
              

City, University of London Institutional Repository

Citation: Hadjichrysanthou, C., Broom, M. & Kiss, I. Z. (2012). Approximating evolutionary 

dynamics on networks using a Neighbourhood Configuration model. Journal of Theoretical 
Biology, 312, pp. 13-21. doi: 10.1016/j.jtbi.2012.07.015 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/1317/

Link to published version: https://doi.org/10.1016/j.jtbi.2012.07.015

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Approximating evolutionary dynamics on networks using a1

neighbourhood configuration model2

Christoforos Hadjichrysanthoua,∗, Mark Brooma, Istvan Z. Kissb3

aCentre for Mathematical Science, City University London, Northampton Square, London EC1V 0HB, UK4

bSchool of Mathematical and Physical Sciences, Department of Mathematics, University of Sussex, Falmer,5

Brighton BN1 9RH, UK6

Abstract7

Evolutionary dynamics have been traditionally studied on homogeneously mixed and in-
finitely large populations. However, real populations are usually finite and characterised by
complex interactions among individuals. Recent studies have shown that the outcome of the
evolutionary process might be significantly affected by the population structure. Although
an analytic investigation of the process is possible when the contact structure of the popula-
tion has a simple form, this is usually infeasible on complex structures and the use of various
assumptions and approximations is necessary. In this paper, we adopt an approximation
method which has been recently used for the modelling of infectious disease transmission, to
model evolutionary game dynamics on complex networks. Comparisons of the predictions
of the model constructed with the results of computer simulations reveal the effectiveness of
the process and the improved accuracy that it provides when, for example, compared to well-
known pair approximation methods. This modeling framework offers a flexible way to carry
out a systematic analysis of evolutionary game dynamics on graphs and to establish the link
between network topology and potential system behaviours. As an example, we investigate
how the Hawk and Dove strategies in a Hawk-Dove game evolve in a population represented
by a random regular graph, a random graph and a scale-free network, and we examine the
features of the graph which affect the evolution of the strategies in this particular game.
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1. Introduction10

Traditionally, evolutionary dynamics have been studied on infinitely large homogeneous11

populations. However, many real populations, ranging from ecology and epidemiology to12

computer science and socio-economics, exhibit complex connectivity structures. These struc-13

tures can be represented and modelled as a collection of interacting units. At its simplest, a14

network is a collection of nodes representing well defined units that interact via a set of links15

that can be directional, weighted and even time dependent. Networks have provided and16

provide a new modelling paradigm that allows modellers to relax many of the strong implicit17

assumptions, such as the homogeneously mixing of individuals, and to account for a range18

of heterogeneities at the level of individuals. A growing amount of research on evolutionary19

dynamics on networks has shown that the structure of the network might significantly affect20

the evolutionary process (e.g., Lieberman et al., 2005; Szabó and Fáth, 2007; Nowak et al.,21

2010).22

While the modelling framework offered by networks is a straight-forward and intuitive23

one, it is often limited to individual-based stochastic simulations that can be difficult to24

validate, time consuming to run and the results generated can lack generality. To tackle this25

problem, researchers from different areas have developed different techniques that allow us26

to derive low-dimensional ODE (ordinary differential equation) models that, under certain27

assumptions about the structure of the network and the dynamics running on it, can approx-28

imate well the average outcome from stochastic network simulations. Establishing the clear29

relation between the exact-stochastic and approximate model is much more challenging since30

this requires a mathematical handle on both solutions as well as the formulation of an ap-31

propriate limit in which the exact-stochastic model approaches the deterministic limit. One32
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such well known class of approximate models is that of the pairwise models (e.g., Matsuda33

et al., 1992; van Baalen and Rand, 1998; Keeling, 1999; Eames and Keeling, 2002; House34

and Keeling, 2011) where the dynamics at the node level, in a population with network-like35

contact structure, is described in terms of the dynamics of pairs of individuals and where the36

hierarchical dependence on higher order structures is cut off via an appropriately constructed37

closure. In recent years, other models of similar nature have been derived, for example, the38

Probability Generating Function approach (Volz and Meyers, 2007; Volz, 2008) and more39

notably the Effective Degree model (Lindquist et al., 2011). These models have arisen in the40

context of epidemiology but their formulation and properties makes them amenable to be41

used for the modelling of evolutionary game dynamics on networks.42

In this paper, we consider the evolutionary dynamics of individuals interacting on differ-43

ent networks playing two strategies, A and B. The game played is described by the following44

payoff matrix45

A B

A a b

B c d

(1)

whose elements represent the payoffs obtained by the row player when interacting with the46

column player. The fitness of each individual is assumed to be equal to f = fb + wP , a47

linear function of the average payoff P obtained by the games played with neighbouring48

individuals. fb is a constant background fitness and w ∈ [0,∞) represents the intensity of49

selection which determines the contribution of P to fitness. When w → 0+, the payoff P50

of each individual has a small contribution to the overall fitness and we have so-called weak51

