

City, University of London Institutional Repository

Citation: Ma, Q. (2008). A new meshless interpolation scheme for MLPG_R method.

CMES-Computer Modeling in Engineering & Sciences, 23(2), pp. 75-89.

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/13213/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 1

A New Meshless Interpolation Scheme for MLPG_R Method

Q.W. Ma1

Abstract: In the MLPG_R (Meshless Local Petrove-
Galerkin based on Rankine source solution) method, one
needs a meshless interpolation scheme for an unknown
function to discretise the governing equation. The MLS
(moving least square) method has been used for this purpose
so far. The MLS method requires inverse of matrix or
solution of a linear algebraic system and so is quite time-
consuming. In this paper, a new scheme, called simplified
finite difference interpolation (SFDI), is devised. This
scheme is generally as accurate as the MLS method but does
not need matrix inverse and consume less CPU time to
evaluate. Although this scheme is purposely developed for
the MLPG_R method, it may also be used for other meshless
methods.

1
Key words: Simplified finite difference interpolation (SFDI),
MLPG, MLPG_R, nonlinear water waves.

1 Introduction

A meshless method, called Meshless Local Petrove-Galerkin
(MLPG) method, has been invented by Atluri and Zhu (1998)
and Atluri and Shen (2002) and has been developed into
many forms as summarised in Atluri, Liu and Han (2006).
This method is based on a local weak form over local sub-
domains (circles for two dimensional problems and spheres
for three dimensional ones). The success of the MLPG
method has been reported in solving fracture mechanics
problems [Batra and Ching (2002)], beam and plate bending
problems [Atluri and Zhu (2000)], three dimensional elasto-
static and -dynamic problems [Han and Atluri (2004a,b)] and
some fluid dynamic problems, such as steady flow around a
cylinder [Atluri and Zhu (1998)], steady convection and
diffusion flow [Lin and Atluri (2000)] in one and two
dimensions and lid-driven cavity flow in a two dimensional
box [Lin and Atluri (2001)].
In Ma (2005a), the MLPG method was extended to
simulating nonlinear water waves and produced some
encouraging results. In that paper, the simple Heaviside step
function was adopted as the test function to formulate the
weak form over local sub-domains, resulting in one in terms
of pressure gradient.
In Ma (2005b), the MLPG method was developed into a new
form called the MLPG_R method, suitable for modelling
nonlinear water waves. In the MLPG_R method, the solution
for Rankine sources rather than the Heaviside step function

was taken as the test function. Based on this test function, a
weak form of governing equations was derived, which did
not contain the gradients of unknown functions, therefore
made numerical discretisation of the governing equation
relatively easier and more efficient. A semi-analytical
technique was also developed to evaluate the domain integral
involved in this method, which dramatically reduce the CPU
time spent on the numerical evaluation of the integral.
Numerical tests showed that the MLPG_R method could be
twice as fast as the MLPG method for modelling nonlinear
water wave problems.

 1 School of Engineering and Mathematical Sciences
 City University
 Northampton Square, London, UK, EC1V 0HB

In the MLPG_R method, the water wave problems are solved
using a time-step marching procedure. This starts from a
particular instant when the velocity and the geometry of fluid
flow are known and then evolves to next time step, at which
all physical quantities are updated by solving the governing
equations. During each time step, the problem is formulated
using a well-known time-split procedure, in which the
velocities of particles are updated by

� � � � � �1*1 �� �
�

�� nn ptuu
	

��
 (1)

where � �1�nu
�

 is the velocity at time , 1�nt
� �*u
�

is the
intermediate velocity evaluated by the velocity and external
forces in previous time step and is the pressure at time

. The pressure is found by solving

� 1�np �

1�nt

� �� �*

2
1 uGppdS
R I

I
I

�
��

��

�

 (2a)

where is the radius of integration domain IR I� , �=1 for 2D

cases, �=2 for 3D cases and � �� �*uG
�

 is defined as

� �
� �� �

� �

�
�
�

�

��
�

�

�

�

�
�

I

I

R

r

R

r

ddrdu
t

drdru
t

uG

0

2

0 0

*

0

2

0

*

(*)

cases 3Dfor sin
2

cases 2Dfor ,
2

��

�

���
�

	

��
�
	

�
(2b)

where � �*
ru is the radial component of the intermediate

velocity � �*u� .
In order to discretise Eq. (2) and to evolve the velocity in Eq.
(1), one needs a meshless interpolation scheme for evaluating
the pressure and its gradient in terms of discrete values of
pressure at nodes. Computational costs spent on them are
considerable. Reducing these costs can make the method
more efficient. The main contribution of this paper is to

 2

develop a new meshless interpolation scheme, requiring less
computational efforts, and thus to further enhance the overall
efficiency of the MLPG_R method.

2 Brief review on meshless interpolation schemes for
MLPG methods

Various available meshless interpolation schemes have been
reviewed by Atluri and Shen (2002) and also by Atluri
(2005). They include the Shepard function (SF), the
partition of unity (PU), the reproducing kernel particle
interpolation (RKPM), radial basis function (RBF) and
moving least square (MLS) methods. The simplest one
among them is the SF method, which is the same as the
interpolation of an unknown function used in a moving
particle semi-implicit method (MPS) and can suffer a
problem of large errors as discussed below. The PU method
is more computational expensive and so is not good choice
for the family of MLPG methods. The RKPM is equivalent
to the MLS method if the basis and weight functions used in
them are the same. Atluri and Shen (2002) carried out
numerical investigations and demonstrated that the RBFs was
not as accurate as the MLS method for the same number of
nodes or needed more nodes to achieve the same accuracy.
Therefore, the MLS method is more popular than other
interpolation schemes for the MLPG methods. It is also the
reason why it was utilised by the author in Ma (2005a and
2005b).
For the sake of completeness and convenience of discussions
below, the MLS method is outlined here. To be more general,
the unknown function is represented by � �rf

