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Abstract: Evaluating risk measures, premiums, and capital allocation based on dependent
multi-losses is a notoriously difficult task. In this paper, we demonstrate how this can
be successfully accomplished when losses follow the multivariate Pareto distribution of
the second kind, which is an attractive model for multi-losses whose dependence and tail
heaviness are influenced by a heavy-tailed background risk. A particular attention is given to
the distortion and weighted risk measures and allocations, as well as their special cases such
as the conditional layer expectation, tail value at risk, and the truncated tail value at risk. We
derive formulas that are either of closed form or follow well-defined recursive procedures.
In either case, their computational use is straightforward.
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1. Introduction

In the insurance literature, loss is usually viewed as a non-negative random variable, say X ≥ 0.
Denote its cumulative distribution function (cdf) by FX . Its mean E[X] is known as the net premium,
and every practically useful premium is obtained by adding a loading to the net premium. For more
details on premium calculation principles, their construction and underlying axioms, we refer to, for
example, Denuit et al. [1], Pflug and Römisch [2], Tsanakas and Desli [3], Wang et al. [4], Young [5],
and references therein. Many of the premium calculation principles are related to non-expected utility
theories. On the latter topic, we refer to the monographs by Puppe [6], Quiggin [7], Wakker [8], as well
as to the review articles by Machina [9,10], and references therein.

A number of challenging issues arise when constructing premiums. In particular, we need to decide
on an appropriate loading: should it reflect the mean-loss, volatility, or something else? Indeed, the
loading is not just a mere reflection of the severity of the loss X , but it is also associated with factors
such as risk or loss perception by those already insured or to be insured.

Naturally, the theory of decision making under risk and uncertainty plays a pivotal role when
constructing premiums and risk measures. In particular, we can frequently find a set of axioms that
lead to one premium (or risk measure) or another. Several axiomatic approaches have been developed
in the actuarial literature, and they frequently take their roots in analogous considerations of economic
theory (cf., e.g., Puppe [6], Quiggin [7], Wakker [8], Machina [10], and references therein).

In general, we modify the net premium in such a way that, in addition to the distribution of losses,
the resulting premium or risk measure would reflect a number of factors such as the possible collateral
damage due to, say, increased claim processing time, required additional human resources, etc. Hence,
instead ofX , we might need to deal with its transformation v(X) for some function v : [0,∞)→ [0,∞),
which can be viewed as a utility function as we do in classical economic theory or a value function as in
behavioural economics. In our context, we find it appropriate to call v a loss-distortion function.

Importantly, the premium should also reflect the potential distortion of loss probabilities due to
various (natural and artificial) factors. Mathematically, this could, for example, mean modifying the
de-cumulative distribution function (ddf) F̄X := 1 − FX (Section 3 below) or the probability density
function (pdf) fX (Section 4 below). To familiarize ourselves with some notation in advance, in the
former case we shall use a probability-distortion function g : [0, 1] → [0, 1] and in the latter case a
probability-weighting function w : [0,∞)→ [0,∞).

The rest of the paper is organized as follows. In Section 2, we introduce and justify our choice
of a model for insurance multi-losses. In Section 3, we recall the definition of the distortion risk
measure and discuss how to calculate it for aggregate losses, given by our multi-loss model. Analogous
considerations in the case of the weighted premium are presented in Section 4, and for the weighted
risk allocation in Section 5. We specialize these results to the conditional-layer-expectation (CLE)
premium and allocation, as well as to the classical and truncated tail-value-at-risk (TVaR) premiums
and allocations in Section 6. Concluding notes are in Section 7. Most of the proofs, lemmas, and other
technicalities are given in Appendix A.

Finally, here are some notation that we frequently use throughout the paper: Given a vector
x := (x1, . . . , xn), we write x(i) := (x1, . . . , xi−1, xi+1, . . . , xn), and likewise x(i,m) if the two
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coordinates xi and xm have been deleted, etc. Furthermore, x+ :=
∑n

i=1 xi, x(i)+ := x+ − xi,
x(i,m)+ := x+ − xi − xm, etc. The sign “:=” means equality by definition.

2. Multi-Losses: A Heavy-Tailed Paretian Model

2.1. Motivation

Suppose that we are dealing with the portfolio X := (X1 . . . , Xn) of n losses, which are generally
dependent random variables. To further our progress in the direction of modelling and analyzing
insurance premiums and risk measures/allocations, we find it necessary to assume a dependence
structure. Naturally, it should be reasonable from the practical point of view and lead to a mathematically
tractable model.

A number of parametric and semi-parametric models for modelling multivariate risks/losses have
been suggested in the literature. These prominently include copulas (e.g., Frees and Valdez [11]),
multivariate distributions such as elliptical (e.g., Landsman and Valdez [12]), exponential dispersion
(e.g., Landsman and Valdez [13]), Erlang mixtures (e.g., Lee and Lin [14]), Tweedie (e.g., Furman and
Landsman [15]), phase-type (e.g., Cai and Li [16]), multivariate Gamma (e.g., Furman [17], Furman and
Landsman [18]), Pareto (e.g., Asimit et al. [19], Chiragiev and Landsman [20], Vernic [21]). Certainly,
we have mentioned here only a few references, but they lead to other important references.

Our choice for the underlying loss model is the multivariate Pareto distribution of the second kind,
which has also been used by Vernic [21]. We shall next explain our rationale behind this choice.

To begin, the notion of background risk has played a crucial role in our choice of the model. In
the actuarial, finance, and economic literature (cf., e.g., Finkelshtain et al. [22], Franke et al. [23,24],
Nachman [25], Pratt [26], Tsanakas [27], and references therein), background risk has been modeled
in a number of ways, such as additive, multiplicative, or more complex one that couples stand-alone
risks/losses with the background risk. We also learn from these works that it is not easy to decide on the
form of a coupling function, say h, that couples (unobservable) stand-alone risks ξ1, . . . , ξn with (hardly
observable) background risk η into the (observable) risks or losses h(ξ1, η), . . . , h(ξn, η).