selection. When w = 0 all individuals have the same fitness and thus we have the case of52
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neutral drift. Finally, when w → ∞ the contribution of P to the fitness becomes arbitrarily53

large, and the effect of background fitness fb becomes negligible. Note that depending on54

the nature of the game and the evolutionary process, the individual’s payoff, P , can be55

considered in different ways. Alternatively for example the total payoff of an individual56

could be considered as just the sum of the payoffs obtained from each game played with each57

of its neighbours (accumulated payoff). This, depending on the evolutionary dynamics and58

the population structure, might yield remarkably different results (see for example, Santos59

and Pacheco, 2006; Tomassini et al., 2007; Szolnoki et al., 2008). In this work, assuming60

that at each iteration step individuals interact with neighbouring individuals at the same61

rate, the total payoff of each individual in each step is considered to be the average of the62

obtained accumulated payoff. Alternative fitness functions have also been considered. For63

example the exponential function of the payoff, f = exp(wP ) (Traulsen et al., 2008). These64

fitness functions are usually used for modelling the evolution of strategies in structured65

populations as represented by graphs. Different fitness functions have also been introduced66

for the modelling of evolutionary dynamics beyond the framework of pairwise interactions67

between individuals (Broom and Rychtář, 2011).68

It is assumed that a number of mutants playing strategy A (individuals A) are introduced69

into a resident population consisting of individuals playing strategy B (individuals B) by70

replacing an equivalent number of individuals at random. The two strategies evolve following71

specific updating rules. An analytic approach of the evolutionary process under various72

update rules is possible when individuals of the population occupy the vertices of simple73

graphs with a lot of symmetry and lack of complexity (Lieberman et al., 2005), such as74

a complete graph (Taylor et al., 2004), a circle (Ohtsuki and Nowak, 2006; Broom et al.,75
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2010), a star (Broom and Rychtář, 2008; Broom et al., 2010; Hadjichrysanthou et al., 2011)76

and a line (Broom and Rychtář, 2008). However, the analytic investigation of the process77

in populations with a complex structure is usually impossible when the evolution of each78

individual depends on the configuration of its neighbourhood, due to the large number of79

the possible configurations of the population through evolution. In such cases the use of80

approximation methods is essential. In this paper, using the techniques of the Effective81

Degree model (Lindquist et al., 2011) we consider evolutionary game dynamics on complex82

networks under the update rules of the biased Voter model as described in Antal et al.83

(2006). According to this model, at each iteration step after the invasion of mutants in the84

population, an individual dies with probability inversely proportional to its fitness, and thus85

fitter individuals are more likely to survive, and is replaced by the offspring of a randomly86

chosen neighbour. During the evolutionary process it is assumed that there is no mutation,87

just selection, i.e., the offspring of each individual is a perfect copy of its parent. Voter model88

type dynamics is one of the classical interacting particle systems which has been applied to89

many evolutionary processes, from opinion and culture dynamics to processes in population90

genetics and kinetics of catalytic reactions (e.g., Liggett, 1985; Frachebourg and Krapivsky,91

1996; San Miguel et al., 2005; Castellano et al., 2009) and has received considerable attention.92

It is noted that since the above process is a stochastic process and the transition probabilities93

from one state to another are inversely proportional to fitness, the fitness of each individual94

has to be strictly positive. This is assumed throughout the paper.95

We show that for randomly or proportionately mixed networks, with or without degree96

heterogeneity, the model constructed, called the Neighbourhood Configuration model, pro-97

vides an excellent approximation to output from simulation models, even for relatively small98
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network sizes. Following the same evolutionary dynamics we also construct a pairwise model99

and highlight its merits and shortcomings when compared to the Neighbourhood Configu-100

ration model. As an example, we consider the evolutionary process in a Hawk-Dove game101

when played in three graphs which have been widely used; a random regular graph, a random102

graph and a scale-free network.103

2. Approximate models of evolutionary game dynamics on networks104

2.1. Pairwise model105

In this section, we first approach the evolutionary process by using the pair approximation106

method (Matsuda et al., 1992; van Baalen and Rand, 1998; Keeling, 1999; Eames and Keeling,107

2002; House and Keeling, 2011). This is a method where the frequency of higher order108

moments, such as triples composed of three nodes connected in a line, is approximated by109

the frequency of lower order moments such as pairs and single nodes. This method works110

well with graphs with no or little heterogeneity in the number of connections, but can be111

extended to more heterogeneous graphs with a significant increase in the number of equations.112

Such methods assume that the underlying graphs have undirected links and that these are113

either un-weighted or uniformly weighted. These approximation methods have been used114

in previous work for the investigation of the evolutionary process in structured populations115

under different update rules (e.g., Morris, 1997; Hauert and Doebeli, 2004; Ohtsuki et al.,116

2006; Morita, 2008; Fu et al., 2010). Here, we will apply a similar method to approach the117

process when the updating rules of the Voter model are followed.118

Assume a population of N individuals playing either strategy A or B placed on a regular119

graph of degree k. Let pA (pB) denote the proportion of individuals A (B) in the population120
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and pAB the frequency of AB pairs. Let also qB|A denote the conditional probability that a121

neighbour of a chosen individual A is an individual B, i.e. qB|A = pAB/(pAA+pAB) = pAB/pA122

