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Abstract. The preparation and properties of reduced graphene oxide (rGO) and graphene nanosheets 

(GNSs) reinforcement of aluminium matrix nanocomposites (AMCs) are reported. For the 

rGO-AMCs, commercial colloidal GO was coated onto aluminium powder particles and then reduced 

via thermal annealing. For the GNS-AMCs, graphene exfoliated from graphite through 

ultrasonication and centrifugation was coated onto aluminium particle surfaces via dispersion mixing, 

filtering and drying. Pure aluminium and aluminium composites with various reinforcement 

concentrations of rGO and GNS were cold compacted into disc-shaped specimens and sintered in 

inert atmosphere. The mechanical properties and microstructure were studied and characterised via 

Vickers hardness, X-ray diffraction, density measurement, and scanning electron microscopy. The 

reinforcements were uniformly distributed onto the aluminium particle surfaces before and after 

consolidation within the composites. The relevant factors for the powder metallurgy process 

(compaction pressure, density, and sintering conditions) were optimised. Increased levels of 

increased hardness were recorded, over baseline compacted and sintered pure aluminium samples, 

prepared under identical experimental conditions, of 32% and 43% respectively for the 0.3wt.% 

rGO-Al and 0.15wt.% GNSs-Al composites. The process developed and presented herein provides 

encouraging results for realising rGO-AMC and GNS–AMC nanocomposites via low cost cold 

powder compaction and sintering metallurgy techniques. 

1. Introduction 

Aluminium matrix composites (AMCs) have been widely studied since the 1920s. In the last few 

years AMCs have been utilized in both high-tech structural and functional applications including 

aerospace, defense, automotive, thermal management, sports and recreation, electronic packaging, 

and armour [1]. These composites are utilised as substitutes for monolithic materials including 

aluminium, ferrous, titanium alloys and polymer based composites. Alumina and silicon carbide 

reinforcements are commonly utilised in AMCs. The tensile strength of alumna and SiC being on the 

order of 300 MPa is much below that of graphene at 130 GPa. A small percentage of GNS or even 

rGO could therefore increase the overall composite physical properties greatly. The electrical 

conductivity of graphene is similarly an order of magnitude greater than that of aluminium. With such 

increased strength and conductivity, power transmission lines would therefore be a good end 

application for AMCs developed based on these reinforcements. Several papers have recently been 

published on carbonaceous-reinforced aluminium composites e.g., single or multi-walled carbon 

nanotubes SWNTs/MWCNTs [2-11]. To achieve the integration of CNTs into AMCs, the following 

methods have been used: mechanical dispersing, e.g., ball milling process [3], friction stir process 

[8-10], solvent dispersion e.g., ethanol with surfactant/ultrasonic support [12], or hybrid methods of 

the above [13]. It has been reported that the large aspect ratio of CNTs (wt.%2) was difficult to 
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disperse and thus the potential of higher improvements in mechanical properties of CNTs-Al 

composites are relatively limited [3]. Undesirable reactions between CNTs and the aluminium 

matrix, e.g., carbide formation, have also been observed in certain CNTs-Al composites [6, 14]. It has 

further been inferred experimentally that many voids have been formed based on the provision of 

nucleation sites on CNTs, which would eventually lead to premature fracture of AMCs specimens 

during loading application [11]. The following factors are considered as challenging in the 

applications of CNTs in Metal Matrix Composites (MMCs): non-standardized raw CNTs materials, 

high remaining porosities, and introduction of longitudinal alignment after certain manufacture 

procedures (e.g. extrusion) and complex interface design [15].  

 

 

As alternatives to conventional AMCs reinforcements, e.g., equiaxed ceramic, short fibres, 

whiskers, continuous fibres, and monofilament [1], graphene and its derivative reinforcements are 

attracting increasing attention since single layers of graphene were first produced in 2004 [16]. 