The coupling function h is frequently chosen by asking questions such as “what h could have possibly
produced Xi’s with such and such (observable) properties?” We have also asked this question and found
that it would be reasonable to assume that each marginal loss Xi follows the Pareto-II (also known
as Lomax) distribution, usually denoted by PaII (µ, σ, α). Its decumulative distribution and probability
density functions are given by, respectively,

F̄X(x) =

(
x− µ
σ

+ 1

)−α
and fX(x) =

α

σ

(
x− µ
σ

+ 1

)−(α+1)

(1)

for all x ≥ µ, where µ ∈ R is the location parameter (the left-hand point of the distribution support),
σ > 0 is the scale parameter, and α > 0 is the shape parameter. Throughout this paper, we always
assume α > 1, which ensures that X has at least one finite moment.



Risks 2013, 1 17

2.2. The Pareto-II Model

It is known and easily checked that X ∼ PaII (µ, σ, α) is equal in distribution to ξ/γ + µ, where
ξ ∼ Exp(σ) and γ ∼ Ga(α, 1) are independent random variables: Exp(σ) denotes the exponential
distribution with the mean σ, that is, its cdf is 1 − e−x/σ, and Ga(α, 1) denotes the gamma distribution
with the shape parameter α and the scale parameter 1, that is, its pdf is e−xxα−1/Γ(α). In view of these
notes, we find it natural to work with the model

X =

(
ξ1
γ

+ µ1, . . . ,
ξn
γ

+ µn

)
that is, Xi = (ξi/γ) + µi for i = 1, . . . , n, where

ξi ∼ Exp(σi) for all i = 1, . . . , n, and γ ∼ Ga(α, 1),

with all these n+ 1 random variables being independent.

This makes X := (X1, . . . , Xn) to follow the multivariate Pareto distribution of the second type, denoted
by MP(n)II (µ,σ, α) as per Arnold’s [28] nomenclature of multivariate Pareto distributions, where
µ := (µ1, . . . , µn) and σ := (σ1, . . . , σn). Since we only deal with non-negative losses, we shall
always have µ ≥ 0 := (0, . . . , 0), with the inequality defined coordinate-wise.

Under the above model, the losses X1, . . . , Xn are dependent because of the “background” risk
η := 1/γ. To develop a further insight into the dependence between Xi’s, we note that if α > 2,
which we do not generally assume in this paper unless noted otherwise, the correlation coefficient
Corr[Xi, Xj] between Xi and Xj is equal to 1/α whenever i 6= j. Hence, we may now wonder whether
α should be interpreted as an index of the distribution tail fatness or a dependence measure between the
losses; perhaps both, which is natural. Indeed, note that the multiplicative background risk η follows
the inverse-gamma distribution, whose pdf if fη(x) = x−α−1e−1/xΓ(α). This function is asymptotically
of the order 1/xα+1 when x → ∞. Hence, the distribution of the (multiplicative) background risk η
has a Paretian tail, which is a natural feature when modelling risks/losses: the heavier is the tail of the
background risk η, the more it distorts the values of the marginal stand-alone risks ξi, and thus in turn
creates more dependence between the (observable) risks Xi and also makes them heavier tailed. An
additional copula-focused insight will be given in the next subsection.

2.3. Mathematical Properties

The ddf F̄X (x) := P[X1 > x1, . . . , Xn > xn] of X ∼ MP(n)II (µ,σ, α) is given by the formula

F̄X (x) =

(
n∑
i=1

xi − µi
σi

+ 1

)−α
for all x ≥ µ, with the latter inequality defined coordinate-wise, where µ, σ, and α > 0 are parameters,
with the coordinates µi ∈ R and σi > 0 for all i = 1, . . . , n. As noted earlier, we deal only with the case
µi ≥ 0 because of the assumed non-negativity of losses. Furthermore, we always require α > 1 so that
all the marginal risks/losses Xi would have at least one finite moment. The corresponding pdf is

fX (x) =

(
n∏
i=1

n+ α− i
σi

)(
n∑
i=1

xi − µi
σi

+ 1

)−(n+α)
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for all x ≥ µ.
These are formulas that are needed for various mathematical derivations, but they also give

important insights into the practical relevance of the distribution. Indeed, expressing the ddf
F̄X (x) = C̄(F̄X1(x1), . . . , F̄Xn(xn)) in terms of a survival copula C̄, we see that we are dealing with the
Clayton survival-copula

C̄ (u) =

(
n∑
i=1

u
−1/α
i − n+ 1

)−α
Coupling this observation with the seminal work of Frees and Valdez [11] on understanding copulas and
their actuarial relevance, we gain a powerful insight on the practical applicability of the MP(n)II (µ,σ, α)

distribution in insurance, finance, and related areas. Furthermore, concentrating on the dependence
structure provided by the copula, we immediately glean from its formula that the strength of dependence
between the marginal risks increases when the parameter α decreases (e.g., Nelsen [29]). Specifically,
when α ↓ 0, then we approach the Fréchet-upper-bound copula, which is associated with co-monotonic
risks (e.g., Dhaene et al. [30,31]), and when α ↑ ∞, then we approach the independence copula. In
addition, the asymptotic tail dependence, which is of the order n−α, increases when α decreases (e.g.,
Juri and Wüthrich [32]). For additional information on the Clayton and other copulas and their uses in
insurance, we refer to Denuit et al. [1]. For mathematical properties, references, and a global view on
copulas, we refer to the seminal work of Nelsen [29].

