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longevity ever witnessed, whih show no sign of slowing down during the early years

of the 21st entury. The risk of further, higher than antiipated improvements in life

expetany - known as longevity risk - is now a major and growing �eld of study. This

thesis investigates a number of theoretial and pratial problems within the �eld of

longevity risk relating to the struture and identi�ability issues within many of the most

ommon models used to study mortality rates, the onstrution of new mortality models,
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seurities.
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Chapter 1

Introdution

The 20th entury has witnessed some of the largest and most widespread gains in human

longevity ever witnessed, whih show no sign of slowing down during the early years of

the 21st entury. Whilst this is overwhelmingly a sign of human progress, the extended

period people now expet to spend in retirement has profound �nanial onsequenes

for those providing pensions and retirement annuities - governments, life assurane om-

panies and pension shemes. Therefore, this risk of further, higher than antiipated

improvements in life expetany � known as longevity risk � is now a major and growing

�eld of study.

Prior to starting my researh, I worked as a quali�ed pensions atuary in the UK. As

part of this, I was involved in advising ompanies and trustees on the options regard-

ing de-risking pension shemes and was seonded to assist with the modelling of the

�rst multi-billion pound longevity swap deal. I have, therefore, seen �rst-hand that the

tools available to quantify and manage longevity risk in pension shemes and annuity

books were inadequate to the task. The standard projetions of mortality rates used

often ontained arbitrary and unrealisti assumptions, suh as a tailing-o� of the rate

of improvement, whih has been often predited but has yet to be observed. They were

also usually based on national populations with no indiation of how the experiene of a

spei� sub-population would be di�erent. Most importantly however, they were deter-

ministi, so were not able to give an indiation of the unertainty due to longevity risk

in the liabilities.

As a result, I was often unable to satisfatorily answer many of the questions regarding

longevity risk I was asked during the ourse of my work. These were primarily pratial

in nature and involved the quanti�ation of longevity risk and its �nanial impliations.
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The topis overed in my researh have, therefore, attempted to shed light on some of

these pratial issues.

However, as a result of the dissertation for my MRes (the PhD-level training programme

whih omprises the �rst year of the dotoral programme, prior to starting researh in

earnest), I beame inreasingly aware that many of the tools developed in aademia were

also inadequate to providing answers to these questions. Spei�ally, I found that simple

models, suh as the benhmark Lee-Carter and Cairns-Blake-Dowd models, were unable

to apture the observed behaviour of mortality rates in the historial data and, therefore,

would underestimate the potential longevity risk in future. However, more ompliated

models su�ered from a lak of robustness when estimating parameters and ompliated

identi�ability issues within the models. Therefore, my researh also needed to enhane

the understanding of the issues whih limited the pratiality of more ompliated models

and to improve the range of models used to predit mortality rates, before investigating

the more pratial issues I had enountered in my work.

To ahieve these aims for my researh, my thesis omprises of four broad parts, eah

ontaining hapters whih are linked thematially:

• Part I - Struture, Identi�ability and Constrution of Age/Period/Cohort Mortality

Models

� Chapter 2 - Struture and Classi�ation of Mortality Models

� Chapter 3 - Identi�ability in Age/Period Mortality Models

� Chapter 4 - Identi�ability in Age/Period/Cohort Mortality Models

� Chapter 5 - A General Proedure for Construting Mortality Models

• Part II - Projetion of Mortality Rates for Single or Multiple Populations

� Chapter 6 - Consistent Mortality Projetions Allowing for Trend Changes and

Cohort E�ets

� Chapter 7 - Identi�ability, Cointegration and the Gravity Model

� Chaprer 8 - Modelling Longevity Bonds: The Swiss Re Kortis Bond

• Part III - Modelling Mortality for Pension Shemes

� Chapter 9 - Basis Risk and Pension Shemes: A Relative Modelling Approah

� Chapter 10 - Transferring Risk in Pension Shemes via Bespoke Longevity

Swaps
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• Part IV - Forward Mortality Models

� Chapter 11 - Forward Mortality Rates in Disrete Time I: Calibration and

Seurities Priing

� Chapter 12 - Forward Mortality Rates in Disrete Time II: Longevity Risk

Measurement and Management

These parts form a uni�ed whole and there exist numerous onnetions between hapters

in di�erent parts of the thesis. For instane, all of the models used are from the lass of

age/period/ohort (APC) mortality models and, therefore, the qualitative understanding

of this lass developed in Chapter 2 is fundamental to all of the other hapters in this

thesis.

During my MRes dissertation, I enountered problems with using the Plat (2009a) model

and, espeially, the estimation of the ohort parameters within it. In part, I found this

was beause the model was not fully identi�ed, namely that I needed to apply an addi-

tional identi�ability onstraint on the quadrati trend in the ohort parameters in order

to obtain a unique set of parameters when �tting the model to data. This need for an

additional identi�ability onstraint, whih was not mentioned in Plat (2009a), made me

think more generally about identi�ability issues in APC mortality models - both in terms

of why they are present and how we an ensure that a model is fully identi�ed. The re-

sult of this analysis developed into Chapters 3 and 4, espeially as a result of disussing

the subjet with Bent Nielsen who drew my attention to the impat of identi�ability on

projetions. Furthermore, I had attempted to extend the Plat (2009a) model to younger

ages in my MRes, in order to obtain more estimates of more reent ohort parameters.

However, my attempts to do so resulted in models whih laked robustness and had

terms added in an ad ho fashion, sine I laked a proedure for extending the model

based on the evidene of the data. Overoming this hallenge resulted in the �general

proedure� of Chapter 5, whih was, itself, only possible one the identi�ability issues

in more ompliated APC models was understood. Thus, the work in Part I followed

diretly from the issues I enountered during my MRes, but laid the foundation for the

subsequent parts of my thesis.

Only one the fundamental struture of APC mortality models was understood and a

method for onstruting ompliated but robust mortality models was devised ould I

begin on the more pratial aspets of modelling longevity risk. This started with the

methods used to projet mortality rates in national populations, whih is disussed in in

Part II. These hapters start by looking at a single population and then move on to look
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at two population modelling. Muh of this work also ame from a desire to overome the

modelling issues I had enountered in the MRes, where I had been fored to use to ad ho

��xes� in order to model the Kortis bond. For example, the development of the Bayesian

approah for modelling ohort parameters in Chapter 6 arose from �nding that ohort

parameters existing on the threshold between being estimated and being projeted were

poorly estimated and hanged dramatially if a di�erent range of the data was hosen,

whih had large impliations for my results. In addition, during my MRes, I has ex-

periened issues with using the gravity model of Dowd et al. (2011b) to projet period

parameters in a �oherent� fashion. The analysis of these led diretly to the disussion

of identi�ability and ointegration in mortality models in Chapter 7. Putting these to-

gether, therefore, Chapter 8 represents an investigation of the same pratial issues I had

looked at in my MRes dissertation, but armed with the substantially more sophistiated

tools I needed to overome the problems I enountered previously.

This work, however, foused on mortality rates in national populations. My bakground

as a pensions atuary had made me aware that many studies of mortality rates in na-

tional populations had limited appliability for the far more data onstrained situation

faed by a pension sheme. It is this ontext whih informs the work performed in

Part III. One of the key questions for many pension sheme atuaries is, assuming we

have good models for the projetion of mortality in a large national population, how

an we quantify the di�erenes between what is observed nationally and the mortality

rates in a relatively small pension sheme. Although there have been previous aademi

studies on this subjet, in my opinion most of them were limited by using data for a

far larger sub-population than would be typial of a pension sheme (e.g., the CMI As-

sured Lives dataset). From my work, I knew that the CMI had published data from

the Self-Administered Pension Shemes study. In addition to being far more relevant

for the investigation of pension sheme mortality rates, this dataset is also available for

a far more limited range of years than the datasets typially used in previous studies.

It was, therefore, well suited to my purposes. Chapter 9 investigates this dataset us-

ing a �relative� modelling approah, and attempts to use this to quantify the potential

for �basis risk� (i.e., di�erenes in the evolution of mortality rates in the referene and

sub-populations). Chapter 10 then uses this analysis to try to model a stylised pension

sheme and so give insights into the value-for-money of bespoke longevity swaps. This

is an issue whih is of great pratial importane, but where I felt very little aademi

work had been done.

The �nal part, Part IV, of my researh foused on the questions of the measurement

and management of longevity risk. One question I was asked by investment professionals
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when I was working was what the value at risk of longevity risk was. On onsidering

this issue, I realised that many existing stohasti models were unable to answer the

question. This is beause the majority of the hange in the value of any liability or

seurity linked to longevity relates to hanges in expetations of mortality rates beyond

the valuation date, rather than hanges in the observed rates themselves. To answer

this question required the use of forward mortality rates models. However, those whih

existed were extensions of the Heath-Jarrow-Morton framework for interest rates, whih

were not designed for mortality rates (and so unable to apture many of the observable

features of mortality rates suh as ohort e�ets) and operated in ontinuous time (whih

is not ompatible with the majority of atuarial valuation tehniques in use in pratie).

Chapters 11 and 12 attempt to revolve this by developing a new tehnique in disrete

time based on expetations of the fore of mortality from APC models, and use it for

various risk management problems.

This is a long thesis. I make no apologies for this, sine I think it attempts to takle a

number of important questions of great pratial relevane. Although it is onstruted

as a series of stand-alone papers, the purpose of this introdution is to illustrate the links

between the di�erent hapters and show that the thesis is a uni�ed whole, motivated by

a desire to develop and use enhaned modelling tools to understand longevity risk.

However, I am aware that a great deal of further work needs to be done in respet of the

modelling of longevity risk. For example, I believe there are interesting extensions to the

work in this thesis, suh as developing the general proedure in Chapter 5 to allow for

heterogeneity in the underlying data, exogenous ausal variable suh as smoking preva-

lene or eonomi fators, or using it for other demographi phenomena (suh as fertility

rates). I would also like to extend the forward mortality framework in Part IV to value

longevity options, inorporate multi-population mortality projetions in Chapter 8 and

the relative model in Chapter 9 into the framework to allow for basis risk in valuation, and

allow for �realibration risk� (disussed in Chapter 12). I also believe that identi�ability

in multi-population models, and espeially its impat on ahieving oherent mortality

projetions, is a topi worthy of study beyond the relatively brief treatment in Chapter 7.

In summary, my thesis attempts to answer a number of pratial questions on the subjet

to longevity risk, and in doing so has resulted in a better understanding of the framework

of the age/period/ohort models and methods for onstruting new models. However,

there is muh whih still remains to be done, and plenty of other areas of researh whih
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may prove fruitful in future.

Below is a diagrammati representation of how the various hapters of this thesis depend

upon eah other, along with brief abstrats, presentation histories and aknowledgements

for eah part and hapter, .

1.1 Struture, Identi�ability and Constrution of Age/Pe-

riod/Cohort Mortality Models

Muh of the analysis of the historial evolution of mortality rates is made using models

whih deompose mortality rates aross the dimensions of age, period and ohort (or year

of birth). This inludes many of the most widely used mortality models, suh as the Lee-

Carter, Cairns-Blake-Dowd and lassi APC models. However, APC mortality models

are not fully identi�ed, whih an lead to problems with estimating the parameters within

them robustly, and require arbitrary identi�ability onstraints to be imposed when �tting

them to data, whih an bias any projetions from the model. Part I of the thesis reviews

the fundamental struture of APC mortality models, disusses the identi�ability issues

within them and proposes a �general proedure� for onstruting new mortality models

whih give a superior �t to the historial data.

1.1.1 Struture and Classi�ation of Mortality Models

I am grateful to Andrés Villegas, Steven Haberman, Bent Nielsen and Ana Debón for

their detailed omments regarding this hapter.

This hapter provides a holisti analysis of models whih examine the struture of mortal-

ity rates aross the dimensions of age, period and ohort and examines their similarities

and di�erenes. Spei�ally, it investigates the struture of APC mortality models, in-

trodues a lassi�ation sheme for existing models and lists the key priniples a model

user should onsider when onstruting a new model in this lass. This analysis is mainly

qualitative in nature and disusses the motivation for many of the subjetive judgements

made subsequently in the ourse of the thesis. In addition, sine the models used in the

remainder of this thesis ome from this lass, a �rm understanding of the APC struture

is vital for the development of more sophistiated mortality models and underpins muh

of the following work

6



I
n
t
r
o
d
u

t
i
o
n

Part I

Struture, Identi�ability and Constrution

of Age/Period/Cohort Mortality Models

Chapter 2

Struture and Classi�a-

tion of Mortality Models

Chapter 3

Identi�ability in Age/Pe-

riod Mortality Models

Chapter 4

Identi�ability in

Age/Period/Cohort

Mortality Models

Chapter 5

A General Proe-

dure for Construting

Mortality Models

Part II

Projetion of Mortality Rates

for Single or Multiple Populations

Chapter 6

Consistent Mortality

Projetions Allowing

for Trend Changes

and Cohort E�ets

Chapter 7

Identi�ability, Coin-

tegration and the

Gravity Model

Chapter 8

Modelling Longevity

Bonds: The Swiss

Re Kortis Bond

Part III

Modelling Mortality for

Pension Shemes

Chapter 9

Basis Risk and Pension

Shemes: A Relative

Modelling Approah

Chapter 10

Transferring Risk in

Pension Shemes via

Bespoke Longevity Swaps

Part IV

Forward Mortality Rates

Chapter 11

Forward Mortality

Rates in Disrete

Time I: Calibration

and Seurities Priing

Chapter 12

Forward Mortality

Rates in Disrete

Time II: Longevity

Risk Measurement

and Management

Figure 1.1: Dependene struture of hapters in thesis
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1.1.2 Identi�ability in Age/Period Mortality Models

I am grateful to Andrés Villegas, Steven Haberman, Pietro Millossovih, Bent Nielsen

and Ana Debón for their detailed omments regarding this hapter.

As the �eld of modelling mortality has grown in reent years, the models used to analyse

and projet mortality rates have grown onsiderably more sophistiated. However, the

number and importane of identi�ability issues within mortality models has also grown in

parallel with this inreased sophistiation. This has led both to robustness problems and

to di�ulties in making projetions of future mortality rates. This hapter, therefore,

presents a holisti and omprehensive analysis of the identi�ability issues in age/period

mortality models (i.e., a subset of the lass of models disussed in Chapter 2) in order

to both understand them better and to �nally resolve them. In this hapter, we disuss

how these identi�ation issues arise, how to hoose identi�ation shemes whih aid our

demographi interpretation of the models and how to projet the models so that our

foreasts of the future do not depend upon the arbitrary hoies used to identify the

historial parameters estimated from historial data. In tandem with Chapter 4, this

hapter resolves many of the theoretial and pratial issues whih have hindered the

development of more ompliated APC mortality models, and thus is fundamental to

the general proedure developed in Chapter 5.

1.1.3 Identi�ability in Age/Period/Cohort Mortality Models

I am grateful to Andrés Villegas, Matthias Börger and Bent Nielsen for their detailed

omments regarding this hapter.

The addition of a set of ohort parameters to a mortality model an generate omplex

identi�ability issues aused by the ollinearity between the dimensions of age, period and

ohort, beyond those disussed in Chapter 3. As many modern sophistiated mortality

models inorporate ohort parameters, this hapter presents a omprehensive analysis

of these identi�ability issues and how they an be resolved. To ahieve this, we disuss

the origin of identi�ability issues in general APC mortality models before applying these

insights to simple but ommonly used mortality models. We then disuss how to projet

mortality models so that our foreasts of the future are independent of any arbitrary

hoies we make when �tting a model to data in order to identify the historial param-

eters. Sine the majority of models onstruted via the general proedure of Chapter 5
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and used in the remainder of this thesis inlude ohort parameters, the analysis of the

identi�ability issues in APC mortality models is fundamental to muh of the following

work, espeially the studies in Chapters 6, 7 and 8.

1.1.4 A General Proedure for Construting Mortality Models

This hapter has been published in the North Amerian Atuarial Journal in 2014, vol-

ume 18, issue 1, pages 116-138.

Material in this hapter was presented at the Eighth International Longevity Conferene

in Waterloo, Canada in September 2012 and the Perspetives on Atuarial Risks in Talks

of Young Researhers winter shool in Asona, Switzerland, in January 2013. I am grate-

ful to partiipants at those onferenes and the anonymous referee for their omments.

Many of the more ompliated APC mortality models proposed reently su�er from being

over-parametrised or are extensions of simpler models where terms have been added in

an ad ho manner whih annot be justi�ed in terms of demographi signi�ane. In ad-

dition, poor spei�ation of a model an lead to period e�ets in the data being wrongly

attributed to ohort e�ets, whih results in the model making implausible projetions.

In this hapter, we present a general proedure for onstruting mortality models with

the lass of APC models disussed in Chapter 2, using a ombination of a toolkit of fun-

tions and expert judgement. By following the general proedure, it is possible to identify

sequentially every signi�ant demographi feature in the data and give it a parametri

strutural form. We demonstrate using UK mortality data that the general proedure

produes a relatively parsimonious model that nevertheless has a good �t to the data.

The studies of Chapters 3 and 4 ensure that these models are fully identi�ed and do not

su�er from robustness issues when �tted to data. The general proedure is subsequently

used to onstrut the models used in all of the following studies, Chapters 6, 8, 9, 10, 11

and 12, and so is fundamental to most of the following work.

9



Introdution

1.2 Projetion of Mortality Rates for Single or Multiple

Populations

For the majority of pratial purposes, we not only need to �t a mortality model to

historial data but also to use it to projet mortality rates into the future. When doing

so, it is important that these projeted mortality rates are onsistent with the mortality

rates observed in the historial data. Furthermore, it is essential that the projeted

mortality rates are independent of the arbitrary identi�ability onstraints whih were

imposed when �tting the model to data. This is an espeially large problem in multi-

population mortality models and may on�it with a desire for �oherene� between

populations, namely that mortality rates in related populations do not diverge. Part II

of this thesis proposes new tehniques for projeting mortality rates in a single population

onsistently with historial observations and disusses the issue of identi�ability in multi-

population mortality models. We then apply these results to the modelling of the �rst

�longevity trend bond�: the Kortis bond issues by Swiss Re in 2010.

1.2.1 Consistent Mortality Projetions Allowing for Trend Changes

and Cohort E�ets

Material in this hapter was presented at the 17th International Congress on Insurane:

Mathematis and Eonomis in July 2013 in Copenhagen, Denmark. I am grateful to

partiipants at that onferene and to Matthias Börger, Frank van Berkum, Mihele

Bergamelli and Andrés Villegas for their omments and to Robert Cowell for disus-

sions regarding the Bayesian approah to modelling ohort parameters.

The extrapolative approah to projeting mortality has the ore assumption that there

is onsisteny between the evolution of mortality rates in the past and the future. When

using extrapolative mortality models, there is therefore a fundamental symmetry between

the proesses of �tting the model to historial observations to �nd parameter estimates,

on the one hand, and projeting parameter values to projet future observations, on

the other. Consequently, it is important that the models we use to projet mortality

genuinely ahieve onsisteny between the past and the future. This hapter proposes

a number of new tehniques to projet mortality onsistently using the APC mortality

model developed in Chapter 5, both aross periods, by allowing for observed and future

trend hanges, and along ohorts, by allowing for the limited observations we have to

date for those ohorts that are still alive. Care is taken to ensure that these projetions

are independent of the arbitrary identi�ability onstraints imposed in order to resolve
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the identi�ability issues present in the models, disussed in Chapters 3 and 4. When us-

ing these tehniques, we obtain projetions whih are loser to observed mortality rates

when baktested and are more biologially reasonable in the long term ompared with

standard tehniques. In addition, the approah used to model and projet the ohort

parameters is used in Chapter 8 and extended as part of the forward mortality framework

in Chapters 11 and 12.

1.2.2 Identi�ability, Cointegration and the Gravity Model

I am grateful to Bent Nielsen and Mihele Bergamelli for disussions regarding identi�-

ability and ointegration, whih informs the material in this hapter.

For many purposes, it is neessary to be able to projet mortality rates in related pop-

ulations, maintaining any orrelations observed in the historial data in our projetions

of the future. As an example of this, the gravity model of Dowd et al. (2011b) was

introdued in order to ahieve oherent projetions of mortality between two related

populations. However, this model as originally formulated is not well-identi�ed, sine

it gives projetions whih depend on the arbitrary identi�ability onstraints imposed on

the underlying mortality model when �tting it to data. In this hapter, we disuss how

the gravity model an be modi�ed to give well-identi�ed projetions of mortality rates

and how this result an be generalised to more ompliated mortality models, suh as

those used in Chapter 8.

1.2.3 Modelling Longevity Bonds: The Swiss Re Kortis Bond

This hapter has been published in Insurane: Mathematis and Eonomis in 2015, vol-

ume 63, pages 12-39.

Material in this hapter was presented at the Ninth International Longevity Conferene

in Beijing, China, in September 2013 and at an internal seminar at Cass Business Shool

in April 2014. I am grateful to partiipants at those events, to Bent Nielsen and Mihele

Bergamelli for disussions regarding identi�ability and ointegration, and to Daniel Har-

rison FIA at Swiss Re and the anonymous referee for their detailed omments .
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A key ontribution to the development of the traded market for longevity risk was the

issuane of the Kortis bond, the �rst longevity trend bond, by Swiss Re in 2010. We

analyse the design of the Kortis bond, develop suitable mortality models using the gen-

eral proedure of Chapter 5 and the projetion tehniques developed in Chapters 6 and

7 to analyse its payo� and disuss the key risk fators for the bond. We also investigate

how the design of the Kortis bond an be adapted and extended to further develop the

market for longevity risk.

1.3 Modelling Mortality for Pension Shemes

Muh of the researh to date has been motivated by the impat of longevity risk on the

providers of retirement bene�ts, whih has beome espeially apparent for oupational

pension shemes in the UK. However, many of the sophistiated mortality models de-

veloped in the previous parts of this thesis are not appropriate for use with a pension

sheme, sine they generally possess far more limited data. Furthermore, it is not lear

that mortality rates in small sub-populations, suh as a pension sheme, will evolve in the

same manner as those in a larger referene population. Part III of this thesis, therefore,

develops a �relative� mortality modelling approah, whih an ombine the advantages

of using sophistiated mortality models for a referene population, with the need for

parsimony and robustness when investigating how mortality rates in a sub-population

di�er from this referene population. This is then applied to investigate the potential

e�etiveness of a bespoke longevity swap in hedging the mortality and longevity risks in

a stylised pension sheme, typial of those found in the UK.

1.3.1 Basis Risk and Pension Shemes: A Relative Modelling Ap-

proah

I am grateful to Andrés Villegas for many useful disussions around the topi of relative

modelling and basis risk, whih informs the material in this hapter.

For many pension shemes, a shortage of data limits the ability to use sophistiated

stohasti mortality models suh as those onstruted by the general proedure of Chap-

ter 5 to assess and manage their longevity risk. In this hapter, we develop a relative

model for mortality, whih ompares the evolution of mortality rates in a sub-population

with that observed in a larger referene population. We apply this relative approah to

data from the CMI Self-Administered Pension Sheme study, using UK population data

12
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as a referene, for whih we an use more sophistiated models. We then use the relative

approah to investigate the potential basis risk between these two populations and �nd

that, in many pratial situations, muh of the onern regarding basis risk is misplaed.

These results are then developed further in Chapter 10.

1.3.2 Transferring Risk in Pension Shemes via Bespoke Longevity

Swaps

The pensions de-risking industry has grown enormously in reent years, with the fous

of muh of this on transferring the mortality and longevity risks of pension shemes to

third parties. Bespoke longevity swaps, tailored to the spei� harateristis of the

transferring sheme, have been developed to transfer these risks to insurers and rein-

surers and have proved very popular, with over ¿50bn of outstanding deals transated

to Q4 2014. In this study, we present a modelling framework suitable for assessing the

various mortality and longevity risks within a stylised pension sheme and use this to

give a omprehensive analysis of the mortality and longevity risks in a pension sheme,

and hene the e�etiveness of a bespoke longevity swap. In partiular, we fous on the

possible interations between the di�erent risk fators that in�uene mortality rates.

This uses a model developed for the national population using the general proedure

of Chapter 5 to inorporate systemati longevity risk, the relative model developed in

Chapter 9 to model basis risk between the national population and the sheme and also

allows for individual mortality e�ets to give a more omplete analysis of the mortality

and longevity risks in a sheme, and hene the e�etiveness of a bespoke longevity swap

in reduing the risk faed by a pension sheme.

1.4 Forward Mortality Models

When valuing longevity-linked liabilities and seurities, we are interested in what our

expetations of future mortality rates are, onditional on the information we have to

date. Where market pries are available, these inform our expetations and ensure that

our values are onsistent with the values of traded seurities existing in the market. To

do so e�iently requires the use of a forward mortality model. Furthermore, to measure

longevity risk, we need a forward mortality model apable of assessing how the values

of longevity-linked liabilities and seurities hange in response to new information. In

Part IV of my thesis, we develop a new forward mortality framework, whih builds

13
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on the struture of APC mortality models. This framework is apable of valuing and

measuring the longevity risk present in longevity-linked liabilities and seurities, whih

has appliations for the new Solveny II regulatory standards and the hedging of longevity

risk using simple longevity-linked seurities.

1.4.1 Forward Mortality Rates in Disrete Time I: Calibration and

Seurities Priing

Material in this hapter was presented at the 49th Atuarial Researh Conferene in Santa

Barbara, USA, in July 2014, the Tenth International Longevity Conferene in Santiago,

Chile in September 2014, and the Soiety of Atuaries Longevity Seminar in Chiago,

USA, in February 2015. I am grateful to partiipants at those onferenes for their om-

ments.

Many users of mortality models are interested in using them to plae values on longevity-

linked liabilities and seurities. Modern regulatory regimes require that the values of

liabilities and reserves are onsistent with market pries (if available), whilst the gradual

emergene of a traded market in longevity risk needs methods for priing new types of

longevity-linked seurities quikly and e�iently. In this hapter and Chapter 12, we

develop a new forward mortality framework to enable the e�ient priing of longevity-

linked liabilities and seurities in a market-onsistent fashion. This approah starts from

the historial data on the observed mortality rates, i.e., the observed fore of mortality.