Compared with CNTs, graphene oxide provides many conveniences and advantages for use as 

reinforcement in AMCs, for instant, graphene oxide is water-soluble due to the presence of 

hydrophilic groups (e.g., carboxyl, carbonyl, and hydroxyl) so that it is easier to handle and to 

disperse in water or other organic solvents as well as in different matrixes, so that agglomeration of 

the porosities can be significantly reduced or fully avoided. Meanwhile, graphene oxide can be 

synthesised in large quantities from inexpensive graphite powder and solubilised in a variety of 

solvents [17, 18]. When using graphene oxide, the reduction process is necessary to remove the 

oxygen groups from the structure of the graphene oxide sheets. Reducing graphene oxide nanosheets 

to rGO will partly restore the structure and properties of graphene. This mechanism can be done by 

thermal annealing reduction, chemical reduction or multi-step reduction [19]. To exclude or consume 

the residual oxygen in the atmosphere, vacuum, inert atmosphere or reducing atmosphere is normally 

used during annealing reduction. In previously published work GO has been thermally reduced to 

rGO by heating at 500°C for 2h in Ar/H2 (5 vol.% H2) 40 ml/min [20],  at 450°C for 2h in an Ar/H2 

(1:1), 100 ml/min [21], and  under the condition of 550°C for 2h in pure Ar [22]. It has been reported 

that the oxygen-containing groups in GO can also be efficiently removed in a hydrogen atmosphere at 

100-200°C [23]. 

 

A lot of research work has been conducted on the fabrication of aluminium composites based on 

reinforcing with graphene nanosheets [14, 24, 25], graphene nanoflakes (GNFs) [24, 26, 27], 

few-layered graphene (FLG) [28], or its derivatives graphene oxide  and reduced graphene oxide  [20, 

22]. Reported input control factors for the nano-reinforced matrix composite synthesis are listed in 

Table 1. Cold compaction followed by hot isostatic pressing (HIP) [24], as well as hot extrusion [14, 

22, 26, 27], vacuum hot press and/or hot rolling [28] are commonly used in the literature to 

manufacture the solid pure aluminium and reinforced rGO-AMCs and GNS-AMCs specimens. The 

same processes are also found for CNTs-Al composites [6]. Using conventional powder metallurgy 

compaction and sintering could be a replacement for these more expensive hot extrusion, vacuum hot 

pressing, and hot rolling processes. If this was achievable, this could allow for conventional powder 

metallurgy processes to be more widely used by industry for nano-reinforced metal matrix composite 

mass scale production. It is know that aluminium alloy powders can provide full density at 

sufficiently high compaction pressure [29]. In other work, unalloyed aluminium powders (20μm) 

were also found consolidated to 100% density under the pressure of 1 GPa [30]. A wide range of 

compaction pressures have been reported, typically ranging from 50 to 600 MPa, for the production 

of SWNTs/MWCNTs-AMCs [2-4, 6, 7, 11] and graphene and its derivatives based AMCs [20, 22, 

27, 31-33]. 

 

While fabricating AMC with rGO and GNSs as reinforcements, the following target process aims 

should be set: 1) to uniformly distribute reinforcement within the AMCs; 2) to effectively reduce the 

GO nanosheets to rGO and avoid introducing deformations, e.g., wrinkling and folding of the rGO 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

and graphene sheets; and 3) to achieve a strong bonding between nanosheets and aluminium particles. 

The production of rGO and GNS reinforced AMCs via the powder metallurgy route is examined in 

this paper with a view to taking advantage of these reinforcement materials for provision of improved 

AMC properties. 

