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Evolution in finite populations is often modelled
using the classical Moran process. Over the last
ten years this methodology has been extended to
structured populations using evolutionary graph
theory. An important question in any such population,
is whether a rare mutant has a higher or lower chance
of fixating (the fixation probability) than the Moran
probability, i.e. that from the original Moran model,
which represents an unstructured population. As
evolutionary graph theory has developed, different
ways of considering the interactions between individuals
through a graph and an associated matrix of weights
have been considered, as have a number of important
dynamics. In this paper we revisit the original
paper on evolutionary graph theory in light of these
extensions to consider these developments in an
integrated way. In particular we find general criteria
for when an evolutionary graph with general weights
satisfies the Moran probability for the set of six
common evolutionary dynamics.
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1. Introduction2

When modelling population evolution we are concerned with the spread of heritable3

characteristics in successive generations. The type of model that is used depends upon whether4

the population size is assumed to be finite or infinite. The majority of classical evolutionary5

models (see for example [1, 2]) use infinite populations, although finite population models are6

also well established, the most important models being those in [3, 4]. These models are stochastic,7

and are solved using classical Markov chain methodology [5, 6, 7]. See also [8, 9] for an extension8

to evolutionary games in finite populations.9

The populations in the models described above, however, were “well-mixed”, i.e. every10

individual was equally likely to encounter every other individual. Real populations of course11

contain structural elements, such as geographical location or social relationship, which mean that12

some pairs individuals are more likely to interact than others. In such circumstances we need to13

be able to identify distinct individuals (or at least distinct classes of individuals), and considering14

finite populations is perhaps more natural than infinite ones (although finite structures each15

containing an infinite number of individuals, so called “island models”, were considered in [10]).16

In [11] the modelling ideas of [3] were extended to consider such structured populations based17

upon graphs, known as evolutionary graph theory. This has proved very successful, spawning a18

large number of papers (for example [12, 13, 14, 15, 16, 17, 18, 19]). For informative reviews see19

[20, 21].20

In an evolving population, we need to consider the mechanism of how the population changes,21

called the dynamics. Informally, the dynamics specify the way in which heritable characteristics22

are passed on from one generation to the next. For infinite populations the classical replicator23

equation [22] is often used (although there are a number of alternatives), and in the stochastic24

model of [3] there is a natural replacement dynamics built in. For structured populations this issue25

is actually considerably more complex, and the order of births and deaths, and where selection26

acts, is of vital importance [23, 24]. We shall consider a set of dynamics that are commonly used27

in evolutionary graph theory models. The relationship between dynamics and structure is of28

key interest because the spread of heritable characteristics is directly dependent upon it. Whilst29

having essentially no effect on populations with no structure, for constant fitness this relationship30

potentially yields very different results on graphs. For non-constant fitness the results will vary31

for different dynamics even in well-mixed populations [25].32

Under some circumstances it is, however, possible for the dynamics and structure to interact33

in such a way that the spread of heritable characteristics behaves just as if the population was34

homogeneous. This was a central theme of the classic paper [11], where two important results,35

the circulation theorem and the isothermal theorem, were developed that addressed this question36

(see also [26] for related work). In this paper we generalise the work of [11] to obtain a complete37

classification of when the combination of a population structure and dynamics can be regarded38

as equivalent to a homogeneous population in a precisely defined way, for the six most common39

evolutionary dynamics and graphs with general weights.40

2. The Model41

We shall first describe the population model of [11], which generalises the model of [3] by42

incorporating a replacement structure. The notation used in this paper is summarised in Table 1.43

The population has a constant size N ∈Z, N ≥ 2, consisting of individuals I1, . . . , IN . Every individual44

is either of type A or B.45

This implies that there are 2N different states of the population given by the combination of46

type A and B individuals. We represent each state by a set S such that n∈ S if an individual In47

is of type A. We can easily revert to using the number of type A individuals, |S|, if the population48

is homogeneous. The states ∅ and N = {1, 2, . . . , N} have only type B and A individuals49

respectively.50
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Individuals have a constant fitness that may depend upon their type.51

The fitness of individuals in state S is thus given by the vector F(S) = (Fn(S))n=1,2,...,N52

where53

Fn(S) =

{
1 n /∈ S,
r ∈ (0,∞) n∈ S,

54

55

is the fitness of In. Here the fitness r of a typeA individual is given relative to the fitness of a type56

B individual assumed to be 1.57

During a stochastic replacement event (that happens in an instant) an exact copy of an individual Ii58

replaces an individual Ij .59

The replacement events may be restricted in the sense that not all individuals can replace60

one another. To enforce such restrictions, [11] imposed a replacement structure using a weighted61

directed graph given by the tuple (D,w) where D= (V,E) is a directed graph, with sets V of62

vertices and E of directed edges, and w is a map that assigns a weight to each edge such that63

w : V × V → [0,∞) : (i, j) 7→wij . Each vertex n∈ V represents In therefore V = {1, 2, . . . , N} so64

|V |=N . We assume that (i, j)∈E if and only if wij > 0, which indicates that Ii can replace Ij .65

Note that we allowwii > 0 and therefore Ii can replace itself. All the information contained within66

the weighted digraph (D,w) is conveniently summarised by the N ×N weighted adjacency67

matrix W= (wij) and therefore we will refer to (D,w) using W, which we call the replacement68

matrix.69

The replacement events are stochastic which means that there is a probability rij =70

rij(F(S),W) associated with (a copy of) Ii replacing Ij . There are several potential evolutionary71

dynamics on graphs that govern how the probability is determined. There three main types of72

dynamics that are summarised below, see also [21]. We use the convention that Ii is chosen for73

birth and Ij is chosen for death.74

(i) Birth-Death (BD): Ii is chosen first then Ij . We have that i∈ V is chosen with probability75

bi and then (i, j)∈Ei is chosen with probability dij , where Ei are all edges starting in76

vertex i. dij is used to signify that there is ‘replacement by death’. Finally, rij = bidij .77

(ii) Death-Birth (DB): Ij is chosen first then Ii. We have that j ∈ V is chosen with probability78

dj and then (i, j)∈Ej is chosen with probability bij , where Ej are all edges ending in79

vertex j. bij is used to signify that there is ‘replacement by birth’. Finally, rij = dibij .80

(iii) Link (L): Ii and Ij are chosen simultaneously. In this case (i, j)∈E is simply chosen with81

probability rij .82

For each type of these dynamics, the natural selection can, through the fitness parameter, influence83

either the choice at birth (resulting in adding “B”) or at death (adding “D”). It yields 6 kinds of84

evolutionary dynamics on graphs summarized in Table 2. These dynamics have been extensively85

studied, in particular, see [27] for a detailed comparison of them. Of these, the BDB and LB86

dynamics were used in [11].87

(a) The fixation probability88

The fixation probability, ρAS = ρAS (∗,W, r), is the probability that the population with initial state89

S is absorbed inN where ∗ is the dynamics being used.90

Given that the replacement events are random, the transitions between the states of the91

population are described by a stochastic process, which we denote E . The properties of E92

can be investigated once the state transition probabilities of moving from state S to S′,93
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PSS′ = PSS′(∗,W, r), are calculated using the replacement probabilities as follows:94

PSS′ =





∑

i/∈S
rij(F(S),W) if S′ = S \ {j} for some j ∈ S,

∑

i∈S
rij(F(S),W) if S′ = S ∪ {j} for some j /∈ S,

∑

i,j∈S
∨i,j /∈S

rij(F(S),W) if S′ = S.