(thus 1 − qB|A = qA|A = pAA/pA denotes the conditional probability that a neighbour of a123

chosen A individual is another A individual). The equivalent expressions also hold for qA|B124

and qB|B. The edges of the networks we consider are assumed to be undirected and therefore125

pAB = pBA.126

Since all the vertices of the graph are assumed to be topologically equivalent, every pair127

of A (B) individuals is equally likely to be connected with probability qA|A (qB|B). Thus, the128

probability that from the k connections of an A individual, i of them are with other As (and129

thus k − i are with Bs), lA(i), is assumed to follow a binomial distribution and is given by130

lA(i) =

(

k

i

)

qA|A
i
(

1− qA|A

)k−i
=

k!

i!(k − i)!
qA|A

iqB|A
k−i. (2)

Similarly, the probability that a B individual is connected with i As and k− i Bs is assumed131

to be given by132

lB(i) =

(

k

i

)

(

1− qB|B

)i
qB|B

k−i =
k!

i!(k − i)!
qA|B

iqB|B
k−i. (3)

An A individual which is connected with i other A individuals has fitness equal to133

fA(i) = fb + w

(

ia + (k − i)b

k

)

. (4)
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A B individual which is connected with i As has fitness equal to134

fB(i) = fb + w

(

ic+ (k − i)d

k

)

. (5)

Let us denote by F the sum of the inverse of the fitnesses of all individuals.135

F = pA

k
∑

i=0

lA(i)

fA(i)
+ pB

k
∑

i=0

lB(i)

fB(i)
. (6)

The probability that an A individual dies (inversely proportional to its fitness) and is replaced136

by a (randomly selected) neighbouring B individual, PA→B, is given by137

PA→B =
pA

F

k
∑

i=0

lA(i)

fA(i)
·
k − i

k
. (7)

One of the B individuals dies with probability inversely proportional to its fitness and is138

replaced by a random neighbouring A individual with probability139

PB→A =
pB

F

k
∑

i=0

lB(i)

fB(i)
·
i

k
. (8)

The rate of increase of the frequency of A individuals, pA, (given one transition in each

iteration step) is given by the following equation

ṗA =
1

N
PB→A −

1

N
PA→B

=
1

NF

k
∑

i=0

(k − 1)!

i!(k − i)!

(

qA|B
iqB|B

k−i i

fB(i)
− qA|A

iqB|A
k−i k − i

fA(i)

)

. (9)
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When an A individual connected to other i As is replaced by a B individual, the number of140

AA pairs decreases by i and therefore the frequency of AA pairs, pAA, decreases by i/(kN/2)141

(kN/2 is the total number of links). This happens with probability142

PAA→AB =
pA

F

lA(i)

fA(i)
·
k − i

k
. (10)

Similarly, the number of AA pairs increases by i and therefore pAA increases by i/(kN/2)143

due to the replacement of a B connected to i As by an A with probability144

PAB→AA =
pB

F

lB(i)

fB(i)
·
i

k
. (11)

According to the above, the rate of increase of the frequency of AA pairs (given one transition

in each iteration step) is given by the following equation

ṗAA =
k
∑

i=0

2i

kN
PAB→AA −

k
∑

i=0

2i

kN
PAA→AB

=
2

kNF

k
∑

i=1

(k − 1)!

(i− 1)!(k − i)!

(

qA|B
iqB|B

k−i i

fB(i)
− qA|A

iqB|A
k−i k − i

fA(i)

)

. (12)

Since, pA + pB = 1, pAB = pBA = pA − pAA and pBB = 1 − pAA − 2pAB, the system can145

be described by just two dynamical equations, say (9) and (12). Note that the frequency146

of larger clusters can be approximated by the frequencies of the pairs. For example, the147

frequency of the three cluster XYZ, pXY Z , can be approximated by pXY pY Z/pY .148
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2.2. Neighbourhood Configuration model149

The effective degree model (Lindquist et al., 2011) stems from a model first proposed by150

Ball and Neal (2008) in the context of an SIR type infectious disease transmission model,151

where nodes in a network are accounted for not only by their disease status but also by their152

number of susceptible S and infected I neighbours, referred to as the effective degree of the153

nodes. Keeping track of recovered neighbours R is not important as they play no further154

part in the dynamics. Lindquist et al. (2011) formalised this model by categorising each155

node according to its disease state as well as the number of its neighbours in the various156

disease states. Based on heuristic arguments and on the assumption of proportionate mixing,157

Lindquist et al. (2011) derived a system of ODEs in terms of susceptible and infected nodes158

with all possible neighbourhood configurations. In this paper, we adopt this method to159

approach the stochastic evolutionary dynamics of a two-strategy game played on complex160

networks.161

Assume, as above, that a resident population of B individuals placed on an undirected and162

connected static network is invaded by a number of mutant A individuals. The evolutionary163

dynamics of the evolutionary process is described by the update rules of the Voter model.164