In our following considerations, we shall employ some further properties of this distribution.
In particular, we shall utilize the fact that when X ∼ MP(n)II (µ,σ, α), then the random vector
Z := (wiXi + νi)i=1,...,n with wi > 0 and νi ∈ R has the MP(n)II (µ∗,σ∗, α) distribution
with the parameters µ∗ := (wiµi + νi)i=1,...,n and σ∗ := (wiσi)i=1,...,n. In particular, when
Y ∼ MP(n)II (0,σ, α), then Y + µ ∼ MP(n)II (µ,σ, α), with the sum Y + µ defined
coordinate-wise. Every lower-dimensional distribution is also of the same type. For example,
X(i) := (X1, . . . , Xi−1, Xi+1, . . . , Xn) ∼ MP(n−1)II

(
µ(i),σ(i), α

)
, which means the above defined ddf

(or pdf) without the ith terms.
We shall use these properties together with some of the results by Vernic [21] in our following

considerations. For additional information on the multivariate Pareto distribution of the second kind,
we refer to Arnold [28] and Yeh [33,34], where we also find statistical inferential results concerning the
parameters µ, σ, and α. Such results are important because the expressions of premiums and allocations
that we shall obtain later in this paper will be in terms of these parameters, and thus practical usefulness
of the results will hinge on the ability to estimate the parameters.

3. Distortion Risk Measure

One of the most intuitive ways for introducing the distortion risk measure starts with rewriting the
net premium E[X] as the integral

∫∞
0
F̄X(x)dx. Now, we observe that modifying the values of X

means using a loss-distortion function v as the integrator: dv(x) instead of dx in the integral. Distorting
probabilities, on the other hand, means integrating g(F̄X(x)) instead of F̄X(x), where g : [0, 1]→ [0, 1]
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is a probability-distortion function, that is, non-decreasing, g(t) ≥ t for all t ∈ [0, 1], g(0) = 0 and
g(1) = 1. We have arrived at the quantity

∆g,v[X] :=

∫ ∞
0

g(F̄X(x))dv(x) (2)

which is known in the actuarial literature (mainly when v(x) = x) as the distortion risk measure or,
alternatively, the Wang risk measure.

The role of this risk measure in insurance is discussed and explored in great detail in a series
of pioneering papers by Shaun Wang (e.g., Wang [35,36], and references therein). Tsanakas [37],
Tsanakas and Barnett [38] have developed capital allocation rules based on this risk measure. Jones
and Zitikis [39] noted a connection between the distortion risk measure and the class of L-statistics, and
in this way opened up a fruitful route for developing statistical inferential results in the area. A thorough
mathematical treatment of integral (2) is given by Denneberg [40]. For recent advances in the area, we
refer to Dhaene et al. [41]. The role of ∆g,v[X] in economics has been revealed and discussed in great
detail in the seminal works by Quiggin [7,42], Schmeidler [43], and Yaari [44].

Here we are interested in calculating ∆g,v[X+] for the aggregate loss X+ :=
∑n

i=1Xi when
X ∼ MP(n)II (µ,σ, α). The following theorem plays a pivotal role.

Theorem 3.1 (Vernic [21]) Let n ≥ 2 and X ∼ MP(n)II (µ,σ, α). When all the marginal standard
deviations are equal, that is, σ1 = · · · = σn =: σ, then

F̄X+(x) =

(
n∏
i=1

(n+ α− i)

)
n−1∑
k=0

(−1)k

(α + k) k! (n− k − 1)!

(
σ

x− µ+ + σ

)α+k
(3)

for all x ≥ µ+ :=
∑n

i=1 µi. If, however, there are at least two unequal marginal standard deviations,
say σi 6= σj , then the ddf of the aggregate loss X+ can be expressed by

F̄X+(x) =
1

σi − σj

(
σiF̄X(j)+

(x− µj)− σjF̄X(i)+
(x− µi)

)
(4)

for all x ≥ µ+.

Hence, in order to obtain a formula for ∆g,v[X+], and assuming that all the marginal standard
deviations σ1, . . . , σn are equal, we just need to plug in the right-hand side of Equation (3) into
formula (2). When some of the marginal standard deviations are not equal, then the task is more complex,
and Equation (4) has to be employed. Interestingly, when all the marginal standard deviation are
different, then recursive formula (4) can be turned into a non-recursive one, as the following result shows.

Proposition 3.1 Let n ≥ 2 and X ∼ MP(n)II (µ,σ, α). When σi 6= σj for all i 6= j, then

F̄X+(x) =
n∑
i=1

σn−1i∏
j∈{1,...,n}\{i}(σi − σj)

F̄Xi
(
x− µ(i)+

)
(5)

Note that F̄Xi(x− µ(i)+) is equal to F̄Yi(x− µ+), where Yi = Xi − µi.
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For the marginal ddf’s F̄Xi on the right-hand side of Equation (5), we use formula (1). This produces
a formula for ∆g,v[X+] in terms of the distribution parameters µ, σ, and α. Note that, for every n ≥ 2,

n∑
i=1

σn−1i∏
j∈{1,...,n}\{i}(σi − σj)

= 1

which immediately follows from Equation (5) with x = µ+, because F̄Y+(0) = 1 and F̄Yi(0) = 1.
Later in this paper, we shall need quantiles xp := F−1X+

(p) for specific fixed values of p ∈ (0, 1),
where F−1X+

is the inverse (or quantile) function of FX+ . Even though we do not have closed-form
or even recursive formulas for such quantiles, which are very difficult if possible to obtain (cf., e.g.,
Castellacci [45]), we can nevertheless use the above formulas for the cdf FX+ to numerically invert FX+ ,
which is sufficient for practical purposes.

4. Weighted Premium

4.1. Preliminaries

We start by rewriting the net premium E[X] as the integral
∫∞
0
xdFX(x). Modifying the values of

X with a function v : [0,∞) → [0,∞) means integrating v(x) instead of x, whereas by “weighting”
the cdf F with a function w : [0,∞) → [0,∞) means replacing F by the weighted cdf Fw (cf., e.g.,
Rao [46], Patil [47], and references therein), which is defined by

dFw(x) =
w(x)dF (x)∫∞
0
w(z)dF (z)

(Certainly, we assume that w is Borel-measurable and the expectation E[w(X)] =
∫∞
0
w(z)dF (z) is

finite and positive.) These transformations of the net premium E[X] lead to the weighted premium (cf.
Furman and Zitikis [48,49])

Πv,w[X] :=

∫ ∞
0

v(x)dFw(x) =
E[v(X)w(X)]

E[w(X)]

The weighted premium has appeared in the actuarial literature in several forms and contexts. For
example, Heilmann [50] has shown how the premium naturally arises in the loss function approach to
premium calculation. Kamps [51] views the premium as a natural extension of the Esscher premium.
In general, the weighted premium has been extensively explored by Furman and Zitikis [48,49,52].
Quantities of the form Πv,w[X] have manifested prominently in the weighted utility theory. On the latter
topic, we refer to the pioneering work of Chew [53] as well as to the survey papers by Machina [9,10]
and the monograph by Puppe [6].