95

96

The transition probabilities, PSS′ , satisfy the Markov property because they only depend upon97

the state S, that is, the probability of transitioning from the present state to another state is98

independent of any past and future state of the population. The stochastic process E∗,W,r with99

state transition matrix S= S(∗,W, r) = (PSS′)S,S′⊂{1,2,...,N} is therefore a Markov chain. The100

Markov chain E∗,W,r is part of the class of evolutionary Markov chains described in [28].101

The absorbing states of E∗,W,r are ∅,N , which means that if the population is in either one of102

these states then it remains there indefinitely. This property of E∗,W,r can be used to measure the103

success of a type A individual by calculating the probability that it fixates, that is, everyone in the104

population is of type A. The fixation probability is then given by solving105

ρAS =
∑

S′⊂{1,2,...,N}
PSS′ρ

A
S′ (2.1)106

107

with boundary conditions ρA∅ = 0 and ρAN = 1.108

As demonstrated in [27], LB and LD dynamics may differ in time scale but they yield the109

same fixation probabilities when fitness is constant (which is our case). Thus, for our purposes110

the dynamics are the same and we will thus consider them together and denote them by L.111

Fixation probability is not the only measure for evolutionary success and we can look at the112

fixation time [29, 30] as well.113

(b) The Moran Process114

The Moran process [3], a stochastic birth-death process on finite fixed homogenous population,115

can be reconstructed as EBDB,WH,r for a constant replacement matrix116

WH = (1/N)i,j . (2.2)117
118

For any r ∈ (0,∞) and any S ⊂ {1, . . . , N}, the fixation probability for this process, or Moran119

probability, is given by120

ρAS =





1− r−|S|
1− r−N if r 6= 1,

|S|/N if r= 1.

121

122

We are interested in characterizing graphs (and evolutionary dynamics) that yield the same123

fixation probabilities as the homogeneous matrix WH given in (2.2). We note that for this matrix124

all of the transition probabilities rij take the same value independent of i, j or the dynamics, and125

consequently the fixation probability under each of the dynamics is the same.126

(c) Classes of Graphs/ Matrices127

The set of all admissible replacement matrices is defined as follows128

W = {W : for every i, j, there is n such that (Wn)i,j > 0}.129
130

This definition means that W is strongly connected as for any pair of vertices i and j, there is131

a path (of length n) going from i to j. Unless specified otherwise, we will consider admissible132

replacement matrices only.133
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As in [11], for any W (admissible or not) we define the in temperature of In, T−n , and the out134

temperature of In, T+
n , by135

T−n =

N∑

j=1

wjn and T+
n =

N∑

j=1

wnj .136

137

W is called a circulation if T+
n = T−n , for all n∈ V and it is called isothermal if T+

i = T−j , for all138

i, j ∈ V . W is called right stochastic if T+
n = 1, for all n∈ V and it is called left stochastic if T−n = 1,139

for all n∈ V . The sets of all circulations, isothermal matrices, right stochastic matrices, and left140

stochastic matrices, respectively are denoted by WC ,WI ,WR, and WL respectively.141

The set CN denotes the sets of matrices representing cycles of length N , more specifically, for142

(wij)∈CN we havewii = 1/2 for i= 1, 2, . . . N ,wi1i2 = · · ·=winin+1
= · · ·=wiN−1iN =wiN i1 =143

1/2 for some permutation i1, i2, . . . , iN of the sequence 1, 2, . . . , N , and wij = 0 otherwise.144

We also define the maps fR :W →WR, fL :W →WL, and f ′ :W →W respectively, by145

fR
(
(wij)

)
=

(
wij∑
n win

)
, fL

(
(wij)

)
=

(
wij∑
n wnj

)
, and f ′

(
(wij)

)
=

(
wij∑
n,k wnk

)
.146

147

Note that fR preserves right stochastic matrices and fL preserves left stochastic matrices.148

Moreover, fR(W) = fL(W) for all W ∈WI . Also, since f ′ simply involves multiplying W by149

the constant 1/
∑

n,k wnk, it implies that W ∈WC⇔ f ′(W)∈WC.150

When the dynamics ∗, matrices W1 and W2, and fitness r are given, we say that an151

evolutionary Markov chain E∗,W1,r is ρ-equivalent to E∗,W2,r if for every S ⊂ {1, . . . , N},152

ρAS (∗,W1, r) = ρAS (∗,W2, r), in which case we write W1 ∼∗,r W2.153

We are specifically interested in finding matrices equivalent to the Moran process. For a154

dynamics ∗, we define155

M∗ = {W :W∼∗,r WH for all r > 0}.156
157

3. Results158

The map fR preserves the equivalence classes of BDB and BDD dynamics, fL preserves the159

equivalence classes of DBB and DBD dynamics and f ′ preserves the equivalence classes for link160

dynamics. Specifically, as one can see from the proofs in the Appendix, for any W and any r > 0161

W∼BDB,r fR(W), (3.1)162

W∼BDD,r fR(W),163

W∼DBD,r fL(W),164

W∼DBB,r fL(W),165

W∼L,r f
′(W).166

167

We thus obtain the following results, which completely specify the graphs which are equivalent168

to the homogeneous matrix WH for each of our evolutionary dynamics.169

Proposition 1 (Link). ML =WC . More precisely, the following statements are equivalent:170

(a) W is a circulation.171

(b) For all r > 0, W∼L,r WH.172

(c) There is r > 0 such that W∼L,r WH.173

We note that WC = f ′−1(WC) = {W : f ′(W)∈WC} and thus, similarly to Proposition 2174

below, Proposition 1 can be written as ML = f ′−1(WC).175
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Proposition 2 (BDB and DBD). MBDB = f−1R (WC) and MDBD = f−1L (WC). More precisely, the176

following statements are equivalent:177

(a) fR(W) is a circulation.178

(b) For all r > 0, W∼BDB,r WH.179

(c) There is r > 0 such that W∼BDB,r WH180

The equivalent conditions for DBD are similar to the above for BDB but fR is replaced by fL.181

Proposition 3 (BDD and DBB). MBDD = f−1R ({WH} ∪ CN ) and MDBB = f−1L ({WH} ∪ CN ) .182

More precisely, the following statements are equivalent:183

(a) fR(W) =WH or fR(W)∈CN .184

(b) For all r > 0, W∼BDD,r WH.185

The equivalent conditions for DBB are similar to the above for BDD but fR is replaced by fL.186

