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A New Meshless Interpolation Scheme for MLPG_R Method 
 

Q.W. Ma1 

 
 
 

Abstract:  In the MLPG_R (Meshless Local Petrove-
Galerkin based on Rankine source solution) method, one 
needs a meshless interpolation scheme for an unknown 
function to discretise the governing equation.  The MLS 
(moving least square) method has been used for this purpose 
so far.  The MLS method requires inverse of matrix or 
solution of a linear algebraic system and so is quite time-
consuming.  In this paper, a new scheme, called simplified 
finite difference interpolation (SFDI), is devised.  This 
scheme is generally as accurate as the MLS method but does 
not need matrix inverse and consume less CPU time to 
evaluate.  Although this scheme is purposely developed for 
the MLPG_R method, it may also be used for other meshless 
methods. 

1 
Key words: Simplified finite difference interpolation (SFDI), 
MLPG, MLPG_R, nonlinear water waves. 

1 Introduction 

A meshless method, called Meshless Local Petrove-Galerkin 
(MLPG) method, has been invented by Atluri and Zhu (1998) 
and Atluri and Shen (2002) and has been developed into 
many forms as summarised in Atluri, Liu and Han (2006).  
This method is based on a local weak form over local sub-
domains (circles for two dimensional problems and spheres 
for three dimensional ones).  The success of the MLPG 
method has been reported in solving fracture mechanics 
problems [Batra and Ching (2002)], beam and plate bending 
problems [Atluri and Zhu (2000)], three dimensional elasto-
static and -dynamic problems [Han and Atluri (2004a,b)] and 
some fluid dynamic problems, such as steady flow around a 
cylinder [Atluri and Zhu (1998)], steady convection and 
diffusion flow [Lin and Atluri (2000)] in one and two 
dimensions and lid-driven cavity flow in a two dimensional 
box [Lin and Atluri (2001)].  
In Ma (2005a), the MLPG method was extended to 
simulating nonlinear water waves and produced some 
encouraging results.  In that paper, the simple Heaviside step 
function was adopted as the test function to formulate the 
weak form over local sub-domains, resulting in one in terms 
of pressure gradient. 
In Ma (2005b), the MLPG method was developed into a new 
form called the MLPG_R method, suitable for modelling 
nonlinear water waves.  In the MLPG_R method, the solution 
for Rankine sources rather than the Heaviside step function 

was taken as the test function. Based on this test function, a 
weak form of governing equations was derived, which did 
not contain the gradients of unknown functions, therefore 
made numerical discretisation of the governing equation 
relatively easier and more efficient.  A semi-analytical 
technique was also developed to evaluate the domain integral 
involved in this method, which dramatically reduce the CPU 
time spent on the numerical evaluation of the integral.   
Numerical tests showed that the MLPG_R method could be 
twice as fast as the MLPG method for modelling nonlinear 
water wave problems. 
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In the MLPG_R method, the water wave problems are solved 
using a time-step marching procedure.  This starts from a 
particular instant when the velocity and the geometry of fluid 
flow are known and then evolves to next time step, at which 
all physical quantities are updated by solving the governing 
equations. During each time step, the problem is formulated 
using a well-known time-split procedure, in which the 
velocities of particles are updated by 
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where � �1�nu
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 is the velocity at time , 1�nt
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is the 
intermediate velocity evaluated by the velocity and external 
forces in previous time step and is the pressure at time 

.  The pressure is found by solving 
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where is the radius of integration domain IR I� , �=1 for 2D 

cases, �=2 for 3D cases and � �� �*uG
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where � �*
ru  is the radial component of the intermediate 

velocity � �*u� . 
In order to discretise Eq. (2) and to evolve the velocity in Eq. 
(1), one needs a meshless interpolation scheme for evaluating 
the pressure and its gradient in terms of discrete values of 
pressure at nodes.   Computational costs spent on them are 
considerable.  Reducing these costs can make the method 
more efficient.  The main contribution of this paper is to 
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develop a new meshless interpolation scheme, requiring less 
computational efforts, and thus to further enhance the overall 
efficiency of the MLPG_R method. 

