recent years, and in

this chapter we will present a small application in this spirit.

The possibilities of the Semantic Web are now being used in the

realm of musical metadata, e.g. the information from MusicBrainz is

now being made available as Linked Data, similar to DBpedia, which

makes information from Wikipedia available as an RDF data source.

These projects are relatively new and the quantity and quality of the

data is yet an obstacle to practical applications. However, it is possible

to combine information from these sites to enable musical research

since they both use the Music Ontology (cf. section 6.1).

In corpus-bases music research that uses computers, queries and

analyses on different types of data usually have to be formulated in

different languages and code has to be written to combine the infor-

mation. E.g. a popular way to express structural patterns is the use

of regular expressions in Humdrum while metadata are often stored in

relational databases. Using SPARQL on RDF data enables expressing

the query in one formalism without the necessity for writing bridg-

ing code. In this context SEQ add the facility of representing and

reasoning on sequential structures.

In the following we will demonstrate how federated queries on a cor-

pus of chord sequences and musical metadata on the web can be used

to realise musicological queries. More specifically, we demonstrate this

by relating MEO/SEQ patterns for harmonic progressions in Beatles

songs to metadata available from DBpedia.

16.1 Experimental setup

In this experiment we are studying the frequencies of chord progres-

sions in songs by the Beatles and relate them to Metadata from

Wikipedia, specifically the author, the album and the year of pub-

lication. We would like to see whether there is a congruence with

concepts described by musicologists such as Villinger (2006) regarding

the music of the Beatles. We chose the Beatles songs as the chord
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sequences and metadata already exist as RDF on the web, in these

datasets:

– Isophonics as corpus of Beatles chord sequences (cp. subsection 13.2.1).

– DBpedia as a source of metadata (cp. section 2.4).

In order to support SPARQL queries over the sequential structure

with MEO/SEQ, we additionally created an ontology that contains

musical patterns and two binding ontologies:

– Beatles-DBpedia links that describe the correspondences between

song identifiers in Isophonics and DBpedia generated by a string

matching as described later in this section.

– MO2SEQ Binding as a semantic bridge between the sequential

structure in Music Ontology and SEQ.

An OWL Reasoner was connected to compute the necessary inferences.

Figure 16.1 gives a schematic overview of the query infrastructure and

data sets used in our test.

Figure 16.1: Schematic drawing of
the component involved in federated

query when querying for harmonic
patterns on the Beatles corpus with

DBpedia metadata

16.1.1 Harmonic Patterns

For this experiment we used a set of harmonic patterns, depicted in

Table 16.1. These patterns describe a sequence of root movements as

intervals of semitones. We use interval classes mod12, such that −5
means the same interval class as 7 and matches the same elements.

The patterns a), b), c) describe standard cadences from music the-

ory, the standard cadence IV V I, the plagal cadence V IV I and the

mixolydian cadence IV VII I. These patterns are not as specific as the

cadences, as we only specify the relative root movement, and can not

guarantee that the last chord is actually a I, and the VII chord is in

major.
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The other three patterns are motivated by (Mauch et al., 2007), who

have counted 4-chord patterns of chord mode and root movement. In

their list of the most frequent patterns, only fourth and fifth movements

(+5,+7) occur on the first 6 ranks. The patterns ranking 7–9 on their

list contain a mixture of fourth/fifth and second/seventh (+2,+10)

movements. We also added a shorter pattern containing three chords

with two fifth/fourth root movements for comparison.

Progression Type Pattern

a) Standard Progression ⊳
+2

⊳
+5

b) Plagal Progression ⊳
+10

⊳
+7

c) Mixolydian Progression ⊳
+5

⊳
+2

d) 3-Chord Circle Movement ⊳
{+5 ∣ +7}

⊳
{+5 ∣ +7}

e) 4-Chord Circle Movement ⊳3
{+5 ∣ +7}

f) 4-Chord Mixed Circle/Second Movement ⊳3
{+10 ∣ +2 ∣ −5 ∣ +7}

⊓ ⊳3

{+5 ∣ +7}≥1
⊓ ⊳3

{+10 ∣ +2}≥1

Table 16.1: Root movement patterns

16.1.2 Query

The patterns described above were encoded in SPARQL and then used

in a federated SPARQL query as shown in table Table 16.2. These

queries were executed using the local query engine Jena ARQ1, but 1 http://jena.sourceforge.net/

ARQ/they could even be used on a web based interface2 if our binding on-
2 e.g. http://www.sparql.org/

query.htmltologies and reasoning services were available at a SPARQL endpoint.