In particular, MBDD ⊂MBDB and MDBB ⊂MDBD. The sets M∗ are illustrated in Table 2.187

Note that unlike in Propositions 1 and 2, Proposition 3 does not contain “any r implies all r".188

In fact, when r= 1, there is no selection and thus the dynamics BDB and BDD are the same (and189

also the dynamics DBB and DBD are the same). Consequently, by Proposition 2,190

W∼BDD,1 WH⇔ fR(W)∈WC ⇔W∈MBDB,191

W∼DBB,1 WH⇔ fL(W)∈WC ⇔W∈MDBD.192
193

(a) Our results in the context of known results194

For the LB dynamics, Proposition 1 was stated and proved in [11] as the Circulation theorem. For195

the LD dynamics, Proposition 1 follows from the Circulation theorem and the result of [27] that196

the fixation probabilities for LB and LD are the same.197

As shown in Appendix (a), BDB is the same as the LB dynamics for right stochastic matrices198

(in particular, for BDB dynamics, Proposition 2 can be seen as the Isothermal theorem from [11]).199

Proposition 2 thus follows from Proposition 1 thanks to (3.1). The natural symmetries between fR200

and fL and BDB and DBD dynamics allow us to extend the Isothermal theorem to DBD dynamics201

as well (see also [31]).202

Overall, Propositions 1 and 2 and the occurrence of WC within them are consistent with the203

claim made in [11] that the circulation criterion completely classifies all replacement matrices204

where E∗,W,r is ρ-equivalent to a Moran process.205

Our most important new result is Proposition 3. It shows that the BDD and DBB dynamics206

require very strict conditions to yield the Moran process. Either the population structure is207

homogeneous, or it is a directed cycle. This latter structure is an interesting theoretical example,208

but is unlikely to apply to real populations, meaning that the homogeneous population is209

practically the only way to get the Moran process for a realistic population.210

(b) The importance of self-loops in BDD and DBB dynamics211

Proposition 3 by definition requires that wii > 0 ∀i= 1, 2, . . . , N . Without such self-loops,212

EBDD,W,r, EDBB,W,r cannot ever be ρ-equivalent to the Moran process. The ability of an213

individual to replace itself therefore plays an important role in the replacement structure of the214

population and cannot be discounted. For BD dynamics, when increasing the diagonal weights215

of W, the fixation probability decreases for BDB and increases for BDD. For DB dynamics, the216

increase in fixation probability DBB is greater than that for DBD. For LB dynamics, the fixation217

probability remains the same.218
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With BDD and DBB evolutionary dynamics on graphs one may encounter the following219

problems if there are no self-loops. For DBB dynamics, a type A individual with almost infinite220

fitness still has a fixation probability bounded away from 1 because even type A individuals221

can be randomly picked for death and replaced by type B individuals [32, page 245]. With self-222

loops, however, a type A individual will almost always be replaced by itself (or another type A223

individual) and therefore has a fixation probability approaching 1. Similarly, for BDD dynamics,224

a type A individual with almost zero fitness does not have near probability 0 of fixating as type225

A individuals can be randomly picked for birth and replace type B individuals [32, page 245].226

With self-loops, such an individual will almost always pick itself (or another type A) to replace227

and therefore its fixation probability is near 0. Thus the inclusion of self-loops removes some228

problematic features of the BDD and DBB dynamics, and makes them more attractive dynamics229

to use in models.230

4. Discussion231

In this paper we have considered an evolutionary graph theory model of a population involving232

general weights and a variety of evolutionary dynamics based upon the work of [11], which was233

a development of the classical population model of [3]. In such populations, the population size234

is fixed at all times and at successive discrete time points one replacement event occurs. Like the235

aforementioned papers we consider two types of individuals, where fitness depends upon type236

but no other factors (i.e. there are no game-theoretic interactions). In particular the single most237

important property of such a process is the fixation probability, the probability that a randomly238

placed mutant individual of the second type will eventually completely replace the population of239

the first type.240

This fixation probability depends upon the fitnesses of the two types of individuals, but241

can also be heavily influenced by the population structure as given by the weights, and by242

the evolutionary dynamics used. These effects are commonly observed, although in some243

circumstances evolution proceeds as if as on a well-mixed population as from the original work of244

[3], dependent only upon the fitnesses of the two types, and some important results in this regard245

were already given in [11]. The aim of this paper was to provide a generalised set of conditions246

for when this would be the case.247

By defining what is meant by fixation-equivalence to the Moran process, we provided a general248

result which, independent of the specific dynamics used, helps identify graphs that do not affect249

the fixation probability. With respect to each of the standard dynamics, we then classified sets of250

evolutionary graphs that have the same fixation probability as the Moran process (or well mixed251

population). These sets include graphs that are circulations and therefore generalises the work of252

[11].253

An important new result shows that the set of weights for which we obtain fixation equivalence254

to the Moran process for the BDD and DBB dynamics is very restricted, and so that for most255

populations with any structure this equivalence will not hold for these dynamics. We note also256

that the inclusion of non-zero self weights wii eliminates some problematic features of these two257

dynamics (i.e. that individuals with 0 fitness could fixate or those with infinite fitness could be258

eliminated) and so improves the applicability of these dynamics.259

Presenting evolutionary dynamics on graphs in the way that we have allows one to incorporate260

a variety of dynamics in their analysis, both of standard type and other definitions. This will261

improve our understanding of dynamics on graphs in general. We note that the list of dynamics262

in Table 2 is not exhaustive. For example, [33] used imitation dynamics, which is a class of DBB263

dynamics with an additional requirement wii > 0 ∀i, and [34] consolidates the BDB and DBD264

dynamics such that one is chosen with a given probability.265

In general the inclusion of non-zero self weights, in contrast to many earlier evolutionary266

graph theory works, allows for a greater flexibility of modelling. We note that this is consistent267

with the original work of [3], which allowed self-replacement as an integral part of the process.268

For well-mixed populations it does not matter much whether this possibility is included or not269
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(at least for sufficiently large populations with intermediate fitness values), and it is likely that270

it has often been excluded for reasons of convenience because of this without the ramifications271

being fully considered in many later works. It is thus important to consider whether to include272

such self weights when modelling spatial structure using evolutionary graph theory.273
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15 Broom M, Rychtář J, Stadler BT. Evolutionary dynamics on graphs-the effect of graph311

structure and initial placement on mutant spread. Journal of Statistical Theory and Practice.312

2011;5(3):369–381.313

16 Ohtsuki H, Hauert C, Lieberman E, Nowak MA. A simple rule for the evolution of cooperation314

on graphs and social networks. Nature. 2006;441(7092):502–505.315

17 Ohtsuki H, Nowak MA, Pacheco JM. Breaking the symmetry between interaction and316

replacement in evolutionary dynamics on graphs. Physical Review Letters. 2007;98(10):108106.317