Building on the dynamis of models of the observed fore of mortality, we develop models

of forward mortality rates and then use a hange of measure to inorporate whatever

market information is available. This framework is appliable for most models within

the lass of APC mortality models disussed in Chapter 2, inluding those onstruted

using the general proedure of Chapter 5 and uses the Bayesian approah to model and

projet the ohort parameters developed in Chapter 6.

1.4.2 Forward Mortality Rates in Disrete Time II: Longevity Risk

Measurement and Management

Material in this hapter was presented at the 49th Atuarial Researh Conferene in Santa

Barbara, USA, in July 2014, the Tenth International Longevity Conferene in Santiago,

Chile in September 2014, and the Soiety of Atuaries Longevity Seminar in Chiago,

USA, in February 2015. I am grateful to partiipants at those onferenes for their om-

ments and to Robert Cowell for disussions regarding the Bayesian approah to modelling

14
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ohort parameters.

It is vital to be able to measure and manage the risk in longevity-linked liabilities and

seurities reliably and onsistently, espeially in the ontext of the rapidly expanding

market for longevity risk transfer. In this hapter, we develop the forward mortality

framework of Chapter 11 and use it for the measurement of longevity risk in portfolios of

annuities and in various longevity-linked seurities. This involves extending the method

used to model and projet the ohort parameters developed in Chapter 6 in order to

allow for the impat of new information on our re-estimation of the parameters. We

then apply the framework to the hedging of longevity risk using simple longevity-linked

seurities and as an internal model for longevity risk for the alulation of the Solveny

Capital Requirement and the Risk Margin under the forthoming Solveny II regulatory

standards.
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Chapter 2

On the Struture and Classi�ation

of Mortality Models

2.1 Introdution

Reent years have witnessed a dramati inrease in the attention paid to the study of the

evolution and projetion of mortality rates. Demographers, statistiians and atuaries

aross the world have woken up to the issues aused by rising longevity and an aging

population.

Muh of the analysis of the historial evolution of mortality rates is made using models

whih deompose mortality rates aross the dimensions of age, period and ohort (or

year of birth). These three variables form a natural way of analysing how mortality rates

hange for individuals as they age, the impat of medial and soial progress with time,

and the lifelong mortality e�ets whih follow individuals from birth. By projeting the

e�ets of period and ohort, we an also gain insights into the likely path mortality rates

might take in future.

Sine the number of age/period/ohort (APC) models has inreased rapidly in reent

years, we believe that the time has ome to undertake a more holisti analysis of APC

models. We do this in a series of studies, of whih this is the �rst. This present hap-

ter analyses the struture of APC models and proposes a way of lassifying the models

proposed to date. It also seeks to assess the key priniples a model user should onsider

before seleting or onstruting a model appropriate to their aims. While most of the

issues raised in this study will be familiar to many model users, we believe that a proper
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understanding of the struture of APC models is needed in order to avoid using a poorly

spei�ed model. As well as using models whih are not suitable for the task in hand, a

poorly hosen APC model might also su�er from problems both with the identi�ability

of parameters in-sample and with projetions out of sample. These issues are dealt with

in our seond and third studies, Chapters 3 and 4. Many of the issues raised and pitfalls

identi�ed in these studies were vital to the development of the �general proedure� for

onstruting APC mortality models, desribed in Chapter 5.

We disuss the basi struture of the majority of APC models whih have been proposed

to date in Setion 2.2. The omponents of this struture are further disussed in terms

of

• the onnetions between the data, the variables of interest and our preditor stru-

ture in Setion 2.3;

• the inlusion of a stati funtion of age in Setion 2.4;

• the potential forms for the dynami struture aross ages in the model in Setion

2.5; and

• the issues raised by the inlusion of parameters to apture the e�ets of year of

birth in the data and how these an be resolved in Setion 2.6.

Setion 2.7 o�ers a simple lassi�ation of APC models that highlights the key deisions

whih have to be made in order to selet the most suitable model for the task at hand.

Finally, we draw onlusions in Setion 2.8.

2.2 Age/period/ohort struture

An APC mortality model is one whih links a response variable with a linear or bilinear

preditor struture onsisting of a series of fators dependent on age, x, period, t, and

year of birth (or ohort), y = t − x, for a population. APC models therefore �t into

the general lass of generalised non-linear models, with a general struture whih an be

written as follows:

ηx,t = αx +
N
∑

i=1

β(i)
x κ

(i)
t + β(0)

x γt−x (2.1)

This struture has the following omponents:
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• A link funtion, ηx,t, to transform the response variable (whih will be some mea-

sure of mortality rates) at age x and for year t into a form suitable for modelling

and link it to the proposed preditor struture.

• A stati age funtion, αx, to apture the general shape of mortality aross all ages

and features of the mortality urve whih do not hange with time.

• A set of N age/period terms, β
(i)
x κ

(i)
t , onsisting of period funtions, κ

(i)
t , de-

termining the evolution of mortality rates through time, and age funtions, β
(i)
x ,

determining the pattern of mortality hange aross ages. The hoie of suitable

forms for the age funtions is disussed in Setion 2.5.

• An age/ohort term, β
(0)
x γt−x, onsisting of a ohort term, γt−x, whih determines

the lifelong e�ets spei� to eah generation, denoted by their year of birth, and

an age funtion, β
(0)
x , whih modi�es the ohort term.

1

Eah of these omponent terms is disussed in greater detail in the setions below. One

advantage of most APC mortality models is that the omponents in them an be inter-

preted in terms of the underlying biologial, medial or soio-eonomi auses of hanges

in mortality rates whih generate them. We all suh an interpretation the �demographi

signi�ane� of eah term. Demographi signi�ane is, by de�nition, subjetive as it

relates to the interpretation of the parameters. However, it is still a useful onept as it

motivates many of the deisions around the onstrution of mortality models and their

projetion into the future.

While this struture is not exhaustive, it does enompass the vast majority of the dis-

rete time mortality models whih have been proposed to date. In partiular, it is worth

noting that we have assumed that the period funtions an vary freely for eah year and

are not onstrained to be smooth funtions. This is the key feature whih enables these

models to be projeted stohastially and therefore generate probabilisti foreasts of

future mortality rates.

In ontrast, some models, suh as the P-splines model proposed by Currie et al. (2004)

and the model of Sithole et al. (2000), require that the period funtions be modelled

through a series of basis funtions (ubi b-splines and Legendre polynomials, respe-

tively) and so are projeted by extrapolating these deterministi funtions into the future.

This typially restrits the appliation of these models to smoothing historial data or

1

Most APC mortality models have only one age/ohort term for the reasons disussed in Setion 2.6.

However, some models do inorporate multiple terms, for instane, that proposed in Hatzopoulos and

Haberman (2011).
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short-term projetions of mortality. We therefore do not onsider these models further

in this hapter.

Reently, a number of studies, suh as Mithell et al. (2013), Haberman and Renshaw

(2012) and Haberman and Renshaw (2013), have modi�ed the struture in Equation 2.1

to model mortality improvement rates rather than the mortality rates themselves. The

di�erent interpretations plaed on the response variables of interest and terms within

the preditor struture make mortality improvement models qualitatively di�erent from

the lass of models onsidered within this study, and so we do not disuss these models

further.

Finally, it is worth noting that the preditor struture in Equation 2.1 ould also be ex-

tended to inlude a range of explanatory variables whih might in�uene mortality rates.

These regressors might inlude variables relating to the health of the population (for

instane, smoking prevalene was onsidered in Wang and Preston (2009) and Kleinow

and Cairns (2013)) or maroeonomi variables suh as GDP growth or unemployment

(e.g., Reihmuth and Sarferaz (2008) and Hanewald (2011)). Suh an approah is a nat-

ural way of modelling the underlying drivers of hanging mortality and highlights the

�exibility of the APC approah, but is again not onsidered further in this hapter.

2.3 Response variable and link funtion

When studying mortality, we typially assume that members of the population of inter-

est experiene the same instantaneous hazard rate of mortality, µx,t, at age x and time

t (also alled the �fore of mortality�). In pratie, however, observed data is usually

grouped into disrete age and period bands and therefore modelling mortality is often

onduted using disrete time models.

In order to use the ontinuous fore of mortality in a disrete age/period setting, it is

ommonly assumed that mortality rates do not hange within eah age and period band.

Mathematially, this means that µx,t is assumed to be onstant within ages and within

years:

µx+ξ,t+τ = µx,t (2.2)

x, t ∈ N

ξ, τ ∈ [0, 1)
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This assumption is generally reasonable for most ages of interest (typially under age

100). Above this age, the populations under observation and orrespondingly the number

of deaths tend to be quite low, whih means that the pratial impat of this assumption

breaking down is quite small over most ages. With the assumption that the fore of

mortality is onstant over eah age/period band, we therefore have that the probability

of survival over the period is px,t = 1− qx,t = exp(−µx,t) and that the entral mortality

rate is given by mx,t = µx,t. Almost all APC mortality models either use µx,t (or equiv-

alently mx,t) or qx,t as the response variable for mortality.

These two hoies for the response variable re�et the two models for the random number

of deaths, Dx,t, widely used in demography and atuarial siene. Under the binomial

assumption, the expeted number of deaths is given by E(Dx,t) = E0
x,tqx,t, the initial

number of people alive (or initial exposure to risk) multiplied by the probability of death

over the year. The probability of death an therefore be estimated as the observed num-

ber of deaths divided by the initial exposure to risk, q̂x,t =
dx,t
E0

x,t
.

2

Under the Poisson

assumption, the expeted number of deaths is given by E(Dx,t) = Ec
x,tmx,t, i.e., the en-

tral exposure to risk (the average number of people alive whih is used as a proxy for the

total number of person-years lived) multiplied by the entral mortality rate, m̂x,t =
dx,t
Ec

x,t
.

This leads to the onlusion that the model for the response variable should be moti-

vated by the format of the available data. The use of the Poisson model requires entral

exposures to risk whih are widely available, for instane from the Human Mortality

Database.

3

The use of the binomial model requires initial exposures to risk whih are

less ommonly available for large populations (though may be more available for smaller

populations) but an be approximated from the entral exposures.

Asymptotially, for large populations and low death rates, the two approahes give simi-

lar results. It has been argued

4

that the binomial approah works well at high ages, sine

it gives transformed mortality rates whih are loser to being linear at the highest ages.

However, it is also at these ages that the assumption of a onstant fore of mortality

within ages and years in Equation 2.2 starts to break down. Sine this violates the ore

assumption underpinning the disrete time approah, it means that the validity of all

models beome questionable at these ages and hene makes omparisons between them

2

Where dx,t is the observation of the random death ount, Dx,t.

3

Human Mortality Database (2014).

4

For instane, in Cairns et al. (2006a).
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at these ages somewhat spurious.

5

In the Poisson and binomial models, the varianes of the observations are also spei-

�ed along with the means. In pratie, however, observations typially show a greater

variation than is predited under either distribution - a phenomenon known as over-

dispersion. One way of dealing with this is by �tting the model using the quasi-Poisson

or quasi-binomial distributions, whih add additional parameters to aount for the over-

dispersion. Alternatively, heterogeneity and over-dispersion within the data an be al-

lowed for by using the negative binomial model for death ounts, as in Delwarde et al.

(2007b), Renshaw and Haberman (2008) and Li et al. (2009). These approahes do not

hange the model struture in Equation 2.1, merely how it is �t to data. However, over-

dispersion (along with signi�ant orrelation patterns within the �tted residuals) may

also be a sign that the preditor struture is poorly hosen and so ould be dealt with

by seleting an alternative preditor struture.

The link funtion, ηx,t, provides the onnetion between the observed data and the as-

sume preditor struture. In the generalised linear model framework, there are several

requirements whih should be met for a good hoie of link funtion. One of these is that

the data should be transformed to obtain an approximately linear preditor struture (as

opposed to, say, a multipliative struture). Early stati and dynami mortality models

used this as the sole requirement for the hoie of ηx,t, whih resulted in a range of hoies

being made, suh as ηx = qx
1−qx

in Heligman and Pollard (1980), ηx,t = ln
(

qx,t
1−0.5qx,t

)

in

Wilmoth (1990) and ηx,t = ln(µx,t) in Lee and Carter (1992). These models were then

�tted using least squares estimation methods.

Least squares methods, however, do not aount for the underlying distribution for Dx,t

and assume that the variane of observations is independent of the underlying exposures.

However, this is not usually valid - observations are typially more variable at ages with

low populations, suh as those at high ages. More sophistiated methods of estimation,

based on maximising the likelihood (Brouhns et al. (2002a)) or, equivalently, minimising

the saled deviane (Renshaw and Haberman (2003a)) allow for this diretly by making

expliit referene to the underlying probability distribution of Dx,t. Although a number

of potential link funtions might be onsidered for either distribution of death ounts (for

instane, see Currie (2014)), pratial onsiderations motivate using the anonial link

funtion of the distribution Dx,t . The hoie of the anonial link funtion also ensures

5

One solution to this might be to assume a onstant fore of mortality over shorter age and period

bands, for instane aross months as in Gavrilov and Gavrilova (2011). However, data limitations at

high ages often prevent this.
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that �tted values of the response variable lie within the required range.

6

For a Poisson

model of the death ount, the anonial hoie for the link funtion ηx,t is

ηx,t = ln(µx,t) (2.3)

E[Dx,t] = Ec
x,te

ηx,t

Var(Dx,t) = Ec
x,te

ηx,t

whilst for the binomial model it is

ηx,t = logit(qx,t) ≡ ln(qx,t)− ln(1− qx,t) (2.4)

E[Dx,t] = E0
x,t

eηx,t

1 + eηx,t

Var(Dx,t) = E0
x,t

eηx,t

(1 + eηx,t)2

Using the anonial link funtion also has the desirable property that it simpli�es es-

timation by maximum likelihood on minimal deviane onsiderably easier. For Poisson

death ounts using the log link funtion, the likelihood funtion is

L =
∑

x,t

Wx,t

(

dx,t ln(E
c
x,tµx,t)− Ec

x,tµx,t − ln(dx,t!)
)

(2.5)

whilst for binomial death ounts and the logit link funtion, the likelihood funtion is

L =
∑

x,t

Wx,t

(

dx,t ln(qx,t) + (E0
x,t − dx,t) ln(1− qx,t)

+ ln(E0
x,t!)− ln((E0

x,t − dx,t)!)− ln(dx,t!)
)

(2.6)

where Wx,t are {0, 1} weights. When using Newton-Raphson tehniques to maximise

the likelihood, we need to alulate the �rst and seond derivatives of the log-likelihood

funtion with respet to the parameters (e.g., see Brouhns et al. (2002a)), the forms of

6

i.e., µx,t ≥ 0 or qx,t ∈ (0, 1).
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whih are

dL
dαx

=
∑

t

(dx,t − E[Dx,t])

d2L
d (αx)

2 = −
∑

t

Var(Dx,t)

dL
dβ

(i)
x

=
∑

t

(dx,t − E[Dx,t])κ
(i)
t

d2L
d
(

β
(i)
x

)2 = −
∑

t

Var(Dx,t)
(

κ
(i)
t

)2

dL
dκ

(i)
t

=
∑

x

(dx,t − E[Dx,t])β
(i)
x

d2L
d
(

κ
(i)
t

)2 = −
∑

x

Var(Dx,t)
(

β(i)
x

)2

dL
dγy

=
∑

x

(dx,x+y − E[Dx,x+y]) β
(0)
x

d2L
d(γy)2

= −
∑

x

Var(Dx,x+y)
(

β(0)
x

)2

These are simple to ompute quikly if the anonial link is used. Alternative link stru-

tures require more ompliated algorithms

7

whih it may be desirable to avoid.

Any deisions regarding the hoie of response variable and link funtion should take the

following into aount:

• The hoie of probability distribution should re�et the available data - the bi-

nomial distribution is the natural hoie with initial exposures to risk, whilst the

Poisson distribution is more natural for model users with entral exposures.

• The hoie of response variable follows naturally from the probability distribution

- µx,t is the variable of interest in the Poisson distribution and qx,t in the binomial

distribution.

• The appropriate anonial link funtion ηx,t follows naturally from the probability

distribution seleted. While other link funtions an be hosen, suh a hoie would

probably require further justi�ation.

7

See, for instane, the estimation of models in the CBD family using the LifeMetris ode in Coughlan

et al. (2007a), where a Poisson distribution of deaths is assumed with a logit link funtion.
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In pratie, most modellers use the ln(µx,t) approah, i.e., a log link funtion, and assume

the death ount is a Poisson random variable. These models inlude those proposed in

Brouhns et al. (2002a), Renshaw and Haberman (2003b, 2006), Plat (2009a), Haberman

and Renshaw (2009) and O'Hare and Li (2012a). However, the reasons for this are

mainly historial, as they are based on the model of Lee and Carter (1992) where the

log link funtion was hosen simply to obtain a linear preditor struture rather than

with referene to the underlying distribution of the death ounts or the available data.

The alternative logit(qx,t) approah has mainly been adopted by the Cairns-Blake-Dowd

(CBD) family of mortality models (Cairns et al. (2006a) and the extensions of this model

in Cairns et al. (2009)),

8

and also in Aro and Pennanen (2011)..

2.4 Stati age funtion

A stati age funtion, αx, has been used in many mortality models from Hobraft et al.

(1982) and Lee and Carter (1992) onwards. By onstrution, this aptures the features

of the mortality urve aross the age range of the data whih do not hange with time. A

typial example of suh a funtion, from the Lee-Carter (LC) model (see Setion 2.5.1)

�tted to male data from the USA (downloaded from the Human Mortality Database

(2014)) for the period 1933 to 2007, is shown in Figure 2.1. Aross the full age range,

this shows features suh as the exess number of deaths due to infant mortality at very

low ages and aidents at young adult ages, whih are ommon aross both time periods

and ountries.
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Figure 2.1: αx stati age funtion for the LC model �tted to US male data 1933-2007

Some models, most notably those in the CBD family of mortality models and that in

Aro and Pennanen (2011), dispense with the need for an expliit stati age funtion

by impliitly assuming that it an be approximated by a simpler funtion of age and

8

These models do not draw a diret link between the use of the logit funtion and binomial death

ounts. However, this onnetion is made expliit in Haberman and Renshaw (2011) and Currie (2014).
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ombining it into the age/period terms. To do this, the stati age funtion needs to be

a linear ombination of the other age funtions in the model, i.e.,

αx =

N
∑

i=1

α(i)β(i)
x

This an only be done when the age funtions β
(i)
x are known in advane of �tting the

model to data. For example, the model of Cairns et al. (2006a) impliitly assumes that

mortality rates are approximately linear at the ages of interest and therefore an be

ombined with the other terms in the model.

Doing so improves the parsimony of the model by reduing the number of free parame-

ters onsiderably. However, it does so at the expense of limiting the model to only those

parts of the age range where this assumption is approximately valid, typially at higher

ages.

It also means that the age/period terms in the model do two tasks simultaneously:

apturing the time-independent shape of mortality and desribing the struture of the

deviations from this shape. Inluding a stati age funtion in the model therefore allows

eah term in the model to fous on doing one job optimally. The extent to whih this is

desirable will depend upon the modeller's preferene for a parsimonious �t to historial

data against the more detailed identi�ation and projetion of evolving trends.

2.5 Age/period terms

The age/period terms in an APC model typially apture the majority of the dynami

struture present in the underlying data. They onsist of age funtions, β
(i)
x , desribing

how the partiular mortality e�ets are distributed aross ages, whih are multiplied by

period funtions, κ
(i)
t , whih explain how they evolve with time.

One of the key distintions between APC models is whether the age e�ets are modelled

using �non-parametri� or �parametri� age funtions. Some mortality models have age

funtions whih are �non-parametri� in the sense that values of β
(i)
x at di�erent ages, x,

are �tted without imposing any a priori struture. Age is treated as an unknown fator

in the model rather than a regressor with a known struture.

9

Other mortality models

9

For this reason, we ould alternatively refer to non-parametri age funtions as �fatorial� age fun-

tions.
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have age funtions whih are �parametri�, sine they take a spei� funtional form that

is de�ned by an algebrai formula.

10

We should note that our de�nitions of the terms �non-parametri� and �parametri� dif-

fers from other de�nitions of these terms used in statistis and atuarial siene. For

the avoidane of doubt, we use the terms to spei�ally refer to the struture of the

age/period terms, and they have no impliation for the methods used to �t the model to

data. For example, Haberman and Renshaw (2009) and Haberman and Renshaw (2011)

used the term �parametri� to refer to the preditor struture for general APC mortality

models, and desribe any models within this lass as �parametri mortality models�. Al-

ternatively, �parametri� an refer to the underlying distributional assumptions for the

model and the methods used to �t it to data � as suh, the assumption of a Poisson

distribution of deaths and maximum likelihood estimation would lead to a �parametri

mortality model� under this de�nition. Our usage of these terms is restrited solely to

the form of the age e�ets.

2.5.1 Non-parametri age funtions

Most of the early mortality models used non-parametri age funtions, e.g., Lee and

Carter (1992) (whih had a single age funtion) and Wilmoth (1990) (whih had used a

parametri age funtion for the �rst age/period term but allowed for non-parametri age

funtions beyond this). Allowing β
(i)
x to be non-parametri means that it an take any

shape in order to maximise the goodness of �t to the data. Suh models are neessarily

bilinear, as both age and period are unknown fators.

The simplest model to use non-parametri age funtions was that proposed by Lee and

Carter (1992). It has a single age/period term of the form

ln(µx,t) = αx + βxκt (2.7)

More ompliated non-parametri approahes emerge naturally from model �tting teh-

niques based prinipal omponent analysis (PCA), often based on singular value de-

omposition (SVD),

11

although they an easily be deployed in a generalised non-linear

10

For this reason, these age funtions ould also be alled �formulai�.

11

As used in Lee and Carter (1992), Wilmoth (1990), Booth et al. (2002), Hatzopoulos and Haberman

(2009) and Yang et al. (2010) for example.
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modelling or maximum likelihood framework.

12

The non-parametri approah also easily

extends to an arbitrary number of age/period terms as in Booth et al. (2002), Renshaw

and Haberman (2003b) and Hatzopoulos and Haberman (2009). The number of age/pe-

riod terms in the model is then seleted with referene to the data, rather than having

been presribed in advane.

The main advantage of this approah is that the shapes of the age funtions are hosen to

maximise the �t to the data. This means that eah term extrats the maximum amount

of information from the data possible. For example, the terms produed by PCA are

ranked in order of information extration - as measured by the perentage of the total

variability in the data explained - whih makes it possible to selet algorithmially an

optimal number of terms in the model.

The non-parametri approah is also very �exible. It an be applied quikly and eas-

ily aross a variety of datasets, as desribed, for example, in Tuljapurkar et al. (2000)

who use the LC model to �t data from a number of developed nations. Similarly, the

non-parametri approah an be used aross the full age range, whilst parametri age

funtions are often only suitable for limited age ranges. It also avoids subjetive judge-

ments in onstruting the model, as terms are �tted automatially to maximise the �t

to data. This ability to objetively pik out the most important struture within the

data is used as the starting point for the �general proedure� for onstruting mortality

models outlined in Chapter 5.

However, non-parametri approahes have a number of downsides. Most importantly,

the form of the non-parametri age funtions generated usually lak demographi sig-

ni�ane. For instane, Figure 2.2 shows the βx age funtion produed by �tting the

LC model to the same data for men in the US used in Setion 2.4. It shows that, over

the period, improvements in mortality rates have been far faster at young ages (below

20, but espeially at age one) than at higher ages, where improvements have been more

evenly distributed aross ages. It is very di�ult to think of an explanation for this shape

whih does not involve several drivers of hanging mortality rates over the period (suh as

improved hygiene reduing mortality aross all ages, hildhood vaination programmes

reduing the number of deaths amongst the very young, and improved treatment of

12

PCA assumes homogenous, normally distributed residuals and, therefore, is inonsistent with the

underlying binomial or Poisson distribution for the death ount proess. However, the estimates obtained

for the parameters using PCA an be used as the starting point for methods suh as maximum likelihood

whih use the death ount proess to allow for heterogeneity aused by di�erenes in the underlying

exposures.
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ardio-vasular disease in later life).

0 20 40 60 80 100
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Age

 

 
β

x

Figure 2.2: βx age funtion for the LC model �tted to US male data 1933-2007

This has rami�ations when we �t and projet the model. Drivers of mortality are

ombined into a single term if they are orrelated over the historial period of the data

(e.g., they go from a high level of mortality to a lower level over the period). How-

ever, these ombinations may not be appropriate over subsets of the period range. For

example, Carter and Prskawetz (2001) found that the form of βx hanges substantially

if the LC model is �tted to di�erent subintervals of the data, as di�erent medial and

soio-eonomi auses of mortality beome more or less important.

These ombinations of drivers may also be inappropriate when we ome to making fore-

asts using the model. For instane, we may believe that the shape of βx in Figure 2.2

is due to a ombination of hildhood immunisation programmes and improved ardio-

vasular are for the elderly. When projeting mortality, we may wish to allow the latter

to ontinue to improve in future but believe that we are unlikely to see further redu-

tions in mortality due to inreased vaination of hildren. Using a term whih ombines

both these auses an lead to projetions of mortality rates whih do not appear to be

plausible, e.g., when high rates of improvement in mortality are projeted at ages where

mortality rates are already very low.

In addition, the model does not require that the non-parametri forms are ontinuous.

13

This an lead to projetions whih have disontinuous mortality rates and so are not

biologially reasonable

14

if projeted far into the future. It is possible to smooth the

13

This an be seen with the sharp peak at β1 in Figure 2.2.

14

Introdued in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a ausal

assoiation (or relationship) between two fators that is onsistent with existing medial knowledge�.