 

Material Compaction Sintering Specific details 

Atomized Al average size ~22 

µm; 0.1 wt.% GNSs (-18% TS), 

and 1.0 wt.% MWNT (+12% TS) 

[14] 

instrumented hot 

isostatic pressing 

(I-HIP): ~375°C, ~20 

mins 

NA ϕ  ~20mm billets: preheated to 

~550°C, 4 h; extrusion: 50 

tons, 4:1 ratio, ~12.5mm/s, 

~65ksi (448kPa) 

 

Ball-milled Al flakes 2µm thick; 

0.3 wt.% GO 

(+62%TS)  

[22] 

 

ϕ  40×30mm billets  sintering: 580ºC, 

Ar., 2h  

hot extrusion: 440ºC, 20:1 

ratio 

As received Al 1-3µm (99%) ; 

0.3wt.% GNPs 

(+11.1%UTS, +14.7% YS) 

[27] 

 

ϕ30x30mm billets: 

170MPa 

muffle furnace: 

600ºC, 6h  

ϕ9/16mm rods: hot 

extrusion,470ºC, 1m/min  

Ball milled Al flakes from  

particle size ϕ10 µm; 0.3wt.% 

rGO (+18% elastic modulus, 

+17% hardness)   

[20] 

 

billet compaction: 

500MPa 

vacuum hot 

press: 530 ºC, 

600MPa, 1h 

NA 

Ball milled Al 45 µm (99.5%) ; 

SiC:GNSs(17wt.%) (+45%TS, 

+84% tensile ductility) 

[25] 

 

NA powder injection 

into A356 Al 

alloy, cooled to 

605ºC 

stirred at 400rpm for 5 min, 

adding 1 wt.% Mg 

Gas-atomized spherical Al gain 

size ~15-20 µm (99.5%); 0.5 

wt.% GNFs (+8.8%YS, 

+17.7%UTS)   

[26] 

 

NA NA ϕ15mm bar: extruded at 

300ºC followed by annealing 

at 300ºC, 2h 

Al particle < ϕ150µm (99.5%); 

0.7 vol.% FLG (+71.8%TS)  

[28] 

compacted in copper 

tube: ϕ60mm 

×150mm high 

×1.5mm thick  

NA hot rolling: 500ºC, 15ºC /min, 

12% reduction per pass 

Gas-atomized Al-Mg 

(1.5wt.%)-Cu (3.9wt.%) powder; 

0.3wt.% GNFs (+25% TS, 

+58%YS) 

[24] 

preheat in tube: 

300-400 ºC, 2h, 

1×10
-2

Pa, cooled to 

room temp.;  

NA HIP: 480ºC, 150MPa, 2h; hot 

pressing: 400-480ºC, 10:1 

ratio, 3mm/min, 300kN; 
495ºC/30min, +96h 

 

Table 1: Reported compaction and sintering input factors for AMC nanocomposites fabrication.  

 

2. Experimental procedure 

Aluminium powder 250 mesh (purity >99.5 %) was purchased from East Coast Fibreglass Ltd (South 

Shields, UK). The morphology of synthesised GNSs-Al powder is shown in Figure 1 (a) and the 

particle size distribution of the as-received aluminium powder is shown in Figure 1 (b). The SEM 
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images were recorded with an Evo LS15, Carl Zeiss SEM. Disc specimens were fabricated via the 

powder metallurgy route with the different weight percent of nanoparticle reinforcements as listed in  

Table 2. 

 

 

      
                  (a)                     (b) 

Figure 1: (a) SEM image of particle morphology of synthesised GNSs-Al and (b) particle size 

distribution of as-received aluminium powder. 
   

 

 

Material Source Weight percent of reinforcements 

GNSs-AMCs synthesised 0.07wt.%, 0.1wt.%, and 0.15 wt.%  

rGO-AMCs synthesised 0.07wt.%, 0.15wt.%, 0.3wt.%, 0.7wt.%, and  2wt.%  

 

Table 2: Compositions prepared of rGO-AMC and GNSs-AMC powders. 