Each individual in the network is classified according to its strategy and the number of its165

connected individuals playing each of the strategies. Denote by Mm,r (Rm,r) the number of166

individuals in the class where individuals play the mutant (resident) strategy and each of167

them is connected to m other mutant individuals and r residents. Consider m and r as the168

number of links that start from an individual of an Mm,r or Rm,r class and end at a mutant169

or a resident, respectively. Assume that the maximum degree of a node on the network is170

Dmax and therefore m ≥ 0, r ≥ 0 and 1 ≤ m + r ≤ Dmax. Hence, the number of different171
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classes is equal to
∑Dmax

k=1 2(k + 1) = Dmax(Dmax + 3).172

The sum of the inverse of the fitnesses of all individuals, F , is given by173

F =

Dmax
∑

k=1

∑

i+j=k

(

Mi,j

1

(iα + jβ)
/

(i+ j)
+Ri,j

1

(iγ + jδ)
/

(i+ j)

)

, (13)

where we have set α = fb + wa, β = fb + wb, γ = fb + wc and δ = fb + wd. Let us also

define some terms which will be useful in subsequent calculations. Let Lxy be the number of

links which connect an individual of type x to an individual of type y (with x and y being

the start and destination node, respectively), where x and y denotes either a mutant (M) or

a resident (R) individual.

LMR =
Dmax
∑

k=1

∑

i+j=k

jMi,j , LRM =
Dmax
∑

k=1

∑

i+j=k

iRi,j ,

LMM =

Dmax
∑

k=1

∑

i+j=k

iMi,j , LRR =

Dmax
∑

k=1

∑

i+j=k

jRi,j. (14)

In addition, we use the following notations:

H1 =

Dmax
∑

k=1

∑

i+j=k

ij

iα + jβ
(Mi,j − δijmr), H2 =

Dmax
∑

k=1

∑

i+j=k

ij

iγ + jδ
(Ri,j − δijmr),

H3 =
Dmax
∑

k=1

∑

i+j=k

i2

iγ + jδ
Ri,j, H4 =

Dmax
∑

k=1

∑

i+j=k

j2

iα + jβ
Mi,j , (15)
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where δijmr is a function defined as174

δijmr =















1, i = m, j = r

0, otherwise

. (16)

An individual might move from one class to another, either by a change of its strategy or due175

to the change of a neighbour’s strategy. The probability that an A mutant individual of the176

Mm,r class is replaced by a B resident individual and move to the Rm,r class is equal to the177

probability that this individual is selected for death (with probability inversely proportional178

to its fitness) and is replaced by the offspring of one of its neighbouring residents (which is179

chosen at random), i.e. this probability is equal to180

1

(mα+rβ)
/

(m+r)

F
·

r

m+ r
=

r

F (mα + rβ)
. (17)

Similarly, a node of the Rm,r class moves to the Mm,r class with probability181

1

(mγ+rδ)
/

(m+r)

F
·

m

m+ r
=

m

F (mγ + rδ)
. (18)

A mutant connected to m other mutants and r residents leaves the Mm,r class and enters182

the Mm+1,r−1 class when a neighbouring resident is replaced by a mutant. The probability183

that a resident individual from an Ri,j class is selected to die and is replaced by an offspring184
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of a mutant neighbour is equal to185

Ri,j

1

(iγ+jδ)
/

(i+j)

F
·

i

i+ j
= Ri,j

i

F (iγ + jδ)
. (19)

We now use an approximation to estimate the probability that the replaced resident is186

connected to a mutant from the Mm,r class. This is assumed to be equal to the probability187

that a randomly chosen link which connects a resident individual with a mutant (starts from188

a resident and ends at a mutant), is a link which connects the replaced resident with that189

mutant individual from the Mm,r class (i links connect the replaced resident with a mutant190

and r links connect an individual of the Mm,r with a resident, and so there are ir different191

ways of making such a connection). This probability is given by192

ir
Dmax
∑

k=1

∑

i+j=k

iRi,j

. (20)

Hence, the probability that a mutant from the Mm,r class moves to the Mm+1,r−1 class can193

be approximated by194

Dmax
∑

k=1

∑

i+j=k

Ri,j

1

(iγ+jδ)
/

(i+j)

F
·

i

i+ j
·

ir
Dmax
∑

k=1

∑

i+j=k

iRi,j

=
H3r

FLRM

. (21)

In the same way, the probability that a mutant individual from the Mm,r class moves to195

the Mm−1,r+1 class is equal to the probability that a neighbouring mutant of that individual196

is replaced by a resident. The probability of such a transition is approximated by the197
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probability that a mutant of the population dies, is replaced by a neighbouring resident and198

the replaced mutant is connected to the mutant from the Mm,r class, i.e. by the probability199

Dmax
∑

k=1

∑

i+j=k

(Mi,j − δijmr)

1

(iα+jβ)
/

(i+j)