Note that biologial reasonableness is a property of observable quantities suh as life expetanies or

mortality rates, in ontrast to demographi signi�ane whih relates to our interpretation of the terms

in a model.
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non-parametri age funtions to prevent this, as disussed in Delwarde et al. (2007a)

or Hyndman and Ullah (2007). However, this ompliates the struture of the model

and introdues subjetive deisions regarding the degree of smoothing whih would need

areful justi�ation.

2.5.2 Parametri age funtions

As disussed earlier, a parametri age funtion takes a spei� funtional form, i.e.,

βx = f(x). The original APC model, given in Equation 2.8 and �rst used in the �elds

of demography, soiology and medial statistis (for instane see Hobraft et al. (1982)),

uses the parametri age funtions βx = f(x) = 1:

ln(µx,t) = αx + κt + γt−x (2.8)

More reently, the CBD model of Cairns et al. (2006a) shown in Equation 2.9 adopts

an expliit parametri form (inluding for the stati age funtion) for both its period

funtions, with β
(1)
x = f (1)(x) = 1 and β

(2)
x = f (2)(x) = (x− x̄):

logit(qx,t) = κ
(1)
t + (x− x̄)κ

(2)
t (2.9)

Sine the publiation of the CBD model, models with inreasingly omplex parametri

age funtions have been proposed, suh as the extensions to the model in Equation 2.9 in

Cairns et al. (2009) and the models proposed in Plat (2009a), Aro and Pennanen (2011),

O'Hare and Li (2012a) and Börger et al. (2013).

We an see that the models in Equations 2.8 and 2.9 have a linear preditor struture,

rather than possessing any bilinear terms where the age funtion also needs to be �tted

to the data. This means that they are onventional generalised linear models and an

be �tted using standard tehniques. However, the use of parametri age funtions does

not neessarily imply linearity. For instane, onsider the model

ηx,t = αx + κ
(1)
t + exp(−λx)κ

(2)
t

Here, f (2)(x) = exp(−λx) is parametri in our sense of having a presribed funtional

form, but λ an be a free parameter set with referene to the data and so the age/period

term is bilinear and the model annot be estimated via a generalised linear model. Age

funtions inluding free parameters are not widely used, as the higher order age funtions

in the models of Plat (2009a), Aro and Pennanen (2011), O'Hare and Li (2012a) and

Börger et al. (2013) have parameters whih are set a priori. In prinipal, however, these
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models ould be extended to allow these parameters to vary to best �t the data. In

addition, many of the age funtions used in the �general proedure� of Chapter 5 possess

free parameters and therefore are bilinear, parametri age/period terms.

One of the major advantages of using parametri age funtions is that they redue on-

siderably the number of free parameters needing to be �tted for eah age/period term,

leading to more parsimonious models. This, in turn, means that more parameters an

be devoted to deteting other features of interest within the data, suh as additional

struture aross time and year of birth.

Further, beause the shapes of the age funtions are known, eah term an be assigned a

spei� demographi signi�ane by the user. For instane, the �rst age/period term in

the models of Equations 2.8 and 2.9 are onstant aross all ages. This an be explained in

terms of spei� phenomena whih are universal aross the age range (suh as improved

hygiene), in ontrast with the shape seen in Figure 2.2. It will also allow trends whih

are orrelated (suh as improving levels of medial are for the elderly and the spei�

e�orts to takle hildhood infetious diseases) to be given their own age/period terms

with appropriate parametri age funtions, whih is impossible with a non-parametri

approah.

However, this �exibility omes at a ost. Parametri age funtions are often only suit-

able over limited age ranges. While this is an advantage in that it allows for greater

interpretability of their demographi signi�ane, it means that models with parametri

age funtions are often not suitable over the full age range. For instane, even if the

CBD model were extended with a stati age funtion, it is unlikely that the two age/pe-

riod terms are su�ient to apture the variability of mortality rates at younger ages. In

order to onstrut a model appropriate aross the full age range, we would have to add

additional age/period terms to the model.

In addition, models with parametri age funtions often give a poorer �t to the data om-

pared to a model with the same number of non-parametri age/period terms, espeially

using measures of goodness of �t that do not (or only weakly) penalise the number of free

parameters in the model. This is beause the additional freedom in the non-parametri

age funtion an be used to apture more of the struture in the data than if the form

of the age funtion is presribed at the outset.

33



Struture and Classi�ation of Mortality Models

These problems an be reti�ed, in part, through adding new terms to the model. How-

ever, we will need to deide on the appropriate form for these new terms, whih an

very often be di�ult. One approah adopted for some of the extensions to the CBD

model in Cairns et al. (2009) is to selet age funtions from the same family � in this

ase polynomials of inreasing order. Alternatively, more exoti funtions an be used

as in the models of Plat (2009a) and O'Hare and Li (2012a), but often there does not

appear to have any underlying rationale for their seletion. In the end, expert judge-

ment is needed to assess whether a new term added to the model genuinely represents

the remaining unexplained dominant trend in the data or merely re�ets the expetation

of the modeller as to what should be present.

2.6 Cohort e�ets

It is a widely held belief that the di�erent life histories of individuals should lead to

systemati di�erene between people in di�erent ohorts (as summarised by their year

of birth). These are often known as �ohort e�ets�. As Hobraft et al. (1982), Willets

(1999) and Murphy (2009) disussed, the term �ohort e�et� is largely desriptive, and

some are needs to be taken in interpreting the ausal fators spei� to ertain years of

birth whih might plausibly in�uene the mortality rate of a ohort aross their entire

life. We might, for instane, onsider an epidemi whih, in addition to raising mortality

rates at the time it is raging, had a seletive e�et on the survival of infants. This might

lead to systemati di�erenes in mortality between those born during the epidemi and

those born shortly before or afterwards. However, the evidene from natural experiments

(summarised in Murphy (2009)) is equivoal, whih means that the existene of true o-

hort e�ets is still ontroversial to some extent, as disussed in Murphy (2010).

In pratie, however, observed data from a number of ountries appears to exhibit ohort

features and so it is prudent to allow for these when modelling mortality. In the UK,

apparent ohort e�ets have been identi�ed in the general population (spei�ally in the

work of Willets (1999, 2004), Continuous Mortality Investigation (2002) and Rihards

(2008)) and models allowing for ohort parameters outperformed those whih did not in

Cairns et al. (2009).

Our subjetive demographi signi�ane of a ohort e�et is one whih inreases or re-

dues mortality at all ages for individuals born in a spei� generation (typially lasting

10-15 years or less). To onstrut a mortality model, we need to translate this demo-

graphi signi�ane into a set of properties we desire the parameters in our model to
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possess. More spei�ally, we an say that our intuition regarding the ohort e�ets

implies that they should:

• be small relative to the e�ets of age and period;

• not have any systemati trends in their expeted value or variability;

• have a mean aross ohorts of zero (i.e., ohort e�ets should represent deviations

from a typial hypothetial referene level);

• have some autoorrelation: it is reasonable to believe that ohorts born in suessive

years should experiene similar life histories and so exhibit similar ohort e�ets,

unless there happen to be exeptional irumstanes faing a partiular birth year;

• not exhibit inde�nite persistene: the fators in�uening the spei� mortality of

the generation born today should be essentially independent of the spei� mor-

tality of their grandparents, for example;

• ideally be mean reverting (as a onsequene of the previous two points), as the

spei� events impating one ohort wear o� in subsequent years of birth; and

• be demographially signi�ant, so we an relate features of a plot of ohort e�ets

to spei� soio-eonomi and medial in�uenes on the population.

In a well-spei�ed mortality model, many of these properties emerge naturally from the

�tted parameters. Some, suh as the level of the mean of the ohort parameters, an be

imposed via identi�ability onstraints, whih hange the values of the ohort parameters

but not the �t of the model to data. However, this is not always the ase, and we may

sometimes have to disard some of our intuitive properties based on the evidene of the

model. For instane, we an see that in Plat (2009a), the historial ohort parameters

have a lear trend and may be non-stationary.

We would also like our ohort parameters to be robust, both aross di�erent models and

when omparing them with the residuals from the orresponding age/period mortality

model, as in Wilmoth (1990). For instane, the plots of ohort parameters for the same

datasets in Cairns et al. (2009) show that the features identi�ed are not robust between

di�erent models, whih weakens any demographi signi�ane we plae on them. How-

ever, there are a number of pratial problems that makes �nding ohort parameters

that are robust and well spei�ed a harder task than the estimation of age and period

parameters.
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First, beause age, period and ohort are linearly dependent (y + x = t), we annot

treat them in isolation for eah other.

15

Wilmoth (1990) argued that it is impossible to

apportion objetively low frequeny (slowly varying) temporal dependene in mortality

data between age/period and ohort e�ets. We therefore are fored to make a subjetive

hoie to give primay to two of the relevant dimensions. Beause we naturally observe

ross setions of mortality rates aross ages in di�erent alendar years, the data will

naturally form a retangular age/period grid. This means that the natural hoie is to

give primay to age and period e�ets and to try to explain as muh of the struture

in the data with referene to these dimensions as possible before onsideration of e�ets

aross ohorts.

16

This then leads to the onlusion that if the ohort e�ets are to be taken as of se-

ondary importane, the struture in the model inluded to apture them should be as

simple as possible. Indeed, some have argued that ohort e�ets do not exist at all and

are merely the result of poorly spei�ed age/period e�ets.

17

A model user operating

under suh a belief would therefore omit any age/ohort terms from the model entirely.

A high standard of evidene for the inlusion of an age/ohort term is therefore desirable.

If an age/ohort term is to be inluded and if age/ohort interations are taken to be of

seondary importane, the desire for parsimony in the ohort terms leads to two further

onlusions whih have been adopted by the majority of model users. First, the majority

of models only inlude one ohort term on the grounds that it is hard to believe and

to demonstrate that one generation ould experiene two di�erent independent lifelong

e�ets. Nevertheless, the model proposed in Hatzopoulos and Haberman (2011) allows

for multiple ohort e�ets.

Seond, many models set β
(0)
x = 1, leading to a more parsimonious model. This re-

strition allows the ohort parameters to represent onsistently higher or lower mortality

rates aross all ages, whih aords with our demographi interpretation of ohort ef-

fets. In partiular, while a ohort e�et whih is stronger at some ages than others does

not seem unreasonable in priniple, the notion of a ohort e�et that inreases mortal-

ity rates at some ages but dereases them at others on�its with our interpretation of

the demographi signi�ane of a ohort e�et. This situation is possible with a non-

parametri form for β
(0)
x unless it is arti�ially onstrained to be greater than zero. In

15

We also su�er from the problem that the parameters in the model may not be fully identi�ed. This

topi and its impliations for foreasting are disussed further in Chapter 4.

16

See Alai and Sherris (2012) for an example of a model whih gives primay to ohort parameters.

17

For instane, Cairns et al. (2011a) raised �the possibility that ohort e�ets might be partially or

ompletely replaed by well-hosen age and period e�ets� and also see Murphy (2010)
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addition, issues have also been reported onerning the robustness of �tting models suh

as that of Renshaw and Haberman (2006) with a non-parametri β
(0)
x term, for instane

by Continuous Mortality Investigation (2007) and Cairns et al. (2009).

18

However, this

problem is not universal and a linear parametri form for β
(0)
x was proposed in model

M8 (an extension of the CBD model M5 of Equation 2.9) in Cairns et al. (2009) and has

been found to be robust and to �t the data well in van Berkum et al. (2014).

Cohort parameters also present spei� problems in estimation whih again suggests that

a parsimonious model struture be used when inluding them. Beause we naturally ob-

serve ross setions of mortality rates aross ages in di�erent alendar years, we will have

a limited numbers of observations for the earliest and latest birth ohorts. This makes

estimates of these ohort parameters more unertain. For instane, the last observed

year of birth will only have one observation for it, whih an therefore be �t perfetly by

the ohort term. This is undesirable and so in pratie, many modellers do not estimate

ohort parameters for a number of the earliest and latest years of birth in the data (for

instane in Renshaw and Haberman (2006) and Cairns et al. (2009)).

Related to this is the fat that the observations for early and late years of birth will

only over a subset of the age range. For instane, the most reent ohorts will only

have observations for the youngest ages. Any misspei�ation of age/period terms af-

feting these ages will therefore bias the estimation of these ohort parameters. This

is espeially important for the most reent ohorts, for whih we will only have a small

number of observations on their early-age mortality where most mortality models have

the greatest di�ulty modelling the age/period patterns of mortality and where there

will be relatively few deaths. Any poorly spei�ed age/period terms at these ages will

therefore lead to struture in the data being wrongly attributed to the ohort e�et for

the most reent years of birth.

As an example of this, there are spei� biologial fators whih lead to mortality in the

�rst year of life evolving di�erently from mortality rates at subsequent ages. This e�et

is best aptured through an age/period interation. In a poorly spei�ed age/period

mortality model, this annot be aptured adequately, leading to large residuals when

�tting mortality rates at this age. Adding a ohort term to suh a model will mean that

the �tting proedure will try to use the extra parameters to �solve� this problem and so

will bias the ohort parameters in order to ��x� what is genuinely an age/period issue.

This bias will get more pronouned for more reent years of birth, where observations of

18

See Hunt and Villegas (2015) for a disussion and potential solution for this issue.
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the �rst year of life form an inreasing proportion of the total observations for eah new

ohort.

In models whih give primay to age/period e�ets, it is therefore important to ensure

that the age/period struture is fully spei�ed before an age/ohort term is added. When

foreasting mortality rates, it is of great pratial importane that the ohort parameters

in an APC model are well spei�ed and estimated robustly. Sine ohort e�ets represent

lifelong mortality e�ets, mis-spei�ations of the ohort parameters at low ages will bias

foreasts for these ohorts as they age.

In summary, the inlusion of a ohort term in a mortality model presents the user with

a number of important issues whih need to be addressed. In some ases, the model

user may onsider that ohort e�ets are not signi�ant and prefer a model whih does

not inlude them. However, in other populations, there is evidene to support their

inlusion. In suh ases, it is neessary to ensure that the age/period struture in the

model is well spei�ed and able to apture the majority of struture in the data. A

simple and parsimonious ohort term an then be inluded to apture the e�ets of year

of birth.

2.7 Classi�ation of APC mortality models

Despite the reent rapid proliferation in the number of mortality models proposed, the

majority of mortality models in disrete time are part of the same APC family. This

then leads to the natural question of how mortality models an be lassi�ed.

When onstruting an APC mortality model we must ask a number of questions, but

espeially the following:

• What response variable and link funtion should we use?

• Should we inlude an expliit stati age funtion?

• Should we use parametri or non-parametri age funtions? If so, how many

age/period terms should we use?

• Should we inlude a ohort term? If so, should it be modi�ed aross the age range

by a β
(0)
x age funtion?
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Unlike ategorising speies of animal, however, our lassi�ation of mortality models does

not relate to anestry and so is not unique. What we o�er below is a simple lassi�ation

of mortality models, based on what we onsider to be the most important di�erenes in

struture between them.

We believe that the �rst two questions above are straightforward. The modeller's hoie

for the response variable should depend on the data available to them rather than on

any more fundamental onsideration. This, in turn, leads to a natural hoie for the

link funtion, namely, the anonial link funtion for the hosen distribution of deaths.

Whilst it is possible to use ombinations of response variable and link funtion other

than the natural hoies, there is often no good reason to do this and pratial reasons

disussed in Setion 2.3 why it should be avoided.

Seond, it an be argued that all mortality models use a stati age funtion; it is just that

models suh as the CBD model of Cairns et al. (2006a) use it impliitly with a distint

parametri struture that enables it to be ombined with other terms on the model. Suh

a hoie may be desirable for models limited to spei� setions of the age range where

the parametri struture is appropriate in order to obtain greater parsimony. However,

it does not hange anything fundamental about the model.

We are then left with the two more substantive questions - the hoie between para-

metri and non-parametri age funtions and the inlusion of a ohort term. Both of

these re�et fundamental di�erenes in approah whih lead to important mathematial

and qualitative di�erenes between the models. Historially, however, ohort parameters

have often been seen as an optional addition to a pre-existing mortality model, espeially

beause the age/period terms are usually given primay due to the reasons disussed in

Setion 2.6. We, therefore, see the most important division amongst APC models to be

between the use of parametri and non-parametri age funtions.

The optimum number of age/period terms will then depend on the nature of the age

funtions hosen to de�ne these terms. In models with non-parametri age funtions, it

is relatively simple of add additional age/period terms and optimise their number based

on a goodness of �t riteria. In models with parametri age funtions, however, the

number of age funtions needs to be de�ned a priori along with their funtional form.

If new terms are to be added to an existing model, it is a non-trivial task to selet an

appropriate form for them. To solve this problem, Chapter 5 introdues a �general proe-

dure� to both selet the form of the parametri age funtions and determine an optimum
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number of age/period terms in a new mortality model.

Based on this analysis, we propose the simple lassi�ation of mortality models in Fig-

ure 2.3. Obviously this lassi�ation is not exhaustive, as new models and variations of

existing models are ontinuously being proposed. It is also not unique, sine a di�er-

ent ordering of the questions asked when onstruting a mortality model would yield a

di�erent family tree. However, we have found it a useful framework when onsidering

the seletion of an existing mortality model or when onstruting a new one (suh as in

Chapter 5).
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Figure 2.3: A simple lassi�ation of mortality models
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2.8 Conlusions

The inreasing number of age/period/ohort models being used to study and projet

mortality rates has made a general onsideration of the APC struture neessary. A

systemati and omplete understanding of this struture allows us to selet or onstrut

the most appropriate model for the dataset and the purpose. We have therefore set out

�ve priniples whih need to be onsidered before an APC mortality model an be used

or onstruted:

1. The response variable being modelled should math the data available. The link

funtions should follow naturally from the nature of the response variable, e.g., a

Poisson distribution for the number of deaths should lead naturally to a log-link

funtion.

2. A stati age funtion should generally be inluded and made expliit in the model.

If a parametri struture is assumed for the stati age funtion, this should be made

expliit and the limitations this plaes on the age range over whih the model is

suitable should be made lear.

3. The user should justify the hoie of a non-parametri or parametri struture

for the age funtions. Both are appropriate in di�erent irumstanes. However,

the user of a model should be expliit in the trade-o�s they are making between

goodness of �t and demographi signi�ane.

4. The use of a ohort term is usually desirable to apture struture aross year of

birth in the data. However, suh a term an be omitted if the evidene does not

support its inlusion.

5. When ohort terms are inluded in a mortality model, they should be made as

simple as possible in order to give robust parameter estimates. This will often lead

to using a single ohort term and setting β
(0)
x = 1.

We therefore believe that the examination of the struture of APC mortality models in

this study has diret pratial appliation when using and developing these models and

enables a natural lassi�ation to be developed. A proper understanding of the models

an therefore help pratitioners analyse how mortality has evolved in the past and how it

may evolve in future, whih is of great importane in the �nanial and soial management

of longevity risk in future.
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Chapter 3

Identi�ability in Age/Period

Mortality Models

3.1 Introdution

As the �eld of modelling mortality has grown in reent years, the models proposed and

used have grown ever more ompliated. This has had the e�et of inreasing the number

and importane of identi�ability issues within the models, whih an lead both to ro-

bustness problems when �tting the models to data and di�ulties when projeting them.

As the demands of modern longevity-risk management tehniques require sophistiated

models apable of apturing omplex and subtle relationships between mortality rates

aross di�erent ages and in di�erent populations, unresolved identi�ability issues have

important pratial onsequenes. We therefore believe that the time has ome for a

holisti and omprehensive analysis of the lass of age/period/ohort (APC) mortality

models and the identi�ability issues within them.

In Chapter 2, we analysed the struture of APC mortality models and proposed a way

of lassifying the models proposed to date. This gave us a general framework in whih

our study of identi�ability issues operates. The existene of identi�ability issues means

that there are ertain features of the parameters in a model whih are not de�ned by

the data. Instead, these features are only determined by the arbitrary identi�ability

onstraints we impose upon the model when �tting it to data and, therefore, have no

independent meaning. Consequently, we must be areful to ensure that our results from

using mortality models do not depend upon these features of the parameters. In the

ontext of the age/period (AP) mortality models disussed in this study, we �nd that

features suh as the levels of and orrelations between the period terms, and the sale of
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the age funtions are unidenti�ed by the models. These features therefore do not possess

any meaning other than that imposed by our arbitrary identi�ability onstraints.

Identi�ability issues arise in these mortality models beause there exist di�erent sets of

parameters whih will give the same �tted mortality rates. These identi�ability issues

an lead to models whih lak robustness when �tted to data, ause us to draw faulty

and erroneous onlusions when analysing the historial data and an bias our projeted

mortality rates in future. It is essential that we understand and resolve these issues

when �tting models to data, as well as omprehend the impat these issues have on our

analysis of past and future mortality rates.

Identi�ability in mortality models is, therefore, a very important issue. While there are

priniples whih are ommon to the vast majority of mortality models, the impat and

impliations of these issues vary onsiderably depending on the spei�s of the model

being used. To demonstrate these priniples in ation, we onsider a number of simple

models based on the lassi and widely used models proposed in Lee and Carter (1992)

and Cairns et al. (2006a), both of whih are members of the lass of AP models. In the

partiular ases hosen, the identi�ability issues an appear trivial, and their impat on

our analysis of historial and projeted mortality rates relatively minor. However, we

believe that it is vital to understand these issues fully in the ontext of simple models,

sine they beome onsiderably more important in more sophistiated models, suh as

those onstruted using the �general proedure� of Chapter 5.

In addition, due to the sale of the topi, this study deals only with the identi�ability

of AP mortality models. We leave the additional issues aused by the inlusion of a

ohort term to Chapter 4. Allowing for the dependene of mortality on year of birth in a

model often reates new identi�ability issues, whih are fundamentally di�erent to those

a�eting simpler AP models and whih require a radially di�erent approah to analyse.

We begin, in Setion 3.2, by revisiting the general struture of AP models and how iden-

ti�ability issues arise in them. We then disuss, in Setion 3.3, how these issues were

dealt with in the model of Lee and Carter (1992), and how this has in�uened their

treatment in more omplex models. The mathematial struture of identi�ability issues

in the ontext of these more omplex mortality models is investigated in Setion 3.4. We

then onsider how these general issues relate to spei� models whih are more typial of

those used in pratie. Setion 3.5 disusses the appliation of the identi�ability issues

in the ontext of an extension to the Lee-Carter model. Setion 3.6 examines the general
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issues in models where the form of the age funtions has been hosen a priori. Setion

3.7 then onsiders models whih mix age funtions of di�erent types.

Identi�ability issues in AP mortality models also a�et their use in measuring risk and

unertainty in mortality rates. In Setion 3.8, we disuss the impat the identi�ability

issues have on measuring the unertainty in parameter estimates and on hypothesis test-

ing on the historial parameters. Setion 3.9 onsiders the impliations of identi�ability

issues for projetion, and the importane of ensuring that onstraints imposed to iden-

tify historial parameters uniquely do not impat the projeted mortality rates in future.

Finally, Setion 3.10 onludes.

3.2 Struture and identi�ability in age/period mortality mod-

els

3.2.1 Struture of age/period mortality models

An AP mortality model in disrete time is one whih assumes that mortality rates an

be modelled as a series of terms involving funtions of age, x, and period, t.1 In the

notation of Chapter 2, this an be written as

ηx,t = αx +

N
∑

i=1

β(i)
x κ

(i)
t (3.1)

where ηx,t is a link funtion transforming the raw data, αx is a stati funtion of age,

2 κ
(i)
t

are N period funtions governing the evolution of mortality with time and β
(i)
x are age

funtions modulating the impat of this hange over the age range. This struture does

not inlude any allowane for the lifelong e�ets of di�erent birth years (alled �ohort�

e�ets) on mortality.

The struture in Equation 3.1 as it is urrently written does not require any of the fun-

tions to be known in advane of �tting the model to data. As suh, it has what we refer

to as a �non-parametri� struture. We onsider this as the most general form of an AP

mortality model and disuss its identi�ability issues in Setion 3.4. We will also onsider

the �parametri� ase where β
(i)
x is a parametri funtion of age, β

(i)
x = f (i)(x; θ(i)), in

1

In this hapter, for generality we assume that x ∈ [1, X] and t ∈ [1, T ]. In pratie, the ranges of x

and t will be given by the range of the data being used.

2

Identi�ation issues in models without a stati age funtion, αx, are disussed in Appendix 3.A.
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Setion 3.6, and models whih mix parametri and non-parametri age funtions in Se-

tion 3.7. Whether β
(i)
x is parametri or non-parametri will a�et the interpretation of

the model, as disussed in Chapter 2, and also lead to subtly di�erent identi�ation issues.

The form given in Equation 3.1 is widely used and lends itself naturally to interpreting

the parameters as measuring either an age or a period feature of mortality rates. Al-

ternatively, when analysing this struture, we may �nd it useful to onsider the stati

age funtion, αx, and the age funtions, β
(i)
x , as being olumn vetors in RX

instead of

funtions of age, and the period funtions, κ
(i)
t , as row vetors in RT

, rather than a time

series. Considering the parameters in this ontext, it is natural to de�ne inner produts,

< ., . > on RX
and RT

, respetively, and use these to ompare the di�erent funtions.

For instane, we ould de�ne the �sale� of an age funtion by taking

‖β(i)
x ‖ =< β(i)

x , β(i)
x >

or the �angle�, θ, between age funtions as

cos θ =
< β

(i)
x , β

(j)
x >

√

‖β(i)
x ‖‖β(j)

x ‖

We an think of the inner produts being the standard Eulidean inner produts, i.e.

that < β
(i)
x , β

(j)
x >=

∑

x β
(i)
x β

(j)
x and < κ

(i)
t , κ

(j)
t >=

∑

t κ
(i)
t κ

(j)
t .