�
 with r

�

denoting the position vector of a point, which may also be the
pressure (p) in the MLPG_R method. With the MLS method,
the unknown function � �rf

�
 can be written as

� � � ��
�

�
N

J
JJ fr�rf

1

ˆ��
 (3a)

where N is the number of nodes that affect the function at
point r

�
; are nodal variables but not necessarily equal to

the nodal values of
Jf̂

� �rf
�

. In the equation, � �r�J
�

 is called
the interpolation or shape function and is given as

The interpolations given by Eqs. (3a) and (3f) are accurate
for a linear function independent on the node distribution.
This is a good feature particularly for the problems, such as
about nonlinear water waves, involving large deformation of
computational domain. Nevertheless, they do have some
drawbacks. (1) The interpolation function will not be well
defined if the number of nodes (N) affecting the concerned
point is not large enough. This implies that it may not
always work properly when modelling the problems
associated with fragment phenomena, such as breaking
waves. Although this may be overcome by enlarging the
support domain, the larger support domain may lead to over-
smoothing and so degrade the accuracy. (2) Interpolation of
the function in Eq. (3a) needs the inverse of matrix A, which
is the order of mm� . Although m may be only 3 for 2D
case and only 4 for 3D cases, the computational cost spent on
it is not negligible due to the fact that the number of points at

� � � � � �� �
� � � �rrr

rrr�r�

J
T

m

l
lJlJ

���

����

BA�

BA

1
1

1

)(

)(

�
�

�

�

�� (3b)

with the basis function, assuming to be linear, being

� �],,1[,,)(321 yxrT �� ���
�

� (m=3) for 2D cases

and

� �],,,1[,,,)(4321 zyxrT �� ����
�

� (m=4) for 3D cases;

and with the matrixes � �x�B and � �x�A being defined as

� � � �
� � � � � � � �� ��

������

��

,, 222111 rrrwrrrw
rr T

��
W�B

���
� (3c)

and

� � � � � ��B�W�A rrr T ���
�� ,

where � �r
�

W and are, respectively, expressed by �

� �

� �

� ���
�
�
�

�

�

�
�
�
�
�

�

�

�

��

J

J

J

rrw

rrw

rr

��
�

�
��

��

 0

0
0 0

W (3d)

and

� � � � � �� �N
T rrr

�
�

��
���� ,,, 21� , (3e)

which shows each column of the matrix �T is the value of
the basis function � at a particular point. � �Jrrw

��
� in Eq.

(3d) is a weight function. Its specific form will be given later.
The gradient of the unknown function is estimated by

� � � ��
�

���
N

J
JJ fr�rf

1

ˆ��
 (3f)

The partial derivatives (or the gradient) of the shape function
with respect to y are found by directly differentiating Eq. (3b),
that is,

yJ
T

Jy
T

Jy
T

yJ� ,
1

,
11

,, BA�BA�BA� ��� ��� (3g)

where is the partial derivative of (the inverse of y,
1�A 1�A

� �r
�

A), with respect to y (x or z) and is evaluated by

 and is J-th column of Matrix B
whose partial derivative is estimated by

1
,

1
,

1 ��� �� AAAA yy JB

� � � �J
JJ

yJ r
y

rrw �
��

�B
�

��
�, .

 3

which the function � �rf
�

 needs to be estimated is much
larger (at least 8 times for 2D and 16 times for 3D) than the
total number of nodes when discretising Eq. (2a) and that the
computational cost for the inverse of the matrix is
proportional to . (3) The evaluation of the gradient by
direct differentiation as shown in Eqs. (3f) and (3g) is even
more expensive due not only to the inverse of matrix but also
to the successive multiplication of several matrixes. To
avoid the direct differentiation on the interpolation function,
Prof. Atluri and his research group suggested a mixed
approach in their several recent publications. In particular,
Atluri, Liu and Han (2006) describe the following new
formulation. The unknown function is still evaluated using
Eq. (3a) but its gradient is estimated by a finite difference
method. In this method, the components of the gradient are
determined by minimising the norm of the unknown function
with respect to the gradient components (similar to a least
square method) and are expressed (different symbols used in
this paper to avoid some confusion with other equations) as

3m

� � � � � �IyIJI

N

J

J
yI

I
y rfHrrfHrf

����
�����

�

!
1

, (4)

�
�

�
N

J

J
yy HH

1

where � �I
I

y rf �
, is the y-component (y can be changed into x

or z to give other components) of the gradient of � �rf
�

 at
Node I, H=(�TW�)-1�TW , �T=�[1Ir

�
� , 2Ir

�
� , 3Ir

�
� …….