Later in this paper we shall be concerned with detailed calculations of the conditional layer
expectation (CLE) premium, defined by

CLEa,b[X+] := E [X+|a ≤ X+ ≤ b]

where 0 ≤ a < b ≤ +∞ are some fixed numbers, which may or may not depend on the cdf of the
aggregate loss X+. Obviously, CLEa,b[X+] is a special case of the weighted premium Πv,w[X+] by
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setting v(x) = x and w(x) = 1[a,b](x), where the latter means the indicator function of the interval [a, b]

which is equal to 1 when x ∈ [a, b] and 0 otherwise.
The CLE plays an important role in layer-based (re)insurance (cf., e.g., Wang [35], Halliwell [54],

and references therein). The layer boundaries a and b may be known quantities or, for example, the
quantiles xp = F−1X+

(p) and xq = F−1X+
(q) for some 0 ≤ p < q ≤ 1. Under this set-up, the CLE premium

becomes the truncated tail-value-at-risk (TrTVaR) premium

TrTVaRp,q [X+] := E [X+|xp ≤ X+ ≤ xq]

In the special case q = 1, the latter premium becomes the classical tail-value-at-risk premium
(or risk measure)

TVaRp [X+] := E [X+|X+ ≥ xp]

Detailed calculations of TVaRp [X+] when X ∼ MP(n)II (µ,σ, α) are given by Vernic [21].
In general, to start calculating the weighted premium Πv,w[X+] under the assumption

X ∼ MP(n)II (µ,σ, α), we write

Πv,w[X+] =

∫∞
0
v(x)w(x)fX+(x)dx∫∞
0
w(x)fX+(x)dx

(6)

and then use the following lemma providing formulas for the pdf fX+ of the aggregate loss X+.

Lemma 4.1 (Vernic [21]) Let n ≥ 2 and X ∼ MP(n)II (µ,σ, α). When all the marginal standard
deviations are equal, that is, σ1 = · · · = σn =: σ, then the density fX+(x) of the aggregate loss X+ can
be expressed by

fX+(x) =
σα
∏n

i=1 (n+ α− i)
(n− 1)!

(x− µ+)n−1

(x− µ+ + σ)n+α
(7)

for all x ≥ µ+. When, however, there are at least two unequal marginal standard deviations, say σi 6= σj ,
then the density can be expressed by

fX+(x) =
1

σi − σj

(
σifX(j)+

(x− µj)− σjfX(i)+
(x− µi)

)
(8)

for all x ≥ µ+.

Hence, when all the marginal standard deviations σ1, . . . , σn are equal, then we can just plug in the
right-hand side of Equation (7) into formula (6) and have Πv,w[X+] in terms of the distribution parameters
µ, σ, and α. More explicit formulas can be obtained, and we shall do so in the next subsection.

4.2. Results

Since X ∼ MP(n)II (µ,σ, α), we have X = Y + µ with Y ∼ MP(n)II (0,σ, α), the premium
Πv,w[X+] is equal to Πv,w[Y+ + µ+]. Hence, to calculate Πv,w[X+], we only need to know how to
calculate the expectation E [u (Y+)] for the functions

u(y) = v(y + µ+)w(y + µ+) and u(y) = w(y + µ+) (9)

but we shall also see soon that the form of the function u does not matter, and thus we can view it as a
generic function. The following theorem is an immediate consequence of Lemma 4.1 when µ = 0.
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Theorem 4.1 Let n ≥ 2 and Y ∼ MP(n)II (0,σ, α) with σ1 = · · · = σn =: σ. Then

E [u (Y+)] =
σα
∏n

i=1 (n+ α− i)
(n− 1)!

∫ ∞
0

yn−1u(y)

(y + σ)n+α
dy

When some of the marginal standard deviations σi are not equal, then the task is more complex. We
employ Equation (8) to obtain the following result.

Theorem 4.2 Let n ≥ 2 and Y ∼ MP(n)II (0,σ, α). When there are at least two unequal standard
deviations, say σi 6= σj , then

E [u (Y+)] =
1

σi − σj

(
σiE

[
u
(
Y(j)+

)]
− σjE

[
u
(
Y(i)+

)] )
(10)

This recursive route for calculating the premium Πv,w[X+] is useful as it shows how the premium
of the aggregate loss evolves from lower-order aggregate losses and their premiums. For a numerical
illustration of such a technique in the case of the TVaR premium and allocation, we refer to Vernic [21].

When all of the marginal standard deviations are unequal, then recursive formula (10) can be turned
into a non-recursive one.

Corollary 4.1 Let n ≥ 2 and Y ∼ MP(n)II (0,σ, α). When σi 6= σj for all i 6= j, then

E [u (Y+)] =
n∑
i=1

σn−1i∏
j∈{1,...,n}\{i}(σi − σj)

E [u (Yi)]

with the individual expectations on the right-hand side calculated by the formula

E [u (Yi)] = ασαi

∫ ∞
0

u(y)

(y + σi)
α+1dy

Hence, given v and w, as well as µ, σ, and α, we can now use the above formulas to evaluate the
premium Πv,w[X+], which is the ratio of the expectations E [u (Y+)] corresponding to functions (9).