If the period parameters, κ
(i)
t , are interpreted as random variables then we also see that

this standard Eulidean inner produt an be interpreted in terms of their sample mean

and sample variane

κ̄(i) =
1

T

∑

t

κ
(i)
t =

1

T
< κ

(i)
t , 1 >

σ2
κ(i) =

1

T

∑

t

(

κ
(i)
t − κ̄(i)

)2
=

1

T
< κ

(i)
t − κ̄(i), κ

(i)
t − κ̄(i) >

=
1

T
‖κ(i)t − κ̄(i)‖
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Similarly, we see that the sample orrelation between two period funtions is given by

the angle between them

Corr(κ(i), κ
(j)
t ) =

∑

t

(

κ
(i)
t − κ̄(i)

)(

κ
(j)
t − κ̄(j)

)

√

σ2
κ(i)σ

2
κ(j)

=
< κ

(i)
t − κ̄(i), κ

(j)
t − κ̄(j) >

√

‖κ(i)t − κ̄(i)‖‖κ(j)t − κ̄(j)‖

= cos θκ−κ̄

Consequently, the standard Eulidean inner produt has a number of helpful interpre-

tations and is widely used.

3

However, we ould equally reasonably hoose other inner

produts on RX
and RT

if these are more onvenient.

4

When projeting the period funtions using multivariate time series proesses, it is helpful

to de�ne vetors

κt =
(

κ
(1)
t , . . . κ

(N)
t

)⊤

βx =
(

β
(1)
x , . . . β

(N)
x

)⊤

The model therefore has the vetor struture

ηx,t = αx + β⊤
x κt (3.2)

In order to projet the model, the vetor κt an be modelled using VARIMA proesses.

This is onsidered further in Setion 3.9.

We an also onstrut matries for the age and period funtions as β = {β(1)
x β

(2)
x . . . β

(N)
x }

and κ = {κ(1)t ;κ
(2)
t ; . . . ;κ

(N)
t } and therefore re-write Equation 3.1 in matrix form

H = α1⊤ + βκ (3.3)

where

• H is the (X × T ) matrix of transformed data (i.e., H = {ηx,t}),

• α is a (X × 1) matrix of the stati age funtion,

3

For example, it is ommon to impose κ̄
(i)
t = 1

T
< κ

(i)
t , 1 >= 1

T

∑

t κ
(i)
t = 0 as an identi�ability

onstraint, as disussed below.

4

For instane, in Chapter 5, we use the standard L(2) inner produt to de�ne orthogonality between

age and period funtions, but use the L(1) norm to de�ne a normalisation sheme.
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• 1 is a (T × 1) matrix of ones, and

• β and κ are the (X ×N) matrix and (N × T ) matrix of age and period funtions

onstruted above, respetively.

When expressed in this form, AP models an be analysed through the prism of matrix

algebra and linear mathematis. Spei�ally, we an see that an AP mortality model is

a mapping, Θ, from the spae of parameters to the model spae, M, of �tted mortality

rates.

Θ(αx, β
(i)
x , κ

(i)
t ) : RX × RNX × RNT → M ⊂ RX×T

(3.4)

Analysing AP mortality models as linear transformations an be very useful, and is pur-

sued in Setions 3.2.2 and 3.4 and in Appendix 3.B. However, whilst suh an abstration

an be useful for some purposes, it is important to remember that the parameters in the

model have spei� interpretations, for instane, that the period funtions are ordered

hronologially, and so the problem of identi�ability should not be seen purely as an

exerise in linear mathematis.

3.2.2 Identi�ability in age/period models

An AP mortality model annot, in general, be estimated as it stands. This is beause

any parameter estimates would not be unique, sine Equation 3.3 is not, in general, fully

identi�able.

A model is fully identi�ed when all the parameters in it an be uniquely determined by

referene to the available data. In ontrast, most mortality models are not fully identi�ed

- there exist di�erent sets of parameters whih will give the same �tted mortality rates

and onsequently the same goodness of �t. Although this phenomenon is not unique

to mortality models, it is very widespread in mortality modelling and has signi�ant

impliations when we ome to projet these models.

The models are not fully identi�able beause the spae of the parameters for the model,

RX ×RNX ×RNT
has a higher dimension than that of the model spae, M, as we show

later. Therefore, the mapping Θ in Equation 3.4 annot be injetive,

5

sine we annot

�nd a one-to-one mapping from a higher dimension spae to a lower one. In pratie,

5

A transformation, Θ, whih maps set A to set B is injetive if ∀a1, a2 ∈ A, Θ(a1) = Θ(a2) ⇔ a1 = a2

(whih implies that di�erent points get mapped to di�erent points).
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this means that we an �nd transformations of the parameters

{αx, β
(i)
x , κ

(i)
t } → {α̂x, β̂

(i)
x , κ̂

(i)
t } (3.5)

suh that

Θ(αx, β
(i)
x , κ

(i)
t ) = Θ(α̂x, β̂

(i)
x , κ̂

(i)
t ) (3.6)

We all the transformations of the parameters whih satisfy Equation 3.6 �invariant�, be-

ause the �tted mortality rates do not hange when they are applied to the parameters.

The additional degrees of freedom in these invariant transformations orrespond to the

additional dimensions of the parameter spae ompared with the model spae.

Beause {αx, β
(i)
x , κ

(i)
t } and {α̂x, β̂

(i)
x , κ̂

(i)
t } give idential �tted mortality rates and there-

fore �t observed data equally well, there is no statistial reason to hoose between them.

In pratie, in order to speify a unique set of parameters, onstraints independent of

the data are imposed - so alled �identi�ability onstraints�. This has the e�et of redu-

ing the number of degrees of freedom from the number of parameters. Mathematially,

imposing onstraints restrits the original parameter spae, RX × RNX × RNT
, to a

subspae, P, whih has fewer dimensions. The aim is to selet a subspae, P, whih
has the same dimension as the model spae, M, whih allows for a one-to-one mapping

between the redued parameter spae and the model spae. Reduing the dimension of

the parameter spae an also be ahieved by reparameterising the model in a �maximally

invariant� form, as disussed in Appendix 3.B.

It is important to know the number of dimensions of the model spae, not only to ensure

that our model is uniquely estimated, but also beause this value is used to penalise the

likelihood or deviane funtions in measures of the goodness of �t, suh as the Bayes

Information Criterion. A failure to orretly determine the number of free parameters

in a model may therefore distort tests of the goodness of �t, suh as those performed in

Cairns et al. (2009) and Haberman and Renshaw (2011), and potentially leads to an in-

orret assessment about whih model gives a superior �t to data. One spei� example

of this is disussed in Appendix 3.A.
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3.3 Identi�ability in the Lee-Carter model

This general lak of identi�ability in mortality models has been reognised for a long

time. One of the �rst and most signi�ant AP mortality models was introdued in Lee

and Carter (1992) (referred to as the LC model). This has a single age/period term (i.e.,

N = 1 in Equation 3.1) and an be written as

ln(µx,t) = αx + βxκt (3.7)

The study of Lee and Carter (1992) was aware that these parameters are not unique as

they an be transformed in the following two ways

{α̂x, β̂x, κ̂t} =

{

αx,
1

a
βx, aκt

}

(3.8)

{α̂x, β̂x, κ̂t} = {αx − bβx, βx, κt + b} (3.9)

and the �tted mortality rates will be unhanged. The existene of invariant transforma-

tions means that the model possesses identi�ability issues, sine no one set of parameters

is determined uniquely from the data.

We an see that Equation 3.8 implies that the �sales� of βx and κt are unidenti�ed sine

‖βx‖ 6= ‖β̂x‖ and similarly for κt. In addition, we an say that Equation 3.9 implies

that the �loation� of κt is unidenti�ed.
6

The loations and sales of the age and period

terms in the LC model therefore have no independent signi�ane, beause di�erent sets

of parameters, with di�erent loations and sales, will give exatly the same observable

quantities, suh as �tted mortality rates.

To overome this lak of identi�ability, Lee and Carter (1992) imposed additional on-

straints on the parameters whih are unrelated to the underlying data.

7

As Equations

3.8 and 3.9 have two free parameters, a and b, we require an additional two arbitrary

identi�ability onstraints to uniquely speify the model. Lee and Carter (1992) imposed

∑

x βx = 1 and

∑

t κt = 0. These identi�ability onstraints have subsequently beome

widely adopted by most model users. A general set of LC parameters (found from the

6

Sale and loation have their intuitive meanings that the �sale� of a set of parameters relates to

how spread out they are, whilst �loation� refers to their position (i.e., what numerial values they take).

More preisely for βx, we ould de�ne the sale of a parameter set as S = max(βx) −min(βx) and the

loation, L =
∑

x βx

XS
, where X is the number of ages in the range of x, with similar de�nitions for κt.

However, these formal de�nitions provide little by way of additional meaning.

7

We say that the transformations in Equations 3.8 and 3.9 ause issues with the identi�ability of the

model. Identi�ation of the model is aomplished by imposing a set of identi�ability onstraints and

using the invariant transformations to satisfy these onstraints.
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data via some estimation method) an be transformed into the onstrained parameter

set using the transformation in Equation 3.8 and hoosing a =
∑

x βx and then by using

the transformation in Equation 3.9 with b = − 1
T

∑

t κt.

We an see that imposing any set of identi�ability onstraints is ahieved by using these

transformations with spei� values of the free parameters a and b. Intuitively, we might

think of the imposition of the identi�ability onstraints as reduing the number of e�e-

tive parameters in the LC model. The LC model has 2X + T parameters. However, the

invariant transformations of the model show that two of these degrees of freedom do not

have any impat on the �t to data. Imposing the identi�ability onstraints involves trans-

forming an arbitrary set of parameters to our hosen set by using the transformations

with spei� values of these parameters and so an be thought of as �using up� the de-

grees of freedom in a way that does not a�et the �tted mortality rates. We will therefore

have a total of 2X+T −2 parameters whih are determined by the data when �tting the

model, and another two whih are determined by imposing the identi�ability onstraints.

In the terminology of Setion 3.2.2, the unonstrained parameter spae of the LC model

has dimension 2X + T , but the model spae, M, has dimension 2X + T − 2. The iden-

ti�ability onstraints therefore restrit the parameters to the 2X + T − 2 dimensional

subspae, P, of the full parameter spae, RX × RNX × RNT
, allowing for an injetive

mapping between the restrited parameter spae, P, and the model spae, M ⊂ RX×T
.

We interpret the onstraints used in Lee and Carter (1992) as setting �rst the �normal-

isation� of βx in order to identify its sale and seond the �level� of κt to be entred on

zero to identify its loation. However, the loation and sale hosen still do not pos-

sess any independent meaning, sine they are wholly dependent upon the identi�ability

onstraints hosen. Beause they do not depend upon the data, these additional identi-

�ability onstraints are arbitrary. While they might allow us to interpret the parameters

in terms of their demographi signi�ane,

8

this interpretation nevertheless depends en-

tirely on the user's judgement, rather than on the underlying data.

For instane, the onstraint that

∑

t κt = 0 in the Lee-Carter model allows us to interpret

κt as representing deviations away from an �average� level of the �tted mortality rates

8

Demographi signi�ane is de�ned in Chapter 2 as the interpretation of the omponents of a model

in terms of the underlying biologial, medial or soio-eonomi auses of hanges in mortality rates

whih generate them.

51



Identi�ability in Age/Period Mortality Models

aross the historial period of interest, sine it has the onsequene that

αx =
1

T

∑

t

ηx,t (3.10)

The onstraint

∑

t κt = 0, therefore, means that αx an be interpreted as the average

mortality rate at eah age over the period of the data.

9

However, the onstraint κ1 = 0 is just as reasonably imposed in Renshaw and Haberman

(2003), with the interpretation that the period funtions represent the falls in mortality

from an initial level.

10

Imposing this onstraint means that αx = ln(µx,1), i.e., it has

the demographi signi�ane that it is the �rst year of the �tted mortality surfae. A-

ordingly, model users must be areful not to rely on a partiular interpretation for the

parameters when making mathematial statements about the model or when projeting

it. For instane, we should not diretly ompare values of κt for di�erent populations,

sine di�erent arbitrary identi�ability onstraints an result in very di�erent estimated

values of the parameters.

The use of arbitrary identi�ation onstraints has beome almost universal amongst users

of the LC model. An alternative approah, proposed by Nielsen and Nielsen (2014), is

to reparameterise the model to give a set of �maximally invariant� parameters. These

will be hosen to avoid any identi�ation issues, but onvey the same information and

ahieve the same �t to data. This approah and its drawbaks are disussed in Appendix

3.B.

3.4 Identi�ability in models with non-parametri age fun-

tions

We de�ne models with non-parametri age funtions in Chapter 2 as those where the

values of the age funtions β
(i)
x at di�erent ages x are �tted without any a priori shape

9

If ordinary least squares is used to estimate the parameters in the model, the estimator for αx is

1
T

∑

t ln
(

dx,t

Ec
x,t

)

, i.e., the unweighted average of observed mortality rates. However, this will not be true

if other estimation methods are used, where αx will be a weighted average, where the weights are related

to the exposure to risk over the period. Imposing

1
T

∑

t ln
(

dx,t

Ec
x,t

)

a priori onto a model will therefore

redue the goodness of �t to the data if alternative �tting proedures are used. The impat of this is

disussed further in Appendix 3.A.

10

This would involve applying the transformation in Equation 3.9 with b = −κ1.
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aross ages. Age is treated as an unknown fator in the model rather than as a re-

gressor with a known form.

11

It is important to reognise that this usage di�ers from

other de�nitions of �non-parametri� employed in statistis and atuarial siene. For

the avoidane of doubt, we spei�ally use the term to refer to whether we assume a

spei� shape for the age funtions in Equation 3.1 a priori.

All AP mortality models with non-parametri age funtions are extensions of the LC

model, as disussed in Booth et al. (2002) and Renshaw and Haberman (2003b). The

number of age/period terms in the model is usually found by maximising the �t to data,

whilst their shape an be found through prinipal omponent analysis using singular

value deomposition, as in Booth et al. (2002), Renshaw and Haberman (2003b), Hat-

zopoulos and Haberman (2009) and Yang et al. (2010).

We an see from onsideration of Equation 3.3 that models with non-parametri age/pe-

riod terms are not fully identi�ed, sine we an transform them using

{α̂, β̂, κ̂} = {α, βA−1, Aκ} (3.11)

{α̂, β̂, κ̂} = {α− βB, β, κ+B1

⊤} (3.12)

where A is an (N × N) matrix whose only onstraint is that it needs to be invertible,

and B is a (N × 1) matrix.

Theorem 3.1. The transformations in Equations 3.11 and 3.12 are the only invariant

transformations for the model in Equation 3.3.

Sketh of Proof Assume, without loss of generality, that the matrix β has full olumn

rank N and κ is of full row rank N . If not, the model is poorly hosen and we ould use

a model with fewer age/period terms and ahieve the same �t to data.

Further, assume that we have two sets of parameters giving the same �tted mortality

rates. Then

α1⊤ + βκ = α̂1⊤ + β̂κ̂

βκ− β̂κ̂ = (α̂− α)1⊤

= C1

⊤

11

For this reason, we ould alternatively refer to non-parametri age funtions as �fatorial� age fun-

tions.
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for C some arbitrary (X × 1) matrix. From this, we an multiply both sides by β̂⊤

β̂⊤βκ− β̂⊤β̂κ̂ = β̂⊤C1

⊤

and, as β̂ is of full olumn rank, β̂⊤β̂ is invertible and so

κ̂ = (β̂⊤β̂)−1β̂⊤βκ− (β̂⊤β̂)−1β̂⊤C1

⊤

De�ning A = (β̂⊤β̂)−1β̂⊤β and B = (β̂⊤β̂)−1β⊤C, we see this is of the same form as

the omposition of the transformations in Equations 3.11 and 3.12 on κ, with the forms

of β̂ and α̂ following diretly from this.

By analogy with the LC model, it should be lear that these transformations represent

the generalisation of Equations 3.8 and 3.9 for models with more than one non-parametri

age/period term. These are the general invariant transformations of the model. Again,

we an see that the existene of these invariant transformations means that the sales

and angles of the age and period funtions are not identi�able by the model (i.e., not

de�ned by the data), sine

‖β̂(i)
x ‖ = ‖β(i)

x A−1‖ 6= ‖β(i)
x ‖

< β̂(i)
x , β̂(j)

x >=< β(i)
x A−1, β(j)

x A−1 > 6=< β(i)
x , β(j)

x >

i.e., di�erent sets of identi�ability onstraints will give di�erent sales and angles be-

tween the age/period terms. In addition, from Equation 3.12 we see that the loations

of the κ
(i)
t 's are unidenti�ed in the same way as in the LC model. Sine the sales, angles

and loations of the parameters are not de�ned by the data, we are free to impose them

through our hoie of identi�ability onstraints.

This also has onsequenes for any graphs of the di�erent parameters, with some aspets

of any graph not being meaningful, sine they depend purely on the arbitrary hoie of

identi�ability onstraint. For example, in a graph of κ
(i)
t vs.t, the lak of identi�ability

in the levels of κ
(i)
t due to be Equation 3.12 means that the position of the x-axis is not

meaningful, sine it is just a onsequene of an identi�ability onstraint on the level of

κ
(i)
t . Similarly, the sale on the y-axis is not meaningful, sine it depends on the normal-

isation sheme hosen.

By interpreting the angle between di�erent period funtions as their orrelation, as dis-

ussed in Setion 3.2, we also see that the lak of identi�ability issues in AP mortality
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model means that orrelations between di�erent period funtions are also not meaning-

ful, sine they too depend upon the arbitrary identi�ability onstraints. More generally,

the behaviour of any one period funtion has no objetive meaning unless it is also true

of any linear ombination of all of the period funtions. This has important onsequenes

when performing graphial heks on the �tted parameters, and also when we ome to

projet a model, as disussed in Setion 3.9.

In the terminology of Setion 3.2.2, we see that a general AP model of the form in

Equation 3.3 has X + N(X + T ) parameters, i.e., the parameter spae has dimension

X +N(X +T ). However, the invariant transformations in Equations 3.11 and 3.12 have

N(N+1) parameters whih implies that we need to impose N(N+1) identi�ability on-

straints in order to speify a unique set of parameters. This means that the restrited

parameter spae, P, is an X + N(X + T ) − N(N + 1) dimensional subspae of RX ×
RNX ×RNT

, and, orrespondingly, the model spae M is an X +N(X +T )−N(N +1)

dimensional subspae of RX×T
.

The N(N + 1) onstraints imposed will still be arbitrary in the sense that they are en-

tirely the hoie of the model user. It is impossible to hoose between models with the

same struture in Equation 3.1 and the same �tting proedure but di�erent identi�ability

onstraints by statistial methods. However, the di�erent terms in them may have dif-

ferent subjetive demographi signi�ane depending upon the identi�ability onstraints

imposed.

3.5 Identi�ability in the LC2 model

In Setion 3.3, we saw how the di�erent identi�ability issues were solved in the simplest

and most ommonly used AP mortality model. We now take the intuition derived from

that model and also the theory disussed in Setion 3.4 and apply them to the next

simplest AP mortality model with non-parametri age funtions. The two-term model

in Renshaw and Haberman (2003b) (whih we shall refer to as the LC2 model) is usually

written as

ln(µx,t) = αx + β(1)
x κ

(1)
t + β(2)

x κ
(2)
t (3.13)

The LC2 model applies the same normalisation sheme to the age funtions to set their

sale and the same level for the period funtions to set their loation as in the original

55



Identi�ability in Age/Period Mortality Models

LC model. Doing so, however, an lead to identi�ability issues in this more ompliated

model as we now show.

3.5.1 Loation

Beause the loation of the period funtions is not identi�able, Renshaw and Haberman

(2003b) set their level by imposing

∑

t κ
(i)
t = 0 for i = 1, 2. As with the LC model,

this gives the stati age funtion the demographi signi�ane of representing �average�

mortality rates aross the period range of the data. This does not ause any additional

issues for the LC2 model, so long as it is imposed via an identi�ability onstraint on κt

and not by imposing the form of αx (as disussed in Appendix 3.A).

3.5.2 Sale

To set the sale of the age/period terms, Renshaw and Haberman (2003b) imposed the

onstraint

∑

x β
(i)
x = 1 for i = 1, 2, again, in order to be onsistent with the onvention

established by Lee and Carter (1992). However, the justi�ation for this normalisation

sheme makes most sense under the assumption that β
(i)
x ≥ 0 for all x - indeed, this is

imposed on the LC model in Haberman and Renshaw (2009) at the expense of goodness

of �t to the data. If β
(i)
x ≥ 0, then

∑

x β
(i)
x = 1 onstrains the age funtion to be in

the range [0, 1]. The values of β
(i)
x therefore an be felt to represent a proportion of the

fator κ
(i)
t impating mortality at age x. In general, however, it may be the ase that

β
(i)
x < 0 at some ages, espeially in models with multiple age/period terms. If so, the

interpretation of the age funtions as measuring the proportion of the hange is no longer

appliable.

Figure 3.1 shows the age funtions from the LC2 model �tted to data for men in the

UK

12

with the onstraint

∑

x β
(i)
x = 1 for i = 1, 2. We see that if β

(i)
x ≤ 0 for some x,

as is the ase for the seond age funtion, then the identi�ability onstraint on the age

funtion no longer limits it to a partiular range of values. Indeed, β
(i)
x1 an take arbitrar-

ily high values, as long as there exists a orrespondingly low β
(i)
x2 to ompensate. This

is in ontrast to β
(1)
x , whih is greater than zero for all ages, and hene is omparatively

lose to zero aross the whole age range.

13

This undermines the rationale for seleting

12

Data for men aged 50 to 100 in the UK from 1950 to 2011 from the Human Mortality Database

(Human Mortality Database (2014)).

13

In Figure 3.1, 0.003 ≥ β
(1)
x ≥ 0.024, while −1.58 ≥ β

(2)
x ≥ 1.46, i.e., roughly two orders of magnitude

di�erene, with a orresponding impat on the period funtions.
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Figure 3.1: LC2 age funtions with

∑

x β
(i)
x = 1

a ommon normalisation sheme for the age funtions, whih was to aid omparisons of

the relative importane of the di�erent age/period terms.

The identi�ability onstraint

∑

x β
(i)
x = 1 an also, theoretially, lead to numerial prob-

lems when �tting the model to data. In pratie, the onstraint is imposed by taking the

set of parameters generated by the �tting algorithm (whih do not have any identi�abil-

ity onstraints imposed) and using the transformation in Equation 3.8 with b =
∑

x β
(i)
x ,

i.e., β̂
(i)
x = 1

∑
ξ β

(i)
ξ

β
(i)
x . This gives an equivalent set of parameters (with the same �t to

the data), but where

∑

x β̂
(i)
x = 1 by onstrution. If, however,

∑

x β
(i)
x = 0 for whatever

reason, this proedure will fail as applying the transformation involves dividing by zero,

even if the age funtion �tted originally by the algorithm is reasonable. While this is

unlikely, it is far more ommon that we �nd

∑

x β
(i)
x ≈ 0, whih will then lead to the

revised parameters (with the onstraint imposed) being infeasibly large, and whih may,

in turn, generate problems with the �tting algorithm.

Both of these problems with the normalisation sheme are aused beause simple sum-

mation over x is not a true norm. A true norm, ‖v‖, for a vetor spae, V, of a vetor,

v, is de�ned by the properties

1. ‖v‖ ≥ 0 ∀v ∈ V;

2. ‖v‖ = 0 ⇐⇒ v = 0;
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3. ‖av‖ = |a|‖v‖ ∀a ∈ R; and

4. ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖.

These properties mean that we an use a true norm to de�ne distanes and sales within

the vetor spae and therefore make them useful when speifying a normalisation sheme.

However, we see that

∑

x β
(i)
x is not a true norm in RX

, sine we an have

∑

x β
(i)
x < 0

and

∑

x β
(i)
x = 0 does not mean that β

(i)
x = 0 ∀x. Therefore, we are not able to use

this normalisation sheme to ompare sales for the age funtions, and annot assume

that

∑

x β
(i)
x > 0 in our �tting algorithms when we ome to impose the identi�ability

onstraints.

Normalisation shemes using true norms on RX
, suh as

∑

x |β
(i)
x | = 1 or

∑

x(β
(i)
x )2 = 1,

will not su�er from these issues. When it omes to normalising the �tted age funtion,

a proedure using a true norm for the normalisation sheme will never involve division

by zero if the transformation in Equation 3.8 is used with any non-trivial age funtions.

Therefore, in most irumstanes, normalisation shemes based on true norms will be

preferable.

14

However, we note that normalisation shemes based on true norms are not perfetly

identi�ed, sine the transformation

{β̂(i)
x , κ̂

(i)
t } = {−β(i)

x ,−κ
(i)
t } (3.14)

is an invariant transformation of the parameters where the new parameters still satisfy

the identi�ability onstraints. In priniple, we ould solve this by hoosing alternative

sets of normalisation onstraints, for instane

sign

(

∑

x

β(i)
x

)

∑

x

(

β(i)
x

)2
= 1

whih are still based on using true norms but are not invariant to hanging the sign

of the age funtion. However, the spei� transformation ausing this problem has few

pratial onsequenes when �tting the model, sine the transformation is not ontin-

uous. When �tting the LC or LC2 models using maximum likelihood tehniques, for

instane, we make small adjustments to the parameters at eah iteration and so it is

not possible to move smoothly from one set of aeptable parameters to another when

14

An obvious hoie would be a normalisation sheme that is onsistent with the standard Eulidean

inner produt, i.e., the Eulidean norm on RX
, ‖β

(i)
x ‖ =

∑

x(β
(i)
x )2 = 1. However, this is not essential

and an alternative normalisation sheme based on another true norm of RX
may be preferred if it is

more onvenient, as it is in Chapter 5.
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Figure 3.2: LC2 age funtions with

∑

x |β
(i)
x | = 1

�tting the model. In addition, the transformation in Equation 3.14 an be applied to

any set of parameters after �tting the model and, hene, an be used to selet the sign of

the age funtion based on the judgement of the user when reviewing the �tted parameters.

To illustrate this, onsider the age funtions shown in Figure 3.2 whih �t the LC2

model to the same data as in Figure 3.1 with the normalisation sheme

∑

x |β
(i)
x | = 1.