INr
�

�], IJIJ rrr
���

��� , W is the same matrix as in Eq. (3d)
and � is a shrink factor, controlling the position of sample
points that are not necessarily the nodes. If the shrink factor
is not equal 1, the value of � IJI rrf ���

�� ! must be found by
Eq. (3a) before estimating the gradient.
Another relevant meshless interpolation is the one used in the
moving particle semi-implicit method (MPS) developed by
Koshizuka and Oka (1996) and adopted by others [e.g.
Koshizuka, Ikeda and Oka, (1999), Heo, Koshizuka and Oka,
(2002)]. In the MPS method, a function and its gradient are
modelled by

� �
� � � �

� ��
�

�

�

�

J
J

J
JJ

rrw

rrwrf
rf

0

0

0 ��

���

�
 (5a)

� � � � � � � �� �� � � �02
0

,0,
0

0
,

0
rrw

rr

rr
rfrf

rrw
df J

J

yyJ

J
J

J
J

ry
��

��

��
��

��� �
�

�
�

�
� ��

 (5b)

where J represents the neighbour nodes of Point 0r
�

,
� �0rrw J

��
� is a weight function as mentioned above, is

the partial derivative with respect to y (changeable to x or z),
yf ,

yJr ,
�

is the component of the position vector in y (x or z)
direction and d is a number of spatial dimensions, equal to 2
in 2D cases and 3 in 3D cases. Although these expressions
are very easy to evaluate, they are only rough approximations.
This can be seen by the following fact. Eq. (5a) is accurate
for any distribution of nodes only if the function is a constant
or accurate for a linear function only when the nodes are
symmetrical about Point 0r

�
. The condition of symmetry is

not met even if all nodes are located at intersection points of
a rectangular grid unless Point 0r

�
is also a node, not arbitrary.

Eq. (5b) is even worse. In order to give accurate value of the
gradient for a linear function, it does not only require that the
point (0r

�
) must be a node and all nodes lie on intersection

points of rectangular grid but also require that the grid must
be square. To remove the restriction to the square grid,

suggested another expression
for the gradient, i.e.

� � � � � �� �� � � �02
0

,0,
0

,0
,

1
0

rrw
rr

rr
rfrf

n
f J

J

yyJ

J
J

y
ry

��
��

��
��

� �
�

�
�� � (5c)

where

� � � �� �
�

�
�

J
J

J

yyJ
y rrw

rr

rr
n 02

0

2
,0,

,0
��

��

��

.

Similarly, this one is not accurate either for a linear function
unless Point 0r

�
and all the nodes lie on the intersection points

of a rectangular (not necessarily being square) grid.
Nevertheless, if the linear function is one dimensional, Eq.
(5c) does not depend on the nodes distribution to give
accurate results but this feature is rarely useful because
problems we consider are generally two or three directional.
If Eq. (5b) or (5c) is used to evolve the velocity in Eq. (1) for
an irregular distribution of nodes, large errors may be caused.
Based on the discussions above, it could be seen that
interpolations used in the MPS method are not as good as the
corresponding expressions in the MLS formulation in terms
of accuracy. The problems with Eq. (5a) and Eq. (5b) or (5c)
may become severe if they are used to model the violent
water waves, in which it is impossible to keep all the nodes at
the intersection points of rectangular grids. If they are really
used in such cases, much more number of nodes must be
required to achieve the same accuracy, compared with the
MLS formulation. However, they are cheaper to compute
than those in the MLS scheme mainly because matrix inverse
is not involved.

3 Simplified finite difference interpolation (SFDI)
scheme

In this section, a new scheme for interpolating an unknown
function will be developed, which is in the same order of
accuracy as Eq. (3a) in the MLS using a linear basis function
but does not need inverse of matrix and so needs less CPU

 4

time to evaluate. This scheme will be particularly useful for
the MLPG_R method, in which the values of unknown
pressure have to be evaluated at a large number of points
when discretising Eq. (2a), as indicated above.
To achieve this, a general function � �rf

�
 is expanded into a

Taylor series near Point 0r
�

:

� � � � � � � �)(2
000 0

rrOrrfrfrf r
������

� ���"��� (6)

Applying the above expression to a set of nodes (J) around
0r
�

, multiplying a weight function � �0rrw J
��

� on both sides
and taking the sum of equations at all relevant nodes yields:

� � � � � � � �

� � � � � �

� �##
$

%
&
&
'

(
���

��"��

���

�

�

��

N

J
JJ

N

J
JJr

N

J
J

N

J
JJ

rrwrrO

rrwrrf

rrwrfrrwrf

0
2

0

00

000

0

����

����

������

� (7)

where N is the total number of nodes and � �
0r

f �� is the

gradient of � �rf
�

 at Point 0r
�

. This gives

� �
� � � �

� �

� �
� � � �

� �

� �

� �
.

0

0
2

0

0

00

0

0

0

0

#
#
#
#
#

$

%

&
&
&
&
&

'

(

�

��

�

�

��

"��

�

�

�

�

�

�

�

�

�

N

J
J

N

J
JJ

N

J
J

N

J
JJ

r

N

J
J

N

J
JJ

rrw

rrWrr
O

rrw

rrwrr
f

rrw

rrwrf
rf

��

����

��

����

��

���

�

� (8)

Defining

� � � �

� ��

�

�

��
� N

J
J

N

J
JJ

rrw

rrwrr
R

0

00

0
��

����

�

and

� �

� � #
#
#
#
#

$

%

&
&
&
&
&

'

(

�

��
�

�

�
N

J
J

N

J
JJ

r

rrw

rrwrr
O

0

0
2

0

0 ��

����

�)

,

one can write the above equation as

� �
� � � �

� �
� �

00 0

0

0

0 rrN

J
J

N

J
JJ

Rf
rrw

rrwrf
rf ��

�

��

���

�
)�"��

�

�
�

�

�
 (9)

Omitting the error term � �
0r
�) , the value of the function at

Point 0r
�

 is approximated by

� �
� � � �

� �
� � 0

0

0

0 0
Rf

rrw

rrwrf
rf rN

J
J

N

J
JJ �

��

���

�
� "��

�

�
�

�

�
 (10)

It is obvious that the error of the approximation is

))(max(2
00

rrO Jr
��

� �*) .