5. Weighted Capital Allocation

5.1. Preliminaries

The literature on risk capital allocations is vast, and there are several directions that researchers have
explored. For general considerations on the topic, we refer to Buch and Dorfleitner [55], Buch et al. [56],
Kalkbrener [57], Malevergne and Sornette [58], Meucci [59], Venter [60], and references therein.
Our following considerations are closely related to the works by Tsanakas [27], Dhaene et al. [61],
Dhaene et al. [62], Landsman and Sherris [63], Valdez and Chernih [64], and references therein.

Namely, in a most natural way (cf., Furman and Zitikis [49,52]), the weighted premium Πv,w[X+]

extends to the weighted capital allocation

Av,w [Xl, X+] =
E [v(Xl)w (X+)]

E [w (X+)]
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Indeed, letting v(x) = x, we can view Av,w [Xl, X+] as the contribution of the loss Xl to the aggregate
lossX+, because we have the additivity property Πv,w [X+] =

∑n
l=1Av,w [Xl, X+]. An important special

case of the weighted allocation Av,w [Xl, X+] is the CLE allocation

CLEa,b [Xl, X+] := E [Xl|a ≤ X+ ≤ b]

Setting a and b to xp := F−1X+
(p) and xq := F−1X+

(q), respectively, for some 0 ≤ p < q ≤ 1, we obtain the
truncated tail-value-at-risk allocation

TrTVaRp,q [Xl, X+] := E [Xl|xp ≤ X+ ≤ xq]

For calculations of the latter allocation when X ∼ MP(n)II (µ,σ, α), we refer to Vernic [21].

5.2. Results

Hence, we are interested in calculating Av,w [Xl, X+]. As before, we assume X ∼ MP(n)II (µ,σ, α)

and write X = Y + µ with Y ∼ MP(n)II (0,σ, α). We note at the outset that our calculations
will not depend on the form of the value and weight functions, v and w, and so our task reduces to
calculating only the expectation E [v(Xl)w (X+)]; note that setting v(x) ≡ 1 gives us the denominator
E [w (X+)] in the definition of Av,w [Xl, X+]. In turn, our task reduces to calculating the expectation
E [v(Yl + µl)w (Y+ + µ+)], and by redefining v and w in an obvious manner, our task further reduces to
calculating E [v(Yl)w (Y+)]. We do this next in this subsection.

When all the marginal standard deviations σ1, . . . , σn are equal, or perhaps with only one exception,
say σl, then we have closed-form expressions.

Theorem 5.1 Let n ≥ 2, l ∈ {1, . . . , n}, and Y ∼ MP(n)II (0,σ, α). When σ1 = · · · = σn =: σ, then

E [v(Yl)w (Y+)] =
σα
∏n

k=1 (n+ α− k)

(n− 2)!

∫ ∞
0

∫ ∞
0

v (x)w (x+ y) yn−2

(x+ y + σ)n+α
dxdy (11)

If, however, σi =: σ for all i 6= l and σl 6= σ, then

E [v(Yl)w (Y+)] =

∏n
k=1 (n+ α− k)

σlσn−1 (n− 2)!

∫ ∞
0

∫ ∞
0

v (x)w (x+ y) yn−2(
x
σl

+ y
σ

+ 1
)n+α dxdy (12)

The next theorem tackles the case not covered by the previous theorem.

Theorem 5.2 Let n ≥ 3, l ∈ {1, . . . , n}, and Y ∼ MP(n)II (0,σ, α). When there are at least two
unequal standard deviations, say σi 6= σj , and none of them is equal to σl, then

E [v(Yl)w (Y+)] =
1

σi − σj

(
σiE

[
v(Yl)w

(
Y(j)+

)]
− σjE

[
v(Yl)w

(
Y(i)+

)] )
(13)

The above two theorems allow us to express the expectation E [v(Yl)w (Y+)] in terms of v and w, and
the parameters µ, σ, and α. As we saw in the illustrative example of Subsection 5.1, in some important
cases the function w may depend on the cdf FX+ of the aggregate risk/loss X+. To express the latter in
terms of the marginal cdf’s and the parameters µ, σ, and α, we employ Theorem 3.1.

When all the marginal standard deviations are different, then formula (13) simplifies to a
non-recursive one.
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Corollary 5.1 Let n ≥ 3, l ∈ {1, . . . , n}, and Y ∼ MP(n)II (0,σ, α). When σi 6= σj for all i 6= j, then

E [v(Yl)w (Y+)] =
∑

i∈{1,...,n}\{l}

σn−2i∏
j∈{1,...,n}\{i,l}(σi − σj)

E [v(Yl)w (Yl + Yi)] (14)

To calculate the expectation E [v(Yl)w (Yl + Yi)] on the right-hand side of Equation (14), we can use
Theorem 5.1 by setting n = 2 and using Yl and Yi instead of Y1 and Y2, respectively. We formulate this
observation as our next corollary.

Corollary 5.2 Let (Yl, Ym) ∼ MP(2)II ((0, 0), (σl, σm), α) with σl 6= σm. Then

E [v(Yl)w (Yl + Ym)] =
α(α + 1)

σlσm

∫ ∞
0

∫ ∞
0

v (x)w (x+ y)(
x
σl

+ y
σm

+ 1
)2+αdxdy (15)

In the next section, we shall specialize the above results to the important case when v(x) = x and
w(x) = 1[a,b](x) for any pair 0 ≤ a < b ≤ ∞.

6. Conditional-Layer-Expectation Premium and Allocation

6.1. Preliminaries

Many researchers have worked on capital allocation rules based on the tail-value-at-risk (TVaR)
measure. Some of the recent works include Landsman and Valdez [13], Furman and Landsman [15],
Chiragiev and Landsman [20], Vernic [21], Dhaene et al. [62], Asimit et al. [65], and references therein.
Due to the importance of the TVaR premium and allocation, in this section we specialize our earlier
formulas by setting v(x) = x and w(x) = 1[a,b](x) for any pair 0 ≤ a < b ≤ ∞.

