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Quantum mechanics and classical mechanics are distinctly different theories, but the correspondence

principle states that quantum particles behave classically in the limit of high quantum number. In recent

years much research has been done on extending both quantum and classical mechanics into the complex

domain. These complex extensions continue to exhibit a correspondence, and this correspondence

becomes more pronounced in the complex domain. The association between complex quantum mechanics

and complex classical mechanics is subtle and demonstrating this relationship requires the use of

asymptotics beyond all orders.
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The correspondence principle states that at high energy
quantum mechanics resembles classical mechanics.
Figure 1 illustrates this resemblance for the harmonic-
oscillator Hamiltonian H ¼ p2 þ x2 by comparing the
quantum probability density �quantumðxÞ ¼ jc 16ðxÞj2 for

the 16th energy level E16 ¼ 33 with the classical proba-
bility density �classicalðxÞ ¼ 1=s, where s is the speed of the
particle. In the classically allowed region, which is

bounded by the turning points at � ffiffiffiffiffiffi
33

p
, �quantumðxÞ oscil-

lates about �classicalðxÞ. At the turning points �classical is
singular because s vanishes, but �classical is normalizable
because this singularity is integrable. In the classically
forbidden region �quantum decays exponentially; in conven-

tional classical mechanics the particle cannot enter this
region and thus �classical is thought to vanish.

This Letter generalizes quantum and classical probabil-
ity into the complex domain. In complex classical mechan-
ics we solve Hamilton’s equations _x ¼ @H

@p , _p ¼ � @H
@x for

complex initial conditions and not just for initial conditions
in the classically allowed region [1–7]. For the harmonic
oscillator the classical orbits are nested ellipses with foci at
the turning points. Using �quantum in Fig. 1 as a guide, we

require the probability of a classical particle being on more
distant ellipses to decay exponentially, and we plot in
Fig. 2 the relative probability density of finding the classi-
cal particle at the point z ¼ xþ iy.

Figure 2 shows that, contrary to the traditional view, the
classical particle density in the classically forbidden region
is actually nonzero, and that �classical resembles �quantum in

this region [8]. This figure emphasizes that the classical
probability density extends beyond the real axis and into
the complex plane, where �classicalðx; yÞ falls off as the
reciprocal of the distance from the origin.

To establish the complex correspondence principle we
must continue the quantum probability density into the
complex plane to match the complex classical probability
density in Fig. 2; to do this we must extend quantum

mechanics into the complex domain [9]. A Hermitian
Hamiltonian (H ¼ Hy) has real energy levels and unitary
time evolution. However, the class of physically allowable
Hamiltonians may be extended to include non-Hermitian
Hamiltonians that possess an unbroken PT (combined
parity and time-reversal) symmetry [10–15]. These com-
plex Hamiltonians also have real spectra and generate
unitary time evolution, and such Hamiltonians have re-
cently been observed in the laboratory [16–18].
The potential for PT -symmetric Hamiltonians satisfies

V�ð�zÞ ¼ VðzÞ. This allows us to use the time-dependent
Schrödinger equation ic tðz; tÞ ¼ �c zzðz; tÞ þ VðzÞc ðz; tÞ
to derive a local conservation law in the complex plane.
The continuity equation is �tðz; tÞ þ jzðz; tÞ ¼ 0, where the
local density and current are

�ðz; tÞ � c �ð�z; tÞc ðz; tÞ ¼ ½c ðz; tÞ�2; (1)

jðz; tÞ � ic �
zð�z; tÞc ðz; tÞ � ic �ð�z; tÞc zðz; tÞ: (2)

This Letter considers only wave functions c ðz; tÞ that are
eigenstates of H; for such states �ðzÞ is time independent

FIG. 1 (color online). Correspondence principle for the har-
monic oscillator. The probability density �ðxÞ ¼ jc 16ðxÞj2 for a
quantum particle (solid curve) and the corresponding probability
density for a classical particle of the same energy (dotted curve)
are shown. In the parabolic potential well �quantumðxÞ is wavelike
and oscillates closely about �classicalðxÞ. At the classical turning
points, �classicalðxÞ diverges. In the classically forbidden region
the quantum particle density decays exponentially while the
classical density is ordinarily assumed to vanish.
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and j � 0. Note that �ðzÞ is analytic in the complex-z plane
because it is not the absolute square of c ðz; tÞ.

For a locally conserved probability density to be mea-
surable it must be real and positive and its spatial integral
must be normalized to unity; �ðzÞ satisfies a continuity
equation, but �ðzÞ by itself cannot be a probability density
because it is complex valued. Hence, we propose the novel
approach of constructing a complex contour C on which
�ðzÞdz is an infinitesimal probability measure. Thus, we
require that C satisfy the three conditions

condition I : Im½�ðzÞdz� ¼ 0; (3)

condition II : Re½�ðzÞdz�> 0; (4)

condition III :
Z
C
�ðzÞdz ¼ 1: (5)

For brevity, we discuss the harmonic-oscillator ground

state c 0ðzÞ ¼ e�z2=2 for which �ðzÞ ¼ e�x2þy2�2ixy. Since
dz ¼ dxþ idy, condition I gives

dy=dx ¼ sinð2xyÞ= cosð2xyÞ; (6)

which is a differential equation for the contour C. On the
contour defined by this differential equation the local con-
tribution �ðzÞdz to the probability is real.