In other words, if � �rf
�

 is a linear function and � �
0r

f �� is its

accurate gradient, the expression for � �0rf
�

 is accurate. On
the other hand, if � �rf

�
 is a general function, the expression

has a second order of accuracy. This is similar to the
approximation of the MLS using a linear basis. Nevertheless,
the gradient � �

0r
f �� is generally unknown. Although we may

derive another set of equations for � and solve them
together with Eq. (10) as in Liszka, Duarte and Tworzydlo
(1996), it conflicts with our purpose to derive a shape
function that does not require matrix inverse or solution of
linear algebraic equations. To circumvent the difficulty, it is
suggested that

�
0r

f ��

� �
0r

f �� is replaced by , where � �
Irf �� Ir

�
 is one

of nodes among Jr
�

(J=1,2, ……), that is,

� �
� � � �

� �
� � 0

0

0

0 Rf
rrw

rrwrf
rf

IrN

J
J

N

J
JJ �

��

���

�
� "��

�

�

�

�

�
 (11)

The alternation to the gradient in the above equation is a key
point of the new scheme. Because of this, it is called as
‘simplified’ finite difference interpolation (SFDI). It is noted
that this alternation does not affect the accuracy of the
expression if � �0rf

�
 is a linear function because

� �
0r

f �� = � �
Irf �� for such a function. In other words, it does

 5

not affect the order of accuracy for a general function. It is
also noted that Ir

�
 may be the nearest node to Point 0r

�
 but

not necessary. Of course, the gradient � must be
evaluated to obtain the final form of the shape function.
There are variety ways to do so. For example, the method
described in the next section may be used but it again needs
the solution of a linear algebraic system. In this paper we
choose to estimate it by using Eq. (5d), i.e., the components
of is approximated by

�
Irf ��

� �
Irf ��

� � � � � �� �� � � ��
+

�
�

�
��

N

IJ
IJ

IJ

yIyJ
IJ

yI
ry rrw

rr

rr
rfrf

n
f

I

��
��

��
��

� 2
,,

,
,

1 (12)

where

� � � ��
+

�
�

�
�

N

IJ
IJ

IJ

yIyJ
yI rrw

rr

rr
n

��
��

��

2

2
,,

,

with y changed into x or z to give other components of the
gradient. As already noted for Eq. (5), the gradient expressed
by Eq. (12) is not accurate to the order of

)(max(2
0rrO J
��

� unless all the nodes are uniformly
distributed around Point 0r

�
 and thus may not be used for

estimating the velocity directly. However, in Eq. (11), the
term has higher order than the first term and so

the error in the estimation of � may not significantly

degrade the accuracy of

� � 0Rf
Ir

�
� "�

�
Irf ��

� �0rf
�

. This will be confirmed by the
numerical tests in later sections. Substituting Eq. (12) into
(11), it follows that

� � � � � �J

N

J
IJ rfrrrf

���� �
�

,�
1

00 ; (13)

where � IJ rr ���
;0, is the shape function in the SFDI

interpolation and is defined by

� � � �
� �

� � � � � ��
� +

���

�

�
�,

N

IJ
IJIJIJIJN

J
J

J
IJ rBrB

rrw

rrw
rr

��

��

��
��

,0,0

0

0
0 1; --

Where

�
�
�

+
�

�
JI
JI

IJ 0
 1

- ,

� � � � � ��
�

�
�

�
�

d

k
xIxJ

xI

x

IJ

IJ
IJ kk

k

k rr
n
R

rr

rrw
rB

1
,,

,

,0
2,0

��
�

��

��
�

,

and

� � � �

� ��

�

�

��

� N

J
J

N

J
JxxJ

x

rrw

rrwrr
R

kk

k

0

0,0,

,0
��

����

�
,

where d is still the number of spatial dimensions as defined
above and for k=1,2 and 3 is x, y and z, respectively. It
may be noted that the methodology to formulate the above
interpolation function is some what similar to that for
formulating the consistent SPH approximation [Chen and
Beraun (2000)]. However there are three differences. (1) Eq.
(6) is integrated over a domain in SPH approximation rather
than taken as the weighted sum. (2) The integration must be
performed on a mesh while Eq. (7) is based only on the
weight function. (3) Therefore, the consistent SPH
approximation relies on a background mesh. Comparatively,
Eq. (13) is a truly meshless expression. (4) The consistent
SPH approximation for a function did not have the second
term, i.e., similar to the form used in the MPS method.

kx

4 Gradient interpolation

As pointed out before, the velocity evolvement of particles in
Eq. (1) for the MLPG_R method requires the evaluation of
pressure gradient. In this section, the interpolation for the
gradient is developed by using the similar method to the
above in order to replace Eq. (3f) with the new one
eliminating the necessity of multiplications of several
matrixes . For this purpose, Eq. (6) is rewritten as

� � � � � � � �)(2
000 0

rrOrrfrfrf JJrJ
������

� ���"���

Multiplying
� � � 02

0

,0, rrw
rr

rr
J

J

xxJ mm ��
�� �
��

�
�

�
 on both sides, taking

the sum of equations at all the relevant nodes and ignoring
the error term, it follows that

� � � �� � � � � �

� � � �� �

� �� � � � � �� �

�

�

�
�

�
��

�
�

�
�

�
�

�
�

+�

N

J
J

J

xxJ
d

mkk
rxkxJ

N

J
rxJ

J

xxJ

N

J
J

J

xxJ
J

rrw
rr

rr
frr

frrw
rr

rr

rrw
rr

rr
rfrf

mm
kk

m
mm

mm

02
0

,0,

,1
,,0,

,02
0

2
,0,

02
0

,0,
0

0

0

��
��

��
��

��
��

��

��
��

��
��

�

�

Alternatively, we have

� � � � m

d

mkk
rxmkrx Cfaf

km ,0
,1

,,0,
00
�� �

+�

�� (m=1, 2,…, d) (14)

where

 6

� � � �� �� � � �� �
�

�
��

N

J
J

J

xxJ
J

x
m rrw

rr

rr
rfrf

n
C mm

m

02
0

,0,
0

,0
,0

1 ��
��

��
��

and

� �� � � �� �
�

��
�

N

J
J

J

xxJxxJ

x
mk rrw

rr

rrrr
n

a kkmm

m

02
0

,0,,0,

,0
,0

1 ��
��

����

.