There are several ways to execute SPARQL queries and setup sup-

porting infrastructure. The SERVICE extension of Jena adds to

SPARQL the ability to send subqueries to multiple SPARQL end-

points and combine the results. This query uses the patterns and data

we provided in FROM URI, and and specifies the as SERVICE the

DBpedia SPARQL endpoint. Because a given SPARQL endpoint may

be an interface to a triple store or a relational data store, the ability

to query several endpoints with one query is very useful in terms of

interoperability.

The result of the query is a table, similar to an SQL table, where

every row is contains a possible assignment of values to the variable.

The data are then aggregated over the year, artist or album dimensions

to

16.1.3 Data quality issues

The results of the query presented above rely fundamentally on the

ability to identify entities across the datasets and in the real world.

This has posed some difficulty for this experiment, in particular with

the data from DBpedia. DBpedia data are mostly automatically ex-

tracted from Wikipedia, the data is not always complete, correct or

consistent. This creates problems when linking datasets, because the

same object is not necessarily referred to in the same way. Also, the

http://jena.sourceforge.net/ARQ/
http://jena.sourceforge.net/ARQ/
http://www.sparql.org/query.html
http://www.sparql.org/query.html
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SELECT ?sequence ?pattern ?year ?artist ?album

FROM <http://www.j3w7.de/beatles-binding.rdf>

WHERE

{

?sequence a seq:Sequence ;

a ?pattern.

SERVICE <http://dbpedia.org/sparql>

{

?dbpEntry dbpo:releaseDate ?year ;

dbpp:writer ?artist ;

dbpo:album ?album.

}

}

Table 16.2: Federated query in
SPARQL combining harmonic pat-

terns in the Beatles corpus and meta-

data in DBPedia.

identification of real world entities, e.g. the composers of songs, is not

always clearly possible as there are errors and gaps introduced by the

extraction process and – to a lesser degree – in the human-readable

pages.

In order to create combined views we have to establish “links” be-

tween the datasets. In our case both datasets have piece identifiers

and we can state the identity of piece identifiers using the owl:sameAs
property, e.g.

iso:YellowSubmarine owl:sameAs dbp:Yellow Submarine (song) .

The identifiers in our data are strings containing the song titles, which

are often spelt differently for the same piece. Therefore we use string

similarity metrics to find the correspondences. We used Levenshtein

edit distance ignoring differences such as cases, whitespaces and arti-

facts such as “ (song)”.

DBpedia contains only information about Beatles pieces for which

Wikipedia users created entries which were processed by the DBpedia

extraction mechanisms. At the time of the experiments this were 97

pieces, which were matched against 163 pieces in the Isophonics Beatles

corpus, and our string matching approach found 94 correspondences.

Another problematic area are the artist, composer, and album fields

in the DBpedia data. Here it seems that the extraction process had

particular difficulty with the fact that most songs by the Beatles were

written John Lennon and Paul McCartney, commonly referred to as

Lennon/McCartney. However, in the DBpedia data, the name Lennon

rarely appears. Similarly, the album reference is missing from a signif-

icant number of songs. We have not taken any steps to address these

issues here, but rather try to interpret the results. This was deemed

sufficient, as the main aim of this experiment it to assess the feasibil-

ity of this technological approach. To acquire reliable musicological

knowledge, there would clearly be a need for a thorough investigation

of these issues.
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16.1.4 Reasoning Support

The purpose of reasoning in our scenario is 1. to classify Beatles se-

quences according to the harmonic patterns and 2. to relate the vo-

cabulary of the Beatles corpus with the SEQ vocabulary.

In our setup the reasoner Pellet was connected to the local SPARQL

query engine Jena ARQ. Pellet can be easily connected as it imple-

ments the Jena interfaces for RDF graphs and exposes the internal

OWL axiom representation of reasoning results as triples to Jena.

Other setups for combining reasoning and SPARQL queries are pos-

sible. For example, reasoning results could be precomputed and pro-

vided as new data source. This is called materialisation. Normally

only parts of the knowledge base are materialised as DLs allow ex-

pressing concepts with infinite models such as the recursive grammars

patterns we discussed in the previous chapter.