 

Water based graphene oxide colloid (4mg/ml, monolayer >95%) was purchased from Graphenea 

(Gipuzkoa, Spain). The rGO-Al powder the aluminium powder was firstly scaled and mechanically 

stirred with various solvents using concentration of 200 ml per 5g Al, for 15 mins. In order select the 

best solvent for this process step, acetone (>99%), ethanol (>99%), and ethanol-water (80-20%) were 

trialed. The graphene oxide water colloid was sonicated for one to three hours, depending on the 

weight percent applied, in order to uniformly disperse the graphene oxide particles. Afterwards the 

sonicated dispersion was added slowly drop by drop to the aluminium slurry obtained from the 

previous steps. Mechanical stirring was then started and continued until the dispersion tubribty 

became uniform. Filtering of the as-synthesised powder dispersion, from the liquid solvents, was 

performed through 11 micrometer Whatman filter paper. The filtered powder was then dried and 

thermally reduced in a horizontal tube furnace at 550ºC for 2h in an argon atmosphere with a gas flow 

rate of 30ml/min. With other parameters being the same, the most clear solutions after mechanical 

stirring occurred in the order of acetone > ethanol-water > ethanol (see Figure 2). Acetone was 

therefore selected as the solvent of choice for further testing. A stirring time of 1h was sufficient to 

obtain fully clear dispersions for the 0.07, 0.15, and 0.3 wt.% GO-Al dispersion in acetone, while in 

comparison, 3h and 5h were required respectively for 0.7 and 2 wt.% GO-Al powders. The brown 

colour remaining on the filter papers used for the 0.7wt.% and 2 wt.% GO-Al  powders indicates the 

large amount of remaining graphene oxide particles in the solvent for these compositions (see Figure 

3) which were not bonded to the aluminium particles. For this reason, only the rGO-AMCs powders 

of 0.07wt.%, 0.15wt.%, and 0.3wt.% were processed via the powder metallurgy route for composite 

synthesis.  
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(a) (b) (c) (d) 

Figure 2: Visual characteristics observation is a direct way to see the effect of solvent and stirring 

time: 2wt.% GO-Al dispersion with stirring time of (a) 1 h in acetone, (b) 5h in acetone, (c) 5h in 

ethanol-water, and (d) 5h in ethanol.  

 

 

 
(a) (b) (c) (d) (e) 

Figure 3: GO-Al powder filtered from acetone with stirring time and concentrations of (a) 1h, 

0.07wt.%, (b) 1 h, 0.15wt.%, (c) 1 h, 0.3wt.%, (d) 3 h, 0.7wt.%, and (e) 5 h, 2wt.%.  

 

To prepare GNSs-Al powder, Etyle cellulose (EC) was dissolved in Isopropyl alcohol (IPA) at a 

concentration of 15mg/ml. Graphite was added to the EC/IPA solution (100mg/ml) and exfoliated by 

ultrasonication under sonic probe for 72 h. Centrifugation was carried out to separate unexfoliated 

graphite from exfoliated graphene (Gr). Graphene was centrifuged at 500 rpm for 45 mins, the top 80% 

of the supernatant was collected. To remove/washout dissolved EC from graphene, the supernatant 

was centrifuged at 2000 rpm for 3h. Clear supernatant was discarded and graphene sediment was kept. 

This step was repeated four times. An IPA/EC (2mg/ml) solution was prepared. The washed graphene 

was added to this solution and concentration was measured by filtration of know volume of Gr 

dispersion through a filter membrane of known mass. This dispersion was used as stock graphene 

dispersion. As-received aluminium powder was also dispersed in EC/IPA solution. Required volumes 

of graphene were added (from the stock dispersion) to Al/EC/IPA dispersions to make various mass 

fraction Gr/Al/EC/IPA composite dispersions. Each dispersion was mixed for 48h by magnetic 

stirring and then filtered through a PET filter membrane (pore size 0.45 microns). The residue was 

dried in an oven for another 48h at 60 ºC.  