2 Brief review on meshless interpolation schemes for 
MLPG methods 

Various available meshless interpolation schemes have been 
reviewed by Atluri and Shen (2002) and also by Atluri 
(2005).   They include the Shepard function (SF), the 
partition of unity (PU), the reproducing kernel particle 
interpolation (RKPM), radial basis function (RBF) and 
moving least square (MLS) methods.   The simplest one 
among them is the SF method, which is the same as the 
interpolation of an unknown function used in a moving 
particle semi-implicit method (MPS) and can suffer a 
problem of large errors as discussed below.  The PU method 
is more computational expensive and so is not good choice 
for the family of MLPG methods.  The RKPM is equivalent 
to the MLS method if the basis and weight functions used in 
them are the same.  Atluri and Shen (2002) carried out 
numerical investigations and demonstrated that the RBFs was 
not as accurate as the MLS method for the same number of 
nodes or needed more nodes to achieve the same accuracy.  
Therefore, the MLS method is more popular than other 
interpolation schemes for the MLPG methods.  It is also the 
reason why it was utilised by the author in Ma (2005a and 
2005b). 
For the sake of completeness and convenience of discussions 
below, the MLS method is outlined here.  To be more general, 
the unknown function is represented by � �rf

�
 with r

�
 

denoting the position vector of a point, which may also be the 
pressure (p) in the MLPG_R method.  With the MLS method, 
the unknown function � �rf

�
 can be written as 
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where N is the number of nodes that affect the function at 
point r

�
;   are nodal variables but not necessarily equal to 

the nodal values of 
Jf̂

� �rf
�

.  In the equation, � �r�J
�

 is called 
the interpolation or shape function and is given as  

  

The interpolations given by Eqs. (3a) and (3f) are accurate 
for a linear function independent on the node distribution.  
This is a good feature particularly for the problems, such as 
about nonlinear water waves, involving large deformation of 
computational domain.  Nevertheless, they do have some 
drawbacks.  (1) The interpolation function will not be well 
defined if the number of nodes (N) affecting the concerned 
point is not large enough.  This implies that it may not 
always work properly when modelling the problems 
associated with fragment phenomena, such as breaking 
waves.  Although this may be overcome by enlarging the 
support domain, the larger support domain may lead to over-
smoothing and so degrade the accuracy. (2) Interpolation of 
the function in Eq. (3a) needs the inverse of matrix A, which 
is the order of mm� .  Although m may be only 3 for 2D 
case and only 4 for 3D cases, the computational cost spent on 
it is not negligible due to the fact that the number of points at 
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with the basis function, assuming to be linear, being 
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and with the matrixes  � �x�B  and  � �x�A  being defined as 
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which shows each column of  the matrix �T is the value of 
the basis function � at a particular point.  � �Jrrw

��
�  in Eq. 

(3d) is a weight function.  Its specific form will be given later.  
The gradient of the unknown function is estimated by  
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The partial derivatives (or the gradient) of the shape function 
with respect to y are found by directly differentiating Eq. (3b), 
that is, 
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where  is the partial derivative of  (the inverse of y,
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A ), with respect to y (x or z) and is evaluated by 
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which the function � �rf
�

 needs to be estimated is much 
larger (at least 8 times for 2D and 16 times for 3D) than the 
total number of nodes when discretising Eq. (2a) and that the 
computational cost for the inverse of the matrix is 
proportional to .  (3) The evaluation of the gradient by 
direct differentiation as shown in Eqs. (3f) and (3g) is even 
more expensive due not only to the inverse of matrix but also 
to the successive multiplication of several matrixes.   To 
avoid the direct differentiation on the interpolation function, 
Prof. Atluri and his research group suggested a mixed 
approach in their several recent publications.  In particular, 
Atluri, Liu and Han (2006) describe the following new 
formulation.  The unknown function is still evaluated using 
Eq. (3a) but its gradient is estimated by a finite difference 
method.  In this method, the components of the gradient are 
determined by minimising the norm of the unknown function 
with respect to the gradient components (similar to a least 
square method) and are expressed (different symbols used in 
this paper to avoid some confusion with other equations) as 