18 Shakarian P, Roos P. Fast and deterministic computation of fixation probability in evolutionary318

graphs. DTIC Document; 2012.319



9

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

19 Voorhees B, Murray A. Fixation probabilities for simple digraphs. Proceedings of the Royal320

Society A: Mathematical, Physical and Engineering Science. 2013;469(2154).321

20 Allen B, Nowak MA. Games on graphs. EMS Surveys in Mathematical Sciences. 2014;1(1):113–322

151.323

21 Shakarian P, Roos P, Johnson A. A review of evolutionary graph theory with applications to324

game theory. Biosystems. 2012;107(2):66–80.325

22 Taylor PD, Jonker LB. Evolutionary stable strategies and game dynamics. Mathematical326

Biosciences. 1978;40(1):145–156.327

23 Masuda N, Ohtsuki H. Evolutionary dynamics and fixation probabilities in directed networks.328

New Journal of Physics. 2009;11(3).329
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Appendix363

A. Proofs364

(a) BDB is the same as LB for right stochastic matrices365

For BDB dynamics we have rij = bidij . By definition
∑

ij bidij = 1, we can therefore write this as366

rij = bidij

/∑
n,k bndn,k . Substituting bi = Fi

/∑N
m=1 Fm gives367

rij =
dijFi

/∑N
m=1 Fm

∑
n,k

(
dnkFn

/∑N
m=1 Fm

) =
dijFi∑

n,k dnkFn
.368
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369

If W is right stochastic, i.e.
∑N

n=1 win = 1 for all i= 1, 2, . . . N , for BDB dynamics we have370

that dij =wij

/∑N
n=1 win =wij giving rij =wijFi

/∑
n,k wnkFn which is the LB dynamics as371

required. We also have that DBD is the same as LD for left stochastic matrices. The explanation372

follows the same procedure as above.373

(b) Lemma 1 (Forward Bias)374

The key Lemma 1 stated below is used in the proofs of all propositions and it relies heavily on the375

notion of forward bias of state S which is then given by the ratio of the probabilities of a forward376

transition to a backward transition from S. A forward and backward transition from S occurs377

when the number of type A individuals increase and decrease by one respectively, which happen378

with probability379

P+
S =

∑

n/∈S
PS,S∪{n} and P−S =

∑

n∈S
PS,S\{n}.380

381

Lemma 1 (Constant Forward Bias). Let E be an evolutionary process on states S ⊂ {1, 2, . . . , N} with382

transition probabilities PS,S′ that satisfy383

• PS,S′ > 0 only if S and S′ differ in at most one element384

• for every S 6= ∅, {1, . . . , N}, there are S+ and S− such that |S+|= |S|+ 1 and |S−|= |S| − 1385

and PS,S+ > 0, PS,S− > 0.386

Then, the following are equivalent387

a) There is a constant c > 0 such that for all S ⊂ {1, 2, . . . , N}388

ρAS =





1− c−|S|
1− c−N if c 6= 1,

|S|/N if c= 1

389

390

b) E has constant forward bias, that is, there is a constant d such that for all S ⊂ {1, 2, . . . , N}391

P+
S

/
P−S = d.392

393

Moreover, if either (a) or (b) hold, then c= d.394

Note that a similar result is given in [11, 20] where the forward bias is explicitly defined as395

r
∑

a∈S

∑

b/∈S
wab

/∑

a∈S

∑

b/∈S
wba ,396

397

which is what one gets when using Link dynamics, or BDB dynamics if W ∈WR. Note that in398

Lemma 1 the forward bias is defined independent of the dynamics and therefore applies to all399

dynamics that satisfy the assumptions.400

Proof. “(a)⇒ (b)": Take any S ⊂ {1, 2, . . . , N}. It is known that401

ρAS =
∑

S′

PS,S′ρ
A
S′ = PS,Sρ

A
S +

∑

n/∈S

(
PS,S∪{n}ρ

A
S∪{n}

)
+
∑

n∈S

(
PS,S\{n}ρ

A
S\{n}

)
402

403

and using PS,S = 1− P+
S − P

−
S gives404

0 =
∑

n/∈S

(
PS,S∪{n}

(
ρAS∪{n} − ρAS

))
+
∑

n∈S

(
PS,S\{n}

(
ρAS\{n} − ρAS

))
. (A 1)405
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406

For c 6= 1, equation (A 1) simplifies to407

0 =
1− c−|S|−1 − 1 + c−|S|

1− c−N P+
S +

1− c−|S|+1 − 1 + c−|S|

1− c−N P−S ⇒408

P+
S

/
P−S =

c−|S| − c−|S|+1

c−|S|−1 − c−|S|
=

1− c
c−1 − 1

= c.409

410

For c= 1, equation (A 1) simplifies to411

0 = (|S|+ 1− |S|)P+
S + (|S| − 1− |S|)P−S ⇒ P+

S

/
P−S = 1.412

413

“(b) ⇐ (a)”: The state transition matrix S= (PS,S′) can be scaled to give S′ = (P ′S,S′) such that414

P ′S,S = 0 and P ′S,S′ = PS,S′/(1− PS,S) = PS,S′/(P
+
S + P−S ) where S is a non-absorbing state.415

The fixation probability ρAS will be the same whether S′ or S is used. This is because equation416

(2.1) can be rearranged as follows417

ρAS =
∑

S′

PSS′ρ
A
S′ ⇒ ρAS = PSSρ

A
S +

∑

S′:S′ 6=S

PSS′ρ
A
S′ ⇒418

ρAS (1− PSS) =
∑

S′:S′ 6=S

PSS′ρ
A
S′ ⇒ ρAS =

∑

S′:S′ 6=S

PSS′

P+
S + P−S

ρAS′ .419

420

Let {S0,S1, . . . ,SN} be a partition of the states S such that S ∈ Si if |S|= i. The probability421

Pi,j(S) of transitioning from state S ∈ Si to lumped state Sj with respect to S′ is422

Pi,j(S) =





0 j 6= i± 1,

1/(d+ 1) j = i− 1,

d/(d+ 1) j = i+ 1

for i= 1, 2, . . . , N − 1. (A 2)423

424

This can be easily verified, for example, take j = i− 1 then425

Pi,i−1(S) =
∑

S′∈Si−1

P ′S,S′ =
∑

S′∈Si−1

PS,S′

P+
S + P−S

=
P−S

P+
S + P−S

=
1

1 + d
426

427

since the forward bias is equal to d. Equation (A 2) satisfies the necessary and sufficient condition428

for the Markov chain with state transition matrix S′ to be lumpable with respect to the partition429

{S0,S1, . . . ,SN} (Theorem 6.3.2 page 124, [35]). Let Ŝ= (Pi,j) be the state transition matrix for430

this lumped Markov chain then the probability Pi,j of transitioning from lumped states Si to Sj431

is given by432

Pi,j = Pi,j(S).433
434

The state transition matrix Ŝ describes a random walk with absorbing barriers and therefore the435

probability ρAi of type A individuals fixating when the population starts in lumped state Si is436

calculated using the methods in [5] to give437

ρAi = 1 +

i−1∑

j=1

j∏

k=1

Pk,k−1
Pk,k+1

/
1 +

N−1∑

j=1

j∏

k=1

Pk,k−1
Pk,k+1

.438

439

In this case,440

ρAi =





1− d−i
1− d−N d 6= 1,

i/N d= 1

441

442

since Pk,k−1/Pk,k+1 = 1/r for k= 1, 2, . . . , N − 1. By definition, ρAS = ρAi where i= |S| as443

required.444
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(c) Proposition 1 (Link)445