Solving the system in Eq. (14), one can find the gradient
components. For example, in 2D cases, they are

� �
21,012,0

2,012,01,0
, 10 aa

CaC
f rx �

�
��

and

� �
21,012,0

2,021,02,0
, 10 aa

CaC
f

ry �
�

�� .

In 3D cases, Eq. (14) can be generally written as

� �. / . /fCFA -][�
where

. / � � � � � �
T

rzryrx fffF ��
�

��
 �

000
,,, ,, ��� ,

. / � � � � � � � � � � � �� T
J rfrfrfrfrfrff ����

�
����

,,,, 00201 ����- ,

][C is an 3×N matrix with its components defined as

� � � �02
0

,0,

,0

1 rrw
rr

rr
n

C J
J

xxJ

x
mJ

mm

m

��
��

��

�
�

�
� ,

� �A is an 3×3 matrix with its entries given by

� kmaA mkmk +� ,0 � and . 1�mmA

At last, the gradient components may be written as

� � � � � � � �� ��
�

�0�
N

J
JmJrx rfrfrf

m
1

00,
~

0

���
� (15a)

with

� � �
�

321 ~~

1
0 ,,JCAr

d

k
kJmkmJ ��0 �

�

, (15b)

where � �A~ is the inverse matrix of � , i.e. �A � � � � 1~ �� AA .
� �0

~ rmj
�

0 is the shape function for gradient components.
Compared with Eqs. (3f) and (3g) in the MLS method, the
expressions in Eq. (15) needs to solve a smaller number of
equations, to evaluate the multiplication of a smaller number

of matrixes, and therefore require less CPU time, making the
method more efficient particularly in 3D cases.
It is easy to deduce that if � �rf

�
 is linear Eq. (15) gives exact

value of gradient components, independent of the distribution
of nodes. This equation may be used in Eq. (11) to formulate
the shape function for the interpolation of the unknown
function with sacrifice to CPU time and with slight
improvement to the accuracy. Another point is worthy to be
pointed out is that Eq. (15) become equivalent to Eq. (4) if
the shrink factor is taken as 1. Therefore the same expression
of the gradient is obtained by using two different methods.
In addition, for some special cases, such as all neighbour
nodes lying on a special line in 2D cases or in a special plane
in 3D cases, � � 1�A may not exist. This difficulty may be
overcome simply by making (the SFDI is reduced
to Eq, (5c)) for the node concerned. It should be noted that
this difficulty is not only with the SFDI method but also with
schemes such as Eq. (4) or the MLS method. The real reason
is that for such a special distribution of neighbour nodes, one
actually attempts to model the gradient in a low-dimensional
space (e.g. 2D) using a function defined in a high-
dimensional space (e.g. 3D).

0,0 �mka

5 Convergent rate

In this section, investigations will be made into the
convergent rate of the new shape functions in Eqs. (13) and
(15) by comparing with their counterparts in other two
methods through numerical tests on assumed functions.
Although they can be used for any problem, the numerical
tests will be carried out on 2D problems.
The computational domain for the tests is chosen as a square
with the length of sides being 1. The nodes, at which the
nodal values � �Jrf

�
 are defined, are irregularly distributed by

using quasi-random number [see for example, Faure, H.
(1990)]. A typical node distribution is illustrated in Fig 1.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1 Example of distributions of nodes and interpolation
points (Hollow circles: interpolation points; Solid squares:

nodes)

 7

Generally, as noted before, Eq. (13) is used in the MLPG_R
method to discretise Eq. (2), giving the relationship between
a function value at any point and nodal values of the same
function at nodes. On the other hand, Eq. (15) is employed
to estimate the pressure gradient of the same function at
nodes by using its nodal values for evolving the velocity in
Eq. (1). Therefore, different approaches should be adopted
when investigating the convergent rate of Eq. (13) and Eq.
(15).
To investigate the convergent rate of Eq. (13), the assumed
functions are interpolated by the equation at a set of points.
These interpolation points are not necessarily coincided with
any node and the number of the points is not necessary the
same as the number of nodes. In fact, the number of points
in the following tests is fixed as 64 except for Section 5.3.
For clarity, these points are denoted by kr0

�
 while nodes are

still denoted by Jr
�

as above. The distribution of the points is
illustrated in Fig. 1. The error of the results of interpolation
is defined as

� � � �� ��
K

k
kkmean rfrf

K
E 00

1 ��
 (17)

where is the mean error, meanE � krf 0 ��
 is the interpolated

value at the interpolation points and � krf 0 ��
 is the values

computed by the formula defining a function at the same
point; K is the number of interpolation points.