3m
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where � �I
I

y rf �
,  is the y-component (y can be changed into x 

or z to give other components) of the gradient of � �rf
�

 at 
Node I, H=(�TW�)-1�TW ,   �T=�[ 1Ir

�
� , 2Ir

�
� , 3Ir

�
� ……. 

INr
�

� ], IJIJ rrr
���

��� , W is the same matrix as in Eq. (3d) 
and � is a shrink factor, controlling the position of sample 
points that are not necessarily the nodes.  If the shrink factor 
is not equal 1, the value of � IJI rrf ���

�� !  must be found by 
Eq. (3a) before estimating the gradient. 
Another relevant meshless interpolation is the one used in the 
moving particle semi-implicit method (MPS) developed by 
Koshizuka and Oka (1996) and adopted by others [e.g. 
Koshizuka, Ikeda and Oka, (1999), Heo, Koshizuka and Oka, 
(2002)].  In the MPS method, a function and its gradient are 
modelled by 
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where J represents the neighbour nodes of Point 0r
�

, 
� �0rrw J

��
�  is a weight function as mentioned above,  is 

the partial derivative with respect to y (changeable to x or z), 
yf ,

yJr ,
�

is the component of the position vector in y (x or z) 
direction and d is a number of spatial dimensions, equal to 2 
in 2D cases and 3 in 3D cases.  Although these expressions 
are very easy to evaluate, they are only rough approximations.  
This can be seen by the following fact.  Eq. (5a) is accurate 
for any distribution of nodes only if the function is a constant 
or accurate for a linear function only when the nodes are 
symmetrical about Point 0r

�
.  The condition of symmetry is 

not met even if all nodes are located at intersection points of 
a rectangular grid unless Point 0r

�
is also a node, not arbitrary.  

Eq. (5b) is even worse.  In order to give accurate value of the 
gradient for a linear function, it does not only require that the 
point ( 0r

�
) must be a node and all nodes lie on intersection 

points of rectangular grid but also require that the grid must 
be square.  To remove the restriction to the square grid, 

suggested another expression 
for the gradient, i.e. 
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Similarly, this one is not accurate either for a linear function 
unless Point 0r

�
and all the nodes lie on the intersection points 

of a rectangular (not necessarily being square) grid.  
Nevertheless, if the linear function is one dimensional, Eq. 
(5c) does not depend on the nodes distribution to give 
accurate results but this feature is rarely useful because 
problems we consider are generally two or three directional.  
If Eq. (5b) or (5c) is used to evolve the velocity in Eq. (1) for 
an irregular distribution of nodes, large errors may be caused. 
Based on the discussions above, it could be seen that 
interpolations used in the MPS method are not as good as the 
corresponding expressions in the MLS formulation in terms 
of accuracy.   The problems with Eq. (5a) and Eq. (5b) or (5c) 
may become severe if they are used to model the violent 
water waves, in which it is impossible to keep all the nodes at 
the intersection points of rectangular grids.  If they are really 
used in such cases, much more number of nodes must be 
required to achieve the same accuracy, compared with the 
MLS formulation.  However, they are cheaper to compute 
than those in the MLS scheme mainly because matrix inverse 
is not involved.  