The following statements are equivalent:446

(a) W is a circulation.447

(b) For all r > 0, W∼L,r WH.448

(c) There is r > 0 such that W∼L,r WH.449

(d) For all r > 0 and for all S ⊂ {1, 2, . . . , N}, the forward bias of EL,W,r is r, i.e.450

P+
S

/
P−S = r.451

452

(e) There is r > 0 such that for all a∈ {1, 2, . . . , N}, the forward bias of the one element set453

S = {a} is r, i.e.454

∑

b6=a

P{a},{a,b}

Pa,∅
= r.455

456

Proof. For LB dynamics the forward bias is given by457

P+
S

P−S
=

∑

a∈S

∑

b/∈S

wabFa∑

n,k

wnkFn

∑

a∈S

∑

b/∈S

wbaFb∑

n,k

wnkFn

=

r
∑

a∈S

∑

b/∈S
wab

∑

a∈S

∑

b/∈S
wba

.458

459

For LD dynamics the forward bias is given by460

P+
S

P−S
=

∑

a∈S

∑

b/∈S

wab/Fb∑

n,k

wnk/Fk

∑

a∈S

∑

b/∈S

wba/Fa∑

n,k

wnk/Fk

=

r
∑

a∈S

∑

b/∈S
wab

∑

a∈S

∑

b/∈S
wba

.461

462

“(a)⇒ (d)”: W is a circulation i.e. T+
n = T−n for all n∈ {1, . . . , N} and thus463

∑

a∈S

∑

b/∈S
wab =

∑

a∈S

(∑

n

wan −
∑

k∈S
wak

)
=
∑

a∈S

(
T+
a −

∑

k∈S
wak

)
⇒464

∑

a∈S

∑

b/∈S
wab =

∑

a∈S

(
T−a −

∑

k∈S
wka

)
=
∑

a∈S

(∑

n

wna −
∑

k∈S
wka

)
⇒465

∑

a∈S

∑

b/∈S
wab =

∑

a∈S

∑

b/∈S
wba.466

467

Note that
∑

a∈S
∑

b/∈S wab 6= 0 because W is admissible and represents a strongly connected468

graph. Thus, the forward bias for both LB and LD is equal to r.469

“(d)⇒(e)" is trivial as (d) is much stronger than (e).470

“(e)⇒(a)" Let a and r is fixed. By above calculations of the forward bias, we have471

∑

b/∈S={a}
wab =

∑

b/∈S={a}
wba⇒ −waa +

N∑

i=1

wai =−waa +

N∑

i=1

wia⇒
N∑

i=1

wai =

N∑

i=1

wia472

473

therefore W is a circulation.474

“(d)⇒(b)" follows from Lemma 1.475

“(b)⇒(c)" is trivial.476

“(c)⇒(e)" follows from Lemma 1.477
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(d) Proposition 2 (BDB and DBD)478

More precisely, the following statements are equivalent:479

(a) fR(W) is a circulation.480

(b) For all r > 0, W∼BDB,r WH.481

(c) There is r > 0 such that W∼BDB,r WH482

(d) For all r > 0 and for all S ⊂ {1, 2, . . . , N}, the forward bias of EBDB,W,r is r, i.e.483

P+
S

/
P−S = r.484

485

(e) There is r > 0 such that for all a∈ {1, 2, . . . , N}, the forward bias of EBDB,W,r of the one486

element set S = {a} is r, i.e.487

∑

b 6=a

P{a},{a,b}

Pa,∅
= r.488

489

Proof. Let U= (uij) = fR(W) =
(
wij/

∑
n win

)
then for BDB dynamics the forward bias of490

EBDB,W,r is given by491

P+
S

P−S
=

∑

a∈S

∑

b/∈S

Fa∑

n

Fn

wab∑

n

wan

∑

a∈S

∑

b/∈S

Fb∑

n

Fn

wba∑

n

wbn

=

r
∑

a∈S

∑

b/∈S
uab

∑

b/∈S

∑

a∈S
uba

492

493

and therefore the forward bias of EBDB,W,r is the same as forward bias of EBDB,U,r .494

Similarly, with almost identical working as above, when V= fL(W), the forward bias of495

EDBD,W,r is the same as forward bias of EDBD,V,r and is given by496

P+
S

P−S
=

∑

a∈S

∑

b/∈S

1/Fb∑

n

1/Fn

wab∑

n

wnb

∑

a∈S

∑

b/∈S

1/Fa∑

n

1/Fn

wba∑

n

wna

=

∑

a∈S

∑

b/∈S
vab

1

r

∑

a∈S

∑

b/∈S
vba

.497

498

and the proof of the Proposition for DBD closely follows the one for BDB given below with U and499

fR appropriately replaced by V and fL.500

“(a)⇒ (d)”: If U= fR(W)∈WC, i.e. if U is doubly stochastic, then the forward bias (for S 6=501

∅,N ) is equal to502

P+
S

P−S
=

r
∑

a∈S

(∑

n

(uan)−
∑

k∈S
(uak)

)

∑

a∈S

(∑

n

(una)−
∑

k∈S
(uka)

) =

r

(
|S| −

∑

a∈S

∑

k∈S
uak

)

|S| −
∑

a∈S

∑

k∈S
uka

= r503

504

505

“(d)⇒(e)" is trivial as (d) is stronger than (e).506

“(e)⇒(a)" Let a and r is fixed. By above calculations of the forward bias, we have507

∑

a∈S

∑

b/∈S
uab =

∑

a∈S

∑

b/∈S
uba.508
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509

Consider the states S = {a} in which there is only one individual of type A then510

∑

b/∈S
uab =

∑

b/∈S
uba⇒ −uaa +

N∑

i=1

uai =−uaa +

N∑

i=1

uia⇒ 1 =

N∑

i=1

uia511

512

is true for all a= 1, 2, . . . , N and therefore U is doubly stochastic and thus fR(W) is a circulation.513

“(d)⇒(b)" follows from Lemma 1.514

“(b)⇒(c)" is trivial.515

“(c)⇒(e)" follows from Lemma 1.516

(e) Proposition 3 (BDD and DBB)517

The following statements are equivalent:518

(a) fR(W) =WH or fR(W)∈CN .519

(b) For all r > 0, W∼BDD,r WH.520

Proof. The replacement probabilities rij(F(S),W) for BDD dynamics can be rewritten as521

rij(F(S),U) where U= (uij) = fR(W) =
(
wij/

∑
n win

)
by multiplying the numerator and522

denominator with
∑

n win as follows523

rij(F(S),W) =
1

N

wij/Fj(S)∑
n win/Fn(S)