Next, we turn to condition III. Inserting (6) into (5), we
get two forms for the probability integral:

I ¼
Z
C
dx

e½yðxÞ�2�x2

cos½2yðxÞx� ¼
Z
C
dy

ey
2�½xðyÞ�2

sin½2yxðyÞ� : (7)

These integrals converge if the contour C terminates in the
two good Stokes’ wedges of opening angle �=2 centered

about the real axis, but they diverge if C terminates in the
bad Stokes’ wedges of opening angle �=2 centered about
the imaginary axis.
To determine whether the contour C terminates in good

Stokes’ wedges we must solve (6). However, this simple-
looking differential equation does not possess a closed-
form solution, and we must rely on asymptotic techniques.
For large x the contour C approaches the center of the good
Stokes’ wedge and for large y, C approaches the center of
the bad Stokes’ wedge:

yðxÞ � n�=ð2xÞ ðx ! þ1; n 2 ZÞ; (8)

xðyÞ � ðmþ 1=2Þ�=ð2yÞ ðy ! þ1; m 2 ZÞ: (9)

This asymptotic analysis shows that the integration paths
occur in quantized bunches labeled by the integers m or n.
Higher-order asymptotic analysis reveals that these
bunches are stable in the bad Stokes’ wedges and unstable
in the good Stokes’ wedges. This means that as jyj ! 1, a
path in the bad Stokes’ wedge is drawn towards the quan-
tized curves in (9), but that as jxj ! 1 paths veer away
from the quantized curves in (8), which we call separatri-
ces. Thus, only the isolated separatrices ever reach1 in the
good Stokes’ wedges; all other curves turn around and are
drawn into the bad Stokes’ wedges. This remarkable be-
havior is illustrated in Fig. 3.

FIG. 2 (color online). Classical probability density at z ¼ xþ
iy in the complex plane for a particle of E ¼ 2 in a harmonic
potential. The probability density resembles a pup tent with
infinitely high tent poles at the turning points. Classical trajec-
tories are nested ellipses, all having the same period T ¼ �.
These complex orbits are superposed on the tent canopy. The
degenerate ellipse, whose foci are the turning points at � ffiffiffiffi

E
p

, is
the conventional real solution. Classical particles repeatedly
cross the real axis in the classically forbidden regions jxj> ffiffiffiffi

E
p

.

FIG. 3 (color online). Numerical solutions (solid curves) to the
differential equation (6) in the complex-z ¼ xþ iy plane.
Solutions have vanishing slope on lightly dotted hyperbolas
and infinite slope on heavily dotted hyperbolas. In the good
Stokes’ wedges (dark shading) �ðzÞ decays exponentially, and in
the bad Stokes’ wedges (unshaded) �ðzÞ grows exponentially.
The only curves that reach �1 in the good wedges are separa-
trices (heavy dashed curves labeled n ¼ 0; . . . ; 4). A typical
solution curve in a good Stokes’ wedge is unstable; as x ! 1
the curve turns away from the separatrix, leaves the wedge, and
is drawn into a bad Stokes’ wedge. In the bad wedge curves are
stable and continue on to �i1 in quantized bunches labeled by
m. The only continuous unbroken curve connecting the two good
wedges is the special separatrix on the real axis.
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Figure 3 shows that the only continuous path connecting
the two good Stokes’ wedges follows the real axis. All
other paths terminate in one good and one bad Stokes’
wedge, and thus the probability integral (7) along such
paths diverges. This instability of contours in the good
Stokes’ wedge in Fig. 3 is a serious and generic problem
that must be overcome if we wish to extend the quantum
probability density into the complex plane.

To overcome this apparently insurmountable problem,
we show that if a contour satisfying (6) in the complex-z
plane enters a bad Stokes’ wedge along one path and then
returns along a second path in the same quantized bundle,
then the integral along the combined paths is actually
convergent. This result is surprising because the integral
along each path separately is exponentially divergent. To
prove convergence, we examine the integral

I ¼
Z 1

Y
dyey

2

�
e�½uðyÞ�2

sin½2yuðyÞ� �
e�½vðyÞ�2

sin½2yvðyÞ�
�
; (10)

where uðyÞ and vðyÞ are two solutions to (6) in the same
bunch (that is, having the same value of m). The leading
asymptotic behaviors of these solutions are given in (9),
and in fact the entire Poincaré asymptotic expansions of
uðyÞ and vðyÞ are identical to all orders in powers of 1=y.
However, the difference DðyÞ � uðyÞ � vðyÞ is nonzero
and is exponentially small

DðyÞ � Ke�y2½1þ ðnþ 1=2Þ2�2y�2=4þ . . .� (11)

as jyj ! 1, where K is an arbitrary constant. This result
reflects the hyperasymptotic (asymptotics beyond all or-
ders) content of (6) [19].