In order to retrieve pattern instances from the data, the data and

the pattern ontology must have a common vocabulary. The common

vocabulary can explicitly reuse data vocabulary in the pattern vocab-

ulary but it is also possible to relate both by giving logical descriptions

of the data vocabulary can be interpreted in terms of the pattern vo-

cabulary. In our example, the sequential structure of the Isophonics

Beatles Corpus is expressed using OMRAS2 while our patterns are ex-

pressed in SEQ. Thus we must provide additional axioms that describe

their relationships as has been described in section 13.2.2.

16.2 Results

The results of the federated queries grouped by year, artist and album

are shown in figures 16.2–16.4. The frequencies shown are the aver-

age number of matches per piece, including pieces with 0 matches (the

total number of matches divided by the piece count). As mentioned

above, the results are incomplete, but we assume the relative frequen-

cies found still broadly representative of the complete data. Again, for

reliable musicological results the dataset would have to be investigated

thoroughly to check this assumption.

In figure 16.2 we see that the patterns e) and f) appear frequently,

but with substantial variation over the years. Pattern f) is most fre-

quent in years 1963, 1964 and 1967, and in 1965 f) is second but very

close to e). This agrees with the observations by (Mauch et al., 2007).

After the peak of f) pattern at 1964 and the e) pattern at 1965, with

18 resp. 10.5 matches per piece on average, both patterns’ match fre-

quencies decrease steadily to a level of below 3 in the years 1969 and

1970.

This very roughly agrees with the frequencies of experimental fea-

tures as reported by ? or with the middle phase of the Beatles’ work as

defined by Villinger (2006). However, both Eerola and Villinger (and

several other authors) see a change of style in 1965, but these frequent

patterns already appear in 1964. This may mean that specific har-

monic progressions have changed which are not distinguished by these
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patterns, or that other factors play a role, such as melody, rhythm or

instrumentation.

Figure 16.2: Average pattern count by
year

The pattern matches aggregated by the artist attribute are shown

in figure 16.3. As discussed above, the Lennon/McCarteny songs are

attributed as McCartney. The pattern distribution of the Lennon/Mc-

Cartney pieces and those by George Harrison is notably similar, while

very different from the other artists including Ringo Starr. However

the piece count is 2 or lower for the other artists.

Figure 16.3: Average pattern count by

artist
Figure 16.4 shows the aggregation by album. The distribution of

pattern matches is similar to the distribution by year.

16.3 Summary

Semantic Web techniques enable federated queries that combine dif-

ferent information sources and can use reasoning to infer additional
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Figure 16.4: Average pattern count by

album

information. We showed how this can be interesting for music research

by performing federated queries on a Beatles corpus and DBpedia. In

our scenario, MEO/SEQ provided means to express harmonic pat-

terns and ask for their occurrence in the corpus. This information was

related to metadata in DBPedia such as publication year and writer.

Notably, a user can formulate a musical query in one step using a sin-

gle formalism whereas traditionally corpus-bases music research would

require posing several queries on different types of data usually in-

volving different languages and in some cases coding to combine the

information.
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Part IV

Conclusion
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17 Summary and Discussion

This work has investigated musical knowledge representation, queries

and reasoning on the Semantic Web focusing on chord sequence pat-

terns in OWL. The aim is to improve the support for music in the

Semantic Web by providing representations for sequential structures

and for musical entities.

To enable querying and reasoning on music in the Semantic Web,

appropriate ontologies with suitable logical structures have been de-

fined. The main development is the MEO/SEQ ontologies and mod-

elling patterns for musical entities and sequences. These have been

implemented in OWL and their properties and modelling capabilities

have been investigated. An implementation with a Java API and a set

of tools, including parsers and converters, have been developed. The

modelling patterns and the implementations have been tested with re-

gards to running times and they were evaluated for several practical

application scenarios in computational musicology.

The review of existing representations for music in the Semantic

Web (Objective 1) showed that these representations are limited in

their capability to model structural patterns and in regards to their

use of Semantic Web reasoning facilities.

Ontological constructs were developed that allow musicologists to

express chord sequence patterns (Objective 2). The constructs were

divided in two modular ontologies (MEO and SEQ) in order to allow a

separation of concerns between musical modelling and sequential mod-

elling. SEQ can potentially be of benefit in other knowledge domains

for representing sequential data on the Semantic Web such as bioin-

formatics (genome data, protein sequences) and can be more easily

reused this way.

The MEO ontology (chapter 7) provides a representation that ad-

dresses this issue for musical entities (Objective 2a), in particular it

supports subsumption of chords based on the notes contained in the

chord rather than the chord symbol, including enharmonic equivalence.