3 Simplified finite difference interpolation (SFDI) 
scheme 

In this section, a new scheme for interpolating an unknown 
function will be developed, which is in the same order of 
accuracy as Eq. (3a) in the MLS using a linear basis function 
but does not need inverse of matrix and so needs less CPU 
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time to evaluate.  This scheme will be particularly useful for 
the MLPG_R method, in which the values of unknown 
pressure have to be evaluated at a large number of points 
when discretising Eq. (2a), as indicated above. 
To achieve this, a general function � �rf

�
 is expanded into a 

Taylor series near Point 0r
�

: 
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Applying the above expression to a set of nodes (J) around 
0r
�

, multiplying a weight function � �0rrw J
��

�  on both sides 
and taking the sum of equations at all relevant nodes yields: 
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where N is the total number of nodes and � �
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f �� is the 

gradient of � �rf
�

 at Point 0r
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.  This gives 
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one can write the above equation as 
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Omitting the error term � �
0r
�) , the value of the function at 

Point 0r
�

 is approximated by 
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It is obvious that the error of the approximation is 
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In other words, if � �rf
�

 is a linear function and � �
0r

f �� is its 

accurate gradient, the expression for � �0rf
�

 is accurate.  On 
the other hand, if � �rf

�
 is a general function, the expression 

has a second order of accuracy.  This is similar to the 
approximation of the MLS using a linear basis.  Nevertheless, 
the gradient � �

0r
f �� is generally unknown.  Although we may 

derive another set of equations for �  and solve them 
together with Eq. (10) as in Liszka, Duarte and Tworzydlo 
(1996), it conflicts with our purpose to derive a shape 
function that does not require matrix inverse or solution of 
linear algebraic equations.   To circumvent the difficulty, it is 
suggested that 
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The alternation to the gradient in the above equation is a key 
point of the new scheme.  Because of this, it is called as 
‘simplified’ finite difference interpolation (SFDI).  It is noted 
that this alternation does not affect the accuracy of the 
expression if � �0rf

�
 is a linear function because 

� �
0r

f �� = � �
Irf �� for such a function.  In other words, it does 
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not affect the order of accuracy for a general function.   It is 
also noted that Ir

�
 may be the nearest node to Point 0r

�
 but 

not necessary.   Of course, the gradient �  must be 
evaluated to obtain the final form of the shape function.  
There are variety ways to do so.  For example, the method 
described in the next section may be used but it again needs 
the solution of a linear algebraic system.  In this paper we 
choose to estimate it by using Eq. (5d), i.e., the components 
of   is approximated by 
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with y changed into x or z to give other components of the 
gradient.  As already noted for Eq. (5), the gradient expressed 
by Eq. (12) is not accurate to the order of 

)(max( 2
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distributed around Point 0r

�
 and thus may not be used for 

estimating the velocity directly.  However, in Eq. (11), the 
term  has higher order than the first term and so 

the error in the estimation of �  may not significantly 

degrade the accuracy of
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.  This will be confirmed by the 
numerical tests in later sections.  Substituting Eq. (12) into 
(11), it follows that 
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where d is still the number of spatial dimensions as defined 
above and for k=1,2 and 3 is x, y and z, respectively.  It 
may be noted that the methodology to formulate the above 
interpolation function is some what similar to that for 
formulating the consistent SPH approximation [Chen and 
Beraun (2000)].  However there are three differences.  (1) Eq. 
(6) is integrated over a domain in SPH approximation rather 
than taken as the weighted sum. (2) The integration must be 
performed on a mesh while Eq. (7) is based only on the 
weight function. (3) Therefore, the consistent SPH 
approximation relies on a background mesh.  Comparatively, 
Eq. (13) is a truly meshless expression. (4) The consistent 
SPH approximation for a function did not have the second 
term, i.e., similar to the form used in the MPS method. 

kx

4 Gradient interpolation 

As pointed out before, the velocity evolvement of particles in 
Eq. (1) for the MLPG_R method requires the evaluation of 
pressure gradient.  In this section, the interpolation for the 
gradient is developed by using the similar method to the 
above in order to replace Eq. (3f) with the new one 
eliminating the necessity of multiplications of several 
matrixes .  For this purpose, Eq. (6) is rewritten as 
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the error term, it follows that 
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Alternatively, we have 
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Solving the system in Eq. (14), one can find the gradient 
components.  For example, in 2D cases, they are 

� �
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, 10 aa

CaC
f rx �

�
��  

and 

� �
21,012,0

2,021,02,0
, 10 aa
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f
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�

�� . 