For investigating the convergent rate of Eq. (15), the gradient
of the function is estimated at the nodes by the equation and
the error is found by the following expression

� � � �� ��
M

J
JyJyygmean rfrf

M
E

��
,,,

1 (18)

where represents the mean error of the y-component

of the gradient,
ygmeanE ,

� �Jy rf
�

, is the approximate value of the y-

component of the gradient obtained by interpolation, � �Jy rf �
,

is its counterpart computed by the formula defining the
function and M is the total number of nodes. The mean error
of the x-component of the gradient can be estimated in the
same way by replacing y with x.
There are many options for the weight function. It is not
necessary to use the same one for estimating unknown
functions and for estimating their gradients. In this paper,
however, we mainly concern about the convergent rate of
different formulations rather then the best weight function.
Therefore, the spline function is employed in all the cases,
i.e.,

� �

�
�
�
�
�

�

��
�
�
�

�

�

1
�

2
�

2

#
#
$

%
&
&
'

(�
�#

#
$

%
&
&
'

(�
�#

#
$

%
&
&
'

(�
�

��

 1 0

10

 3861
432

I

I

III

h
r

h
r

h
r

h
r

h
r

rw

�

�

���

�

where r
�

� is the distance of two points as defined before
and is the size of the support domain of the weight
function which is given by with being the
distance between Node I and the fourth nearest neighbour
and with k being a scale factor.

Ih

II khh 4� Ih4

5.1 Case 1 – second order polynomial function

The fist considered is a polynomial function of second order
expressed by . Its gradient components are
easy to find and is not written out here. The total number (M)
of nodes in the square domain described above is selected as
25, 100, 400, 900 or 1600, respectively, in different runs.
The convergent rates for interpolation of the function at 64
points by using three methods are shown in Fig. 2, where the
scale factors for the SFDI and MLS are 2.5 and for the MPS
two curves are shown corresponding to the scale factors of
2.5 and 5, respectively. The convergent rates are denoted by
the decrease of mean errors defined in Eq. (17) with the
increase in the total number of nodes. The figure
demonstrates that the errors of all three methods are reduced
if more nodes are distributed in the same domain. The rates
of reduction in errors of the SFDI and MLS methods are
similar while the rate of the MPS is considerably slow
compared with other two methods. This obviously indicates
that the SFDI and MLS can achieve the similar level of
accuracy while the MPS is not as robust as other two when
nodes are irregularly distributed.

22 321 yxf ���

Fig. 2 Convergent rates of three methods for interpolating

the polynomial function.

 8

Fig. 3 shows the convenient rates of the three methods for
estimating the gradient components or partial derivative of
the polynomial function. The value of (is similar
and is not necessary to show) is computed by using Eq. (15),
(3f) and (5c), respectively, and the error is yielded by Eq.
(18). It can be seen that the errors of both the SFDI and
MLS methods are almost the same and decrease with
increase in the number of nodes while the MPS loses its
reasonableness for the scale factor of 2.5 for the irregular
distribution of nodes. The results of the MPS corresponding
to the scale factor of 5 seem to be more reasonable but still
far worse than those of other two methods. This example
demonstrates that Eq. (5c) from the MPS is not always
reliable to estimate the gradient and should not be considered
as an option for problems with a large deformation where
original regular distribution of nodes may become irregular.

yf, xf,

Fig. 3 The convergent rate of three methods for

estimating the gradients

One may notice from the figures that the scale factor may
affect the convergent property of these methods.
Investigations are then made by selecting different scale
factors. The results of the SFDI for the different scale factors
of 1.8, 2.1, 2.5 and 3.0 are shown in Fig 4 and Fig. 5. It is
interesting to see that convergent rate of this methods are not
very sensitive to the scale factors. This may be considered as
another advantage of the SFDI because people may not
always know the optimised values of the scale factor.

Fig. 4 Convergent rate of the SFDI for interpolating the

polynomial function (Eq. (13))

Fig 5 Convergent rate of the SFDI for estimating the

gradients (Eq. (15))

The convergent rate of the MLS method corresponding to the
scale factors of 1.8, 2.1, 2.5 and 3.0 are depicted in Fig. 6 and
Fig. 7. Compared with the results in Figs. 4 and 5, the
reduction in the errors for interpolating the polynomial
function seems to be faster here with the decrease of the scale
factor and the reduction in the errors for estimating the
gradients for different scale factors seem to be the same when
the total number of nodes is large enough. However, when
the scale factor is small and the total number of nodes is not
big enough, the results of the MLS is not as good as those of
the SFDI. This is clearly illustrated by the cases with the
scale factor being 2.1 or less. That is because the number of
neighbour nodes at some points is not large enough when the
scale factor and so support domain is small. One may deduce
from this fact that the MLS scheme may not work well in
some sub-areas where nodes are thinly scattered even though
total number of nodes in the whole domain may be large
enough. Such circumstances may happen to simulating
violent flow of fluids, e.g. breaking waves. At the beginning,
one may distribute enough number of nodes in the whole
domain. However when waves become breaking, nodes in
the front area of the breaking waves may become very
fragmentary. The investigation in this subsection seems to
show that the SFDI may yields better results than the MLS
when modelling such waves.

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

1.00 2.00 3.00 4.00
log(M)

lo
g(

Em
ea

n)

MLS k=1.8

MLS k=2.1

MLS k=2.5

MLS k=3.0

Fig. 6 Convergent rate of the MLS for interpolating the

polynomial function (Eq. (3a))

 9

-2.0

-1.5

-1.0

-0.5

0.0

1.00 2.00 3.00 4.00
log(M)

lo
g(

Em
ea

n,
y)

MLS k=1.8

MLS k=2.1

MLS k=2.5

MLS k=3.0

Fig 7 Convergent rate of the MLS for estimating the

gradients (Eq. (3f))

The results obtained by the MPS method are depicted in Fig.
8 and Fig. 9. As the convergent property of this method
seems to be sensitive to the scale factor as illustrated in Figs.
2 and 3, a larger range of the factor, from 1.5 to 12, is
investigated. These figures show that the results of the MPS
can be very different if the scale factor is not properly
selected. They also show that the best scale factor for
interpolation of the function is different from that for
estimating the gradients. The former is near 1.5 and the latter
near 5 for the second-order polynomial. The requirement of
a large scale factor by the MPS method means that a large
number of neighbour nodes are involved in the evaluation of
the gradients. That does not only increase the computational
costs but also degrade the accuracy in the region where the
gradient varies rapidly. Therefore, a great care must be taken
when choosing the scale factor for the MPS method.