This normalisation sheme gives a model with exatly the same �t to the data, but the

estimated parameters for the age and period funtions are now of the same order of

magnitude,

15

whih may make this model easier to projet. We also avoid the possibility

of any omputational problems when imposing the identi�ability onstraint, sine the

divisor,

∑

x |β
(i)
x |, will not be zero for any non-trivial age funtion.

3.5.3 Rotation

We established in Setion 3.4 that N(N + 1) onstraints were neessary to restrit the

parameters in a general AP mortality model with non-parametri age funtions, due

to the number of free parameters in the transformations in Equations 3.11 and 3.12.

In the ontext of the LC2 model, this means that we would require six identi�ability

onstraints. However, only four identi�ability onstraints (two on the level of the two

period funtions, two on the normalisation of the two age funtions) were desribed

15

In Figure 3.1, 0.003 ≥ β
(1)
x ≥ 0.024, while −0.024 ≥ β

(2)
x ≥ 0.026, i.e., the same order of magnitude.
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in Renshaw and Haberman (2003b). We, therefore, have an additional two invariant

transformations of the parameters whih give the same �t to data and whih satisfy the

onstraints already expliitly imposed by Renshaw and Haberman (2003b). These an

be written as

(

β̂
(1)
x

β̂
(2)
x

)

=

(

θ 1− θ

0 1

)(

β
(1)
x

β
(2)
x

)

(

κ̂
(1)
t

κ̂
(2)
t

)

=
1

θ

(

1 θ − 1

0 θ

)(

κ
(1)
t

κ
(2)
t

)

(3.15)

and

(

β̂
(1)
x

β̂
(2)
x

)

=

(

1 0

1− φ φ

)(

β
(1)
x

β
(2)
x

)

(

κ̂
(1)
t

κ̂
(2)
t

)

=
1

φ

(

φ 0

φ− 1 1

)(

κ
(1)
t

κ
(2)
t

)

(3.16)

These transformations an be thought of as �rotations� of the age/period funtions, be-

ause they hange the angle between age and period funtions, but the normalisation

sheme

∑

x β̂
(i)
x = 1 still holds.

16

They also learly illustrate that we have an additional

two degrees of freedom, given by the free parameters θ and φ, whih do not hange the

�tted mortality rates but whih should be used to impose two more identi�ability on-

straints on the model.

This does not neessarily mean that the model in Renshaw and Haberman (2003b) was

poorly identi�ed, however. Although the authors did not expliitly aknowledge the exis-

tene of these additional identi�ability onstraints, their use of singular value deomposi-

tion to �t the model imposed them impliitly. By taking singular values (or equivalently,

prinipal omponents), age and period funtions are seleted so that

∑

t κ
(i)
t κ

(j)
t = 0 and

∑

x β
(i)
x β

(j)
x = 0 for i 6= j. We all suh age and period funtions �orthogonal� to eah

other as the angle between them de�ned earlier using the standard inner produt will

be

π
2 . This impliit imposition of additional identi�ability onstraints leads to a fully

identi�ed model.

If alternative �tting methods are used, suh as maximum likelihood (e.g., in Brouhns

et al. (2002a)) or minimal deviane (e.g., in Renshaw and Haberman (2003a)), then

these onstraints must be imposed expliitly in order to obtain a fully identi�ed model.

16

In some respets, Equations 3.15 and 3.16 are more similar to shears than rotations. However, we

�nd that thinking of them as rotations with respet to the original set of parameters is oneptually

more helpful.

60



Identi�ability in Age/Period Mortality Models

To impose these orthogonality onstraints for a general set of LC2 parameters, we would

therefore need to solve

∑

t κ̂
(i)
t κ̂

(j)
t = 0 and

∑

x β̂
(i)
x β̂

(j)
x = 0 with the transformed param-

eters de�ned by Equations 3.15 and 3.16 in order to �nd θ and φ.

We also note the speial ase where A =

(

0 1

1 0

)

(i.e., θ = φ = 1 when Equations 3.15

and 3.16 are omposed), whih relates to the transformation

{β̂(1)
x , κ̂

(1)
t , β̂(2)

x , κ̂
(2)
t } = {β(2)

x , κ
(2)
t , β(1)

x , κ
(1)
t } (3.17)

This is an invariant transformation of the parameters where the new parameters still

satisfy the identi�ability onstraints. However, it amounts to simply re-labelling the

age/period terms and arises beause the identi�ability onstraints are the same for all

age/period terms. Similar to the ase in Equation 3.14, this situation ould, in priniple,

be solved by using di�erent identi�ability onstraints for the di�erent age/period terms,

for instane

∑

x

|β(1)
x | = 1

∑

x

(

β(2)
x

)2
= 1

whih breaks the symmetry between the di�erent age/period terms and, thus, prevents

them being relabelled. However, as with Equation 3.14, the transformation in Equation

3.17 has few pratial onsequenes, sine it is not ontinuous and so it is not possible to

move smoothly from one set of aeptable parameters to another when �tting the model.

Furthermore, using di�erent identi�ability onstraints for the di�erent age/period terms

on�its with a desire for their sale to be omparable with eah other and, hene, we

do not believe that this issue is important in pratie.

If maximum likelihood methods are used to estimate the parameters in a model, it is use-

ful that these estimators are independent of eah other. This helps to give more e�ient

�tting algorithms for estimation and is also useful when allowing for parameter uner-

tainty using the tehnique of Brouhns et al. (2002b) disussed in Setion 3.8. Assuming

the anonial link funtion is used as disussed in Chapter 2, the independene of the

estimators an be assessed by onsideration of the information matrix for the di�erent
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parameters

I(β(i)
x , β(j)

x ) = E

[

∂2L
∂β

(i)
x ∂β

(j)
x

]

= −
∑

t

Var(Dx,t)κ
(i)
t κ

(j)
t

I(κ
(i)
t , κ

(j)
t ) = E

[

∂2L
∂κ

(i)
t ∂κ

(j)
t

]

= −
∑

x

Var(Dx,t)β
(i)
x β(j)

x

Therefore, we see that orthogonal age and period funtions are independent of eah

other if Var(Dx,t) is onstant aross ages and years.This assumption is impliitly made

when using singular value deomposition or prinipal omponents analysis to estimate

parameters. However, the assumption is not onsistent with the use of the Poisson or

binomial distribution for death ounts, as disussed in Chapter 2. Under these distribu-

tions, the variane of death ounts depends upon the exposure to risk at di�erent ages,

whih hanges onsiderably over di�erent ages and years and is more realisti in pratie.

In priniple, we ould impose independent parameter estimates using the transforma-

tions in Equations 3.15 and 3.16 with arefully seleted values of θ and φ to obtain an

equivalent set of parameters. Doing so would simply be hoosing an alternative (but

equally valid) set of identi�ability onstraints. However, in pratie, this would mean

onstraints that are both more di�ult to impose than the traditional orthogonality on-

straints using the Eulidean inner produt, and whih lose the onnetion between the

inner produt and the sample moments of κ
(i)
t . In pratie, imposing

∑

t κ
(i)
t κ

(j)
t = 0 and

∑

x β
(i)
x β

(j)
x = 0 for i 6= j to obtain orthogonal age and period funtions is a onvenient

and useful set of identi�ability onstraints.

Whihever set of onstraints is imposed on the angles between di�erent period funtions,

the most important thing is, however, to impose some form of onstraint. A failure to

do so may result in the �tting routine failing to onverge or, alternatively, the �tting

routine may give model parameters whih depend upon the initial parameter estimates

used in the algorithm. Similarly, the angles between di�erent age funtions must also

be onstrained in order to fully identify the model. This has impliations for estimated

parameter unertainty, as disussed in Setion 3.8.

We noted in Setion 3.2 that the orrelation between two di�erent period funtions de-

pends on the angle between them. This means that we see that the orrelations we
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Figure 3.3: Period funtions from the LC2 model

�nd between period funtions from our �tted parameters depends only on the identi-

�ability onstraints hosen, and so are not meaningful. For instane, the onstraint

∑

t κ
(i)
t κ

(j)
t = 0 imposes independene on the period funtions over the historial range

of the data when they are onsidered as time series. Figure 3.3 shows period funtions

for the LC2 model �tted to the same data as above, but with two di�erent onstraints on

the angles between them. In Figure 3.3a, the period funtions are orthogonal whereas,

in Figure 3.3b, they have a orrelation of -75%.

17

However, both sets of parameters give

idential �ts to the historial data. This will have important onsequenes when we ome

to projet the model in Setion 3.9.

In situations suh as Renshaw and Haberman (2003b), where orthogonality onstraints

on the age/period terms have been imposed impliitly by the �tting mehanism, we be-

lieve that it is important to reognise and state them learly. Not only will this larify

whih features of graphs of the age and period terms are meaningful, it also ensures

that we assess the dimension of P (i.e., the number of degrees of freedom in the model)

orretly. This is important when assessing the goodness of �t for the model.

As an example of this, in Haberman and Renshaw (2011), the LC2 model is ompared

against other mortality models using various measures inluding the Akaike Information

Criterion, Bayes Information Criterion, and Hannan�Quinn Criterion. All of these mea-

sures use the number of degrees of freedom (i.e., dim(P)) of the model to penalise the

log-likelihood. By failing to expliitly state the orthogonality onstraints plaed on the

age/period terms in the LC2 model and, therefore, failing to inlude them in the ount

of restritions plaed upon the model parameters, the study overestimates the number

17

Although the period funtions in Figures 3.3a and 3.3b are very similar, the relative large negative

orrelation is due to the fat that κ
(1)
t is strongly trending over the period.
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of degrees of freedom in the model. This exessively penalises the LC2 model relative to

its omparators.

Using the invariant transformations to impose orthogonality on the age and period fun-

tions generalises naturally to more ompliated models with N > 2. Identi�ability

in-sample in a model with non-parametri age/period terms is therefore not problemati

if �tting methods based on singular value deomposition or prinipal omponent analysis

are used (exept for setting the loations of the κ
(i)
t and the sale for the β

(i)
x by imposing

an appropriate normalisation sheme).

3.6 Identi�ability in models with parametri age funtions

In ontrast to the non-parametri age funtions onsidered above, we de�ne a �para-

metri� age funtion to be one whih takes a spei� funtional form that is de�ned by

an algebrai formula, i.e., β
(i)
x = f (i)(x; θ(i)).18 In order to speify a mortality model

with parametri age funtions, we need to de�ne these formulae. Mathematially, AP

mortality models with parametri age funtions are similar to their non-parametri oun-

terparts, exept that the age funtions are �xed or seleted from a family with a small

number of free parameters rather than being allowed to vary freely aross RX
. This has

important onsequenes for the identi�ability issues in the model.

To illustrate, let us onsider the following two pedagogial mortality models

ηx,t = αx + κ
(1)
t + (x− x̄)κ

(2)
t (3.18)

ηx,t = αx + κ
(1)
t + e−λxκ

(2)
t (3.19)

where x̄ = 0.5(X+1). The �rst of these is similar to the widely used Cairns-Blake-Dowd

(CBD) model of Cairns et al. (2006a), but with the inlusion of an expliit stati age

funtion, and therefore we refer to it as the CBDX model. The seond model, whih

we refer to as the exponential model, uses an exponentially dereasing funtion of age

as the seond age funtion, with the parameter λ being a free parameter of the model

determined by the data. Suh a model has not been proposed to date, but similar terms

have been used within the �general proedure� of Chapter 5.

We say that the formulae used for the age funtions in Equations 3.18 and 3.19 �de�ne�

these models. Di�erent de�nitions for the age funtions give di�erent models. However,

18

For this reason, these age funtions ould also be alled �formulai�.
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we also de�ne the onept of �equivalene� between models with parametri age fun-

tions. Two models are equivalent in this sense if they have di�erent de�nitions for the

age funtions, but still give the same �tted mortality rates and hene the same �t to data.

We note that the CBDX model is linear in its parameters, and so an be �tted using gen-

eralised linear models, as disussed in MCullagh and Nelder (1983) and Currie (2014).

However, sine λ is a free parameter of the model, the seond age/period term in the

exponential model is non-linear in the sense of MCullagh and Nelder (1983, Chapter

11), and so more ompliated methods for �tting the model are neessary. Therefore,

using parametri age funtions is not equivalent to using a linear model exept in a few

simple ases. We will see below that it is these non-linear ases whih tend to have more

ompliated identi�ability issues.

Mathematially, we an see that both models in Equations 3.18 and 3.19 are similar to

the LC2 model, but with spei� parametri funtions for β
(1)
x and β

(2)
x . One might

be tempted to believe that they have exatly the same identi�ability issues as those in

the LC2 model disussed in Setion 3.5. However, the imposition of spei� funtional

forms for the age funtions has hanged whether the invariant transformations of the

LC2 model an be applied in pratie.

Beause the form of the age funtions de�nes the model being used, these forms annot

hange under invariant transformations, otherwise we would obtain a di�erent model.

Therefore, we require that any invariant transformations of the model also leave the age

funtions unhanged, i.e., f̂ (i)(x; θ(i)) = f (i)(x; θ(i)). This restrition redues the num-

ber of invariant transformations, and therefore the number of identi�ability onstraints

whih need to be imposed when �tting the model to data. We disuss the impliations

of this on the di�erent identi�ability issues below.

3.6.1 Loation

We noted in Setion 3.4 that the transformation in Equation 3.12 does not hange the

form of the age funtions. Aordingly, it an still be applied to hange the levels of the

period parameters in exatly the same manner as desribed in Setion 3.4, whilst leaving

the �tted mortality rates and the funtional forms of the age funtions unhanged. The

period funtions in models with parametri age funtions therefore still have unidenti�ed

loations, and so we still need to impose levels on the period parameters in exatly the
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same manner as we did in Setion 3.5. Most users of suh models impose

∑

t κ
(i)
t = 0,

onsistent with the hoie made for models with non-parametri age funtions and with

a similar interpretation. However, for models whih have a spei� form of the stati age

funtion imposed a priori, this is not neessary, as disussed in Appendix 3.A.

3.6.2 Sale

We see that the transformation in Equation 3.11 takes linear ombinations of the old age

and period funtions in order to reate new age/period terms. Therefore, these trans-

formations will hange the form of the age funtions in a model with parametri age

funtions. Sine the form of the age funtions de�nes the model being used, the trans-

formations in Equation 3.11 annot be used in models with parametri age funtions.

In Setion 3.5, we saw that these transformations were useful in models with non-

parametri age funtions when it ame to imposing a normalisation sheme on the age

funtions and orthogonalising them with respet to eah other. This was bene�ial as it

enabled omparability and near-independene between di�erent age/period terms. It is

therefore desirable to also ahieve the same properties for models with parametri age

funtions.

We also see that although using the transformations in Equation 3.11 in models with

parametri age funtions gives di�erent age funtions (and therefore di�erent models),

they do not a�et the �tted mortality rates: all the models obtained by using these

transformations are equivalent in the sense de�ned above. It therefore makes sense to

hoose, from the set of models equivalent to the one we are interested in, a model with

age funtions whih have the desirable properties of possessing a standard normalisation

sheme and being orthogonal. We disuss how this an be done in this setion and Se-

tion 3.6.3, respetively.

Most mortality models with parametri age funtions have the age funtions de�ned in

their simplest and most natural form. However, hoosing de�nitions for their simpliity

rather than for desirable statistial properties, suh as having a ommon normalisation

sheme, an lead to issues when omparing age and period terms within the same model

and between di�erent models. We show this below for the CBDX and exponential mod-

els in Equations 3.18 and 3.19, respetively. However, for eah of these models we also

show how this issue an be resolved by using alternative de�nitions of the age funtions
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to give models whih have far more omparable age and period terms.

First, let us onsider how a ommon normalisation sheme for the age funtions an

be ahieved in the CBDX model in Equation 3.18. In the LC2 model, Renshaw and

Haberman (2003b) imposed the normalisation sheme

∑

x β
(i)
x = 1 on the age funtions

in the model, using the transformations in Equation 3.11. In ontrast, the age fun-

tions in Equation 3.18 already have de�ned sales, i.e.,

∑

x f
(1)(x) =

∑

x 1 = X and

∑

x f
(2)(x) =

∑

x(x− x̄) = 0.

However, these de�ned sales ause problems when it omes to omparing the age/pe-

riod terms. The most important of these issues is that the sale of f (2)(x) is zero,

whih is not sensible for a funtions whih is not identially equal to zero. This is a

onsequene of using a normalisation sheme whih is not based on using a true norm.

In Setion 3.5, we saw that a more sensible hoie of normalisation sheme was to use

∑

x |β
(i)
x | to de�ne the sales of the age funtions. Using this for the CBDX model, we

�nd

∑

x |f (1)(x)| =∑x 1 = X and

∑

x |f (2)(x)| =∑x |(x− x̄)| = 0.25X2
if X is even or

0.25(X − 1)(X + 1) if X is odd.

However, this fails to resolve the seond problem, whih is that di�erent sales are de�ned

for eah of the age/period terms, i.e., the sale of the �rst age funtion is proportional to

the number of ages, X, whilst the sale of the seond in proportional to X2
. This makes

omparisons di�ult, both between the CBDX and LC2 models and between the �rst

and seond age/period terms within the CBDX model. The di�ering sales of the or-

responding period funtions an also lead to numerial problems when we try to projet

them using multivariate methods, as disussed in Setion 3.9.

To ensure that the age funtions have the same sale, we need to de�ne a model equivalent

to that in Equation 3.18 where the age funtions have this property. Trivially, we see

that the model

ηx,t = αx +
1

X
κ
(1)
t +

4(x− x̄)

X2
κ
(2)
t (3.20)

(assuming X is even) is equivalent to the model in Equation 3.18.

19

All that di�ers be-

tween the models in Equations 3.18 and 3.20 is the preise de�nition of the age funtions,

although the age funtions in both models have the same funtional form (i.e., a onstant

19

We an think of this model being obtained by using the transformation in Equation 3.11 on the

model in Equation 3.18 with A =

(

X 0
0 1

4
X2

)

.
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(b) Revised de�nition of age funtions f (i)(x)

Figure 3.4: Period funtions from the CBDX model

and a linear funtion of age, x). In addition, we see that in the model in Equation 3.20,

∑

x |f (i)(x)| = 1 for both age funtions. In partiular, this has the advantage of greater

omparability between the age/period terms.

To illustrate the impat of ensuring that the age funtions have a ommon normalisation

sheme, Figure 3.4 shows the period funtions from the two CBDX models in Equations

3.18 and 3.20, �tted to the same data as used for the LC2 model in Setion 3.5, with

both the original and the revised normalisation shemes. We see that the magnitude

of the di�erent period funtions �tted with the original model in Equation 3.18 di�ers

enormously.

20

This an be a problem as most numerial algorithms for analysing time

series are optimised to work best on series of omparable orders of magnitude. In on-

trast, the revised CBDX model in Equation 3.20 gives period funtions of omparable

magnitude.

21

The ommon sale also means that it is easier to ompare these period

funtions with those in Figure 3.3 from the LC2 model.

Turning now to the exponential model in Equation 4.17, we �nd similar issues for the

normalisation sheme of the age funtions. In the exponential model,

∑

x |f (1)(x)| = X

as before for the CBDX model, whih an be dealt with in exatly the same manner.

In addition,

∑

x |f (2)(x;λ)| = ∑

x e
−λx = e−λ(1−e−λ(X+1))

1−e−λ ≈ e−λ

1−e−λ for the seond age

funtion. Not only will this be di�erent from the sale of the �rst age/period term, but

the sale is a funtion of the free parameter λ. Sine λ varies during the �tting proess,

this will alter the sale of f (2)(x;λ). Hene, λ will be trying to ful�l two purposes si-

multaneously: �rst, desribing the shape of the age funtion and seond, determining its

sale, i.e., the relative importane of the age/period term. This onfusion of di�erent

20−0.70 ≥ κ
(1)
t ≤ 0.48 and −0.01 ≥ κ

(2)
t ≤ 0.05, i.e. they di�er by an order of magnitude.

21−70.5 ≥ κ
(1)
t ≤ 48.1 and −19.1 ≥ κ

(2)
t ≤ 11.5, i.e., they are the same order of magnitude.
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purposes an ause numerial instability in most �tting algorithms, whih may be one

reason why age funtions with free parameters have not been ommonly used in pratie.

For the CBDX model, we obtained a ommon normalisation sheme for the age funtions

by hoosing slightly di�erent de�nitions for the age funtions, i.e., we de�ned alternative

age funtions whih were equal to the original ones, but resaled by

∑

x |f (i)(x)|. For

the exponential model we do the same thing, to obtain

ηx,t = αx +
1

X
κ
(1)
t +

1− e−λ

e−λ(1− e−λ(X+1))
e−λxκ

(2)
t (3.21)

The only di�erene in this ase is that the seond age funtion is resaled by a funtion of

the free parameter, λ, rather than a onstant in the ase of the CBDX model. Again, we

see that the age funtions have the same funtional forms (a onstant and an exponential

funtion of age) as before, but with the normalisation sheme

∑

x |f (2)(x;λ)| = 1 ∀λ as

λ is varied when �tting the model. This ontrasts with the model in Equation 3.19, and

ensures that both age funtions have the same normalisation sheme and so are more

omparable.

We all age funtions suh as the revised f (2)(x;λ) in Equation 3.19 �self-normalising�, as

they have the property that our desired normalisation sheme is imposed automatially

for all values of the free parameters in the age funtion (i.e.,

∑

x |f (i)(x; θ(i))| = 1 ∀θ(i)).
Self-normalisation is an important and useful property. Most importantly, the om-

mon normalisation sheme allows for omparability between di�erent age funtions (po-

tentially with very di�erent funtional forms) in a model, independent of their shape.

Furthermore, by allowing the value of the free parameter to desribe the shape of the

age funtion, without impating the sale of the age/period term, we �nd that self-

normalising age funtions are onsiderably more robust (in the sense of being likely to

onverge) and stable to small hanges in the data. For this reason, the age funtions

used in the �toolkit� in the Appendix of Chapter 5 are all self-normalising with respet

to the normalisation sheme |f (i)(x; θ(i))| = 1.22 However, the trade-o� is that the nu-

merial routines are signi�antly more ompliated to implement and may need to be

written speially for the spei� irumstanes, rather than adapted from �o�-the-shelf�

22

We note that, for many age funtions, it is onsiderably simpler to �nd and use self-normalisation

age funtions when using the L1 normalisation sheme,

∑

x |f
(i)(x; θ(i))| = 1, than the alternative L2

normalisation sheme,

∑

x

(

f (i)(x; θ(i))
)2

= 1. This is why the L1 normalisation sheme was seleted

for use in the general proedure in Chapter 5.
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statistial pakages.

23

In summary, we see that, when the age funtions in a mortality model are de�ned para-

metrially, a ommon normalisation sheme for all of them an be ahieved by de�ning the

age funtions arefully. For more sophistiated age funtions involving free parameters

estimated from the data, this means de�ning age funtions whih are self-normalising, so

that the normalisation sheme holds for all values of these parameters as they are varied

during the �tting proedure.

3.6.3 Rotation

In Setion 3.6.2, we saw that for models with parametri age funtions, we ould ensure

that the age funtions had the same normalisation sheme by arefully de�ning them to

have this property when we spei�ed the model. The same is also true if we want our

age funtions to be orthogonal to eah other.

Again, similar to Setion 3.6.2, we start from the fat that most mortality models have

their age funtions de�ned in the simplest form, suh as in Equations 3.18 and 3.19.

These simple forms are not, neessarily, orthogonal. However, we an de�ne equivalent

models where the age funtions are orthogonal. Unlike the ase of ensuring a ommon

normalisation sheme, however, we will see that orthogonality between age funtions is

not always a desirable property and may on�it with other desirable properties, suh as

the terms in the model having distint demographi signi�ane. Therefore, the hoie

of whether to de�ne orthogonal age funtions or not will depend upon the model in

question and the aims of the model user.

For example, onsider the CBDX model of Equation 3.18 before normalisation. The

model already has orthogonal age funtions, sine

∑

x f
(1)(x)f (2)(x) =

∑

x(x − x̄) = 0.

However, we ould also onsider an equivalent model, with simpler de�nitions of the age

funtions of the form

ηx,t = αx + κ
(1)
t + xκ

(2)
t (3.22)

23

In pratie, there are many age funtions where

∑

x |f
(i)(x; θ(i))| annot be found in losed form,

but an be approximated by

∫

|f (i)(x; θ(i))|dx. In suh irumstanes, improvements in the stability

of the numerial optimisation routine an still be found through approximate normalisation by setting

f̂ (i)(x; θ(i)) = f(i)(x;θ(i))
∫
|f(i)(x;θ(i))|dx

and then imposing

∑

x |f
(i)(x; θ(i))| = 1 again diretly using Equation 3.8

with a = 1∑
x |f(i)(x;θ(i))|

.
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This model is more similar to the form of the original CBD model proposed in Cairns

et al. (2006a). However, we observe that the age funtions are not orthogonal, i.e.,

∑

x f
(1)(x)f (2)(x) =

∑

x x = 1
2X(X +1). It is easy to see that models in Equations 3.18

and 3.22 are equivalent, in that they give the same �tted mortality rates and are linked

through a transformation of the form in Equation 3.11. The form of the age funtions

in Equation 3.18 was introdued in Cairns et al. (2009) and, in pratie, has proved far

more popular than the simpler age funtions in Equation 3.22, in part beause it is more

robust to �t to data due to the parameter estimates for the period funtions being nearly

independent of eah other. Consequently, we see that de�ning orthogonal age funtions

an be desirable, even if it omes at the expense of a slightly more ompliated de�nition

of the age funtions.

The age funtions in the CBDX model are of onstant and linear form, i.e., polynomials

of order zero and one, respetively. De�ning orthogonal age funtions, as in Equation

3.18, has not hanged this form, merely seleted the �rst two members of the orthogonal

family of polynomials, i.e., the Legendre polynomials.