In 3D cases, Eq. (14) can be generally written as 
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][C  is an 3×N matrix with its components defined as 
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� �A  is an 3×3 matrix with its entries given by 

� kmaA mkmk +� ,0 �  and . 1�mmA

At last, the gradient components may be written as 
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with 
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k
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,  (15b) 

where � �A~ is the inverse matrix of � , i.e. �A � � � � 1~ �� AA .  
� �0

~ rmj
�

0  is the shape function for gradient components.  
Compared with Eqs. (3f) and (3g) in the MLS method, the 
expressions in Eq. (15) needs to solve a smaller number of 
equations, to evaluate the multiplication of a smaller number 

of matrixes, and therefore require less CPU time, making the 
method more efficient particularly in 3D cases. 
It is easy to deduce that if � �rf

�
 is linear Eq. (15) gives exact 

value of gradient components, independent of the distribution 
of nodes.  This equation may be used in Eq. (11) to formulate 
the shape function for the interpolation of the unknown 
function with sacrifice to CPU time and with slight 
improvement to the accuracy.  Another point is worthy to be 
pointed out is that Eq. (15) become equivalent to Eq. (4) if 
the shrink factor is taken as 1.  Therefore the same expression 
of the gradient is obtained by using two different methods.  
In addition, for some special cases, such as all neighbour 
nodes lying on a special line in 2D cases or in a special plane 
in 3D cases, � � 1�A may not exist.  This difficulty may be 
overcome simply by making  (the SFDI is reduced 
to Eq, (5c) ) for the node concerned.  It should be noted that 
this difficulty is not only with the SFDI method but also with 
schemes such as Eq. (4) or the MLS method.  The real reason 
is that for such a special distribution of neighbour nodes, one 
actually attempts to model the gradient in a low-dimensional 
space (e.g. 2D) using a function defined in a high-
dimensional space (e.g. 3D). 

0,0 �mka

5 Convergent rate  

In this section, investigations will be made into the 
convergent rate of the new shape functions in Eqs. (13) and 
(15) by comparing with their counterparts in other two 
methods through numerical tests on assumed functions.  
Although they can be used for any problem, the numerical 
tests will be carried out on 2D problems. 
The computational domain for the tests is chosen as a square 
with the length of sides being 1.  The nodes, at which the 
nodal values � �Jrf

�
 are defined, are irregularly distributed by 

using quasi-random number [see for example, Faure, H. 
(1990)].  A typical node distribution is illustrated in Fig 1. 
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Fig. 1 Example of distributions of nodes and interpolation 
points (Hollow circles: interpolation points; Solid squares: 

nodes) 
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Generally, as noted before, Eq. (13) is used in the MLPG_R 
method to discretise Eq. (2), giving the relationship between 
a function value at any point and nodal values of the same 
function at nodes.   On the other hand, Eq. (15) is employed 
to estimate the pressure gradient of the same function at 
nodes by using its nodal values for evolving the velocity in 
Eq. (1).  Therefore, different approaches should be adopted 
when investigating the convergent rate of Eq. (13) and Eq. 
(15). 
To investigate the convergent rate of Eq. (13), the assumed 
functions are interpolated by the equation at a set of points.  
These interpolation points are not necessarily coincided with 
any node and the number of the points is not necessary the 
same as the number of nodes.  In fact, the number of points 
in the following tests is fixed as 64 except for Section 5.3. 
For clarity, these points are denoted by kr0

�
 while nodes are 

still denoted by Jr
�

as above. The distribution of the points is 
illustrated in Fig. 1.  The error of the results of interpolation 
is defined as 

� � � �� ��
K

k
kkmean rfrf

K
E 00

1 ��
 (17) 

where  is the mean error, meanE � krf 0 ��
 is the interpolated 

value at the interpolation points and � krf 0 ��
 is the values 

computed by the formula defining a function at the same 
point; K is the number of interpolation points. 