F
·

j

i+ j
·

im
Dmax
∑

k=1

∑

i+j=k

iMi,j −m

=
H1m

F (LMM −m)
. (22)

The term Mi,j − δijmr represents the number of mutants in an Mi,j class that can be replaced200

by a resident such that the transition of a mutant from the Mm,r class to the Mm−1,r+1 class201

is possible. When i = m and j = r, 1 is subtracted from Mm,r since the movement of an202

individual from the Mm,r to the Mm−1,r+1 cannot be a result of its own replacement. In203

other words, if a mutant from the Mm,r class dies and is replaced by a resident, there are204

other Mm,r − 1 mutants from that class that might be connected to it and thus move to the205

Mm−1,r+1 class. The term
∑Dmax

k=1

∑

i+j=k iMi,j −m corresponds to the number of links that206

connect any mutant (starting from it) except the specific one from the Mm,r class, to other207

mutants. At this stage the death and replacement events have already happened and we are208

looking for the probability that a random link that goes from a mutant to another mutant209

is a link that connects the replaced individual to an individual from the Mm,r class. This210

link obviously cannot be any of the m links of that individual.211

By symmetric arguments, the probability that an individual leaves the Rm,r class and enters212

the Rm+1,r−1 class is given by213

Dmax
∑

k=1

∑

i+j=k

(Ri,j − δijmr)

1

(iγ+jδ)
/

(i+j)

F
·

i

i+ j
·

jr
Dmax
∑

k=1

∑

i+j=k

jRi,j − r

=
H2r

F (LRR − r)
, (23)
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Rm−1,r+1
/

H4m

FLMR

Rm,r

H2(r + 1)

F
(

LRR − (r + 1)
)Rm−1,r+1

.
Rm,r

H2r

F (LRR − r)
Rm,r

.
/

H4(m+ 1)

FLMR

Rm+1,r−1

Rm+1,r−1

Mm−1,r+1
/

H1m

F (LMM −m)
Mm,r

H3(r + 1)

FLRM

Mm−1,r+1

.
Mm,r

m

F (mγ + rδ)
Rm,r

5

r

F (mα+ rβ)
Mm,r

4

H3r

FLRM

Mm,r

.
/

H1(m+ 1)

F
(

LMM − (m+ 1)
)Mm+1,r−1

Mm+1,r−1

Figure 1: Diagram showing all the probabilities of transition from and to the classes Mm,r and Rm,r.

while the probability of leaving the Rm,r class and moving to the Rm−1,r+1 class is given by214

Dmax
∑

k=1

∑

i+j=k

Mi,j

1

(iα+jβ)
/

(i+j)

F
·

j

i+ j
·

jm
Dmax
∑

k=1

∑

i+j=k

jMi,j

=
H4m

FLMR

. (24)

The transition probabilities of moving from and to the Mm,r and Rm,r classes are represented215

schematically in the diagram in Fig. 1216

The dynamics of the Dmax(Dmax + 3) different classes of the population is described by

the following differential equation based compartmental model

Ṁm,r =−
1

F

(

H3r

LRM
+

H1m

LMM −m
+

r

mα + rβ

)

Mm,r +
H1(m+ 1)

F
(

LMM − (m+ 1)
)Mm+1,r−1+

+
H3(r + 1)

FLRM

Mm−1,r+1 +
m

F (mγ + rδ)
Rm,r, (25)

Ṙm,r =−
1

F

(

H2r

LRR − r
+

H4m

LMR
+

m

mγ + rδ

)

Rm,r +
H4(m+ 1)

FLMR

Rm+1,r−1+
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+
H2(r + 1)

F
(

LRR − (r + 1)
)Rm−1,r+1 +

r

F (mα + rβ)
Mm,r, (26)

for {(m, r) : m ≥ 0, r ≥ 0, 1 ≤ m+ r ≤ Dmax}.217

The density of mutants A in the population is given by pA =
∑Dmax

k=1

∑

m+r=k Mmr/N and218

the density of residents B by pB =
∑Dmax

k=1

∑

m+r=k Rmr/N .219

Note that for very large population sizes, the subtractions of m and m + 1 from LMM,220

and r and r + 1 from LRR as well as those of δijmr in the terms H1 and H2 in the model221

(25)–(26) can be omitted since their effect is negligible (see for example Lindquist et al.222

(2011) and Gleeson (2011) where in models of similar nature such subtractions are avoided).223

However, this would reduce the accuracy of the solution of the model when the population224

size is small. Moreover, it should be mentioned that the above subtractions might result in225

negative values of Mm,r and/or Rm,r for some values of m and r. This is due to the fact226

that the numerical solution of the system might lead to non-integer values of these quantities227

which lie between 0 and 1. As a result, the terms LMM − m, LMM − (m + 1), LRR − r or228

LRR − (r+1) might become negative. This problem can be solved by setting these terms to229

be bounded below by 1, which is the minimum natural value that these terms can take.230

2.3. Numerical examples and comparisons with stochastic simulations231

In this section, we examine the effectiveness of the two approximation models described in232