This is a useful feature for harmonic analysis, where subsumption can

thus identify harmonically equivalent chords.

The SEQ ontology (chapter 8) provides a means of representing

sequential structures (Objective 2b). These extend the current pos-

sibilities of OWL. SEQ is based on a the central ⊳ operator, which

is used to realise a linked list approach and enables the definition of

OWL-DL concepts in a notation similar to regular expressions, e.g.

general succession (⋯), repetitions (C+,C∗,) also with number restric-



162

tions (C≥n) and other operators commonly used in regular expressions.

Constructs to refer to sequences as a whole or point in the sequence (α

and γ) were defined. Such references can be used to control pattern

matching behavior, which is for example useful in statistical queries

to retrieve piece counts and absolute counts for pattern matches. Fur-

ther, they can be used to annotate sequences with RDF metadata (cf.

2d).

Technically, concatenation (C
⊳++D) turned out to be harder to de-

fine. A direct representation in OWL DL is not possible due to lack

of means to refer to the end of a defined concept. To still realize con-

catenation an external rewriting approach was taken and an algorithm

devised that structurally rewrites two given concepts (section 8.11) into

a new one. The concatenation is useful in particular for the realisation

of the grammar facility.

To support the expression and automatic analysis of harmonic struc-

tures (Objective 2c) we were especially interested in context-free gram-

mars as these are a well-established tool in this domain of music infor-

matics. Although context-free grammars are not fully translatable to

OWL DL as its expressiveness is limited to preserve decidability. To

overcome this problem, we developed two approaches to realize har-

monic analysis in a Semantic Web context (cf. 10). First, a hybrid

approach was pursued, where the analysis was performed using a Pro-

log engine and input and output were represented inMEO/SEQ. This

approach enabled retrieving chord sequences from the web, annotating

them with harmonic information and making the result available on

the Semantic Web. Second, in order to perform the automatic anal-

ysis only with standard reasoning mechanisms of the Semantic Web,

a rewriting algorithm was developed that partially translates a gram-

mar into SEQ patterns. An OWL DL reasoner then automatically

performed the analysis by classifying the data according to the pat-

tern. This approach potentially simplifies applications in a distributed

data context. We characterised the translatable fragments of CFGs

and showed that musically interesting harmonic analyses can be ex-

pressed and performed.

To support software applications (Objective 2e), the SEQ/MEO
API has been implemented as an extension to the OWL API. This

provides an object model and an interface for working with a ASCII

text representation of SEQ. The grammar transformation has also

been implemented in Java using the SEQ/MEO API. This API uses

the newly developed approach of Axiomatisation on Demand, which

increases the flexibility compared to predefined ontology subsets and

also makes the reasoning more efficient by ensuring that only the ac-

tually needed parts of the ontology are loaded.

The developed OWL ontologies and Java implementations have

been studied for their runtime complexity theoretically and by profil-

ing. The profiling confirmed the expectation that the current reasoner

implementations do not take advantage of the sequential structure en-

coded in SEQ. The running times depend only on the size of the

knowledge base, even when an iteration over the list structure would
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yield much lower complexity.

For the evaluation corpora of chord sequence were prepared in

MEO/SEQ. Apart from the practical purpose of having data for

musical experiments the preparation methods show also how the de-

veloped ontologies can facilitate structural and semantic integration

(Objective 3). For the 9GDB set provided by the University of Al-

icante we developed a parser and an algorithm to create the RDF

representation based on SEQ and MEO. For the Beatles and Real

Book datasets provided by Queen Mary University of London a bind-

ing ontology was developed and some post processing applied. In this

context SEQ could already be used to provide extended reasoning ca-

pabilities for use with the patterns found by Mauch et al. (2007) and

Anglade and Dixon (2008).

The application of SEQ and MEO was tested with experiments in

three application scenarios.

The first experiment was the modelling of the subsumption hierar-

chy of patterns learned from the 9GDB corpus using a pattern discov-

ery approach by Conklin (2010), which provided interesting insights

into their structure.

The second experiment was the modelling of a grammar for Jazz

harmony defined by Weyde (1995) (Objective 4). The first sub-scenario

was to analyse chord sequences in a hybrid implementation Weyde and

Wissmann (2007). This proved to be a potentially useful tool for auto-

matically adding music-analytical metadata to chord sequences. The

second sub-scenario was the use of a reduced and customised gram-

mar to investigate a music theoretical problem, where Potter (1989)

had formulated three hypotheses. These results provided evidence for

one of Potter’s hypotheses but against the other two. A practical

challenge we observed in this experiment is that the grammar facility

produced large query patterns, so that the computations were very

time-intensive.