=
1

N

wij/
(
Fj(S)

∑
n win

)
∑

n win/
(
Fn(S)

∑
n win

) ⇒524

uij/Fj(S)∑
n uin/Fn(S)

= rij(F(S),U)525

526

and therefore we have that W∼BDD,r U, for all r > 0. The forward bias using U for state S is527

given by528

P+
S

P−S
=

∑

a∈S

∑

b/∈S

1

N

uab/Fb∑

n

uan/Fn

∑

a∈S

∑

b/∈S

1

N

uba/Fa∑

n

ubn/Fn

=

∑

a∈S

∑

b/∈S

uab∑

n

uan/Fn

1

r

∑

a∈S

∑

b/∈S

uba∑

n

ubn/Fn

. (A 3)529

530

Similarly, let V= (vij) = fL(W) = (wij/
∑

n wnj). Then for DBB dynamics we have531

bij =
wijFi∑
n wnjFn

=
wijFi/

∑
n wnj∑

n wnjFn/
∑

n wnj
=

vijFi∑
n vnjFn

532

533

and therefore the forward bias when using V is given by534

P+
S

P−S
=

∑

a∈S

∑

b/∈S

1

N

vabFa∑

n

vnbFn

∑

a∈S

∑

b/∈S

1

N

vbaFb∑

n

vnaFn

=

r
∑

a∈S

∑

b/∈S

vab∑

n

vnbFn

∑

a∈S

∑

b/∈S

vba∑

n

vnaFn

.535

536

The proof of the Proposition for DBB closely follows the one for BDD given below with U and fR537

appropriately replaced by V and fL.538

(i) If U∈CN , then U∼BDD,r WH539

If U∈CN then there are only two nonzero elements in each row. In particular, in row i of U we540

have that uii, uiki
= 1/2 for some ki 6= i. In the numerator of equation (A 3) for a∈ S, b /∈ S and541
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ka 6= a we have that for all S542

uab∑

n

uan/Fn(S)
=

uab
uaa/Fa(S) + uaka

/Fka
(S)

=

{
0 if b 6= ka,

1/2
1/2r+1/2

if b= ka.
543

544

Similarly, in the denominator of equation (A 3) for a∈ S, b /∈ S and kb 6= b we have that for all S545

uba∑

n

ubn/Fn(S)
=

uba
ubb/Fb(S) + ubkb

/Fkb
(S)

=

{
0 if a 6= kb,

1/2
1/2+1/2r

if a= kb.
546

547

This means that equation (A 3) for all S can be written as548

x/2

1/2r + 1/2

/
1

r

y/2

1/2 + 1/2r
= rx/y549

550

where x (y) is the number of nonzero uab (uba) terms in the numerator (denominator). If we551

partition the vertices of the digraph of U into any two sets V1, V2 then the number of edges e(i, j)552

and e(j, i) for i∈ V1 and j ∈ V2 are by definition the same because it is a cycle. This means that553

for a∈ S and b /∈ S the number of nonzero uab, uba terms in the numerator and denominator554

respectively are the same hence x= y and rx/y= r as required. As per Lemma 1, EBDD,U,r is555

ρ-equivalent to the Moran process.556

(ii) If U∼BDD,r WH for all r > 0, then U=WH or U∈CN557

By Lemma 1, the forward bias (A 3) is equal to r for all S ⊂ {1, . . . , N} giving558

∑

a∈S

∑

b/∈S

uab∑

n

uan/Fn

=
∑

a∈S

∑

b/∈S

uba∑

n

ubn/Fn

⇒559

∑

a∈S

∑

b/∈S
uab

∑

j /∈S
uaj +

1

r

∑

i∈S
uai

=
∑

b/∈S

∑

a∈S
uba

∑

j /∈S
ubj +

1

r

∑

i∈S
ubi

. (A 4)560

561

Note that if r= 1, (A 4) holds for all U∈WC . From now, we will consider r 6= 1 only. For clarity,562

the remainder of this section of the proof is broken down into the following six steps.563

Step 1: Derivation of general state dependent row-sum equation564

Let U(a, S) =
∑

i∈S uai, i.e. 1− U(a, S) =
∑

j /∈S uaj . Equation (A 4) thus becomes565

∑

a∈S

1− U(a, S)

1− U(a, S) + U(a, S)/r
=
∑

b/∈S

U(b, S)

1− U(b, S) + U(b, S)/r
⇒566

∑

a∈S

1

1 + U(a, S)(1/r − 1)
=

N∑

n=1

U(n, S)

1 + U(n, S)(1/r − 1)
. (A 5)567

568

Equation (A 5) can be written as a Taylor series as follows569

∑

a∈S

∞∑

k=0

(−1)k(1/r − 1)k [U(a, S)]k =

N∑

n=1

U(n, S)

∞∑

k=0

(−1)k(1/r − 1)k [U(n, S)]k⇒570

∑

a∈S

∞∑

k=0

(1− 1/r)k [U(a, S)]k =

N∑

n=1

∞∑

k=0

(1− 1/r)k [U(n, S)]k+1 (A 6)571
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572

For equation (A 6) to hold for all r the coefficients of (1− 1/r)k should be same, that is, for all k573

∑

a∈S
[U(a, S)]k =

N∑

n=1

[U(n, S)]k+1 . (A 7)574

575

Step 2: The diagonal of U consists of non-zero elements576

Consider the state S = {a} then equation (A 7) gives577

ukaa =

N∑

n=1

uk+1
na . (A 8)578

579

If uaa = 0 or 1 then (A 8) implies that all off-diagonal terms in column n are zero which is a580

contradiction with W (and thus also U= fR(W)) being strongly connected, which means that581

0<uaa < 1.582

Step 3: The nth column of U contains mn nonzero elements, all equal to 1/mn583

Since 0<uaa < 1, we can divide equation (A 8) by ukaa giving584

1 =

N∑

n=1

una

(
una
uaa

)k

. (A 9)585

586

We have that587

lim
k→∞

(
una
uaa

)k

=





∞ una >uaa,

1 una = uaa,

0 una <uaa,

588

589

and therefore (A 9) implies that 0≤ una ≤ uaa. There must be n 6= a such that una = uaa as590

otherwise, by (A 9), we would have uaa = 1. Let Ca = {i : uia = uaa}. (A 9) becomes591

1 =

( ∑

i∈Ca

uaa

)
+

( ∑

j /∈Ca

uk+1
ja

ukaa

)
= |Ca|uaa +

( ∑

j /∈Ca

uk+1
ja

ukaa

)
. (A 10)592

593

As k→∞, (A 10) implies that uaa = 1/|Ca|. Thus, again by (A 10), uja = 0 for all j /∈ Ca. This594

means that in column n of U there should be mn = |Cn| with 2≤mn ≤N nonzero elements,595

including unn, that are all equal to 1/mn.596

Step 4: mn is the same for all n597

Considering state S = {i, j} and using uaa = 1/ma, (A 7) can be written as follows598