Hence, under these choices of v and w, we shall next derive expressions for the premium CLEa,b [X+]

and allocation CLEa,b [Xl, X+] in terms of the distribution parameters µ, σ, and α. To get desired
formulas for TrTVaRp,q [Xl, X+] and TrTVaRp,q [X+], we shall then replace a and b by xp := F−1X+

(p)

and xq := F−1X+
(q), respectively. A number of the following results will extend and generalize those in

the literature (e.g., Vernic [21]).

6.2. CLE Premium

We start with the equation

CLEa,b [X+] = µ+ +
E
[
Y+1[a−µ+,b−µ+](Y+)

]
F̄Y+(a− µ+)− F̄Y+(b− µ+)

Formulas for the cdf FY+ can be obtained from those in Section 3 by setting µ = 0. Hence, we only
need to derive formulas for the expectation E

[
Y+1[a,b](Y+)

]
in terms of the parameters σ and α.

Corollary 6.1 Let n ≥ 2 and Y ∼ MP(n)II (0,σ, α). When all the marginal standard deviations are
equal, that is, σ1 = · · · = σn =: σ, then

E
[
Y+1[a,b](Y+)

]
=
σα
∏n

i=1 (n+ α− i)
(n− 1)!

n∑
k=0

(
n

k

)
(−1)k σk

α + k − 1

(
1

(a+ σ)α+k−1
− 1

(b+ σ)α+k−1

)
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When there are at least two unequal marginal standard deviations, say σi 6= σj , then

E
[
Y+1[a,b](Y+)

]
=

1

σi − σj
(
σiE

[
Y(j)+1[a,b](Y(j)+)

]
− σjE

[
Y(i)+1[a,b](Y(i)+)

])
When σi 6= σj for all i 6= j, then

E
[
Y+1[a,b](Y+)

]
=

n∑
i=1

σn−1i∏
j 6=i(σi − σj)

E
[
Yi1[a,b](Yi)

]
with the individual expectations on the right-hand side calculated by the formula

E
[
Yi1[a,b](Yi)

]
=

σαi
α− 1

(
aα + σi

(a+ σi)
α −

bα + σi
(b+ σi)

α

)
6.3. CLE Allocation

We start with the equation

CLEa,b [Xl, X+] = µl +
E
[
Yl1[a−µ+,b−µ+](Y+)

]
F̄Y+(a− µ+)− F̄Y+(b− µ+)

The following corollaries tackle the expectation E
[
Yl1[a,b](Y+)

]
for any pair 0 ≤ a < b ≤ ∞.

Corollary 6.2 Let n ≥ 2, l ∈ {1, . . . , n}, and Y ∼ MP(n)II (0,σ, α). When all the marginal standard
deviations are equal, that is, σ1 = · · · = σn =: σ, then

E
[
Yl1[a,b](Y+)

]
=
σα
∏n

i=1 (n+ α− i)
n!

n∑
k=0

(
n

k

)
(−1)k σk

α + k − 1

(
1

(a+ σ)α+k−1
− 1

(b+ σ)α+k−1

)
Note that the first equation of Corollary 6.1 immediately follows from Corollary 6.2 by summing up

E
[
Yl1[a,b](Y+)

]
with respect to all l = 1, . . . , n. We need to point out at this moment, however, that the

second and third equations of Corollary 6.1 will not follow so easily from our following results. In fact,
we have found that direct proofs of the aforementioned two equations are shorter and more transparent,
and we shall thus follow this route in Appendix A.

When all the marginal standard deviations except σl are equal, then we have a closed-form formula
for the expectation E

[
Yl1[a,b](Y+)

]
.

Corollary 6.3 Let n ≥ 2, l ∈ {1, . . . , n}, and Y ∼ MP(n)II (0,σ, α). When σi =: σ for all i 6= l and
σl 6= σ, then

E
[
Yl1[a,b](Y+)

]
=
σσn−1l

∏n
k=1 (n+ α− k)

(σ − σl)n (n− 2)!

n−2∑
k=0

(
n− 2

k

)
(−1)n−k

I1,k − I2,k
(α + k) (α + k + 1)

(16)

where

I1,k =
σα+k

σkl

k∑
j=0

(
k

j

)
(σl − σ)j

α + j − 1

(
1

(a+ σ)α+j−1
− 1

(b+ σ)α+j−1

)
and

I2,k =
σαl
α− 1

(
α + k

α

(
1− σl

σ

)( aα + σl
(a+ σl)

α −
bα + σl

(b+ σl)
α

)
+

1

(a+ σl)
α−1 −

1

(b+ σl)
α−1

)
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When σl and some other two standard deviations, say σi and σj , are unequal, then we have a
recursive formula.

Corollary 6.4 Let n ≥ 3, l ∈ {1, . . . , n}, and Y ∼ MP(n)II (0,σ, α). When there are at least two
unequal standard deviations, say σi 6= σj , and none of them is equal to σl, then

E
[
Yl1[a,b](Y+)

]
=

1

σi − σj

(
σiE

[
Yl1[a,b](Y(j)+)

]
− σjE

[
Yl1[a,b](Y(i)+)

] )
When all the marginal standard deviations are unequal, then we have the following result.

Corollary 6.5 Let n ≥ 3, l ∈ {1, . . . , n}, and Y ∼ MP(n)II (0,σ, α). When σi 6= σj for all i 6= j, then

E
[
Yl1[a,b] (Y+)

]
=

∑
i∈{1,...,n}\{l}

σn−2i∏
j∈{1,...,n}\{i,l}(σi − σj)

E
[
Yl1[a,b] (Yl + Yi)

]
(17)

To calculate the expectation E
[
Yl1[a,b] (Yl + Yi)

]
on the right-hand side of Equation (17), we apply

Corollary 6.3 in the case n = 2 and obtain the following result.