Sections (2.1) and (2.2); the pairwise model and the Neighbourhood Configuration model. As233

specific examples we consider the evolution of strategies in Hawk-Dove type games (Maynard234

Smith and Price, 1973; Maynard Smith, 1982). The Hawk-Dove game is a famous game235

which has been widely used for the modelling of the aggressive behaviour of animals over236
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food. According to this game, animals interact with each other over a resource by playing237

either aggressively using the Hawk strategy (H) or non-aggressively using the Dove strategy238

(D). When two Hawk players meet, a conflict takes place. The winner takes the resource V239

while the loser pays a cost C. Thus the average payoff obtained by Hawks is (V − C)/2. If240

a Hawk and a Dove meet, the Dove retreats leaving the food to the Hawk without paying241

any cost. Thus the Dove obtains nothing while the Hawk receives a payoff V . Finally, if two242

animals playing Dove meet, they either equally share the food (if divisible) or with equal243

probability one of the two takes the food with no cost. Thus, in this case Doves obtain an244

average payoff equal to V/2. This game is described by the following payoff matrix245

H D

H a = V−C
2

b = V

D c = 0 d = V
2

. (27)

In this game, if the value of the resource outweighs the cost of the fight, i.e. if a > c ⇒ V > C,246

since b > d, an individual always does better by playing the Hawk strategy no matter what247

the opponent does. Thus, in an infinite homogeneous population the Hawk strategy is the248

unique Evolutionarily Stable Strategy (ESS). If a < c ⇒ V < C, there is a unique ESS249

where Hawks coexist with Doves at a proportion equal to (b− d)/(b+ c− a− d) = V/C.250

We consider Hawk-Dove type games played on three commonly used families of graphs:251

the random regular graphs, the random graphs and the scale-free networks. The random252

graph we consider is an Erdős–Rényi type random graph (Erdős and Rényi, 1959) generated253

as described in Lindquist et al. (2011). Assume a population of N nodes with no connections254

between them. Firstly, every (non-connected) node is connected to a random node with255
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degree less than the maximum allowable degree Dmax. In order to ensure that the graph will256

be connected (there will be a path between every two nodes of the graph), initially a pair257

of nodes is connected, and then each of the remaining (non-connected) nodes is connected258

to a randomly chosen node which is already connected, sequentially. After the connection259

of all the nodes, two nodes with degree less than Dmax are chosen at random and become260

connected. The last step is iterated until the desired average degree of the graph, 〈k〉, is261

reached. The random regular graphs are generated in the same way as the random graph by262

assuming that Dmax = 〈k〉, i.e. with the restriction that every node has the same number263

of connections. The scale-free networks are generated following the algorithm of preferential264

attachment (Barabási and Albert, 1999; Albert and Barabási, 2002). The initial graph265

consist of a small number of m0 nodes (connected with l0 links). A new vertex of degree266

equal to m (≤ m0) is added to the graph by connecting each of its links to one of the existing267

nodes. The probability that one of the m links is connected to the node i with degree ki is268

equal to ki/
∑N

j=1 kj (preferential attachment). This process is repeated until the network is269

composed of N nodes. Given that this happens after t = N−m0 iteration steps, the number270

of new links that will be added in the graph will be equal to mt. Therefore, the network271

obtained has average degree equal to 〈k〉 = 2(mt + l0)/N which for sufficiently large N is272

well approximated by 2m. Note that in all the graphs we consider, it is assumed that the273

links between nodes are undirected and unweighted, every two nodes are connected with at274

most one link and there are no self-loops, i.e. there is no link which connects a node to itself.275

In all the examples, it is assumed that at the initial state of the process the population276

consists of 50% of resident individuals playing the Dove strategy and 50% of mutants playing277

the Hawk strategy randomly distributed among the vertices of the network, so that there278
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is no initial advantage to any of the strategies. The population size, N , is relatively small,279

N = 400. The results of the pairwise model and the Neighbourhood Configuration model are280

compared with the average of 100 different network realisations. The equilibrium densities of281

the strategies have been obtained by averaging the frequency over the last 5000 iteration steps282

in 40000 iteration steps (for each graph convergence to an equilibrium state was effectively283

achieved at a significantly earlier time).284

The numerical examples shown in Fig. 2 indicate that, on the three type of networks285

we consider, the prediction of the time evolution of strategies given by the solution of the286

Neighbourhood Configuration model (25)–(26) agrees very well with the results of computer287

simulations. The numerical results also indicate that the more detailed model provides288

an approximation with improved accuracy compared to the solution of the pairwise model.289

Although it is observed that contact structure has little effect on such evolutionary dynamics,290

the effectiveness of the Neighbourhood Configuration model is more distinct on heterogeneous291

graphs and in general on graphs of low degree, when compared with the pairwise model. As292

the average degree of the graph increases, i.e. the homogeneity of the graph increases, the293

predictions of both models are in good agreement with simulation results (see for example,294

Fig. 3).295

Although the novelty of this paper is the introduction of this powerful approximation296

method for the approximation of the evolutionary game dynamics in structured populations,297

we discuss some main conclusions about the effect of the population structure on the out-298

come of the evolutionary dynamics in a Hawk-Dove game. Specifically, we discuss how the299