(uii + uij)
k + (uji + ujj)

k =α
1

mk+1
i

+ β
1

mk+1
j

+ γ

(
1

mi
+

1

mj

)k+1

(A 11)599

600

where α, β, γ are the number of rows where 1/mi is adjacent to 0, 0 is adjacent to 1/mj , and 1/mi601

is adjacent to 1/mj in columns i and j respectively. More precisely, α is the cardinality of the602

set Ki
ij = {n : uni = 1/mi, unj = 0}, β is the cardinality of the set Kj

ij = {n : uni = 0, unj = 1/mj}603

and γ is the cardinality of the set Kij
ij = {n : uni = 1/mi, unj = 1/mj}.604

Since Ci =Ki
ij ∪Kij

ij and Cj =Kj
ij ∪K

ij
ij , we have that mi = α+ γ and mj = β + γ. Since605

Ki
ij ,K

j
ij ,K

ij
ij are disjoint, we have α+ β + γ ≤N . Now, consider the different possibilities we606

can have on the left-hand side of equation (A 11).607
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Case 1:608

uii = 1/mi, uij = 0 in row i and uji = 1/mi, ujj = 1/mj in row j. Thus α, γ ≥ 1 and therefore609

equation (A 11) gives610

1

mk
i

+

(
mi +mj

mimj

)k

=
α

mk+1
i

+
β

mk+1
j

+ γ

(
mi +mj

mimj

)k+1

⇒611

1

(α+ γ)k
+

(
α+ β + 2γ

(α+ γ)(β + γ)

)k

=
α

(α+ γ)k+1
+

β

(β + γ)k+1
+ γ

(
α+ β + 2γ

(α+ γ)(β + γ)

)k+1

⇒612

(β + γ)k + (α+ β + 2γ)k

[(α+ γ)(β + γ)]k
=
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

[(α+ γ)(β + γ)]k+1
⇒613

(β + γ)k + (α+ β + 2γ)k =
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

(α+ γ)(β + γ)
⇒614

(β + γ)k + (α+ β + 2γ)k =
α(β + γ)k

α+ γ
+
β(α+ γ)k

β + γ
+

(αγ + βγ + 2γ2)(α+ β + 2γ)k

αβ + αγ + βγ + γ2
⇒615

γ(β + γ)k

α+ γ
=
β(α+ γ)k

β + γ
+

(γ2 − αβ)(α+ β + 2γ)k

αβ + αγ + βγ + γ2
.616

617

As k→∞, we get (β + γ)k 6= (α+ γ)k ± (α+ β + 2γ)k since α+ β + 2γ > β + γ, α+ γ hence618

we want γ2 = αβ to get rid off (α+ β + 2γ)k. This implies that β + γ = α+ γ⇒ α= β⇒ α=619

β = γ giving mi =mj .620

Case 2:621

uii = 1/mi, uij = 1/mj in row i and uji = 0, ujj = 1/mj in row j. This case is symmetrical to622

Case 1 and therefore we get that α= β = γ giving mi =mj .623

Case 3:624

uii = 1/mi, uij = 1/mj in row i and uji = 1/mi, ujj = 1/mj in row j. Thus γ ≥ 2 and therefore625

equation (A 11) gives626

2

(
mi +mj

mimj

)k

=
α

mk+1
i

+
β

mk+1
j

+ γ

(
mi +mj

mimj

)k+1

⇒627

2

(
α+ β + 2γ

(α+ γ)(β + γ)

)k

=
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

[(α+ γ)(β + γ)]k+1
⇒628

2 (α+ β + 2γ)k =
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

(α+ γ)(β + γ)
⇒629

2 (α+ β + 2γ)k =
α(β + γ)k

α+ γ
+
β(α+ γ)k

β + γ
+

(αγ + βγ + 2γ2)(α+ β + 2γ)k

αβ + αγ + βγ + γ2
⇒630

(2αβ + αγ + βγ)(α+ β + 2γ)k

αβ + αγ + βγ + γ2
=
α(β + γ)k

α+ γ
+
β(α+ γ)k

β + γ
.631

632

As k→∞, we get (α+ β + 2γ)k 6= (β + γ)k + (α+ γ)k since α+ β + 2γ > β + γ, α+ γ hence633

we want 2αβ + αγ + βγ = 0⇒ α, β = 0 giving mi =mj .634

Case 4:635

uii = 1/mi, uij = 0 in row i and uji = 0, ujj = 1/mj in row j. Thus α, β ≥ 1 and therefore636

equation (A 11) gives637

1/mk
i + 1/mk

j =
α

mk+1
i

+
β

mk+1
j

+ γ

(
mi +mj

mimj

)k+1

⇒638

1

(α+ γ)k
+

1

(β + γ)k
=

α

(α+ γ)k+1
+

β

(β + γ)k+1
+ γ

(
γ + β + 2γ

(α+ γ)(β + γ)

)k+1

⇒639
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(β + γ)k + (α+ γ)k

[(α+ γ)(β + γ)]k
=
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

[(α+ γ)(β + γ)]k+1
⇒640

(β + γ)k + (α+ γ)k =
α(β + γ)k+1 + β(α+ γ)k+1 + γ(α+ β + 2γ)k+1

(α+ γ)(β + γ)
⇒641

(β + γ)k + (α+ γ)k =
α(β + γ)k

α+ γ
+
β(α+ γ)k

β + γ
+

γ(α+ β + 2γ)k+1

αβ + αγ + βγ + γ2
.642

643

As k→∞, we get 0 6= (α+ β + 2γ)k since α, β ≥ 1 hence we require that γ = 0 to get an equality.644

Conclusion from all the cases above645

We see that mi 6=mj is potentially possible only in Case 4. However, U is strongly connected. If646

one connects i and j by a path i= i0, i1, i2, . . . in = j, then one has mik =mik+1
as ik and ik+1647

must fall into Case 1, Case 2 or Case 3 above. Thus mi =mj . This implies that every column of648

U has 2≤m≤N nonzero elements, including unn, that are all equal to 1/m. This is also true for649

every row of U because it is right stochastic by definition.650

Step 5: There exists state S such that Ca = Ca′ for all a, a′ ∈ S651

We can define the stateRx = {n : uxn = uxx} then, by definition, x∈Rx and |Rx|=m since there652

are m nonzero elements in row x of U. Consider the state S =Rx \ {y} for y ∈Rx \ {x}. For this653

S (as well as any other state), we have that654

if n∈ S then 1/m

if n /∈ S then 0

}
≤U(n, S)≤ min(m, |S|)

m
.655

656

We can therefore write equation (A 7) in the form657

min(m,|S|)∑

i=1

λS(i)

(
i

m

)k

=

min(m,|S|)∑

i=0

λ′S(i)

(
i

m

)k+1

(A 12)658

659

where λS(i) is the number of U(n, S) terms equal to i/m for n∈ S and λ′S(i) is the number of660