Using (11), we approximate the integral (10):

I � Kð�1Þnðnþ 1=2Þ
Z 1

Y
dyy�3 ðY ! 1Þ; (12)

which is convergent. Thus, while there is no continuous
path running between the two good Stokes’ wedges, there
do exist paths connecting these wedges that repeatedly
enter and reemerge from bad Stokes’ wedges. On these
contours the probability integral I in (7) exists. Several
such paths are shown in Fig. 4.
Figure 5 is a generalization of Fig. 4 for the first excited

state of the quantum harmonic oscillator. Note that con-
tours that connect the two good Stokes’ wedges may or
may not pass through the node at the origin.
We do not present the argument in this Letter, but along

the contours shown in Figs. 4 and 5 condition II in (4) is
satisfied. That is, along the entire complex contour obeying
the differential equation (6) the local contribution to the
total probability integral is positive. Thus, the three con-
ditions (3)–(5) are satisfied, and we have successfully
extended the probabilistic interpretation of quantum me-
chanics into the complex plane.

FIG. 4 (color online). Complex contours connecting good
Stokes’ wedges. A contour (solid curve) begins at x ¼ �1 in
the left good Stokes’ wedge (shaded), leaves the wedge along a
separatrix, and runs up to i1 in the bad Stokes’ wedge (un-
shaded). The contour continues downward along a path in the
same bunch, crosses the imaginary axis at y ¼
0:003 324 973 872 707 912, and heads upwards into the same
bad Stokes’ wedge. Finally, the contour reemerges from the
bad Stokes’ wedge and continues towards x ¼ þ1 along a
separatrix in the right good Stokes’ wedge. Contours have zero
slope on lightly dotted lines and infinite slope on heavily dotted
lines. A second contour (dashed curve) connecting the two good
Stokes’ wedges visits the bad Stokes’ wedge 4 times instead of
twice.

FIG. 5 (color online). Complex contours for the first excited
state of the quantum harmonic oscillator. Four contours (solid
lines) that begin at x ¼ �1 in the left good Stokes’ wedge
(shaded) are shown. These contours leave this wedge along
separatrices and run off to �i1 in the upper and lower bad
Stokes’ wedges (unshaded). After visiting a bad Stokes’ wedge
several times, the contours may pass through the node at the
origin at 60� angles to the horizontal. At this node the proba-
bility density vanishes. Then the contours repeat the process in
the right-half plane and eventually enter the right good Stokes’
wedge along separatrices. It is also possible to have a complex
contour that avoids the node at the origin and still connects the
good Stokes’ wedges. Solution curves are horizontal on lightly
dotted lines and vertical on heavily dotted lines.

PRL 104, 061601 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

12 FEBRUARY 2010

061601-3



The analysis in this Letter is general and also extends to
PT quantum theories, such as the quasiexactly solvable
quartic anharmonic oscillator, whose Hamiltonian is H ¼
p2 � x4 þ 2ix3 þ x2 þ 2iJx [20]. However, for quantum
theories other than the harmonic oscillator, there are two
kinds of bad Stokes’ wedges: (i) wedges for which there
exist probability contours C that enter and reemerge from
the wedge and for which the probability integral along C
converges, and (ii) wedges for which no such contour
exists. For the Hamiltonian above there are three good
Stokes’ wedges and three bad Stokes’ wedges, one of
type (i) and two of type (ii) (see Fig. 6).

The quantum probability densities on the curves in
Figs. 4–6 resemble pup tents with ripples in their canopies,
in contrast to the smooth surface in the classical pup tent in
Fig. 2. These figures are the complex analog of Fig. 1 and
they provide a first glimpse of the complex correspondence
principle. This work suggests several directions for further
research. For example, a detailed study should be made of
the high quantum-number limit, time-dependent contours

C associated with noneigenstates (such as Gaussians)
should be examined, and the complex correspondence
principle for coherent states should be developed [21].
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FIG. 6 (color online). Complex contours (heavy dashed lines)
for the ground state (J ¼ 1) of the quasi-exactly-solvable PT
anharmonic oscillator. A separatrix (a) goes directly from the left
good Stokes’ wedge to the right good Stokes’ wedge, crossing
the imaginary axis at y ¼ �0:176 651 795 619. Paths (b) that
cross x ¼ 0 at higher points than the (a) path cannot reach 1 in
the good wedge. Because they are unstable, such paths turn
around, enter the upper bad Stokes’ wedges, and cannot ree-
merge. A separatrix (c) leaves the left good wedge. It enters the
lower bad wedge to the left of x ¼ 0, reemerges along paths (d)
or (h), and reenters the bad wedge to the right of x ¼ 0. It then
continues into the right good wedge along the separatrix (e).
Another separatrix (f) leaves the left good Stokes’ wedge, enters
the lower bad Stokes’ wedge, leaves and returns along (g),
leaves, reenters again along (d) or (h), leaves and reenters along
(j), and finally enters the right good wedge along the separatrix
(f). Solution paths are horizontal on lightly dotted lines and
vertical on heavily dotted lines.
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