Fig. 8 Convergent rate of the MPS for interpolating the

polynomial function (Eq.(5a))

Fig. 9 Convergent rate of the MPS for estimating the

gradients (Eq. (5c))

5.2 Case 2 – cosine function

The second function considered is defined
by)5.0cos()5.0cos(yxf ��� . The same investigations as for
the polynomial function are made for this cosine function, i.e.
the computational domain, the number of nodes and the
values of the scale factor are all the same. The convergent
rates for interpolating the cosine function and for estimating
its derivative by the three methods are plotted in Fig. 10 and
Fig. 11, respectively. Compared Fig. 10 with Fig. 2 and Fig.
11 with Fig. 3, it can be seen that the curves in the
corresponding figures are largely similar, though specific
values are not the same due to different functions concerned
with.

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

1.00 2.00 3.00 4.00
log(M)

lo
g(

Em
ea

n)

SFDI k=2.5

MLS k=2.5

MPS k=2.5

MPS k=5.0

Fig. 10 Convergent rates of three methods for

interpolating the cosine function

 10

-2.5

-2.0

-1.5

-1.0

-0.5

1.00 2.00 3.00 4.00
log(M)

lo
g(

Em
ea

n,
y)

SFDI k=2.5

MLS k=2.5

MPS k=2.5

MPS k=5.0

Fig. 11 Convergent rates of three methods for estimating

the gradient of cosine function

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

1.00 2.00 3.00 4.00
log(M)

lo
g(

Em
ea

n)

SFDI k=1.8

SFDI k=2.1

SFDI k=2.5

SFDI k=3.0

Fig. 12 Convergent rate of the SFDI for interpolating the

cosine function (Eq. (13))

-2.5

-2.0

-1.5

-1.0

-0.5

1.00 2.00 3.00 4.00
log(M)

lo
g(

Em
ea

n,
y)

SFDI k=1.8

SFDI k=2.1

SFDI k=2.5

SFDI k=3.0

Fig. 13 Convergent rate of the SFDI for estimating the

gradient of cosine function (Eq. (15))

The effects of the scale factors on the convergent rates for the
cosine function are also looked at. All the results are
presented in Fig. 12 to Fig. 17. These figures seem to
support the following conclusions obtained by using the
polynomial function. 1) The results of the SFDI are not
sensitive to the scale factors. 2) The MLS method generally
works well but may not be as good as the SFDI when the
scale factor has a small value and when the total number of
nodes is not large enough. 3) The results of the MPS method

do not converge as fast as those of other two methods and are
sensitive to the scale factors. The best scale factors are
different for interpolating the function and for estimating the
gradient (1.5 for the former and 8 for the later in this case).

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

1.00 2.00 3.00 4.00
log(M)

lo
g(

Em
ea

n)

MLS k=1.8

MLS k=2.1

MLS k=2.5

MLS k=3.0

Fig. 14 Convergent rate of the MLS for interpolating the

cosine function (Eq. (3a))

-2.5

-2.0

-1.5

-1.0

-0.5

1.00 2.00 3.00 4.00
log(M)

lo
g(

Em
ea

n,
y)

MLS k=1.8

MLS k=2.1

MLS k=2.5

MLS k=3.0

Fig. 15 Convergent rate of MLS for estimating the

gradient of cosine function (Eq. (3f))

-3.8

-3.3

-2.8

-2.3

-1.8

-1.3

-0.8

1.00 2.00 3.00 4.00
log(M)

lo
g(

Em
ea

n)

MPS k=1.5 MPS k=1.8
MPS k=2.1 MPS k=2.5
MPS k=3.0 MPS k=4.0
MPS k=5.0 MPS k=8.0
MPS k=12

Fig. 16 Convergent rate of the MPS for interpolating the

cosine function (Eq.(5a))

 11

-2.5

-2.0

-1.5

-1.0

-0.5

1.00 2.00 3.00 4.00
log(M)

lo
g(

Em
ea

n,
y)

MPS k=1.5 MPS k=1.8
MPS k=2.1 MPS k=2.5
MPS k=3.0 MPS k=4.0
MPS k=5.0 MPS k=8.0
MPS k=12

Fig. 17 Convergent rate of the MPS for estimating the

gradient of cosine function (Eq.(5c))

5.3 CPU time

As has been seen, the SFDI can be as accurate as the MLS
method. Based on the discussions in Sections 3 and 4, one
has known that the SFDI should need less CPU time than the
MLS method for a same problem. In this section, the ratio of
CPU time required by the SFDI to that by the MLS method
will be quantified. For this purpose, calculations of
interpolating the polynomial function and estimating its
gradient are performed 100 times on the same computer (a
Laptop with 1 GB RAM and 1.8 GHz processor) by using the
two methods with the scale factor of 2.5. To find the ratio of
CPU time for interpolating the function, the total number (M)
of nodes is selected as 1600 but the number of interpolation
points (K) varies from 64 to 6400. To find the ratio of CPU
time for estimating the gradient at nodes, the total number of
nodes varies from 400 to 1600. Fig. 18 shows the ratio of
CPU time for interpolating the function used by the SFDI to
that by the MLS method while Fig. 19 gives the ratio of CPU
time for estimating the gradient used by the SFDI to that by
the MLS method. It can be seen that the ratio in Fig. 18 is
about 0.76 while the ratio is only 0.16 in Fig. 19. In addition
to this, the ratio seems not to vary significantly with the
change in the number of interpolation points or nodes. It is
noted that the specific values of the ratios may depend on the
scale factor. However, according to numerical tests (not
given here), it is found that reduction in the scale factor tends
to decrease the ratios. It is also noted that both ratios should
be smaller for 3D cases based on discussions in Sections 3
and 4.