U(n, S) terms equal to i/m for n∈N , which means that λ′S(i)≥ λS(i) for i 6= 0. The ratio of the661

left-hand side and right-hand side of equation (A 12) should always be equal to one. Therefore,662

as k→∞, we require that663

λS(imax) = λ′S(imax)
imax

m
664
665

where imax is the largest i such that λS(i)> 0.666

We have that imax =m− 1 in equation (A 12) because |S|=m− 1 so U(x, S) = (m− 1)/m.667

This means that for state S, as k→∞, we require that668

λS(m− 1) = λ′S(m− 1)
m− 1

m
.669

670

Since λS(m− 1) is an integer, λ′S(m− 1) has to be a multiple of m and the only possible value671

that satisfies this criteria is λ′S(m− 1) =m hence λS(m− 1) =m− 1.672

Since λ′S(m− 1) =m there existm rows j1, j2, . . . , jm such that U(jn, S) = (m− 1)/m, that is,673

ujna = 1/m ∀a∈ S. This means that Ca = {j1, j2, . . . , jm} ∀a∈ S hence Ca = Ca′ for all a, a′ ∈ S.674

Step 6: m= 2 or m=N675

By contradiction, assume that 2<m<N . We can consider another state S′ =Rx \ {z} such676

that z ∈Rx \ {x, y}. We then have that imax =m− 1 in equation (A 12) because |S′|=m− 1677

so U(x, S′) = (m− 1)/m. As before, this means that Ca = Ca′ for all a, a′ ∈ S′. Since x∈ S, S′678

and Rx = S ∪ S′ we have that Ca = Ca′ for all a, a′ ∈Rx. For 2<m<N this implies that679

vertices i∈Rx are disconnected from j ∈N \ Rx and we therefore have disconnected graphs,680

a contradiction.681
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Summary of Notation
Symbol Definition Description
N ∈Z+ \ {0, 1} Population size.
A,B The two types of individuals in population.
In Individual n.
S = {n : In of type A} State of the population.
N = {1, 2, . . . , N} State in which all In of type A.
r ∈ (0,∞) Fitness of a type A individual.

Fn(S) ∈ {1, r} Fitness of In in state S.
D = (V,E) Replacement digraph with vertices V where |V |=N and

directed edges E.
wij ∈ [0,∞) Edge weight such that wij > 0 if and only if (i, j)∈E.
W = (wij) Replacement matrix: N ×N weighted adjacency matrix of

tuple (D,w).
T+
n =

∑N
j=1 wnj Out temperature: Sum of all outgoing edge weights of

vertex n∈ V .
T−n =

∑N
i=1 win In temperature: Sum of all incoming edge weights of vertex

n∈ V .
bi ∈ [0, 1] Probability Ii chosen for birth.
dij ∈ [0, 1] Probability a copy of Ii replaces Ij given Ii was chosen

for birth, i.e. replacement by death.
dj ∈ [0, 1] Probability Ij chosen for death.
bij ∈ [0, 1] Probability a copy of Ii replaces Ij given Ij is chosen for

death, i.e. replacement by birth.
rij ∈ [0, 1] Probability a copy of Ii replaces Ij .
PSS′ ∈ [0, 1] State transition probability.
S = (PSS′) State transition matrix.

E∗,W,r Stochastic process with state transition matrix S such that
∗ dynamics are used on graph W and type A individuals
have fitness r.

ρAS ∈ [0, 1] Fixation probability of type A individual given initial
state S.

W Set of all strongly connected replacement matrices.
WC {W : T+

n = T−n ∀n} Replacement matrices that are circulations.
WI {W : T+

i = T−j ∀i, j} Replacement matrices that are isothermal.
WR {W : T+

n = 1 ∀n} Right stochastic replacement matrices.
WL {W : T−n = 1 ∀n} Left stochastic replacement matrices.
CN Replacement matrices whose digraphs are cycles of

length N .
fR (wij) 7→ (wij/

∑
n win) Map from W to WR.

fL (wij) 7→ (wij/
∑

n wnj) Map from W to WL.
f ′ (wij) 7→ (wij/

∑
n,k wnk) Map from W to W .

M∗ Replacement matrices for which E∗ is ρ-equivalent to a
Moran process when ∗ dynamics are used.

Table 1: Notation used in this paper.
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Table 2: List of dynamics used in this paper together with their definition of M∗.

Process P(Ii replaces Ij) Order chosen P(Chosen first) P(Chosen second) Definition of M∗ Illustration of M∗

BDB
[11, 13, 14, 16,
19, 33, 36]

rij = bidij Ii then Ij bi =
Fi(S)∑

n

Fn(S)
dij =

wij∑

n

win

MBDB = {W : fR(W)∈WC}
= f−1R (WC)

BDD
[27]

rij = bidij Ii then Ij bi =
1

N
dij =

wij/Fj(S)∑

n

win/Fn(S)

MBDD = {W : fR(W)∈ {WH} ∪ CN}
= f−1R ({WH} ∪ CN )

DBD
[12, 13, 36, 37]

rij = dibij Ij then Ii dj =
1/Fj(S)∑

n

1/Fn(S)
bij =

wij∑

n

wnj

MDBD = {W : fL(W)∈WC}
= f−1L (WC)

DBB
[16, 33, 38, 39,
40]

rij = dibij Ij then Ii dj =
1

N
bij =

wijFi(S)∑

n

wnjFn(S)

MDBB = {W : fL(W)∈ {WH} ∪ CN}
= f−1L ({WH} ∪ CN )

LB
[11, 13, 36]

rij =
wijFi(S)∑

n,k

wnkFn(S)
Simultaneous N/A N/A

MLB = {W : f ′(W)∈WC}
= f ′−1(WC) =WC

LD
[23]

rij =
wij/Fj(S)∑

n,k

wnk/Fk(S)
Simultaneous N/A N/A

MLD = {W : f ′(W)∈WC}
= f ′−1(WC) =WC

Key for Illustration of M∗:
W

W8

W1

W2

W3

W4

W5

W6

W7

W1 = WI ∩ f−1
R ({WH} ∪ CN )

= WI ∩ f−1
L ({WH} ∪ CN )

W2 = WI \ f−1
R ({WH} ∪ CN )

= WI \ f−1
L ({WH} ∪ CN )

W3 = WC \WI

W4 =
(
f−1
R (WC) \WC

)
∩ f−1

R ({WH} ∪ CN )
W5 =

(
f−1
R (WC) \WC

)
\ f−1

R ({WH} ∪ CN )
W6 =

(
f−1
L (WC) \WC

)
∩ f−1

L ({WH} ∪ CN )
W7 =

(
f−1
L (WC) \WC

)
\ f−1

L ({WH} ∪ CN )

W8 = W \⋃7
i=1 Wi

The key on the left gives the definition of partitions W1,W2, . . . ,W8 of W . The partitions Wi

that make up M∗ are highlighted for each of the dynamics in the last column. The partition
of W where E is ρ-equivalent to a Moran process regardless of the standard dynamics being
used is given by ML ∩MBDB ∩MBDD ∩MDBD ∩MDBB ≡MBDD ∩MDBB ≡W1.
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