Hawk and Dove strategies evolve in a population represented by a random regular graph,300

a random graph and a scale-free network. Numerical examples suggest that increasing the301
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Figure 2: (a) Time evolution of the Hawk strategy in a Hawk-Dove game on a random regular graph with
〈k〉 = 4, a random graph with 〈k〉 = 4 and Dmax = 10 and a scale-free network with 〈k〉 = 4. The solid
lines represent the solution of the Neighbourhood Configuration model, the dashed-dotted line represents the
solution of the pair approximation model and the circles represent the average of 100 stochastic simulations.

heterogeneity of the network favours the emergence of the Hawk strategy. Following the302

updating rules of the Voter model, fitter mutants that occupy nodes of high connectivity303

have an increased chance to survive and reproduce (Sood et al., 2008; Hadjichrysanthou et304

al., 2011). Therefore, as it is observed in Fig. 2, the scale-free networks provide an encour-305

aging environment for the Hawk strategy to evolve. However, the most important feature306

of a graph that affects the evolutionary process is its average degree. The results of our307

examples indicate that in all types of graphs we consider, a decrease of the average number308
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Figure 3: The proportion of Hawks in the equilibrium on random graphs of different average degree, 〈k〉.
The maximum degree of a node, Dmax, in each of the graphs is equal to 〈k〉 + 6. The squares represent
the solution of the Neighbourhood Configuration model, the diamonds represent the solution of the pair
approximation model and the circles represent the average of 100 stochastic simulations.

of neighbours that each individual has tends to deviate the equilibrium frequency of Hawks309

from the equilibrium density in the case of the well-mixed population and this deviation310

is more pronounced for lower degree graphs. Depending on the values of the payoffs, the311

decrease of the average degree of the neighbours might enhance or inhibit the evolution312

of the Hawk strategy (and thus the Dove strategy). In particular, if the payoffs are such313

that the equilibrium frequency of Hawks in a well-mixed population is less than half of the314

population, the decrease of the average number of neighbours decreases their frequency at315

equilibrium conditions (at least when the average degree is already sufficiently small). If the316

payoffs are such that the equilibrium frequency in a well-mixed population is higher than317

half, the equilibrium frequency will tend to increase as the average number of neighbours318

decreases (see in Fig. 3 the effect of the variation of the average degree of a random graph319



22

in two example games). Note that, the improved approximation of the Neighbourhood Con-320

figuration model when compared to that of the pair approximation model is not clear in our321

examples presented in Fig. 3, mainly due to the particular example games and the graph322

on which the games are played. However, the scope of this figure is to illustrate the effect of323

the average connectivity of the graph at the equilibrium state of the system.324

It should be noted that, due to the nature of the evolutionary dynamics as well as to325

the nature of the game we consider, the time evolution of strategies is very slow, especially326

for networks of low connectivity, and to speed up the evolutionary process we reduce the327

population size and the number of simulations realised. However, small population sizes328

and small number of realisations of stochastic simulations result in larger oscillations of the329

simulation results due to the increase of the sensitivity of the process to stochastic effects.330

Increasing the population size and the number of realisations, this effect is reduced and the331

difference between the predictions of the computer simulations and the predictions of the332

Neighbourhood Configuration model decreases.333

3. Discussion334

In this work, we have investigated the stochastic evolutionary game dynamics in struc-335

tured populations following the updating rules of the Voter model dynamics, a dynamics336

which is applied in many models that arise in various fields, such as physics and biology.337

Whilst analytic investigation of this dynamics is possible when populations have a simple338

structure, the study of the dynamics in complex structures requires the use of approximation339

techniques. Here, we propose a Neighbourhood Configuration model for the study of the340

stochastic evolutionary dynamics of a two-strategy game on complex networks.341
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As an example evolutionary game, we have considered a Hawk-Dove game played in342

three widely used type of graphs; random regular graphs, random graphs and scale-free343

graphs. The solutions of the model constructed in comparisons with the outcome of stochas-344

tic simulations imply that the method followed is a powerful and effective method for the345

approximation of such processes. In addition, comparisons with the results of the extensively346

used pairwise approximation suggest that this method is an improved method in relation to347

the accuracy of the approximation and/or agreement with simulation results.348

Although the aim of this paper is the introduction of the Neighbourhood Configuration349

model for the approximation of evolutionary game dynamics on graphs, we have considered350

some important characteristics of the network that might affect the evolution of strategies351

in a Hawk-Dove game. The spatial effects in this evolutionary game have received consid-352

erable attention in many previous works, including Killingback and Doebeli (1996), Hauert353

and Doebeli (2004), Tomassini et al. (2006), Broom et al. (2010), Voelkl (2010) and Had-354

jichrysanthou et al. (2011). One of the main research questions is whether there are struc-355

tures and strategy update rules which favour the persistence of the cooperative Dove-like356

behaviour over the Hawk-like behaviour compared to the evolution in classical evolutionary357

game theory under the assumption that the population is well-mixed and infinitely large.358