6 Conclusions

In this paper, a new meshless interpolation scheme, named as
the SFDI, for the MLPG_R method is developed and
numerically investigated. This method is derived by using
the Taylor series with ignoring the terms of second and
higher order derivatives and is therefore of second order
accuracy. Based on the numerical tests, one observes the
following features of the scheme. (1) The SFDI is as
accurate as the MLS method generally but may be more
accurate than the later when the number of neighbour nodes
is small. (2) The SFDI needs considerably less CPU time to

evaluate than the MLS. (3) The scheme is not sensitive to
the scale factors. (4) It is much more accurate than the
scheme used in the MPS method when nodes are irregularly
distributed. Although this scheme is purposely developed for
the MLPG_R method, it may also be used for interpolation of
a function and calculation of its gradients in the other
meshless methods.

0.50

0.63

0.75

0.88

1.00

1 2 3 4
Log(K)

C
PU

 R
at

io

Fig. 18 Ratio of CPU time used by the SFDI to that by

the MLS for interpolating the function

0.00

0.06

0.12

0.18

0.24

2.5 2.75 3 3.25 3.5
Log(M)

C
PU

 R
at

io

Fig. 19 Ratio of CPU time used by the SFDI to that by

the MLS method for estimating the gradient

Acknowledgement

This work is sponsored by The Leverhulme Trust, UK, to
which the author is most grateful.

References

Atluri ,S.N.; Shen ,S. (2002): The Meshless Local Petrove-
Galerkin (MLPG) Method: A Simple & Less-costly
Alternative to the Finite Element and Boundary Element
Methods, CMES: Computer Modeling in Engineering &
Sciences, Vol. 3 (1), pp. 11-52.

Atluri, S.N.; Zhu, T. (1998): A New Meshless Local Petrov-
Galerkin (MLPG) Approach in Computational Mechanics,
Computational Mechanics, Vol. 22, pp. 117-127.

Atluri, S.N. (2005): Methods of Computer Modeling in
Engineering and the Sciences. Vol. 1, Tech Science Press.

 12

Atluri, S.N.; Liu, H.T.; Han, Z. D. (2006): Meshless Local
Petrov-Galerkin (MLPG) Mixed Finite Difference Method
for Solid Mechanics, CMES: Computer Modeling in
Engineering & Sciences, Vol. 15, No.1, pp. 1-16.

Koshizuka, S.; Oka, Y. (1996): Moving-Particle Semi-
Implicit Method for Fragmentation of Incompressible
Fluid, Nuclear Science and Engineering, 123, pp. 421-434.

Koshizuka, S., Ikeda, Y., Oka, Y., (1999): Numerical
analysis of fragmentation mechanisms in vapour
explosions, Nuclear Engineering and Design, 189, pp.
423–433.

Chen, J. K.; Beraun, J. E. (2000): A generalized smoothed
particle hydrodynamics method for nonlinear dynamic
problems, Computer Methods in Applied Mechanics and
Engineering, Vol. 190, Issues 1-2, pp. 225-239. Liszka, T. J.; Duarte, C. A. M.; Tworzydlo, W. W. (1996):

hp-Meshless cloud method, Computer Methods in Applied
Mechanics and Engineering, Vol. 139, 263-288.

Faure, H. (1990): Using permutations to reduce discrepancy.
J. Comp. Appl. Math., 31:97-103, 1990.

Ma, Q.W., (2005a): Meshless Local Petrov-Galerkin Method
for Two-dimensional Nonlinear Water Wave Problems.
Journal of Computational Physics, Vol. 205, Issue 2, pp.
611-625.

Han, Z. D.; Atluri, S. N. (2004a): Meshless Local Petrov-
Galerkin (MLPG) Approach for 3-Dimensional Elasto-
dynamics, Computers, Materials & Continua, Vol. 1 (2),
pp. 129-140.

Han, Z. D.; Atluri, S. N. (2004b): Meshless Local Petrov-
Galerkin (MLPG) Approaches for Solving 3D Problems in
Elasto-statics, CMES: Computer Modeling in Engineering
& Sciences, Vol. 6 (2), pp. 169-188.

Ma, Q.W., (2005b): MLPG Method Based on Rankine
Source Solution for Simulating Nonlinear Water Waves,
CMES: Computer Modeling in Engineering & Sciences,
Vol. 9, No. 2, pp. 193-210.

Heo, S., Koshizuka, S. and Oka, Y., (2002): Numerical
analysis of boiling on high heat-flux and high sub-cooling
condition using MPS-MAFL, International Journal of
Heat and Mass Transfer, 45, pp. 2633–2642.

Yoon, H.Y., Koshizuka, S., Oka, Y., (2001): Direct
calculation of bubble growth, departure, and rise in
nucleate pool boiling, International Journal of Multiphase
Flow, 27, pp. 277-298.