24

The orthogonal age funtions

in Equation 3.18 have the same demographi signi�ane as the simpler age funtions in

Equation 3.22, but the additional desirable property of orthogonality. Generalising this,

we see that hoosing orthogonal age funtions does not hange their form and hene

does not a�et their demographi signi�ane when the age funtions ome from the

same funtional family (e.g., polynomials).

However, this is not the ase when the age funtions ome from di�erent funtional fam-

ilies. We see this by onsidering the exponential model one more. To de�ne orthogonal

age funtions for this model, we ould selet a model equivalent to that in Equation 3.19

with orthogonal age funtions, namely

f (2)(x;λ) = e−λx − e−λ(1− e−λ(X+1))

1− e−λ

We see that the age funtions in this model are orthogonal as

∑

x f
(1)(x)f (2)(x;λ) = 0 ∀λ.

This revised model is equivalent to that in Equation 3.19, as it gives the same �tted mor-

tality rates and the two models are linked by a transformation of the form of that in

Equation 3.11.

24

The Legendre polynomials have a long pedigree, �rst in mathematial physis, but more reently

in the graduation of mortality rates (for instane in Renshaw et al. (1996) and Sithole et al. (2000)).

We also note that the third (quadrati) Legendre polynomial is used as an age funtion in one of the

extensions to the CBD model in Cairns et al. (2009).
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However, it is likely that we originally seleted an exponential funtion for its demo-

graphi signi�ane (e.g., a mortality e�et whih dereases rapidly with age, suh as that

assoiated with the relatively high rate of infant mortality). The rede�ned f (2)(x;λ) will

not possess this demographi signi�ane, as it will start positive and then tend rapidly

to a negative onstant. This lak of demographi signi�ane is unlikely to be desirable.

Therefore, orthogonal age funtions an on�it with a desire for eah age/period term to

have distint demographi signi�ane for models with parametri age funtions oming

from di�erent funtional families.

In summary, we �nd that orthogonality between age funtions makes most sense when

the age funtions ome from the same family, suh as polynomials, and therefore an

be orthogonalised easily. For models with very di�erent funtional forms for the age

funtions, orthogonalisation is unlikely to be desirable as it will on�it with a desire to

give eah age/period term distint demographi signi�ane.

3.7 Identi�ability in mixed models

Some AP mortality models have mixed parametri and non-parametri age funtions,

suh as the model of Wilmoth (1990) (exluding the ohort term) and the models used

to explore the data in Chapter 5. Other studies, suh as Reihmuth and Sarferaz (2008),

have proposed extending the LC model with exogenous variables, suh as eonomi or

health indiators, whih take the form of period funtions with a presribed form. The

identi�ability issues in suh mixed models, however, are similar to those addressed in

Setions 3.5 and 3.4 above.

As with models with purely parametri age funtions, in mixed models, the presribed

form of the age or period funtions means that we must restrit the transformations

in Equations 3.12 and 3.11 so that they remain unhanged. For instane, onsider the

model

ηx,t = αx + f(x)κ
(1)
t + βxκ

(2)
t (3.23)

This model has one parametri age funtion, f(x), and one non-parametri age funtion,

βx, while the two period funtions are freely varying. We see that the transformation

in Equation 3.12 is still appliable, as it will not hange the form of f(x) and therefore
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we still need to de�ne the loation of the period funtions via an identi�ability onstraint.

However, we see that the transformation

{f̂(x), κ̂(1)t , β̂x, κ̂
(2)
t } =

{

f(x), κ
(1)
t + abκ

(2)
t ,

1

a
βx − bf(x), aκ

(2)
t

}

(3.24)

is an invariant transformation of the model in Equation 3.23 and avoids hanging the

form of f(x). This is a speial ase of the general transformation in Equation 3.11, with

the matrix, A, taking the restrited form A =

(

1 ab

0 a

)

. We an see that this trans-

formation orresponds to a redued set of invariant transformations ompared with the

LC2 model, sine it only has two degrees of freedom, ompared with the four in the

unrestrited matrix, A.

The form of the restritions on A means that only the sale of βx (set by a) and the

angle between βx and f(x) (set by b) are unde�ned. In suh a model, it therefore makes

sense to impose a standard normalisation sheme on βx, for example,

∑

x |βx| = 1, and

an orthogonality onstraint between βx and f(x), i.e.,
∑

x βxf(x) = 0.

Next, onsider the alternative model

ηx,t = αx + β(1)
x K(t) + β(2)

x κt (3.25)

where K(t) is either a deterministi funtion, suh as in Callot et al. (2014), or an ex-

ogenous variable suh as real GDP or an indiator variable to aount for an epidemi,

suh as in Liu and Li (2015), or a war. We also note that this type of model is ommon

in multi-population models where the period funtion in one population is required to be

the same as that in another, for instane, those of Carter and Lee (1992) and Li and Lee

(2005). In this ase, we see that we an no longer use the unrestrited transformation

in Equation 3.12, sine the loation of K(t) is set a priori. Therefore, we only need to

impose a onstraint on the level of the remaining period funtion, suh as

∑

t κt = 0.

As with the model in Equation 3.23, we also have a restrited set of transformations of

the form in Equation 3.11 in order to avoid hanging K(t) in the transformation. In this

ase, the transformation of the parameters is

{β̂(1)
x , K̂(t), β̂(2)

x , κ̂t} =

{

β(1)
x +

b

a
β(2)
x ,K(t),

1

a
β(2)
x , aκt − bK(t)

}

(3.26)
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whih leaves K(t) unhanged. In this ase, the restrited form of the matrix, A, in

Equation 3.11 is A =

(

1 0

−b a

)

, whih an be ompared to the restrited form for the

model in Equation 3.23.

Similarly, these restrited transformations mean that only the sale of β
(2)
x (set by a) and

the angle between K(t) and κt (set by b) are unde�ned. Consequently, this transforma-

tion an be used to impose a normalisation sheme on β
(2)
x and orthogonalise K(t) and

κt by means of additional identi�ability onstraints. In this ase, the orthogonalisation

of the period funtions has the lear interpretation that κt explains that part of the

variation that is independent of the fator K(t). However, this was not done in Liu and

Li (2015), whih, in the ontext of that study, made it di�ult to interpret the meaning

of κt for years when there was an epidemi.

Hene, we see that mixed models at to impose restritions on the more general set of

invariant transformations present in a model with fully non-parametri age funtions.

These restritions are spei� to di�erent models, and depend upon the spei�ation of

the model in question. This is espeially ommon in many multi-population mortality

models, suh as some of those disussed in Villegas and Haberman (2014), whih an

be interpreted as mixed models where the form of di�erent age and period funtions is

ommon to di�erent populations and hene restrited. Consequently, we must analyse

eah individual model in order to determine whih identi�ability issues it possesses and,

hene, a suitable set of identi�ability onstraints to impose.

3.8 Parameter unertainty and hypothesis testing

3.8.1 Parameter unertainty

Having obtained a set of parameters by �tting a model to data with some set of arbitrary

identi�ability onstraints, it is ommon to investigate the degree of unertainty assoiated

with these estimated parameters. A number of tehniques have been developed to do

this, for instane

• using the asymptoti normality of parameters estimated by maximum likelihood

methods, as in Brouhns et al. (2002b);

• using a �semi-parametri� bootstrap based on Poisson (or binomial) death ounts,

as in Brouhns et al. (2005);
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• using a residual bootstrapping method, suh as that developed in Koissi et al.

(2006) or the more ompliated tehniques disussed in D'Amato et al. (2011) and

Debón et al. (2008, 2010), and

• using Bayesian Markov hain Monte Carlo (MCMC) methods, as in Czado et al.

(2005).

All of these tehniques were developed for the LC model, as the simplest and most widely

used mortality model. In the following setion, we follow this onvention and impliitly

assume that we are dealing with the LC model. However, in priniple, they ould all be

used with any other AP mortality model.

The �rst three of these methods have been tested and ompared in Renshaw and Haber-

man (2008) and all four were ompared in Li (2014). It is important that any onlusions

drawn from them do not depend upon the arbitrary identi�ability onstraints imposed

in the model. Sine the �tted mortality rates do not hange under the invariant transfor-

mations of the model, their variability due to parameter unertainty should not depend

on the identi�ability onstraints imposed either. Appropriate methods for determining

parameter unertainty should ensure this. Two users of a mortality model, using the

same data and method for investigating parameter unertainty, but using di�erent (but

equally valid) identi�ability onstraints should �nd the same degree of variability of mor-

tality rates under parameter unertainty.

It is therefore desirable to start from the di�erene between the observed and �tted mor-

tality rates, sine this will be independent of the identi�ability onstraints hosen from

them model and ensure that our results are onsistent with observations. For instane,

in Brouhns et al. (2005), Poisson-distributed random death ounts were generated at

eah age and year.

25

The distribution of the bootstrapped death ounts is therefore un-

a�eted by whih identi�ability onstraints are imposed. Likewise, the �tting residuals

used in Koissi et al. (2006) depend only on the atual and �tted death ounts and thus

not on the identi�ability onstraints used in �tting the model. Therefore, estimates of

the impat of parameter unertainty on observable quantities, suh as �tted mortality

rates or life expetanies, will be independent of the arbitrary identi�ability onstraints.

25

In Brouhns et al. (2005), it was assumed that Dx,t ∼ Po(dx,t), i.e., the random death ounts follow

a Poisson distribution with mean equal to the observed death ount. This was modi�ed in Renshaw

and Haberman (2008) to Dx,t ∼ Po(Ec
x,tµx,t), i.e., mean equal to the �tted death ounts, whih is more

onsistent with other bootstrapping tehniques.
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However, estimates for the variability of the model parameters will still only be valid

onditional on the hosen set of identi�ability onstraints. For instane, imposing the

onstraint κ
(i)
1 = 0 in a model will mean that κ

(i)
1 will trivially not show any variability

using the Brouhns et al. (2005) or Koissi et al. (2006) methods, but this will not be

the ase for other hoies of onstraints. Therefore, the observed parameter unertainty

should be seen only in the ontext of the identi�ability onstraints applied.

It is also important to ensure that the model is fully identi�ed when using these boot-

strapping approahes. If the model is not fully identi�ed, we may observe spurious

variation in the parameters whih does not lead to real variability in the �tted mortality

rates. This is of most pratial relevane with the orthogonality onstraints for models

suh as the LC2 model in Equation 3.13, as these are often overlooked if maximum like-

lihood or minimum deviane tehniques are used to �t the model.

The alternative approah to starting from the di�erene between observed and expeted

mortality rates is to onsider the distribution of the model parameters diretly. How-

ever, methods whih generate new samples of parameters diretly, suh as the asymptoti

method of Brouhns et al. (2002b) or the Bayesian tehniques of Czado et al. (2005), must

be used with onsiderably more are.

First, onsider the asymptoti method of Brouhns et al. (2002b). This assumes that

the variation of the maximum likelihood parameters is given by the information matrix

(i.e., the seond derivative of the log-likelihood, L) with respet to the model parameters

evaluated at the seleted parameter estimates). The �rst thing to note here is that, in

order to identify the model, the likelihood being maximised is the onstrained likelihood.

Starting from the forms of the likelihood funtion in Chapter 2, this means that we use

Lagrangian multipliers to impose the onstraints. For example, to impose the Lee and

Carter (1992) model onstraints involves adjusting the likelihood funtion by

L(dx,t; {α, β, κ}) → L(dx,t; {α, β, κ}) − λ1

∑

t

κt − λ2

(

1−
∑

x

βx

)

Therefore, the information matrix is expliitly dependent upon the identi�ability on-

straints imposed. For instane, we an see this by onsidering the seond derivative of

the likelihood with respet to the age funtion βx

∂2L
∂(βx)2

= −
∑

t

Var(Dx,t)(κt)
2
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if we use the anonial link funtion, as disussed in Chapter 2. If we apply the trans-

formation in Equation 3.9, βx is unhanged. However, we have

∂2L
∂(β̂x)2

= −
∑

t

Var(Dx,t)(κ̂t)
2

= −
∑

t

Var(Dx,t)(κt + b)2

=
∂2L

∂(βx)2
+ 2b

∑

t

Var(Dx,t)κt − b2
∑

t

Var(Dx,t)

In this ase, the form of the information matrix with respet to βx has hanged under a

transformation whih did not hange βx itself. This needs to be taken into onsideration

arefully, and may explain the variation in the unertainty in the �tted mortality rates

observed in Renshaw and Haberman (2008) when the identi�ability onstraints are al-

tered.

Next, we onsider Bayesian tehniques, suh as MCMC. As disussed in Nielsen and

Nielsen (2014), these an often appear to solve identi�ability issues but in fat onfuse

and disguise them. The use of Bayesian methods often involves onsideration of the

posterior distribution, π, of the parameters given by

ln(π({α, β, κ})) = L(dx,t; {α, β, κ}) + ln(φ({α, β, κ})) + onstant

where φ is the prior distribution for the parameters. The log-likelihood funtion, L(dx,t; {α, β, κ}),
is unhanged by the invariant transformations of the model parameters and so does not

depend upon the hosen identi�ability onstraints. However, in general, the prior dis-

tribution φ will hange under these transformations, unless it is very arefully hosen.

This, in turn, means that the posterior distribution will also vary under the invariant

transformations of the model, and so will depend impliitly on any identi�ability on-

straints imposed.

A poorly hosen set of priors impliitly imposes a set of identi�ability onstraints upon

the model. For example, a prior distribution that assumes κ
(i)
t follows an AR(1) pro-

ess around zero impliitly imposes a level on the period parameters. These impliit

onstraints may on�it with the expliit onstraints subsequently imposed (suh as a

subsequent hoie of the level of κ
(i)
t ). Even when there are no on�its, this impliit

seletion of identi�ability onstraints is opaque and it is not lear whih features of the

posterior distribution are meaningful and whih are mere artefats of the identi�ability
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sheme impliit in the prior.

We therefore reommend that the prior distribution of the model parameters, φ, is se-

leted so that it is unhanged by the invariant transformations of the model. This enables

a single set of identi�ability onstraints to be imposed upon the model without internal

on�its, with these onstraints being lear and transparent to all other model users, and

with the posterior distribution being independent of the arbitrary hoie of identi�ability

onstraints (just as the likelihood is).

3.8.2 Hypothesis testing

Identi�ability issues also have important onsequenes if hypothesis testing on the pa-

rameters is performed. In general, hypotheses annot be tested on the parameter values

diretly, sine they depend upon the identi�ability onstraints. For instane, testing

the hypothesis κT = 0 in the LC model is meaningless, sine we an impose κT = 0

(or any other value) by our hoie of identi�ability onstraint. We might be tempted

to �nd ombinations of the parameters whih are invariant to the transformations of

the parameters and test hypotheses based on these. For instane, we may wish to test

the hypothesis that mortality is delining faster at age x1 than at age x2 using the LC

model. To do this, we might note that the expeted value of B ≡ βx1
βx2

is invariant un-

der the transformation in Equation 3.11 and so does not depend on the identi�ability

onstraints, making it a suitable andidate for hypothesis testing. However, we would

have to take are when using a statisti suh as this, sine it will be unde�ned in the

ase βx2 = 0, whih ould not be known before the model is �tted to data. In general,

therefore, any tests of hypotheses should be performed on observable quantities suh as

the �tted mortality rates rather than the model parameters.

Diret hypothesis testing of the parameters in an AP model is not often performed in

the literature, and therefore this disussion may appear to be of theoretial interest

only. However, it is ommon to use a variety of statistial tests when determining the

time series properties of the period funtions. For instane, in Lee and Carter (1992)

and Cairns et al. (2011a), Box-Jenkins methods were used to determine the preferred

time series proess for the period funtions of di�erent models. Based on the onlusions

above, in many ases, the results of these statistial tests will depend on arbitrary hoies

made when identifying the model. The properties typially tested, suh as stationarity,

lagged dependene and ross orrelation, will a�et our projeted mortality rates and
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so are matters of great pratial importane. We should therefore treat with extreme

aution the results of any suh analysis. This subjet is dealt with further in Setion 3.9.

In summary, not only do our estimates of the parameters of an AP model depend on the

identi�ability onstraints when �tting the model, so do our estimates of the unertainty

attahed to those parameter estimates. We should therefore avoid testing hypotheses on

these parameter estimates, as our results will be dependent on the arbitrary identi�a-

tion sheme imposed. In general, methods of estimating parameter unertainty whih

use bootstrapping tehniques on the �tted mortality rates, whih are independent of our

hoie of identi�ability onstraints, are likely to be preferred over methods whih target

the parameters diretly. We must still ensure, however, that our models are fully identi-

�ed when testing parameter unertainty, as the parameters in a poorly identi�ed model

may show spurious di�erenes in ways whih do not a�et the variability of the �tted

mortality rates.

3.9 Projetion

In the preeding setions, we have seen that AP mortality models are not uniquely iden-

ti�ed and that we need to impose arbitrary identi�ability onstraints on the parameters

in order �t them to historial data. Two di�erent modellers using the same data and

the same model but di�erent arbitrary identi�ation onstraints will, onsequently, ob-

tain di�erent sets of parameters, but these will give idential �tted mortality rates and,

therefore, �ts to the data.

For the majority of pratial purposes, we not only need to �t a mortality model to his-

torial data but also to use it to projet mortality rates into the future. In order to make

projetions of future mortality rates, we typially model the period parameters as being

generated by time series proesses and use these to projet the parameters stohastially

into the future. However, the time series proesses generating the period parameters are

unknown. To �nd whih proesses to use, we typially analyse the �tted parameters by

statistial methods, suh as the Box-Jenkins proedure, to determine whih proesses

from the ARIMA family provide the best �t.

Nevertheless, when it omes to projeting mortality rates, we need to reognise that

there is a fundamental symmetry between the proesses of estimating a model and pro-

jeting it. The former takes observations to alibrate the model, whilst the latter uses
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this alibration to produe projeted observations of the future. Due to this symmetry,

identi�ation issues whih exist when �tting the model may also yield problems when

projeting it.

We formalise this by saying that:

Two sets of model parameters, whih give idential �tted mortality rates for

the past, should give idential projeted mortality rates when projeted into

the future.

We say that time series proesses whih satisfy this property are �well-identi�ed�.

In partiular, the invariant transformations of the parameters of the model whih leave

the �tted mortality rates unhanged should also leave the projeted mortality rates un-

hanged and, hene, the time series proesses used to generate the projeted mortality

rates unhanged. Consequently, we should use the same time series proesses for all sets

of parameters from a model whih give the same �tted mortality rates. If this is not

the ase, di�erent proesses will be used for di�erent arbitrary identi�ability onstraints,

giving di�erent projeted mortality rates. A well-identi�ed time series proess should be

equally appropriate for all equivalent sets of parameters. For example, we should use

the same time series proesses to projet the period parameters shown in Figure 3.3a for

the LC2 model as those shown in Figure 3.3b. Similarly, we should use the time series

proesses to projet the period parameters in the CBDX models in Equations 3.18, 3.20

and 3.22, sine all three of these models are equivalent. To on�rm this, we need to

hek that applying the invariant transformations to the parameters, whih leave the

�tted mortality rates unhanged, do not also a�et the time series proesses used to

projet the parameters.

Current pratie is to:

1. �t the hosen model to data, imposing any arbitrary identi�ability onstraints

needed to speify the parameters uniquely;

2. selet time series proesses for projeting the parameters based on either using

a statistial method (suh as the Box-Jenkins proedure to selet the preferred

proesses from the ARIMA lass of models) or by diretly hoosing the time series
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proesses to ensure biologially reasonable

26

projetions by making an appeal to

the demographi signi�ane of the parameters.

However, suh an approah often leads to projetions of mortality rates whih are not

well-identi�ed. This is beause the seond step in the proess assumes that the parame-

ters found at the �rst step are known, rather than merely estimated up to an arbitrary

identi�ability onstraint. This means that urrent pratie builds the arbitrary identi�a-

bility onstraint into the projetion proess, ensuring that the projeted mortality rates

are also arbitrary.

In order to obtain well-identi�ed projetions, we need to selet our projetion methods

arefully. This means that the time series model we estimate based on the �tted param-

eters and projet into the future should not hange form under the transformations in

Equations 3.11 and 3.12. However, we saw in Setion 3.4 that we annot use the trans-

formation in Equation 3.11 in models with non-parametri age funtions. Therefore our

seletion of well-identi�ed projetion methods in suh models has to be subtly di�erent,

as disussed below.

3.9.1 Models with non-parametri age funtions

Consider the ase of projeting an AP mortality model with non-parametri age fun-

tions, whih has been �tted using data over the period [1, T ] to give mortality rates at

time τ > T . From Equation 3.2, we ould write this as

ηx,τ = αx + β⊤
x κτ

We an also see that the projeted mortality rates for the future are unhanged by the

use of the invariant transformations of the parameters in Equations 3.12 and 3.11, just

as the �tted mortality rates were for the past, i.e.,

ηx,τ = α̂x + β̂
⊤
x κ̂τ

26

The onept of biologial reasonableness was introdued in Cairns et al. (2006b) and de�ned as �a

method of reasoning used to establish a ausal assoiation (or relationship) between two fators that is

onsistent with existing medial knowledge�.
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where

κ̂τ = Aκτ +B

β̂
⊤
x = β⊤

xA
−1

α̂x = αx − β⊤
xA

−1B

Unlike the �tted parameters, however, the projeted κτ will be some random variable,

whose distribution is a funtion of the �tted parameters, i.e., κτ = Pκ(τ ; {κ}). We said

previously that we should use the same method of projetion for all sets of parameters

as a �rst step in ensuring that the projeted mortality rates do not depend upon the

identi�ability onstraints. However, for di�erent identi�ability onstraints, these pro-

esses will be estimated from di�erent sets of �tted parameters, e.g., if we use Pκ(τ ; {κ})
to projet the untransformed period parameters, we must use Pκ(τ ; {κ̂}) to projet the

transformed period parameters. If we ombine this with the invariane of the projeted

mortality rates, we have

αx + β⊤
x Pκ(τ ; {κ}) = α̂x + β̂

⊤
x Pκ(τ ; {κ̂})

αx + β⊤
x Pκ(τ ; {κ}) = αx − β⊤

xA
−1B + β⊤

xA
−1Pκ(τ ; {Aκ +B})

β⊤
x Pκ(τ ; {κ}) = β⊤

xA
−1 [Pκ(τ ; {Aκ +B})−B]

Pκ(τ ; {κ}) = A−1 [Pκ(τ ; {Aκ +B})−B]

Pκ(τ ; {Aκ +B}) = APκ(τ ; {κ}) +B (3.27)

for general βx, i.e., that the time series proesses we use to projet the period funtions

are loation and sale preserving. This is also disussed in Nielsen and Nielsen (2014).

One ommon pratie is to use univariate time series proesses to projet the period

funtions, on the grounds that they are unorrelated over the historial sample. For

example, in Hyndman and Ullah (2007, p. 4948), when onsidering the seletion of

suitable time series proesses for projeting a model with non-parametri age funtions,

it was stated

27

For N > 1 this is a multivariate time series problem. However, beause of

the way the basis funtions β
(i)
x have been hosen, the oe�ients κ

(i)
t and

κ
(j)
t are unorrelated for i 6= j. Therefore it is likely that univariate methods

will be adequate for foreasting eah series κ
(i)
t , for i = 1, . . . , N .

27

Notation has been adjusted to re�et that used in the urrent study.
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This logi was reiterated in Hyndman et al. (2013) for a related model, as �There is no

need to onsider vetor models beause the κ
(i)
t oe�ients are all unorrelated by on-

strution�.

However, we saw in Setion 3.5 that the lak of orrelation between the di�erent period

funtions is a produt of the hoie of identi�ability onstraints, and that we ould �nd

alternative parameters whih gave idential �tted mortality rates whih had non-zero or-

relation. Choosing univariate time series proesses will therefore not give well-identi�ed

projetions, but instead will give projeted mortality rates whih are dependent upon

the identi�ability onstraints hosen.

The �rst onlusion we an draw is that we should always use multivariate proesses

to projet mortality models with more than one age/period term. Using a multivariate

framework allows us to onsider the period funtions together and so enourages a uni�ed

approah to modelling them, rather than fousing on eah period funtion separately. It

also allows the invariant transformations in Equations 3.11 and 3.12 to be applied to the

time series proesses diretly to hek whether they are well-identi�ed.

The use of multivariate proesses means that the order of integration of eah of the

time series proesses should be the same. We should only onsider the stationarity of

the vetor proess as a whole, rather than of its individual omponents. It is ommon

pratie to use the highest order of integration for any of the individual period funtions

(usually �rst order) as the order of integration for all of them to avoid identi�ation issues.

We an see this by taking a general multivariate time series proess for κt from the lass

of VARIMA(p,d,q) proesses

∆dκt = µ+

p
∑

s=1

Φs∆
dκt−s +

q
∑

r=0

Ψrǫt−r (3.28)

and applying the transformations in Equation 3.11 and 3.12 to give

∆dκ̂t = Aµ+∆dB −
p
∑

s=1

AΦsA
−1∆dB +

p
∑

s=1

AΦsA
−1∆dκ̂t−s +

q
∑

r=0

AΨrǫt−r

= µ̂+

p
∑

s=1

Φ̂s∆
dκ̂t−s +

q
∑

r=0

Ψ̂rǫ̂t−r
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We therefore see that all general VARIMA(p,d,q) proesses are loation and sale invari-

ant in the sense of Equation 3.27, and so are well-identi�ed.

However, we also see from this that any spei� struture we impose a priori on µ, Φs

and Ψr will not be invariant under these transformations. Our seond onlusion is,

therefore, that we should not assume any pre-spei�ed loations, sales or orrelations

between our period funtions by assuming a prior struture for the matries governing

the time series proesses that drives them.

In pratie, in order to be invariant to transformations of the form in Equation 3.11,

we should always allow for the possibility of both ross-lags between the time series

and ontemporaneous orrelations between the innovations, even if these are not evident

from inspetion of the �tted time series. In situations where our arbitrary identi�ation

onstraints set some of these time series parameters to zero, this will emerge naturally

from their estimation and do not need to be imposed by the model user.