Corollary 6.6 Let (Yl, Ym) ∼ MP(2)II ((0, 0), (σl, σm), α). When σl 6= σm, then

E
[
Yl1[a,b](Yl + Ym)

]
=

σlσm

(σl − σm)2
Jl,m (18)

where

Jl,m :=
σαm
α− 1

(
1

(a+ σm)α−1
− 1

(b+ σm)α−1

)
− σαl
α− 1

((
1− σl

σm

)(
aα + σl

(a+ σl)
α −

bα + σl
(b+ σl)

α

)
+

1

(a+ σl)
α−1 −

1

(b+ σl)
α−1

)
7. Conclusions

In this paper, we have argued that the multivariate Pareto distribution of the second kind is an
attractive model for multidimensional risks/losses. We have demonstrated in particular that very general
classes of insurance premiums and risk allocations can be successfully tackled for the aforementioned
distribution. The formulas for the premiums and allocations are in terms of the utility, distortion, and
weight functions, as well as in terms of the distribution parameters. This facilitates a straightforward
computational implementation of the premiums and allocations when parameter estimates become
available to the researcher.
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A. Technicalities

In this appendix, we have collected proofs of our main results whose validity needs some explanation.
To begin with, we note that Proposition 3.1 follows immediately from the following lemma.

Lemma A.1 Let n ≥ 2 and Y ∼ MP(n)II (0,σ, α). When σi 6= σj for all i 6= j, then

fY+(y) =
n∑
i=1

σn−1i∏
j∈{1,...,n}\{i}(σi − σj)

fYi(y) (19)

Proof The proof is by induction and relies on recursive formula (8), whose validity has been established
by Vernic [21]. The case n = 2 is obvious. Hence, let Equation (19) hold for n− 1 losses, and our aim
is to show that it holds for n losses as well. Hence, fY+(y) is equal to

1

σ1 − σn

(
σ1

n−1∑
i=1

σn−2i∏
j∈{1,...,n−1}\{i}(σi − σj)

fYi(y)− σn
n∑
i=2

σn−2i∏
j∈{2,...,n}\{i}(σi − σj)

fYi(y)

)
(20)

Note that the coefficient next to fY1(y) in quantity (20) is equal to

σn−11

σ1 − σn

(
n−1∏
j=2

(σ1 − σj)

)−1
which is the same as the corresponding coefficient in Equation (19). Next, for all i ∈ {2, . . . , n− 1}, the
coefficient next to fYi(y) in quantity (20) is equal to

σn−2i

σ1 − σn

(
σ1∏

j∈{1,...,n−1}\{i}(σi − σj)
− σn∏

j∈{2,...,n}\{i}(σi − σj)

)
which is the same as the corresponding coefficient in Equation (19). Finally, the coefficient next to
fYn(y) in quantity (20) is equal to

− σn−1n

σ1 − σn

(
n−1∏
j=2

(σn − σj)

)−1
which is the same as the corresponding one in Equation (19). This proves Lemma A.1. �

Proof of Theorem 4.2 From Equation (8), we have that fY+(y) is equal to (σifY(j)+(y) −
σjfY(i)+(y))/(σi − σj). Hence,

E [u (Y+)] =

∫ ∞
0

u (y) fY+(y)dy =
1

σi − σj

(
σi

∫ ∞
0

u (y) fY(j)+(y)dx− σj
∫ ∞
0

u (y) fX(i)+
(y)dy

)
Theorem 4.2 follows. �

Lemma A.2 (Vernic [21]) Let n ≥ 2, l ∈ {1, . . . , n}, and Y ∼ MP(n)II (0,σ, α). When all the
standard deviations are equal, that is, σ1 = · · · = σn =: σ, then the joint density fYl,Y(l)+ of the
pair (Yl, Y(l)+) can be expressed by the formula

fYl,Y(l)+ (x, y) =
σα
∏n

k=1 (n+ α− k)

(n− 2)!

yn−2

(x+ y + σ)n+α

for all x, y ≥ 0.
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Proof of Equation (11) of Theorem 5.1 Immediately follows from Lemma A.2. �

Lemma A.3 (Vernic [21]) Let n ≥ 2, l ∈ {1, . . . , n}, and Y ∼ MP(n)II (0,σ, α). When σi =: σ for all
i 6= l and σl 6= σ, then

fYl,Y(l)+ (x, y) =

∏n
k=1 (n+ α− k)

σlσn−1 (n− 2)!
yn−2

(
x

σl
+
y

σ
+ 1

)−(n+α)
for all x, y ≥ 0.

Proof of Equation (12) of Theorem 5.1 Immediately follows from Lemma A.3. �

Lemma A.4 (Vernic [21]) Let n ≥ 3, l ∈ {1, . . . , n}, and Y ∼ MP(n)II (0,σ, α). When there are at
least two unequal standard deviations, say σi 6= σj , and none of them is equal to σl, then

fYl,Y(l)+ (x, y) =
1

σi − σj

(
σi fYl,Y(l,j)+ (x, y)− σj fYl,Y(l,i)+ (x, y)

)
for all x, y ≥ 0.

Proof of Theorem 5.2 Immediately follows from Lemma A.4. �

To proceed, we recall (cf. Subsection 2.3) that all lower-dimensional distributions of Y are also of
the Pareto-II type. For example, Y(m) = (Y1, . . . , Ym−1, Ym+1, . . . , Yn) ∼ MP (n−1)II

(
0,σ(m), α

)
.

Together with Lemma A.4, this implies that

fYl,Y(l,m)+
(x, y) =

1

σi − σj

(
σi fYl,Y(l,m,j)+ (x, y)− σj fYl,Y(l,m,i)+ (x, y)

)
as long as m is not i, j, or l, where Y(l,m,j)+ := Y+ − Yl − Ym − Yj and likewise Y(l,m,i)+ := Y+ − Yl −
Ym − Yi. Of course, in addition to the mth loss, we can delete as many coordinates of Y as we wish, as
long as we do not delete Yi, Yj , and Yl. This immediately leads to the following lemma.

Lemma A.5 Let n ≥ 3, l ∈ {1, . . . , n}, and Y ∼ MP(n)II (0,σ, α). When σi 6= σj for all i 6= j, then

fYl,Y(l)+ (x, y) =
∑

i∈{1,...,n}\{l}

σn−2i∏
j∈{1,...,n}\{i,l}(σi − σj)

fYl,Yl+Yi (x, y)

Proof of Corollary 5.1 Immediately follows from Lemma A.5. �

Proof of Corollary 6.1. Using Theorem 4.1 with u(y) = y1[a,b](y), we have

E
[
Y+1[a,b](Y+)

]
=
σα
∏n

i=1 (n+ α− i)
(n− 1)!