For investigating the convergent rate of Eq. (15), the gradient 
of the function is estimated at the nodes by the equation and 
the error is found by the following expression 

� � � �� ��
M

J
JyJyygmean rfrf

M
E

��
,,,

1   (18) 

where  represents the mean error of the y-component 

of the gradient, 
ygmeanE ,

� �Jy rf
�

,  is the approximate value of the y-

component of the gradient obtained by interpolation, � �Jy rf �
,  

is its counterpart computed by the formula defining the 
function and M is the total number of nodes.  The mean error 
of the x-component of the gradient can be estimated in the 
same way by replacing y with x. 
There are many options for the weight function.   It is not 
necessary to use the same one for estimating unknown 
functions and for estimating their gradients.  In this paper, 
however, we mainly concern about the convergent rate of 
different formulations rather then the best weight function.  
Therefore, the spline function is employed in all the cases, 
i.e., 
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where r
�

�  is the distance of two points as defined before 
and  is the size of the support domain of the weight 
function which is given by  with being the 
distance between Node I and the fourth nearest neighbour 
and with k being a scale factor. 

Ih

II khh 4� Ih4

5.1 Case 1 – second order polynomial function

The fist considered is a polynomial function of second order 
expressed by .  Its gradient components are 
easy to find and is not written out here.  The total number (M) 
of nodes in the square domain described above is selected as 
25, 100, 400, 900 or 1600, respectively, in different runs.  
The convergent rates for interpolation of the function at 64 
points by using three methods are shown in Fig. 2, where the 
scale factors for the SFDI and MLS are 2.5 and for the MPS 
two curves are shown corresponding to the scale factors of 
2.5 and 5, respectively.   The convergent rates are denoted by 
the decrease of mean errors defined in Eq. (17) with the 
increase in the total number of nodes.   The figure 
demonstrates that the errors of all three methods are reduced 
if more nodes are distributed in the same domain.   The rates 
of reduction in errors of the SFDI and MLS methods are 
similar while the rate of the MPS is considerably slow 
compared with other two methods.  This obviously indicates 
that the SFDI and MLS can achieve the similar level of 
accuracy while the MPS is not as robust as other two when 
nodes are irregularly distributed.  

22 321 yxf ���

 

 
Fig. 2  Convergent rates of three methods for interpolating 

the polynomial function. 
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Fig. 3 shows the convenient rates of the three methods for 
estimating the gradient components or partial derivative of 
the polynomial function.  The value of  (  is similar 
and is not necessary to show) is computed by using Eq. (15), 
(3f) and (5c), respectively, and the error is yielded by Eq. 
(18).   It can be seen that the errors of both the SFDI and 
MLS methods are almost the same and decrease with 
increase in the number of nodes while the MPS loses its 
reasonableness for the scale factor of 2.5 for the irregular 
distribution of nodes.  The results of the MPS corresponding 
to the scale factor of 5 seem to be more reasonable but still 
far worse than those of other two methods.  This example 
demonstrates that Eq. (5c) from the MPS is not always 
reliable to estimate the gradient and should not be considered 
as an option for problems with a large deformation where 
original regular distribution of nodes may become irregular. 

yf, xf,

 

 
Fig. 3 The convergent rate of three methods for 

estimating the gradients 
 
One may notice from the figures that the scale factor may 
affect the convergent property of these methods.   
Investigations are then made by selecting different scale 
factors.  The results of the SFDI for the different scale factors 
of 1.8, 2.1, 2.5 and 3.0 are shown in Fig 4 and Fig. 5.  It is 
interesting to see that convergent rate of this methods are not 
very sensitive to the scale factors.  This may be considered as 
another advantage of the SFDI because people may not 
always know the optimised values of the scale factor. 
 