 

In this paper, the as-received and synthesised powders were cold compacted at the pressures of 30, 

73, 220, 260, 330, and 560 MPa to investigate their compaction behaviours. Sample powder weights 

of 0.75 g were cold compacted in evacuable pellet dies of 20 mm diameter within an automatic 

uniaxial hydraulic press (Atlas 40T press, Specac Limited, Kent, UK). The thickness of the resulting 

green specimen was 1 mm. A thin layer of rhombic boron nitride powder was physically coated onto 

the die surfaces as an aid to sample removal.  

 

Before sintering, the solidus and liquidus temperatures of the powders used were firstly 

determined using differential thermal analysis (DTA) shown in  

Figure 4. In this study, the effects of sintering conditions, e.g., atmosphere, temperatures, holding 

time and heating rate, were investigated and optimized. The horizontal tube furnace (Carbolite 3216 

with Eurotherm controller) was used with the optimized sintering conditions of 5C/min from room 

temperature to 600°C (~ 88% of the melting temperature of the pure aluminium power), with a 

holding period of 4h and in an argon atmosphere.   
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Figure 4: DTA values vs. temperature; maximum temperature set to 900 °C, ramp rate set to 10 

°C/min, measurement interval at 1 s, and atmosphere was N2 with a flow rate of 30ml/min for ~32 mg 

of aluminium, rGO-AMCs 0.3 wt.%, and GNSs-AMCs 0.15wt.% powder samples. 

Results and Discussion 

The morphologies of the pure aluminium and prepared composite powders are shown in Figure 5. 

The pristine aluminium particles appear smooth and with uniform colour intensity whereas the rGO 

and GNS on the aluminium particle surfaces are indicated by the surface shading.  

 

 

 

 

 

 

 

 

 

 

 

 

   
  
  

(a) (b) 
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Figure 5: SEM photos of particle surface morphology of the powder particles of (a) pure 

aluminium, (b) 0.07 wt.% rGO-AMCs, (c) 0.15 wt.% rGO-AMCs, (d) 0.3 wt.% rGO-AMCs, (e) 0.1 

wt.% GNSs-AMCs, and (f) 0.15wt.% GNSs-AMCs.  

 

The theoretical solid density of aluminium is 2.699 g/cm
3
. The densities of the green and the 

sintered samples were measured by the Archimedes method, the results of which are summarised in 

Figure 6. For higher the applied pressures, higher green densities were recorded as would be 

expected. For the pressure levels used in this study, completely pore free sample densities were not 

achieved. The density obtained at the maximum pressure of 560 MPa was 88.5% of the theoretical 

pore-free density. 

 

 

 

 

 

 

 

 

 

 

 

 

 
     

 

 
         

(e) (f) 

(c) (d) 

(a) (b) 
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Figure 6: (a) Pressure vs. green density of pure aluminium specimens, and (b) percentage sintered 

density as functions of cold compacting pressure for aluminium samples.  

 

The mixture density, m , was calculated by the rule of mixtures, using the theoretical density 

2.699 g/cm
3
 for pure aluminium powder and approximately 2.0 g/cm

3
 for both rGO and GNS, as 

follows.  

100
m

gal

al g

ww


 





                                                                                      (1) 

 

al - specific weight of the base aluminium powder; 

alw - weight percentage of the aluminium powder; 

g - specific weight of graphene films, approximately 2.0 g/cm
3
; 

gw - weight percentages of additive, graphene sheets.  

  

Based on equation (1), the densities of the nano-reinforced AMCs were expected to be decreased 

by less than 1% compared with the density of pure aluminum powder. The theoretically achievable 

and measured densities of AMCs are presented in Figure 7. 
   

                        (a) (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Density vs. weight percentage of (a) rGO and (b) GNS for the AMC samples compacted 

at 560 MPa. 
  