Killingback and Doebeli (1996) have shown that for a wide range of parameter values, the359

square lattice structure may favour the evolution of the Dove strategy, with respect to the360

equilibrium frequency of Doves in the population compared to the equilibrium frequency361

in the classical Hawk-Dove game. On the other hand, in Hauert and Doebeli (2004), ex-362

tending the investigation of the evolution of strategies in this type of game to a broader363

class of lattices and under different strategy update rules, the authors concluded that spatial364
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structure usually does not promote the evolution of the Dove strategy. Santos and Pacheco365

(2005) showed that among other structures, in Hawk-Dove type games (specifically, in the366

Snowdrift game), under some specific strategy update rules, the evolution of the Dove-like367

strategies are facilitated particularly on scale-free networks due to the existence of highly368

connected Doves (see also Santos et al., 2006). Tomassini et al. (2006), based on the results369

of computer simulations, have considered the game played among individuals on latices,370

random graphs and small-world networks and shown that, compared with the case of the371

well-mixed population, this type of networks might enhance or inhibit the Dove strategy372

(the proportion of Doves at the equilibrium state might be either higher or lower than their373

proportion given by the theoretical solution of the standard replicator dynamics equations)374

depending on the update rule and the ratio V/C. In Broom et al. (2010), Voelkl (2010)375

and Hadjichrysanthou et al. (2011) it has been shown through an analytical and numerical376

investigation that the Dove behaviour is favoured on some structures with respect to their377

probability and time to fixation. In this paper, through numerical examples we have shown378

that the population structure might influence significantly the evolution of strategies. The379

most important feature of the graph that affects the evolution in our examples seems to380

be the average connectivity. Decreasing the average number of connections of each individ-381

ual increases the difference between the proportion of Hawks from their proportion in the382

equivalent infinite homogeneous population, in the direction of the nearest absorption state.383

Hence, depending on the values of the payoffs, the decrease of the average connectivity of384

the network enhances or inhibits the Hawk strategy. In addition, heterogeneous graphs have385

been shown to facilitate the evolution of Hawks. Particularly, the existence of highly con-386

nected nodes promote the evolution of the Hawk strategy and scale-free networks appear to387
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be the most hospitable environment among the networks we have considered.388

This approximation method is undoubtedly a useful tool which provides an effective way389

to consider stochastic evolutionary dynamics on a wide range of graphs. We believe that390

its use in future research could give insight into the influence of the population structure on391

the outcome of such dynamics (Gleeson, 2011). Future work could involve the application392

of the Neighbourhood Configuration model in the investigation of other type of dynamics393

on networks, for example birth-death dynamics where the birth event happens first followed394

by the death and replacement events. One extension of the model could be the inclusion of395

a mutation process, a process that usually occurs in natural systems. For example, it could396

be assumed that with a certain probability the offspring of an X individual is not a copy397

of its parent but is a Y individual. This would add some complication in the model, since398

in this case an X individual might be replaced by a Y individual, which is the offspring of399

a neighbouring X individual. Such an extension would allow us to consider the effect of400

mutation on the evolution of different strategies on networks, an important factor that has401

rarely been studied. This method is also amenable to be extended to dynamic networks and402

thus offers further other potential advantages to modellers (see a modelling framework in403

this direction in the context of disease propagation in, for example, Marceau et al., 2010;404

Taylor et al., 2011).405
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Erdős, P., Rényi, A., 1959. On random graphs I. Publ. Math. 6, 290–297.428

Frachebourg, L., Krapivsky, P.L., 1996. Exact results for kinetics of catalytic reactions. Phys.429

Rev. E 53, R3009–R3012.430

Fu, F., Nowak, M.A., Hauert, C., 2010. Invasion and expansion of cooperators in lattice431

populations: prisoner’s dilemma vs. snowdrift games. J. Theor. Biol. 266, 358–366.432

Gleeson, J., 2011. High-accuracy approximation of binary-state dynamics on networks. Phys.433

Rev. Lett. 107, 068701.434
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Figure legends498

Figure 1: Diagram showing all the probabilities of transition from and to the classes Mm,r499

and Rm,r.500

Figure 2: (a) Time evolution of the Hawk strategy in a Hawk-Dove game on a random501

regular graph with 〈k〉 = 4, a random graph with 〈k〉 = 4 and Dmax = 10 and a scale-502

free network with 〈k〉 = 4. The solid lines represent the solution of the Neighbourhood503

Configuration model, the dashed-dotted line represents the solution of the pair approximation504

model and the circles represent the average of 100 stochastic simulations.505

Figure 3: The proportion of Hawks in the equilibrium on random graphs of different average506

degree, 〈k〉. The maximum degree of a node, Dmax, in each of the graphs is equal to 〈k〉+6.507

The squares represent the solution of the Neighbourhood Configuration model, the diamonds508

represent the solution of the pair approximation model and the circles represent the average509

of 100 stochastic simulations.510