 
Fig. 4  Convergent rate of the SFDI for interpolating the 

polynomial function (Eq. (13)) 

 

 
Fig 5 Convergent rate of the SFDI for estimating the 

gradients (Eq. (15)) 
 

The convergent rate of the MLS method corresponding to the 
scale factors of 1.8, 2.1, 2.5 and 3.0 are depicted in Fig. 6 and 
Fig. 7.   Compared with the results in Figs. 4 and 5,  the 
reduction in the errors for interpolating the polynomial 
function seems to be faster here with the decrease of the scale 
factor and the reduction in the errors for estimating the 
gradients for different scale factors seem to be the same when 
the total number of nodes is large enough.  However, when 
the scale factor is small and the total number of nodes is not 
big enough, the results of the MLS is not as good as those of 
the SFDI.  This is clearly illustrated by the cases with the 
scale factor being 2.1 or less.   That is because the number of 
neighbour nodes at some points is not large enough when the 
scale factor and so support domain is small.  One may deduce 
from this fact that the MLS scheme may not work well in 
some sub-areas where nodes are thinly scattered even though 
total number of nodes in the whole domain may be large 
enough.  Such circumstances may happen to simulating 
violent flow of fluids, e.g. breaking waves.  At the beginning, 
one may distribute enough number of nodes in the whole 
domain.  However when waves become breaking, nodes in 
the front area of the breaking waves may become very 
fragmentary.  The investigation in this subsection seems to 
show that the SFDI may yields better results than the MLS 
when modelling such waves. 
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Fig. 6  Convergent rate of the MLS for interpolating the 

polynomial function (Eq. (3a)) 
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Fig 7 Convergent rate of the MLS for estimating the 

gradients (Eq. (3f)) 
 
The results obtained by the MPS method are depicted in Fig. 
8 and Fig. 9.   As the convergent property of this method 
seems to be sensitive to the scale factor as illustrated in Figs. 
2 and 3, a larger range of the factor, from 1.5 to 12, is 
investigated.   These figures show that the results of the MPS 
can be very different if the scale factor is not properly 
selected.  They also show that the best scale factor for 
interpolation of the function is different from that for 
estimating the gradients.  The former is near 1.5 and the latter 
near 5 for the second-order polynomial.  The requirement of 
a large scale factor by the MPS method means that a large 
number of neighbour nodes are involved in the evaluation of 
the gradients.  That does not only increase the computational 
costs but also degrade the accuracy in the region where the 
gradient varies rapidly.  Therefore, a great care must be taken 
when choosing the scale factor for the MPS method. 
 

 
Fig. 8 Convergent rate of the MPS for interpolating the 

polynomial function (Eq.(5a)) 
 
 
 
 
 

 
Fig. 9 Convergent rate of the MPS for estimating the 

gradients (Eq. (5c)) 
 

5.2 Case 2 – cosine function

The second function considered is defined 
by )5.0cos()5.0cos( yxf ��� .  The same investigations as for 
the polynomial function are made for this cosine function, i.e. 
the computational domain, the number of nodes and the 
values of the scale factor are all the same.  The convergent 
rates for interpolating the cosine function and for estimating 
its derivative by the three methods are plotted in Fig. 10 and 
Fig. 11, respectively.  Compared Fig. 10 with Fig. 2 and Fig. 
11 with Fig. 3, it can be seen that the curves in the 
corresponding figures are largely similar, though specific 
values are not the same due to different functions concerned 
with.  
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Fig. 10 Convergent rates of three methods for 

interpolating the cosine function 
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Fig. 11 Convergent rates of three methods for estimating 

the gradient of cosine function 
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Fig. 12 Convergent rate of the SFDI for interpolating the 

cosine function (Eq. (13)) 
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Fig. 13 Convergent rate of the SFDI for estimating the 

gradient of cosine function (Eq. (15)) 
 