The last experiment explored the use of federated queries on Seman-

tic Web data, combining the Beatles dataset with metadata provided

by DBpedia (Objective 5). It was demonstrated that multiple data

sources can be combined easily. Moreover, the possibility to combine

structural queries and metadata within the same formalism provides

musicologist to test their hypotheses. Although the technology was

shown to work, the reliability of the musicological results depends on

the quality of datasets. Problems with DBpedia were observed, which

made a tolerant matching approach necessary to link the datasets. A

thorough checking and synchronising of the datasets would be required.

In summary, the main results are

� SEQ and MEO provide a sequence representation and structured

musical entity representation for OWL-DL (Objectives 2a–2b)

� SEQ and MEO make reasoning over sequential structures and

chord structures possible (Objective 2b)

� SEQ and MEO APIs for Java and text interfaces have been devel-

oped (Objective 2e)
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� a grammar transformation for SEQ and MEO has been developed

that supports limited context-free grammars (Objective 2c)

� SEQ and MEO have been demonstrated to provide useful repre-

sentations and reasoning in a musicological context (Objectives 2c

and 4)

� SEQ and MEO have been demonstrated to support Linked Data

applications with federated queries (Objective 2d and 5), with the

quality of public datasets being the yet main obstacle to practical

applications

The results demonstrate that SEQ andMEO can enable represen-

tation and reasoning on chord sequences in the Semantic Web. By

defining ontologies and design patterns together with algorithms, ef-

fective support for sequential structures in general and musical chord

progressions in particular has been generated. This creates the excit-

ing perspective of musical search and research that can reach resources

from all over the world with a single query in the Semantic Web. We

have demonstrated that this is possible with the techniques provided

here, but there are several issues in practice that remain to be ad-

dressed to make their use more feasible for everyday applications.

On the technical level, the reasoning engines available for OWL have

no way of making use of the sequential information in the knowledge

base, which has the potential to greatly speed up the computation on

SEQ. However, to achieve this, it would be necessary to build specially

optimised reasoners. To make such a feature generally available, a

standardisation of sequential structures is needed, which could also be

interesting for other domains than music.

On the application level, the main problem we encountered is the

quantity and quality of available data. Transforming existing machine-

readable corpora such as the 9GDB and the Beatles corpus used in

this thesis is feasible, but requires the development of conversion algo-

rithms. However, the conversion of data created for human consump-

tion, such as he DBpedia extraction from Wikipedia data, has proven

problematic, at least in the experiment shown here due to errors and

inconsistencies in the data. Also, the idea of linking data requires

the coordination of names and identifiers, which are needed to relate

data from different sources. Some development towards improved data

quality, quantity and compatibility is currently taking place, e.g. in

the LinkedBrainz project (http://linkedbrainz.c4dmpresents.org/) or the

SALAMI project (De Roure et al., 2011). Given the ongoing activities

in this area, it does seem possible that this goal could be reached and

distributed queries with SEQ andMEO could become a practical tool

in the not too distant future.

In order to answer the initial research question theoretical and prac-

tical issues from the disciplines of Semantic Web knowledge represen-

tation and music informatics have been used to derive insights into

the possibilities of OWL to represent musical structures and to draw

inferences that are of interest for musicologists. We showed that chord

sequences and chord sequences patterns can successively be represented

http://linkedbrainz.c4dmpresents.org/
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in OWL ontologies. Using these we were able to perform typical mu-

sicological tasks with standard reasoning and query facilities on the

Semantic Web. The extension of the approach to more complex musi-

cal structures such as full score representation likely requires changes

and extensions of the Web Ontology Language itself and is left for

future exploration.

This work contributes to knowledge in the areas of Music Infor-

matics and Semantic Web by connecting results of the two fields and

by highlighting the advantages and limitations of this marriage. Ex-

plicit formal knowledge models with decidable reasoning procedures

have not been applied to perform musicological tasks in Music Infor-

matics before. They can enhance transparency and reproducibility of

the musicological experiments. Further, the novel means of express-

ing and analysing sequential and grammatical patterns with OWL are

a general contribution to knowledge engineering methodology on the

Semantic Web.
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18 Future Work and Reflections

Directions for Future Work

The work presented in this thesis has opened up questions and tasks for

further research and development. As already mentioned, the develop-

ment of optimised reasoners for SEQ and the creation of more compat-

ible quality data sources in Semantic Web representations would yield

some immediate practical benefit. Some other approaches, which are

discussed in the following, could lead to new directions of development

of the Semantic Web for music.