Finally, we observe that all VARIMA time series models are invariant to simple resal-

ings of the period funtions, i.e., using the transformation in Equation 3.11, the matrix

A being diagonal. Therefore, all time series proesses are invariant under alternative

hoies of normalisation sheme. However, having a onsistent sale for all period fun-

tions is desirable as it assists with the numerial estimation of the time series parameters.

In summary, the use of multivariate time series proesses means that we should not treat

the period funtions di�erently when projeting them, as the invariant transformation

in Equation 3.11 means that the age/period terms are interhangeable, whih, in turn,

means that we an rotate them without hanging the �t to data or the demographi

signi�ane of any of the parameters.

3.9.2 Projeting the LC2 model

As a pratial example of this, onsider projeting the LC2 model in Setion 3.5. Tests

on the �tted time series proesses from Figure 3.3a show that they are unorrelated,

whih is a diret result of the identi�ability onstraint

∑

t κ
(1)
t κ

(2)
t = 0. However, we saw

that the model period funtions given in Figure 3.3b had a orrelation of -75%, but gave

exatly the same �tted mortality rates. We should therefore use multivariate proesses
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for both set of parameters.

Testing these parameters for stationarity, we �nd that both of the period funtions in

Figure 3.3 are non-stationary. We would therefore be justi�ed in using a multivariate

random walk for both sets of period funtions (i.e., those from both Figure 3.3a and from

Figure 3.3b).

We an see diretly that this time series proess is well-identi�ed, sine if

κt = κt−1 + µ+ ǫt

then

κ̂t = κ̂t−1 +Aµ+Aǫt

after applying the transformations in Equations 3.12 and 3.11. We see that integrated

time series are unhanged by hanges in the level of the period funtions, and so are

automatially invariant to the transformation in Equation 3.12.

At this point, it is also worth noting an important side e�et of imposing orthogonality

on the period funtions in the LC2 model. κ
(1)
t is usually found to be linear to quite a

good approximation; so muh so that this was alled the �universal pattern of mortality

deline� in Tuljapurkar et al. (2000). By onstrution, therefore, κ
(2)
t annot be roughly

linear if we impose orthogonality, whih makes projeting it trikier. We believe that this

ould be one of the reasons why the LC2 model is not more widely used, despite being

a natural extension of the lassi LC model. Often, the seond term appears quadrati

to quite a good approximation.

28

Various authors (suh as Renshaw and Haberman

(2003b) and Yang et al. (2010)) have suggested using break points or �hinges� in order to

ontinue to use linear projetion proesses. However, this is a ase of seleting a time se-

ries proess spei�ally beause of a feature of the period funtions that is present solely

beause of the partiular identi�ability onstraints imposed, and therefore the resulting

projetions will not be well-identi�ed.

Using a multivariate random walk with drift for the time series proesses in Figures

3.3a and 3.3b gives the projeted κ
(2)
t period funtions in Figure 3.5a.

29

While these

28

For instane in Renshaw and Haberman (2003b), Hatzopoulos and Haberman (2009) and Yang et al.

(2010) as well as in Figure 3.3a.

29

As seen in Figure 3.3, the di�erene between the two κ
(1)
t parameters is very small.
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Figure 3.5: Projetions from the LC2 model

projetions appear quite di�erent, the projeted mortality rates from them at age 65,

shown in Figure 3.5b are idential, thereby demonstrating that we have, indeed, hosen

a well-identi�ed projetion method for the LC2 model.
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3.9.3 Models with parametri age funtions

In Setion 3.6, it was shown that models with parametri age funtions have subtly

di�erent identi�ability issues when �tting them to data to those with non-parametri

age funtions. This is due to the transformations in Equation 3.11 not being allowed,

sine they hanged the de�nition of the age funtions and hene gave a di�erent, but

equivalent, model. However, we saw that this meant we ould selet between equivalent

models, whih had di�erent de�nitions of the age funtions, but gave idential �tted mor-

tality rates. This was done in order to hoose models with desirable properties suh as

a ommon normalisation sheme and orthogonal age funtions. These subtle di�erenes

are also present when projeting the model.

First, the transformations in Equation 3.12 are used to impose a level on the period

funtions through identi�ability onstraints in models with parametri age funtions

in exatly the same manner as for models with non-parametri age funtions. Conse-

quently, we need to ensure that the time series proesses used to projet the period

funtions are identi�able under hanges in loation in exatly the same way as desribed

for non-parametri age/period terms above. This means either using integrated time

series proesses or allowing for mean reversion to a non-zero level.

However, the transformations in Equation 3.11 are not needed in models with paramet-

ri age funtions, sine applying them would fundamentally hange the model. Sine we

annot normalise the age funtions during the �tting proess, we must instead de�ne

normalised (or self-normalising) age funtions in advane. We annot impose orthogo-

nality on the age funtions, although we ould de�ne orthogonal age funtions a priori.

In addition, we annot impose orthogonality on the period funtions, as was done for the

LC2 model, and therefore the period funtions in models with parametri age funtions

will be orrelated in general. This means that it is natural to projet the period funtions

in suh models using multivariate time series proesses, just as we should in models with

non-parametri age funtions. However, beause the transformations in Equation 3.11

are not appliable in models with parametri age funtions, if we use a VARIMA(p,d,q)

time series proess for the period funtions, as in Equation 3.28, we only have to ensure

that the time series proess is invariant to the transformation in Equation 3.12. To do
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this, we substitute the transformed parameters, κ̂t = κy +B, into Equation 3.28 to �nd

∆dκ̂t = µ+∆dB −
p
∑

s=1

Φs∆
dB +

p
∑

s=1

Φs∆
dκ̂t−s +

q
∑

r=0

Ψrǫt−r

= µ̂+

p
∑

s=1

Φs∆
dκ̂t−s +

q
∑

r=0

Ψrǫt−r

Although the drift term, µ has hanged as a result of this transformation, the matries

Φs and Ψr have not. Consequently, we see that any struture we impose a priori upon

the moving average and autoorrelation of the time series proess is also unhanged by

hanges in the identi�ability onstraints in models with parametri age funtions. This

means that, in theory, it is possible to give eah term distint struture, suh as di�erent

orders of integration or numbers of lags. This may be felt to be desirable if doing so

gives projetions with greater demographi signi�ane.

For example, onsider the exponential model in Equation 3.19. In this, we interpret κ
(2)
t

as representing the omponent of mortality hange spei� to very young ages, in exess

of the hanges in general mortality rates governed by κ
(1)
t . If we had a strong prior belief

that these should mean-revert to a natural level (for instane, beause we believed that

infants should not reeive systematially better or worse medial are than the general

population), we might hose to allow our subjetive demographi signi�ane for the

term to overrule a purely statistial evaluation of the time series proess in this ase.

Beause we do not use the transformation in Equation 3.11 to enfore a onstraint when

�tting the model, we do not have to ensure that our projetion proess is robust to its

appliation when the model is projeted.

We may also feel that suh a restrition will give projeted mortality rates with greater

biologial reasonableness. For example, we may have biologial reasons for believing that

infant mortality rates should always be higher than those for young hildren at age �ve,

say. However, using a non-stationary time series proess for κ
(2)
t allows there to be se-

narios with non-zero probability where this is violated, and therefore we might wish to

use a stationary time series proess for κ
(2)
t to avoid any senarios felt to be biologially

unreasonable.

30

However, suh arguments ignore the fat that, for any model with parametri age fun-

tions, there are a range of equivalent models whih give idential �tted mortality rates

and so, ideally, should be projeted using the same time series proesses to give idential

30

Similar arguments were onsidered in Cairns et al. (2006a) and Plat (2009a).
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projeted mortality rates.

31

There may also be features, suh as hanges in trend, whih

are present in the period funtions for one model but absent in an equivalent model, and

so are not objetive features of the data. Sine these equivalent models are linked by the

transformation in Equation 3.11, it is still highly desirable to use general VARIMA pro-

esses, with no a priori struture plaed on them, just as for models with non-parametri

age funtions.

In pratie, it is not often that the demographi signi�ane of a term in an AP mortal-

ity model leads to spei� requirements about how it should be projeted. For instane,

while we may seek to rule out any possibility of mortality rates being lower at birth than

at age �ve in the exponential model, this is highly unlikely to our even if non-stationary

time series proesses are used for κ
(2)
t , sine it is inonsistent with the historial data.

We therefore reommend that general, well-identi�ed, multivariate VARIMA proesses

are used to projet the period funtions in models with parametri age funtions, un-

less these are shown experimentally to give biologially implausible projeted mortality

rates.

32

3.9.4 Summary

In summary, we an say that in order to obtain projetions whih are well-identi�ed

from an AP model, we need to work bakwards from our desire for time series pro-

esses whih do not hange form under the invariant transformations in Equations 3.11

and 3.12. This means that we should always use multivariate time series proesses, as

these support a uni�ed approah to projetion and allow us to hek identi�ability easily.

Identi�ability also means, in general, that we should not treat the di�erent period fun-

tions di�erently. In pratie, this means assuming as little struture a priori for the time

series proesses as possible and using the same order of integration for eah period fun-

tion. In models with parametri age funtions, however, there may be on�its between

31

As these are distint models, this is a weaker requirement than is neessary to be well-identi�ed

under our de�nition above.

32

In some irumstanes, there are lear on�its between the need for biologial reasonableness in

projeted mortality rates and the desire to use the same time series proesses for all period funtions and

in all equivalent models. These irumstanes do not often arise in AP mortality models, but are more

ommon in models with a ohort term whih generates additional identi�ability issues, and examples of

suh ases are disussed in Chapters 4 and 6. In suh irumstanes, it is usually preferable to hoose

proesses whih give biologially reasonable projetions rather than identi�ability under transformations

whih are not relevant in �tting the model.
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ahieving this and the biologial reasonableness of the projeted mortality rates. Treat-

ing the di�erent period funtions in the same manner is still highly desirable, however,

as it avoids using di�erent proesses to projet equivalent models, and often emerges

naturally out of a statistial analysis of the �tted period funtions. These onlusions

are summarised in Table 3.1 below.

Property of time series Non-parametri Parametri

proess used in projetion age funtions age funtions

Multivariate Essential Essential

Invariant to hanges in sale Automati Automati

Invariant to hanges in level

Essential Essential

(i.e., integrated or no preset level of mean reversion)

Correlation between period funtions Essential Highly desirable

Have same order of integration Essential Highly desirable

Inludes ross lags between period funtions

Essential Highly desirable

(if autoregressive)

Table 3.1: Requirements for identi�able projetion methods in AP mortality models

3.10 Conlusions

Most AP mortality models are not fully identi�ed, sine di�erent sets of parameters will

give idential �ts to the observable data. This lak of identi�ability requires us to impose

additional onstraints upon the parameters, whih may help us interpret them and give

them demographi signi�ane. However, these additional onstraints are hosen by the

model user and therefore are subjetive and arbitrary.

When using mortality models, it is important to be aware of all of the identi�ation issues

present and also how they need to be resolved. In many ases, this is done expliitly,

suh as in the model of Lee and Carter (1992). In others, it is done impliitly through

the use of partiular �tting proedures (e.g., Renshaw and Haberman (2003b) or Yang

et al. (2010)). In ases where it is done impliitly, the identi�ability onstraints should

still be learly stated. This ensures that users of the model an orretly identify features

of the �tted parameters whih relate to the data (and so are worthy of investigation) and

those whih are merely artefats of the identi�ation sheme (suh as the independene

of the period funtions in the LC2 model) and so are not. It also allows goodness of �t

tests whih use penalties based on the number of degrees of freedom in a model to be

used reliably.

90



Identi�ability in Age/Period Mortality Models

In addition, in parametri models, it is often desirable to selet the age funtions so that

they have a onsistent normalisation sheme based on a true norm, as this will allow

omparisons to be made between the di�erent age/period terms and will aid in the ro-

bustness of the projetions. For models where the age funtions have free parameters

that are set with referene to the data, it is desirable to use self-normalising age funtions

to improve the stability of the numerial algorithms used to estimate the parameters and,

hene, the model's robustness. However, these are properties of the age funtions whih

are seleted in advane of �tting the model, rather than being imposed during the �tting

proess via identi�ability onstraints.

These identi�ation issues also have onsequenes when projeting the models. In gen-

eral, in order to obtain identi�able projetions, we should hoose to projet the model

using multivariate proesses whih do not treat the period funtions di�erently. It is also

advisable to leave any vetor representation of the time series as unstrutured as possible

(i.e., using general time series parameter matries rather than imposing any struture

on them a priori) in order for the representation to be robust aross all identi�ation

shemes. Struture imposed through the arbitrary identi�ability onstraints will emerge

when estimating these parameters. In models with parametri age funtions, however,

the use of identi�able projetion methods is often desirable and natural, but may be

subordinated to our desire for biologial reasonableness in the projetions.

In short, identi�ation in AP mortality models is a non-trivial exerise whih requires

areful onsideration and has onsequenes when we use the models to ompare datasets

or projet future mortality rates. A lak of understanding of this an lead to projetions

whih depend upon the arbitrary deisions made by the model user rather than the data.

By understanding these issues, we an build more omplex mortality models, for instane,

via the �general proedure� of Chapter 5, and be on�dent that they are founded on a

seure knowledge of the underlying mathematial struture of AP models. The subjet

of identi�ability beomes onsiderably more ompliated when we move beyond the AP

struture to inlude the e�ets of year of birth (or ohort) as disussed in Chapter 4.

3.A Models without a stati age funtion

As disussed in Chapter 2, a number of AP mortality models have been proposed whih

do not have an expliit stati age funtion, αx. These inlude the CBD model of Cairns

et al. (2006a) and the model of Aro and Pennanen (2011), along with extensions of these.

In order to ahieve this, the age funtions in the model must be parametri and therefore
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known in advane of �tting the model to data. The struture of the AP model in this

ase is therefore

H = βκ

where H = {ηx,t} as in Setion 3.2.

In this ase, we see that the identi�ability issues in the model are simpli�ed relative to

the full struture in Equation 3.3. In partiular, we see that the transformation in Equa-

tion 3.12 is no longer relevant and so the loation of the period funtions is no longer

unidenti�ed. Instead, the loations of the period funtions are determined by the data

and we no longer need to set them through identi�ability onstraints. Further, in the

ase where the age funtions in the model are parametri, the transformation in Equation

3.11 is also no longer appliable, meaning that the model is fully identi�ed. This is why

no additional onstraints are required for the models in Cairns et al. (2006a) and Aro

and Pennanen (2011).

When projeting these models, we do not need to ensure that the time series proesses

are invariant to hanges in the loations of the period parameters. However, sine the

�tted period parameters will have levels set by the data and these will typially be signif-

iantly di�erent from zero, we need to allow for this possibility in our hoie of time series

proesses. Consequently, in pratie, time series proesses whih are either integrated or

have the level of the period funtions as a free parameter are often used to projet the

period funtions. For instane, Cairns et al. (2006a) and Aro and Pennanen (2011) both

used multivariate random walks with drift, whih are invariant to hanges in level even

though this property is not stritly required.

Alternatively, some studies impliitly dispense with a stati age funtion by �xing it in

advane. For instane, Renshaw and Haberman (2003b) imposed

αx =
1

T

∑

t

ln

(

dx,t

Ec
x,t

)

(3.29)

before estimating the other terms in the model. This sets the stati age funtion as the

average of observed mortality rates in the period. The value of the stati age funtion is

not subsequently revised when estimating the model.
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In this ase, the struture of the model beomes

H̃ = βκ

where H̃ =
{

ηx,t − 1
T

∑

τ ln
(

dx,τ
Ec

x,τ

)}

.

This means that Equation 3.12 is not an invariant transformation of the model and,

onsequently, the loations of the period funtions are identi�able (i.e., de�ned by the

data). Consequently, we do not need to then impose a onstraint on the level of the

period funtions and, indeed, annot do so without a�eting the �tted mortality rates.

This is important when it omes to assessing the number of degrees of freedom in the

mortality model, for instane, for the purposes of omparing the goodness of �t. For

models where the level of the period funtions is set via identi�ability onstraints, the

model has X +N(X + T ) parameters and impose N level onstraints and N2
sale and

orthogonality onstraints on the model. In ontrast, for models with a �xed stati age

funtion, the model has N(X + T ) free parameters and requires only the N2
sale and

orthogonality onstraints. Therefore, models with a �xed stati age funtion have X−N

fewer free parameters than might otherwise be expeted. This was not allowed for in

Haberman and Renshaw (2011) when omparing the goodness of �t for di�erent models,

whih brings some of the onlusions of that study into question.

We also note that, in ommon with most statistial models with a two-stage estimation

proess (as disussed in Murphy and Topel (2002)), parameters estimated at the seond

stage may be biased and have distorted asymptoti distributions, ompared with those

estimated by a one-stage proess. This is beause of the hierarhial struture of the

model: the seond-stage parameters are only estimated onditional on the estimates of

the �rst-stage parameters previously obtained, whih are not known with ertainty. To

avoid this, we must either use a one-stage estimation proess or use a bootstrapping

proedure, suh as those proposed in Brouhns et al. (2005) or Koissi et al. (2006) dis-

ussed in Setion 3.8.1. These will allow fully for the unertainty in both the parameters

estimated at the �rst and seond stages.

One reason for imposing the partiular form of the stati age funtion in Equation 3.29

is to give it approximately the same demographi signi�ane as that whih omes from

using the onstraint

∑

t κ
(i)
t = 0, i.e., that the stati age funtion should represent the

average mortality rate at eah age over the period of the data, as shown in Equation
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3.10. We might, therefore, expet to �nd

∑

t

κ
(i)
t 6= 0

for suh a model. The di�erene between imposing the form of the stati age funtion

in Equation 3.29 and the estimate of the stati age funtion found by maximising the �t

to data and applying the identi�ability onstraint will depend on whether there are any

systemati di�erenes aross periods between the �tted and observed mortality rates.

We might, therefore, expet the di�erene between the two to be small if the model is a

good �t to the data. Hene, for a model where the stati age funtion is imposed, how

di�erent the value of

∑

t κ
(i)
t is from zero is a measure of whether there are systemati

di�erenes between the observed and �tted mortality rates (i.e., whether there is stru-

ture remaining in the residuals from the model).

33

For models whih do not provide an

adequate �t to the data, there are likely to be systemati di�erenes between the �tted

and observed mortality rates and, hene, we will observe a value of

∑

t κ
(i)
t further from

zero if the stati age funtion is imposed.

Nevertheless, even for a well-�tting model, it should be borne in mind that the period

funtions do possess an identi�able level when projeting them, even if this is small. It

is therefore reommended that a non-zero level is allowed for in the time series proesses

used to projet the period funtions. In partiular, we should not assume that any of

the period funtions mean-revert around zero, but, instead, allow them to mean-revert

around an unspei�ed level. Nevertheless, this level would probably be lose to zero, if

the model is a good �t to the data, and ould be tested for statistial signi�ane (sine

it does not depend on an identi�ability onstraint).

In summary, models whih either impose the value of the stati age funtion a priori or

whih do not inlude an expliit stati age funtion, have a redued set of identi�ability

onstraints ompared with otherwise similar AP models where the stati age funtion

is unrestrited. Suh models have levels for the period funtions whih are set with

referene to the data rather than via an identi�ability onstraint. It is therefore neessary

to inlude the period funtion levels when making projetions from these models, even

if the levels that have been estimated are lose to zero. In most irumstanes, they

should therefore be treated in the same fashion as models with an expliit stati age

funtion. In ontrast, models with no expliit age funtion but with a ohort term

33

Indeed, if least squares methods are used to �t the model, the two are idential sine this �tting

proedure assumes that the residuals are independent and identially distributed.
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possess di�erent identi�ability issues to omparable models with an expliit stati age

funtion, as disussed in Chapter 4.

3.B Maximal invariants

An alternative approah to using an arbitrary identi�ation sheme was suggested by

Nielsen and Nielsen (2014). This is to hange the parameterisation of the model to an

equivalent form with redued dimensionality whih does not su�er from identi�ability

issues. We an think of this reparameterisation as mapping the old parameters to a new

set

g(α, β, κ) = {α̃, β̃, κ̃}

The new parameters are hosen so that the new parameter spae has the same dimension

as the model spae, M, and so the mapping

Θ̃(α̃, β̃, κ̃) = Θ(g(α, β, κ))

is injetive (and so will not su�er from identi�ation issues). The new parameters,

{α̃, β̃, κ̃}, are known as �maximal invariant� parameters, sine they are the set with the

largest number of parameters (i.e., are �maximal�), and are injetive and give the same

�tted mortality rates as the original model in Equation 3.1 (i.e., the reparameterisation

is �invariant�).

As all of the maximally invariant parameters are freely varying (i.e., unonstrained)

and dim({α̃, β̃, κ̃}) = dim(M) = X + N(X + T ) − N(N + 1), we see that there are

X+N(X+T )−N(N +1) parameters in the maximally invariant parameterisation. We

an think of this as �nding a parameterisation of the model whih gives the same �t to

data, but where every possible degree of freedom in the model is fully utilised in �tting

the data.

Nielsen and Nielsen (2014) showed that one way that maximal invariant parameters an

be used in the LC model in order to remove the lak of identi�ability under the transfor-

mation in Equation 3.9 is through the use of the orthogonal omplement to 1 (the T × 1

olumn vetor of ones de�ned in Setion 3.2). This is a T × (T − 1) matrix, 1⊥, used in

Setion 3.4, where every olumn is orthogonal to 1, i.e., 1

⊤
1⊥ = 0 .
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Using the identity I = 1(1⊤1)−1
1

⊤+1⊥(1
⊤
⊥1⊥)

−1
1

⊤
⊥, we an deompose Equation 3.3 as

H = α1⊤ + βκ(1(1⊤1)−1
1

⊤ + 1⊥(1
⊤
⊥1⊥)

−1
1

⊤
⊥)

= (α+ βκ1(1⊤1)−1)1⊤ + β(κ1⊥(1
⊤
⊥1⊥)

−1)1⊤⊥

= α̃1⊤ + βκ̃1⊤⊥ (3.30)

where κ̃ is now a N × (T − 1) matrix. We an see that if we transform the original

parameters using Equation 3.12 we obtain

˜̂κ = κ̂1⊥(1
⊤
⊥1⊥)

−1

= (κ+B1

⊤)1⊥(1
⊤
⊥1⊥)

−1

= κ1⊥(1
⊤
⊥1⊥)

−1

= κ̃

i.e., the lak of injetivity in the model is now between the mapping from the old pa-

rameterisation to the new, but the transformation of the new parameters to the �tted

mortality rates is injetive. This has expliitly redued the number of parameters in the

model from X+N(X+T ) to X+N(X+T−1) and means that the revised κ̃ parameters

have identi�able loation. However, the parameters are still not fully identi�ed under

the transformations in Equation 3.11, and therefore the maximally invariant reparame-

terisation has not ompletely solved the identi�ability issues in the model.

It is also apparent that this tehnique does not depend on the form of the matrix β.

Spei�ally, if we use parametri age funtions, then we an still use the same analysis

to remove the lak of identi�ability in the level of the period funtions.

Mathematially, the approah suggested in Nielsen and Nielsen (2014) is very elegant.

However, in pratie, the approah has hidden rather than removed the lak of identi�-

ability to the transformations in Equation 3.12. This is beause 1⊥ is not unique, but

an be hosen by the model user. The model user's hoie does not have any statistial

onsequenes and is equivalent to hoosing a basis in the (T −1) dimensional orthogonal

subspae of RT
spanned by 1⊥. Nonetheless , this hoie will have onsequenes when we

ome to interpret the demographi signi�ane and projet the parameters in the model.
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For instane, we might hoose

1⊥ =





















−1 0 0 · · ·
1 −1 0

0 1 −1

0 0 1
.

.

.

.

.

.





















(3.31)

This hoie means that (κ1⊥)
(i)
t orresponds to ∆κ

(i)
t = κ

(i)
t − κ

(i)
t−1, the �rst di�erenes

between suessive period parameters, whih is invariant to hange in the level of κ
(i)
t .

This has a natural interpretation and is related to modelling �mortality improvement

rates� as was done in Haberman and Renshaw (2012) and Mithell et al. (2013). Alter-

natively, we ould hoose

1⊥ =





















−1 −1 −1 · · ·
1 0 0

0 1 0

0 0 1
.

.

.

.

.

.





















(3.32)

This hoie implies that (κ1⊥)
(i)
t orresponds to κ

(i)
t − κ

(i)
1 , the hanges in the period

funtion from its initial value. This is also invariant to hange in the level of κ
(i)
t , but

will have a very di�erent pattern from that of the �rst di�erenes used previously (and

be projeted using di�erent methods). We ould onsider these hoies as analogous to

the imposition of the identi�ability onstraints

∑

t κ
(i)
t = 0 and κ

(i)
1 = 0, respetively.

Most statistial pakages will selet a 1⊥ matrix using a numerial algorithm and so

κ1⊥ will not have a natural interpretation, limiting the demographi signi�ane of any

maximally invariant parameters.

When we ome to projet the model, we will need to extend 1⊥ as well as κ̃t. For in-

stane, to projet τ years into the future, we will need to generate a ((T+τ)×(T+τ−1))

matrix 1̃⊥. However, in order to be onsistent with the �tted mortality rates, we will

also need to ensure that the (T × (T − 1)) upper left submatrix of 1̃⊥ is idential to

the matrix 1⊥ used when �tting the model. This may not be the ase when using some

ommon algorithms to generate these orthogonal matries, leading to inonsistenies be-

tween the �tted and projeted mortality rates, and so it is important that we understand

the method used to generate orthogonal matries in order to ensure onsisteny.
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Even more problemati, our hoie of 1⊥ might not preserve the time ordering of κt. For

instane, we an re-order the olumns of the 1⊥ matrix in Equation 3.31, so that (κ1⊥)
(i)

is still a row vetor of the �rst di�erenes in κ
(i)
t but not in hronologial order. Sine it

is the time-ordering of κ
(i)
t whih allows us to interpret it as a time series and projet it

into the future in order to foreast mortality rates, this is highly undesirable.