The effects of the scale factors on the convergent rates for the 
cosine function are also looked at.  All the results are 
presented in Fig. 12 to Fig. 17.   These figures seem to 
support the following conclusions obtained by using the 
polynomial function.  1) The results of the SFDI are not 
sensitive to the scale factors.  2) The MLS method generally 
works well but may not be as good as the SFDI when the 
scale factor has a small value and when the total number of 
nodes is not large enough. 3) The results of the MPS method 

do not converge as fast as those of other two methods and are 
sensitive to the scale factors.  The best scale factors are 
different for interpolating the function and for estimating the 
gradient (1.5 for the former and 8 for the later in this case). 
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Fig. 14 Convergent rate of the MLS for interpolating the 

cosine function (Eq. (3a)) 
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Fig. 15 Convergent rate of MLS for estimating the 

gradient of cosine function (Eq. (3f)) 
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Fig. 16 Convergent rate of the MPS for interpolating the 

cosine function (Eq.(5a)) 
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Fig. 17 Convergent rate of the MPS for estimating the 

gradient of cosine function (Eq.(5c)) 
 

5.3 CPU time

As has been seen, the SFDI can be as accurate as the MLS 
method.  Based on the discussions in Sections 3 and 4, one 
has known that the SFDI should need less CPU time than the 
MLS method for a same problem.  In this section, the ratio of 
CPU time required by the SFDI to that by the MLS method 
will be quantified.  For this purpose, calculations of 
interpolating the polynomial function and estimating its 
gradient are performed 100 times on the same computer (a 
Laptop with 1 GB RAM and 1.8 GHz processor) by using the 
two methods with the scale factor of 2.5.  To find the ratio of 
CPU time for interpolating the function, the total number (M) 
of nodes is selected as 1600 but the number of interpolation 
points (K) varies from 64 to 6400.  To find the ratio of CPU 
time for estimating the gradient at nodes, the total number of 
nodes varies from 400 to 1600.   Fig. 18 shows the ratio of 
CPU time for interpolating the function used by the SFDI to 
that by the MLS method while Fig. 19 gives the ratio of CPU 
time for estimating the gradient used by the SFDI to that by 
the MLS method.  It can be seen that the ratio in Fig. 18 is 
about 0.76 while the ratio is only 0.16 in Fig. 19.   In addition 
to this, the ratio seems not to vary significantly with the 
change in the number of interpolation points or nodes.  It is 
noted that the specific values of the ratios may depend on the 
scale factor.  However, according to numerical tests (not 
given here), it is found that reduction in the scale factor tends 
to decrease the ratios.  It is also noted that both ratios should 
be smaller for 3D cases based on discussions in Sections 3 
and 4. 

6 Conclusions 

In this paper, a new meshless interpolation scheme, named as 
the SFDI, for the MLPG_R method is developed and 
numerically investigated.   This method is derived by using 
the Taylor series with ignoring the terms of second and 
higher order derivatives and is therefore of second order 
accuracy.  Based on the numerical tests, one observes the 
following features of the scheme.  (1) The SFDI is as 
accurate as the MLS method generally but may be more 
accurate than the later when the number of neighbour nodes 
is small.  (2)  The SFDI needs considerably less CPU time to 

evaluate than the MLS.  (3) The scheme is not sensitive to 
the scale factors.  (4) It is much more accurate than the 
scheme used in the MPS method when nodes are irregularly 
distributed.  Although this scheme is purposely developed for 
the MLPG_R method, it may also be used for interpolation of 
a function and calculation of its gradients in the other 
meshless methods. 
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Fig. 18  Ratio of CPU time used by the SFDI to that by 

the MLS for interpolating the function 
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Fig. 19 Ratio of CPU time used by the SFDI to that by 

the MLS method for estimating the gradient 
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