Vickers hardness values were measured with a Leitz micro hardness tester (Semiconductor GmbH, 

Wetzlar, Germany) with a 981mg loaded weight. The measurements were repeated six times for each 

sample at random surface locations and averaged. The hardness results from the pure aluminium, the 

rGO and GNSs reinforced aluminium matrix composites samples are summarized in Figure8. The 

hardness of the base material, pure aluminium sample, was 26.0±1.3HV, while the hardness of 

0.3wt.% rGO-AMCs and 0.15 wt.% GNSs-AMCs samples were 34.5±3.0 and 37.6±2.3HV 

respectively, showing 32% and 43% increments over the unreinforced aluminium under otherwise 

identical experimental sample compaction and sintering conditions.  

(a) (b) 
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(a)                                                                            (b) 

Figure 8: The Vickers hardness of the pure aluminium, rGO-AMCs, and GNSs-AMCs specimens. 

 

Material wt.% Vickers hardness 

HV 

Increment 

over pure Al 

Pure Al  NA 26.0±1.3 NA 

rGO-AMCs 0.07 29.0±1.9 11% 

 0.15 30.2±2.0 16% 

 0.3 34.5±3.0 32% 

GNSs-AMCs 0.07 26.5±2.8 1.9% 

 0.1 31.7±1.4 21% 

 0.15 37.6±2.3 43% 

 

Table 3: The Vickers hardness values and the percentage increase, over that of the pure aluminium 

sample, of the rGO-AMCs and GNSs-AMCs samples, n=6. 

 

Representative XRD scans for the pure aluminium, GNSs and rGO-AMC nanocomposites are 

presented in Figure 9. All samples have major aluminum peaks at 38.8 (1 1 1), 45.0 (2 0 0), 65.4 (2 

2 0), 78.5 (3 1 1) and 82.7 (2 2 2). Peaks for aluminium oxide (Al2O3) are observed at 27.1 in all 

samples. However, no aluminium carbide peak was recorded for any of the samples. The pure and 

nano-reinforced aluminium matrix composite samples were broken open by pressing a rounded 5 mm 

pin through the sample centre in order to examine their internal structure via SEM. The fracture 

surfaces of the pure aluminium and composites samples are shown in Figure 10. For all samples, the 

degree of sample compaction was higher at the sample surface compared to the sample centre. For the 

pure aluminium samples, the central section showed higher density compared with the GNSs and 

rGO reinforced samples. For the tested pressure levels, up to 560MPa, pores were still evident 

between the larger powder particles for the rGO-AMC and GNS-AMC samples. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 
Figure 9: XRD scans of pure aluminium, 0.15wt.% GNSs-AMCs and 0.3wt.% rGO-AMCs PM 

samples. 
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Figure 10: SEM photos of (a) top surface and (b) fractured internal structure  of pure aluminium; 

(c) top surface and (d) fracture surface of rGO 0.3wt.% reinforced sample; (e) top surface and (f) 

fracture internal structure of GNSs 0.1wt.% reinforced sample. 

Conclusion 

In this paper, the effects of rGO and GNS content on the properties of the formed aluminium 

composites were investigated. The pure aluminium, rGO-AMCs, and GNSs-AMCs powders were 

cold compacted and sintered into consolidated disc specimens.  

Two key factors need to be considered during the compaction process: the achieved radial and 

axial pressure distributions, as depicted in Figure 11. The radial pressure upon the inner surface of 

rigid cylindrical die wall is always smaller than the nominal axial pressure exerted by the piston of a 

hydraulic press due to the powder bulk being in solid form with no hydraulic properties.  

(a) (b) 

(e) (f) 

(c) (d) 
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Figure 11: Powder compaction configuration and the axial stress distribution among the 

compacted disc sample, after [34]. 

The powder column in the die cavity can be imagined as stacked thin layers. As the upper pellet 

enters the die and compacts the powder, the initial axial stress is noted as σa(0). Selecting one single 

layer at vertical distance x from the top compaction surface, and its height as dx, if the inner diameter 

of the compacting die is 2r, then the cross-sectional area Sc and lateral area Sl of the selected layer 

would be as follows. 