∫ b

a

yn

(y + σ)n+α
dy

=
σα
∏n

i=1 (n+ α− i)
(n− 1)!

n∑
k=0

(
n

k

)
(−σ)k

∫ b

a

1

(y + σ)α+k
dy

After integrating, we obtain the first equation of Corollary 6.1. The second equation follows immediately
from Theorem 4.2 with u(x) = x1[a,b](x). The third equation follows from Corollary 4.1 with the same
choice of the function u. �



Risks 2013, 1 29

Proof of Corollary 6.2. We first apply Theorem 5.1 with v(y) = y and w(y) = 1[a,b](y), and then
proceed with the following calculations:

E
[
Yl1[a,b](Y+)

]
=
σα
∏n

k=1 (n+ α− k)

(n− 2)!

∫ ∞
0

∫ ∞
0

x1[a,b] (x+ y) yn−2

(x+ y + σ)n+α
dxdy

=
σα
∏n

k=1 (n+ α− k)

(n− 2)!

∫ b

a

(∫ y

0

x (y − x)n−2

(y + σ)n+α
dx

)
dy

=
σα
∏n

k=1 (n+ α− k)

(n− 2)!

∫ b

a

yn

(y + σ)n+α

(∫ 1

0

t(1− t)n−2dt
)
dy

=
σα
∏n

k=1 (n+ α− k)

n!

∫ b

a

yn

(y + σ)n+α
dy

After integrating, we obtain Corollary 6.2. �

Proof of Corollary 6.3. We first apply Theorem 5.1 with v(y) = y and w(y) = 1[a,b](y), and then
proceed with the following calculations:

E
[
Yl1[a,b](Y+)

]
=

∏n
k=1 (n+ α− k)

σlσn−1 (n− 2)!

∫ ∞
0

∫ ∞
0

x1[a,b] (x+ y) yn−2(
x
σl

+ y
σ

+ 1
)n+α dxdy

=

∏n
k=1 (n+ α− k)

σlσn−1 (n− 2)!

∫ b

a

∫ y

0

x (y − x)n−2(
x
(

1
σl
− 1

σ

)
+ y

σ
+ 1
)n+αdxdy

Changing the variable x into t = x
(

1
σl
− 1

σ

)
+ y

σ
+ 1, and then employing some little algebra, we obtain

E
[
Yl1[a,b](Y+)

]
=

∏n
k=1 (n+ α− k)

σlσn−1 (n− 2)!

∫ b

a

∫ y
σl

+1

y
σ
+1

t− y
σ
− 1(

1
σl
− 1

σ

)2
tn+α

(
y −

t− y
σ
− 1

1
σl
− 1

σ

)n−2

dtdy

=
σσn−1l

∏n
k=1 (n+ α− k)

(σ − σl)n (n− 2)!

∫ b

a

∫ y
σl

+1

y
σ
+1

t− y
σ
− 1

tn+α

(
y

σl
+ 1− t

)n−2
dtdy

Using the binomial formula to expand ( y
σl

+ 1− t)n−2 into a series with respect to tn−2−k, we obtain

E
[
Yl1[a,b](Y+)

]
=
σσn−1l

∏n
k=1 (n+ α− k)

(σ − σl)n (n− 2)!

×
n−2∑
k=0

(
n− 2

k

)
(−1)n−2−k

∫ b

a

(
y

σl
+ 1

)k ∫ y
σl

+1

y
σ
+1

t−
(
y
σ

+ 1
)

tα+k+2
dtdy

Calculating the inner integral gives

E
[
Yl1[a,b](Y+)

]
=
σσn−1l

∏n
k=1 (n+ α− k)

(σ − σl)n (n− 2)!

n−2∑
k=0

(
n− 2

k

)
(−1)n−k

I1,k − I2,k
(α + k) (α + k + 1)

(21)

with

I1,k :=

∫ b

a

(
y
σl

+ 1
)k

(
y
σ

+ 1
)α+k dy
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and

I2,k :=

∫ b

a

(
y
σl

+ 1
)k

(
y
σl

+ 1
)α+k+1

(
1 + y

(
1

σl
+ (α + k)

(
1

σl
− 1

σ

)))
dy

Equation (21) is same as that in (16), provided that we show that the just defined I1,k and I2,k are the
same as those in Corollary 6.3. We do this next. First we write

I1,k =
σα+k

σkl

∫ b

a

(y + σl)
k

(y + σ)α+k
dy =

σα+k

σkl

k∑
j=0

(
k

j

)
(σl − σ)j

∫ b

a

1

(y + σ)α+j
dy

Calculating the integral gives the formula for I1,k in Corollary 6.3. It now remains to verify the formula
for I2,k in Corollary 6.3. To this end, we write

I2,k = σα+1
l

∫ b

a

1− σl∆l,k + (y + σl) ∆l,k

(y + σl)
α+1 dy

where ∆l,k := 1
σl

+ (α + k)
(

1
σl
− 1

σ

)
. Hence,

I2,k = σα+1
l (1− σl∆l,k)

∫ b

a

1

(y + σl)
α+1dy + σα+1

l ∆l,k

∫ b

a

1

(y + σl)
αdy

=
σα+1
l (1− σl∆l,k)

α

(
1

(a+ σl)
α −

1

(b+ σl)
α

)
+
σα+1
l ∆l,k

α− 1

(
1

(a+ σl)
α−1 −

1

(b+ σl)
α−1

)
Some little algebra on the right-hand side leads to the formula for I2,k stated in Corollary 6.3. This
completes the proof of Corollary 6.3. �

Proof of Corollary 6.4. Follows from Theorem 5.2 with v(x) = x and w(x) = 1[a,b](x). �
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