Music Generation. We focused on the use of patterns for classification

and retrieval as these are the task currently supported by Semantic

Web reasoning engines. Patterns describe a space of possible instances

and we can describe music generation in this context as generation of

pattern instances, e.g. of a chord sequence pattern. Formally, this task

is know as model generation. Model generation is a research area and

application which deals with debugging specifications, i.e. in order to

find instances that were not intended by the modeller.

Being able to listen to instances of defined patterns could provide

guiding for further developing music ontologies. E.g. one might want

the subsumption behaviour of chords to directly reflect audible im-

pressions in the sense that if a chord is subsumed by another it is also

perceived as a specialisation that for example stays within the same

mode but adds more colour. A technical starting point could be the

work of Wang et al. (2006) and Garcia et al. (2007) who both trans-

lated OWL ontologies to a representation of the FOL model finding

tool Alloy Analyzer1 that can then generate instances. 1 http://alloy.mit.edu/alloy4/

Figure 18.1: Model Exploration Cycle

(source: Bauer (2009, p. 25))

Structured Objects. Many of the representational challenges that oc-

curred here were due to the lack of means to express graph structured

relationships between variables in DL concept descriptions. Similar

problems have been raised in chemistry and the biomedical domain.

Here DL extensions and reasoning procedures for special cases have

been formulated. Motik et al. (2008) for example introduce Descrip-

tion Graphs as extensions to OWL together with a Hypertableaux

reasoning method. It should be explored in how far these methods

can also offer further expressive means to overcome the limitations of

OWL for music reprsentation met in this work.

http://alloy.mit.edu/alloy4/
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Melodies. An interesting path to explore is the representation of

melodic patterns. The approach taken in this thesis can be directly

used to represent rudimentary forms of melodies by considering sin-

gle notes instead of chords. More interesting, however, is the case of

polyphonic patterns that generalise over multiple voices and capture

relationships within a voice as well as between voices (see Bergeron,

2009). The required representation of graph-shaped relationships is

outside the expressivity OWL-DL. Future research could investigate

the application of description graph extension of OWL-DL (Motik

et al., 2009b) to this problem.

More Structure. The SEQ pattern as described here is limited to

horizontal structures. More research could be done in combining this

structure with a horizontal structure that is for example used by Con-

klin (2006) or even a more algebraic structure as in Bergeron and

Conklin (2008).

Deeper Investigation into Machine Learning techniques. Recently,

machine learning packages that directly operate on OWL concepts

have become available.2 Further experiments could compare the re- 2 e.g. http://dl-learner.org/

Projects/DLLearnersult of such a system with the results by the discussed music machine

learning approaches. Subsumption reasoning could also be used as a

technique to compare the pattern discovered by different approaches.

Integration into Web Services and Workflows. An interesting direc-

tion of research would be the use of sequence representation and reason-

ing and in the context of real-time musical event processing (Ibbotson,

2009).

http://dl-learner.org/Projects/DLLearner
http://dl-learner.org/Projects/DLLearner
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Part V

Appendix
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OWL Constructs and Semantics

This appendix lists constructs available in OWL2 DL with their syn-

tax (as used in this thesis) and semantics. Table 18.1 shows types of

terminological (TBox) and assertional (ABox) axioms.

Axiom type Syntax Semantics

concept definition A ≡ C AI = CI

concept inclusion C ⊑ D CI ⊆ DI

concept assertion a ∃C or C(a) aI ∈ CI

role assertion aRb or R(a, b) (aI , bI) ∈ RI

Table 18.1: DL axioms

Table 18.2 and Table 18.3 show concept and role constructs. DLs

have a naming scheme that indicates which constructs they include.

A DL in the list provides the constructs in and above the given row.

Languages of the OWL family extend DLs with datatypes based on

XML-Schema datatypes. The use of datatype extensions in DLs is

indicated by (D).