Sc =   r
2
                                                                     (2) 

 

Si = 2  r dx                                                                (3) 
 

The axial stress acting upon the bottom face of the layer is σa(x+dx) which would be expected to be 

smaller than the axial stress acting upon the top face of the selected layer σa(x) due to the presence of 

friction force exerting on the lateral face of the layer and the die wall. If the frictional force is assumed 

to be proportional to the axial stress and the lateral area of the layer, the equilibrium equations are 

then 
 

F↓ =  r
2
 a(x)                                                                          (4) 

 

 

F↑ =   r
2
 a(x+dx)                                                                     (5) 

 

 

f = µ 2  r dx.a(x)                                                                 (6) 
 

where, 
 
F

¯
 represents the fore exerting on the top layer surface, 

 
F

­
 represents the force acting upon 

the bottom face of the layer, µ is the friction coefficient and f represents the friction force exerted on 

the wall surface. From equation (4)-(6) it is noted that 
 

da(x) = a(x + dx) - a(x) = - 2µa(x)dx / r                                 (7) 
 

The integration of equation (7) provides the relationship between the top surface axial stress and 

the compaction distance as follows. 

a(x) = a(0)exp(- 2 µx/r)                                                            (8) 
 

The axial compressive stress available for the local densification of the powder σa(x) decreases 

exponentially with increasing distance from the top surface. Assuming the process as a quasistatic 

process, that the friction coefficient µ is equal to 0.12 (steel-steel with lubricant), and that the stress 

on the top and bottom surfaces of the compacted sample equals to the nominal pressure applied, 560 

MPa, then the stress at the middle natural area of sample is at the lower value of 528 MPa, a pressure 

which is 6% lower. From equation (8), therefore the stresses at each surface ends should be larger 

than in the midsection, which was found to result in zone of lower compaction density in the central 

disc regions. 
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During cold compaction, the higher the pressure resulted in a higher green density as expected. 

The density obtained at the maximum pressure of 560 MPa was 88.5% of the pore free density. 

However, significant hardness improvements measured for the GNSs and rGO-AMC composites are 

very encouraging results that this method could be developed for mass production of components. 

Apart from these promising results, the enhancement in the strength and conductivity of these 

composites requires further examination and development to actualize the potential of this new 

material. The possibility of using SiC nanoparticles wrapped by graphene sheets as carrier agents for 

the incorporation of these structures into AMCs is a promising new route [35] to achieve this. 

 The reduced graphene oxide and graphene nanosheets composites produced have shown 

improved mechanical reinforcements despite increased levels of porosity over the pure aluminium 

disk samples. The GNS reinforcement provided significantly higher increases in hardness for the 

same quantity of reinforcement, see Table 3. From this result, it could be concluded that being closer 

to the GNS provide enhanced reinforcement compared to the rGO reinforcement. The graphene 

nanoparticle reinforced aluminium composites could extend the use of aluminium materials, offering 

higher strength to weight ratios for typical AMC applications. In spite of the observed overall 

reinforcing effect, challenges for using these unique nanomaterials as reinforcement in AMCs still 

exist which require further research. To achieve maximum improvements, 1) effective and uniform 

dispersion, especially for rGO composites >0.7 wt.% should be sought to achieve greater mechanical 

properties; 2) unwrinkled graphene sheets in larger sizes would be preferred on the metal powder 

particles; 3) undesirable oxide formation on the aluminium matrix during powder metallurgy should 

be avoided (ball milling in protective liquids may be a technique to reduce or overcome this problem 

in future work); and 4) higher cold compaction pressures especially toward the central part of green 

samples would most likely be beneficial.  
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Highlights 

 Developed powder metallurgy method for rGO and GNS-aluminium matrix composites 

 Mechanical and chemical property determination of for graphene-aluminium composites 

 Significant increase in composite compact hardness over pure metal baseline 

 Correlation of composite density with compaction pressure and reinforcement levels 

 Elaboration of areas of focus on method for further improvements in graphene-AMCs 