DL Construct Name Syntax Semantics

AL Atomic concept A AI ⊆ ∆I

Role R RI ⊆ ∆I ×∆I

Top ⊺ ∆I

Bottom � ∅

Negation of atomic concepts ¬A (¬A)I = ∆I ∖ AI

Intersection C ⊓D (C ⊓D)I = CI ∩DI

Universal Qualified Quantificaton ∀R.C (∀R.C)I = {a ∣ ∀b.(a, b) ∈ RI → b ∈ CI}

Existential Unqualified Quantification ∃R.⊺ (∃R.⊺)I = {a ∣ ∃b.(a, b) ∈ RI}

AL[U][][C] Union C ⊔D (C ⊔D)I = CI ∪DI

Existential Qualified Quantification ∃R.C (∃R.C)I = {a ∣ ∃b.(a, b) ∈ RI ∧ b ∈ CI}

Negation of complex concepts ¬C (¬C)I = ∆I ∖CI

Table 18.2: Common Description Log-
ics and their constructs

Note that though OWL-Full includes OWL-DL, it does not fall into

the DL family. As it is layered on full RDFS, it uses axiomatic seman-

tics instead of a model theoretic semantics. In contrast to OWL-DL,

OWL-Full is not a fragment of first order logic and is undecidable.
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DL Construct Name Syntax Semantics

S ALC with transitive roles tra R ⋃n≥1(RI)n

SI S with inverse roles R− {(b, a) ∈ ∆I ×∆I ∣ (a, b) ∈ RI}

SHI SI with Subsumption between roles R ⊑ S (R ⊑ S)I = (RI ⊆ SI)

SHIF SHI with Functional roles fun R ∀a, b, c RI(a, b) ∧ RI(a, c) → b = c

SHIN SHI with Existential Unqualified Number

Restrictions

∃⩾nR {a ∈ ∆I ∣ {b ∈ ∆I ∣ (a, b) ∈ RI}∣ ≥ n}

∃⩽nR {a ∈ ∆I ∣ {b ∈ ∆I ∣ (a, b) ∈ RI}∣ ≤ n}

∃=nR {a ∈ ∆I ∣ {b ∈ ∆I ∣ (a, b) ∈ RI}∣ = n}

SHIQ SHI with Existential Qualified Number

Restrictions

∃⩾nR.C {a ∈ ∆I ∣ {b ∈ ∆I ∣ (a, b) ∈ RI ∧ b ∈ CI} ≥ n}

∃⩽nR.C {a ∈ ∆I ∣ {b ∈ ∆I ∣ (a, b) ∈ RI ∧ b ∈ CI}∣ ≤ n}

∃=nR.C {a ∈ ∆I ∣ {b ∈ ∆I ∣ (a, b) ∈ RI ∧ b ∈ CI}∣ = n}

SHOIN SHIN with Nominals {a} {aI}

SROIQ Self concept ∃R.Self {a ∈ ∆I ∣ ⟨a, a⟩ ∈ RI}

reflexive (noncomplex) roles ref R ∀a, b ∶ (a, b) ∈ RI → a = b

irreflexive (noncomplex) roles irr R ∀a, b ∶ (a, b) ∈ RI → a /= b

symmetric (noncomplex) roles sym R ∀a, b ∶ (a, b) ∈ RI → (b, a) ∈ RI

asymmetric (noncomplex) roles asy R ∀a, b ∶ (a, b) ∈ RI → (b, a) /∈ RI

Table 18.3: Common Description Log-

ics (continued)

DL Corresponding DL

OWL

-Lite SHIF(D)
-DL SHOIN(D)
-Full —

OWL2 SROIQ(D)

Table 18.4: OWL variants
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Interpretation in OWL is defined as follows:

Definition 45 (OWL2 Direct Semantics ). A datatype map is

a 6-tuple D = (NDT , NLS, NFS, ⋅DT , ⋅LS, ⋅FS), where

� NDT is a set of datatypes,

� NLS is a function that assigns lexical forms to each datatype,

� NFS is a function that assigns a set of facet value pairs to each

datatype,

� ⋅DT is an interpretation function that assigns a value space to each

datatype,

� ⋅LS is an interpretation function that assigns a data value to a pair

(LV, DT) where LV is a lexical form of the datatype DT, and

� ⋅FS is an interpretation function that assigns a set of data valuers

to a pair of constraining facet and data value.

A vocabulary V = (VC, VOP, VDP, VI , VDT , VLT , VFA) over a datatype

map D is a 7-tuple, where

� VC is a set of classes,

� VOP is a set of object properties,

� VDP is a set of data properties,

� VI is a set of individuals (named and anonymous),

� VDT is a set containing at least all datatypes of D plus the datatype

rdfs:Literal,
� VLT is a set of literals LVˆˆDT with DT a datatype and LV a lexical

form for DT, and

� VFA is the set of pairs of constraining facets and literals.

Given a datatype map D and a vocabulary V over D, an inter-

pretation I = (∆I , ∆D, ⋅C, ⋅OP, ⋅DP, ⋅I , ⋅DT , ⋅LT , ⋅FA) for D and V is a

9-tuple, where

� ∆I is a nonempty set called the object domain,

� ∆D is a nonempty set disjoint with ∆I called the data domain,

� ⋅C is the class interpretation function that assigns to each class

C ∈ VC a subset CC of ∆I , similarly

� ⋅OP and

� ⋅DP interpret object and data properties as binary relations over

∆I ×∆I and ∆I ×∆D respectively,

� ⋅I assigns to each individual a ∈ VI an element aI ∈ ∆I ,

� ⋅DT assigns to each datatype DT ∈ VDT a subset of ∆D,

� ⋅LT is the literal interpretation function that assigns to a literal

LVˆˆDT ∈ VLT a data value (LV, DT)LS ∈ (DT)DT, and, finally,

� ⋅FA is the facet interpretation function.
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Namespaces and Expressivity of Ontologies

The table below shows ontologies that are referred to in this the-

sis. Prefixes that are used for abbreviating URIs are given. E.g.

<http://purl.org/ontology/mo/Composer> is abbreviated mo:Composer. Fur-

ther, the expressivity is indicated in terms of the DL fragment that is

sufficient to express the ontology and which can be related to worst-

case complexity.

Prefix Name DL Expressivity
Namespace

rdf Resource Description Framework (RDF) AL

http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs Resource Description Framework Schema (RDFS)
http://www.w3.org/2000/01/rdf-schema# ALH

owl Web Ontology Language (OWL) ALCH

http://www.w3.org/2002/07/owl#

xsd XML Schema (D)

http://www.w3.org/2001/XMLSchema#

dcterms http://purl.org/dc/terms/ ALH(D)
Dublin Core Element Refinements and Encoding Schemes
http://dublincore.org/documents/dcmi-terms/#H3

dc Dublin Core Element Set v1.1 AL(D)
http://purl.org/dc/elements/1.1/
http://dublincore.org/documents/dcmi-terms/#H2

event Event Ontology SHOIN (D)
http://purl.org/NET/c4dm/event.owl#

ex Dummy Namespace for Examples —
http://www.example.org/

frbr FRBR ALCHI(D)

http://vocab.org/frbr/core#

foaf Friend of a Friend (FOAF) Vocabulary ALCHIF(D)

http://xmlns.com/foaf/0.1/

mo OMRAS2 Music Ontology SHOIN (D)
http://purl.org/ontology/mo/
http://musicontology.com/

chord OMRAS2 Chord Ontology (Draft) AL(D)

http://purl.org/ontology/chord/index.rdfs
http://motools.sourceforge.net/chord_draft_1/chord.html

timeline OMRAS2 TimeLine Ontology SHOIN(D)

http://purl.org/NET/c4dm/timeline.owl#

ton OMRAS2 Tonality Ontology ALOI(D)

http://purl.org/ontology/tonality/
http://motools.sourceforge.net/doc/tonality.htm

list OWLList SHN(D)

http://www.co-ode.org/ontologies/meta/2006/05/15/meta.owl

time Time Ontology SHOIN(D)

http://www.w3.org/2006/time

<http://purl.org/ontology/mo/Composer>
mo:Composer
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2001/XMLSchema#
http://purl.org/dc/terms/
http://dublincore.org/documents/dcmi-terms/#H3
http://purl.org/dc/elements/1.1/
http://dublincore.org/documents/dcmi-terms/#H2
http://purl.org/NET/c4dm/event.owl#
http://www.example.org/
http://vocab.org/frbr/core#
http://xmlns.com/foaf/0.1/
http://purl.org/ontology/mo/
http://musicontology.com/
http://purl.org/ontology/chord/index.rdfs
http://motools.sourceforge.net/chord_draft_1/chord.html
http://purl.org/NET/c4dm/timeline.owl#
http://purl.org/ontology/tonality/
http://motools.sourceforge.net/doc/tonality.htm
http://www.co-ode.org/ontologies/meta/2006/05/15/meta.owl
http://www.w3.org/2006/time
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