Furthermore, we have not removed the lak of identi�ability under the transformations

in Equation 3.11. We therefore will still need to impose a normalisation sheme on

the age/period terms and an selet orthogonal age funtions using this transformation.

Hene, muh of the disussion in Setion 3.9 is still relevant, even using a hoie for 1⊥

whih preserves the time ordering of κt.

In summary, the use of maximal invariants in AP mortality models has a number of

elegant mathematial properties. However, moving to this framework involves losing

muh of the demographi signi�ane assoiated with the parameters in a standard AP

mortality model and does not solve many of the key issues with projeting suh models.

It is, therefore, unlikely that suh an approah will be suitable for the purposes of most

users of mortality models.
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Chapter 4

Identi�ability in Age/Period/Cohort

Mortality Models

4.1 Introdution

Many modern models of mortality inlude parameters to apture the impat of lifelong

mortality e�ets whih follow individuals from birth, building on the �ndings of studies

suh as Wilmoth (1990) and Willets (1999, 2004). Understanding suh �ohort� e�ets

an be of ritial importane, espeially for those interested in understanding the mor-

tality experiene of a spei�ed group of lives, suh as members of a pension sheme or

poliyholders in an annuity book. Examples of models inorporating ohort parameters

inlude those proposed in Renshaw and Haberman (2006), Cairns et al. (2009), Plat

(2009a), O'Hare and Li (2012a), Börger et al. (2013) and Chapter 5.

In Chapter 2, we argued that the time has ome to undertake a more holisti analysis of

the lass of age/period/ohort (APC) models and began this analysis by outlining their

ommon struture. In Chapter 3, we foused on the subset of this lass without a ohort

term, namely on age/period (AP) models, and examined their identi�ability issues.

We found that, for AP models, there are a number of �invariant transformations� whih

hange the parameters, but not the �tted mortality rates. The existene of these trans-

formations lead to identi�ability issues, meaning that there are ertain features of the

parameters in a model whih are not de�ned by the data. Instead, they are only de-

termined by the arbitrary identi�ability onstraints we impose, and therefore have no

independent meaning. Consequently, we must be areful to ensure that our results from
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using mortality models do not depend upon these features of the parameters. These

issues with identi�ability an lead to models whih lak robustness when �tted to data,

ause us to draw faulty and erroneous onlusions when analysing the historial data,

and bias our projeted mortality rates in future. We also found that, unless we hoose

our projetion methods arefully, our projetions of mortality an depend upon the ar-

bitrary hoie of identi�ability onstraint. This should be avoided, so we disussed how

to hoose projetion methods whih give �well-identi�ed� projetions of mortality rates.

The addition of a set of ohort parameters to a mortality model an generate additional

identi�ability issues whih are fundamentally unlike anything present in otherwise sim-

ilar AP models. These are aused by the ollinearity between age, period and ohort.

In the ontext of the APC mortality models disussed in this study, we �nd that er-

tain deterministi trends found within the �tted parameters are unidenti�able by the

models, and therefore do not possess any meaning other than that imposed by our ar-

bitrary identi�ability onstraints. This, in turn, means that it is both more important

and more di�ult to ensure that projetions from these models are well-identi�ed, as

we must separate these unidenti�ed trends (whih depend entirely upon the identi�a-

bility onstraints) from the variation around the trends, whih is meaningful and needs

to be projeted onsistently with what has been observed in the past. Thus, although

the present study extends the work of Chapter 3, it is neessary to view the underlying

identi�ability issues in a fundamentally di�erent way and, onsequently, develop a new

set of tools to solve them.

In this hapter, we study the identi�ability issues present in some of the simplest APC

models in order to demonstrate the problems in ation and their potential resolution. In

these simple ases, the identi�ability issues an appear trivial, and their impat on our

analysis of historial and projeted mortality rates relatively minor. However, we believe

that it is vital to fully understand these issues in the ontext of simple models, sine they

beome onsiderably more important in more ompliated models. Indeed, reognising

these issues and solving them was vital to the development of the �general proedure�

for onstruting APC mortality models, desribed in Chapter 5, and appropriately pro-

jeting suh models, as we disuss in Chapters 6, 7 and 8.

The outline of the hapter is as follows. Setion 4.2 reviews the struture of general

APC mortality models desribed in Chapter 2. Setion 4.3 introdues the onept of

identi�ability in the ontext of the simplest and most widely used APC model and

develops our understanding of how ohort e�ets reate fundamentally new identi�ation
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issues in this model ompared with the simpler AP model. Setion 4.4 generalises this

by examining the issue of identi�ability in more general APC models with parametri

age funtions. Setion 4.5 investigates the onsequenes of identi�ation for projetion,

�rst by looking at the model disussed in Setion 4.3 and then in a more general ase.

Finally, Setion 4.6 onludes.

4.2 Struture of age/period/ohort models

An APC mortality model is one whih assumes that mortality rates an be modelled as

a series of terms involving funtions of age, x, period, t, and year of birth, y = t − x.1

This an be written as

ηx,t = αx +

N
∑

i=1

β(i)
x κ

(i)
t + γt−x (4.1)

where

• ηx,t is a link funtion to transform the response variable into a form suitable for

modelling and linking it to the proposed preditor struture;

• αx is a stati funtion of age;

2

• κ
(i)
t are period funtions governing the evolution of mortality with time;

• β
(i)
x are age funtions modulating the impat of the period funtion dynamis over

the age range; and

• γy is a ohort funtion desribing mortality e�ets whih depend upon a ohort's

year of birth and follow that ohort through life as as it ages.

We also note that the general APC mortality model in Equation 4.1 an be re-written

as

ηx,t = αx + β⊤
x κt + γt−x (4.2)

where

κt =
(

κ
(1)
t , . . . κ

(N)
t

)⊤

βx =
(

β
(1)
x , . . . β

(N)
x

)⊤

1

In this study, we assume that x ∈ [1, X] and t ∈ [1, T ] and hene that years of birth, y, are in the

range (1−X) to (T − 1). In pratie, x and t will be given by the range of the data being used.

2

We onsider models of the form of Equation 4.1 but without a stati age funtion in Appendix 4.B.
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This form is useful when projeting these models, as disussed in Setion 4.5.

The general struture of APC models was disussed in detail in Chapter 2. In partiular,

we found that APC mortality models have di�erent demographi signi�ane

3

depending

on whether the age funtions β
(i)
x are non-parametri

4

or parametri.

5

In Chapter 3, we used linear algebra to analyse the struture of AP mortality models

as mappings from a spae of parameters to a model spae, and found that in order for

these mapping to be unique, the spaes had to have the same dimension. In addition,

AP models an be sub-divided into those with parametri age funtions and those where

the age funtions are non-parametri. While the two families have similar identi�ability

issues, these needed to be solved using di�erent methods in order to preserve the demo-

graphi signi�ane of the parametri age funtions.

6

It is important to note that AP

mortality models are nested within the lass of APC models, and, therefore, all of the

issues raised in Chapter 3 are still appliable for APC mortality models.

APC models have additional identi�ability issues whih are fundamentally di�erent from

anything present in otherwise similar AP models, hene alternative methods are nees-

sary to analyse them. They are aused by the ollinearity between the dimensions of

age, period and ohort, beause period = year of birth + age. This gives us the free-

dom to re-write funtions of ohort as funtions of age and period, or vie versa. The

additional identi�ability issues generated by the ohort term depend fundamentally on

the de�nition of the age funtions within the model, and so are spei� to the model

in question. We �nd that APC models with non-parametri age funtions do not have

any extra identi�ability issues beyond those disussed for AP models in Chapter 3, as

shown in Appendix 4.A. Models with ertain types of parametri age funtions require

additional identi�ation as disussed in Setion 4.4.

In Chapter 2, we also found that di�ulties with estimating and assigning demographi

signi�ane to the ohort parameters mean that, in pratie, most models use only one

3

Demographi signi�ane is de�ned in Chapter 2 as the interpretation of the omponents of the model

being explainable in terms of the underlying biologial, medial or soio-eonomi auses of hanges in

mortality rates.

4

The values of the age funtions β
(i)
x at di�erent ages x are �tted without any a priori struture or

funtional form. See Chapter 2.

5

The age funtions β
(i)
x take a spei� funtional form β

(i)
x = f (i)(x; θ(i)), de�ned in advane of

�tting the model to data. For simpliity, the dependene of the age funtions on θ(i) is suppressed in

the remainder of this hapter.

6

These di�erent methods are not germane to the arguments in this study. Interested readers should

onsult Chapter 3.
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ohort term (without any modulating age funtion) and do not involve any age/ohort

interations for reasons of both simpliity and robustness. We follow the same approah

in this hapter, and so do not onsider models suh as that proposed in Renshaw and

Haberman (2006) or Model M8 in Cairns et al. (2009).

4.3 Identi�ability in the lassi APC model

The simplest APC model (referred to here as the �lassi APC model�) has a long history

and is widely used in the �elds of mediine, epidemiology and soiology as well as in

demography and atuarial siene.

7

It has the following form

ln(µx,t) = αx + κt + γt−x (4.3)

It an be seen that the lassi APC model has one age/period term with f(x) = 1, whih

is parametri in the sense de�ned in Chapter 2.

A model is fully identi�ed when all the parameters in it an be uniquely determined by

referene to the available data. In ontrast, the lassi APC model (as with most APC

models) is not fully identi�ed, beause there exist di�erent sets of parameters whih

will give the same �tted mortality rates and onsequently the same goodness of �t for

any data set. This phenomenon is not unique to APC mortality models. However, it is

very widespread in suh models and has signi�ant impliations when we ome to make

projetions using them.

The issue of identi�ability in the lassi APC model also has a very long history.

8

It is,

therefore, a good starting point to determine whether the issues raised in identifying the

parameters in Equation 4.3 an be generalised to the more omplex APC models used

in mortality modelling. We an see that this model is not fully identi�ed, sine if we use

the transformations in Equations 4.4, 4.5 and 4.6 to obtain new sets of parameters, we

7

For instane, see Hobraft et al. (1982), Osmond (1985), O'Brien (2000), Carstensen (2007) and

Kuang et al. (2008b).

8

For instane, see Glenn (1976), Fienberg and Mason (1979), Rodgers (1982), Holford (1983), Clayton

and Shi�ers (1987), Wilmoth (1990), Yang et al. (2004), Kuang et al. (2008a) and O'Brien (2011).
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do not hange the �tted mortality rates and hene the �t to the data

{α̂x, κ̂t, γ̂y} = {αx − a, κt + a, γy} (4.4)

{α̂x, κ̂t, γ̂y} = {αx − b, κt, γy + b} (4.5)

{α̂x, κ̂t, γ̂y} = {αx + c(x− x̄), κt − c(t− t̄), γy + c(y − ȳ)} (4.6)

where a bar denotes the arithmeti mean of the variable over the relevant data range.

9

We all suh transformations �invariant� for this reason. The existene of invariant trans-

formations means that the model possesses identi�ability issues, beause no one set of

parameters is determined uniquely from the data.

The transformation in Equation 4.6 is fundamentally unlike any of the transformations

present in AP models disussed in Chapter 3, sine it involves funtions of age, period

and year of birth rather than onstants. It is a onsequene of the ollinearity between

these dimensions, y = t − x, whih enables us to deompose a linear funtion of year

of birth into linear funtions of age and period, and vie versa. This transformation

generalises for many, more omplex APC models with parametri age/period terms, as

we disuss in Setion 4.4.

We say that linear trends in the data are �unidenti�able� by the model, that is, they an-

not be uniquely apportioned to either age, period or year of birth (as was disussed in

Wilmoth (1990)). The linear trends observed in the parameters of the lassi APC model

therefore have no independent meaning, as di�erent sets of parameters, with di�erent

linear trends will give exatly the same observable quantities suh as �tted mortality

rates.

The existene of unidenti�able linear trends in the lassi APC model is of pratial as

well as theoretial importane. This is beause we often see features of the (transformed)

mortality rates whih are approximately linear in age and time. For instane, the shape

of the age funtion, αx, is approximately linear at high ages,

10

whilst κt is often approx-

imately linear.

11

The struture of the model means that we are fundamentally unable

to separate these linear trends from a linear trend in the ohort parameters.

9

e.g., x̄ = 1
X

∑

x x = 0.5(X + 1).
10

If ηx,t = ln(µx,t), this is the Gompertz model, whilst if ηx,t = logit(qx,t), this is the Perks model for

mortality.

11

See, for instane, Tuljapurkar et al. (2000), who went so far as to all this the �universal pattern of

mortality deline�.
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Beause di�erent sets of parameters give the same �t to the data, we annot use the data

to apportion the linear trend to either the age, period or ohort terms. One method of

solving this issue is to move to a �maximally invariant� set of parameters, as disussed in

Kuang et al. (2008a) and Nielsen and Nielsen (2014), whih involves reparameterising the

model in an equivalent form with redued dimensionality, whih avoids the identi�ability

issues. This approah is disussed in Appendix 4.C.

An alternative and muh more ommon approah is to impose additional identi�ability

onstraints on the parameters in order to speify them uniquely.

12

These onstraints

manually apportion the linear trend between the di�erent terms in the model. Imposing

suitable onstraints on the model involves the seletion of a single set of parameters

from the family of equivalent parameter sets, all of whih give idential �tted mortality

rates. In this sense, the manual apportionment is arbitrary - it does not depend upon

any observable property of the data, but is a produt of the model user's subjetive

interpretation of the demographi signi�ane of the parameters.

For example, one set of identi�ability onstraints is

∑

t κt = 0,
∑

y nyγy = 0 and

∑

y nyγy(y − ȳ) = 0.13 These identi�ability onstraints allow us to impose our interpre-

tation of the demographi signi�ane of the parameters onto the model. For example,

the �rst two of the onstraints above mean that αx an be interpreted as an �average�

level of mortality at age x, over the period, with κt and γy representing deviations from

this average level. The third onstraint requires that there are no deterministi linear

trends within the �tted ohort parameters, sine any linear trend in these parameters

will be arbitrarily assigned to the age and period e�ets by using the transformation in

Equation 4.6. This is in line with the demographi signi�ane we assign to the ohort

parameters in Chapter 2.

However, it is important to note that these additional identi�ability onstraints are ar-

bitrary. For instane, the onstraints

∑

t κt = 0,
∑

y γy = 0 and

∑

y γy(y − ȳ) = 0

(used later in Setion 4.5.2) ould also be imposed and would give di�erent estimated

parameters with exatly the same �t to data and have the same demographi signi�-

ane. Further, the hoie of having no linear trend in the ohort parameters does not

have any independent meaning, sine it is entirely dependent upon the identi�ability

onstraints hosen. While these onstraints might allow us to interpret the demographi

12

We say that the transformations in Equations 4.4, 4.5 and 4.6 ause issues with the identi�ability

of the model.Identi�ation of the model is aomplished by imposing a set of identi�ability onstraints

and using the invariant transformations to ahieve these onstraints.

13

Here ny is the number of observations of ohort y in the data and so

∑

y nyγy =
∑

x,t γt−x.
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signi�ane of the parameters, this interpretation nevertheless depends entirely on the

user's judgement rather than on the underlying data. For instane, a di�erent hoie of

identi�ability onstraints ould be used to impose that the period parameters, κt, had

no linear trend, whih would give the parameters a di�erent demographi signi�ane

but leave the �tted mortality rates unhanged. We must, therefore, take are to ensure

that our projetions of observable quantities suh as mortality rates do not depend on

our arbitrary identi�ation sheme, as disussed in Setion 4.5.

4.4 Identi�ability in APC models with parametri age fun-

tions

Many of the more omplex APC mortality models being proposed ontain ohort param-

eters in the same form as in the lassi APC model (i.e., without an age modulating β
(0)
x

funtion). Cairns et al. (2009) and Haberman and Renshaw (2011) found that models

with a ohort term �t the data better than otherwise similar AP models, espeially for

the UK population, where a strong ohort e�et has been observed by Willets (1999,

2004) and others. It is therefore natural to ask whether the additional issues with identi-

�ability present in the lassi APC model are also present in these more omplex models.

In Appendix 4.A, we show that APC models with non-parametri age funtions do not

possess any additional, non-trivial identi�ation issues, beyond those found in similar

AP models disussed in Chapter 3. We have already seen, however, that in the simplest

ase of the lassi APC model, the additional struture in the model aused by having

a parametri age funtion ombined with the ollinearity of age, period and ohort an

yield new identi�ation issues.

For a general model with parametri age funtions

ηx,t = αx +

N
∑

i=1

f (i)(x)κ
(i)
t + γt−x (4.7)

we an try to generalise Equation 4.6 to look for invariant transformations of the form

{α̂x, f̂
(i)(x), κ̂

(i)
t , γ̂y} = {αx − a(x), f (i)(x), κ

(i)
t − k(i)(t), γy + g(y)} (4.8)
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where a(x), k(i)(t) and g(y) are smooth funtions.

14

Beause the formulae used for the

age funtions de�ne the model being used, in the sense of Chapter 2, we desire that they

do not hange under the invariant transformations, i.e., f̂ (i)(x) = f (i)(x). Transforma-

tions whih hanged the age funtions in the model would give a fundamentally di�erent

model, albeit one whih gave the same �t to the data. In Chapter 3, we alled di�erent

models, with di�erent de�nitions of the age funtions, that gave idential �ts to the data

�equivalent models�.

In order for the transformation in Equation 4.8 to leave Equation 4.7 unhanged, we

require

g(t− x) = a(x) +

N
∑

i=1

f (i)(x)k(i)(t) (4.9)

If this is true, we say that the deterministi trends k(i)(t) and g(y) are �unidenti�able�,

sine the model is unable to apportion them between the age/period and ohort terms,

in the same way as with the unidenti�able linear trends in the lassi APC model. In-

stead, we must manually apportion these trends by means of additional identi�ability

onstraints. These deterministi trends in the �tted parameters, therefore, lak any

objetive meaning, sine they are entirely dependent on the hoie of identi�ability on-

straints. Nevertheless, they must be allowed for when projeting the APC mortality

model, as disussed in Setion 4.5, even if they appear to be omparatively small.

The �rst thing to note from Equation 4.8 is the trivial ase where Equation 4.9 holds,

i.e., g(y) = a(x) = b, a onstant, and k(i)(t) = 0, ∀t. This is simply a transformation of

the form in Equation 4.5. It does not involve any age/period terms and so holds for all

APC models, inluding those with non-parametri age funtions.

To �nd less trivial transformations, we take a Taylor expansion of g(y) around −x,

assuming that it is an in�nitely di�erentiable funtion of year of birth

g(t− x) = g(−x) +
∞
∑

j=1

1

j!
tj

djg

dyj

∣

∣

∣

∣

y=−x

(4.10)

Comparing this to Equation 4.9, we an set a(x) = g(−x) and k(j)(t) = 1
j!t

j
if f (j)(x) =

djg
dyj

∣

∣

∣

y=−x
, i.e., the derivatives of g are a subset of the age funtions of the model. Models

14

While, αx and κt are only de�ned for integer x and t, the parametri age funtions f (i)(x) are de�ned
for ontinuous x and so it make sense to look for transformations whih also use ontinuous funtions,

as in the lassi APC model in Setion 4.3.
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of the form in Equation 4.7 have a �nite number, N , of age/period terms and, therefore,

we require that g(y) has a �nite series of derivatives. There are two ases when g will

have a �nite sequene of derivatives, either

1. the derivatives terminate after M ≤ N terms say, or

2. the form of the derivatives is ylial so that

dj+M g
dyj+M

∣

∣

∣

y=−x
= K djg

dyj

∣

∣

∣

y=−x
for some

integer M ≤ N and onstant K.

4.4.1 Polynomial age funtions

For the Taylor series to terminate in a �nite number of terms, we require that

djg
gyj

=

0, ∀j > M , and therefore that g(y) must be a polynomial in y of order M .

Theorem 4.1. APC mortality models of the form in Equation 4.1 and age funtions

spanning the polynomials to order M − 1 possess invariant transformations whih add a

polynomial of order M to the ohort funtion.

Sketh of Proof Take g(y), a general polynomial of order M , and expand as a

funtion of x and t. This an then be regrouped into an equivalent form that orresponds

to the age/period terms in the model, in order to see how g(y) an be absorbed into the

age/period struture

g(y) =

M
∑

n=0

any
n

⇒ g(t− x) =
M
∑

n=0

an(t− x)n

=

M
∑

n=0

an

n
∑

m=0

(

n

m

)

tm(−x)n−m

=
M
∑

n=0

an

[

(−x)n +
n
∑

m=1

(

n

m

)

tm(−x)n−m

]

=

M
∑

n=0

an(−x)n +

M
∑

n=1

n−1
∑

l=0

an

(

n

l

)

tn−l(−x)l

=
M
∑

n=0

an(−x)n +
M−1
∑

l=0

(−x)l
M
∑

n=l+1

an

(

n

l

)

tn−l

=

M
∑

n=0

an(−x)n +

M−1
∑

l=0

(−1)lf (l)(x)

M
∑

n=l+1

an

(

n

l

)

tn−l

= a(x) +
M−1
∑

l=0

f (l)(x)k(l)(t)
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If there are age funtions in the model of the form f (j)(x) = xj of j = 0, 1, . . . M −1, the

expression above orresponds to Equation 4.9 with a(x) =
∑M

n=0 an(−x)n and k(j)(t) =

(−1)j
∑M

n=j+1 an
(

n
j

)

tn−j
. More generally, we only require that the age funtions span

the �rst M − 1 polynomials, beause these are equivalent to a model with f (j)(x) = xj

suh as that in the derivation above.

We an think of the transformation as expanding the polynomial g(y) into terms in x and

t, grouping these and then ombining them with the appropriate age/period terms. A

model with age funtions spanning the �rstM−1 polynomials therefore has an additional

M +1 degrees of freedom (represented by the oe�ients, an, of the general polynomial)

whih do not a�et the �t to the data. This is similar to the analysis in Wilmoth (1990),

whih argues that higher order polynomial trends in the ohort parameters will ause

identi�ability problems in a mortality model if su�ient age/period terms of suitable

form exist within the model. These additional degrees of freedom mean that we need to

impose an additional M +1 identi�ability onstraints, whih assign the M +1 unidenti-

�able polynomial trends between the di�erent age/period and ohort terms in the model.

The simplest example of this is the transformation of the lassi APC model desribed

in Setion 4.3. This has a single parametri age funtion f(x) = 1 whih spans the

polynomials to order 0. The model will then allow �rst order polynomials (i.e., linear

terms) to be added to the ohort parameters with o�sets made to the stati life funtion

and the period term without hanging the �tted mortality rates. These are exatly the

invariant transformations desribed in Equations 4.5 and 4.6. Consequently, we impose

two additional identi�ability onstraints for the ohort parameters in the model to iden-

tify their level and linear trend.

4.4.1.1 The Plat models

In Plat (2009a), two new APC mortality models were introdued. These an be written

15

ln(µx,t) = αx + κ
(1)
t + (x− x̄)κ

(2)
t + (x̄− x)+κ

(3)
t + γt−x (4.11)

ln(µx,t) = αx + κ
(1)
t + (x− x̄)κ

(2)
t + γt−x (4.12)

The seond of these models was introdued as a simpli�ation of the �rst, with the expe-

tation that it would be more suitable for modelling mortality at high ages. We all the

model in Equation 4.11 the �Plat model� and the model in Equation 4.12 the �redued

15

We de�ne x+ ≡ max(x,0).
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Plat model� for this reason.

16

The �rst point to note is that both the Plat and redued Plat models nest the lassi

APC model, and therefore the invariant transformations in Equations 4.4, 4.5 and 4.6

are also appliable for both models.

The seond point to note is that these models also nest simple AP mortality models,

17

and therefore the results of Chapter 3 are still appliable. This means that the �loations�

of the period funtions are unde�ned and need to be identi�ed by imposing a onstraint

on their levels. Usually this is of the form

∑

t

κ
(i)
t = 0

These invariant transformations were noted by Plat (2009a) and used to impose suitable

identi�ability onstraints.

However, the third point to note is that both of these models have age funtions f (1)(x) =

1 and f (2)(x) = (x− x̄) whih span the polynomials to linear order. Using the result of

Theorem 4.1, we should be able to �nd a transformation of the parameters whih adds a

quadrati polynomial in y to the ohort parameters, but leaves the �tted mortality rates

unhanged. Indeed, we �nd that the transformation

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx − d(x− x̄)2,

κ
(1)
t − d(t− t̄)2, κ

(2)
t + 2d(t− t̄), γy + d(y − ȳ)2} (4.13)

leaves the �tted mortality rates unhanged for both the Plat and redued Plat models.

We say that these models have unidenti�able quadrati trends, whih have to be manu-

ally alloated between the di�erent parameters via identi�ability onstraints.

Hene, we require three identi�ability onstraints on the ohort parameters in the Plat

and redued Plat models, i.e., to apportion the level, linear trend and quadrati trend

between the di�erent age/period and ohort terms, plus identi�ability onstraints on the

levels of the period funtions. This means that for full identi�ation of the models, we

require an additional identi�ability onstraint to those disussed in Plat (2009a).

16

This model an also be thought of as an extension to model M6 in Cairns et al. (2009), with a stati

age funtion, or as an extension to the �CBDX� model disussed in Chapter 3 with a ohort term.

17

In partiular, both models nest the �CBDX� model disussed in Chapter 3.
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If the model user fails to alloate the quadrati trend between the di�erent terms via

an additional identi�ability onstraint, then the �tting algorithm will make an appor-

tionment in order to ahieve onvergene. However, this apportionment will not be

based on any partiular desired demographi signi�ane and will depend on the spei�

details of �tting algorithm, suh as the starting parameter values used. To illustrate,

instead of removing quadrati trends from the ohort parameters and apportioning them

to the age/period terms, the �tting algorithm may split any quadrati trends between

the ohort parameters and the age/period terms, giving values of γy with an apparent

quadrati trend in y. Not only is this ontrary to our desired demographi signi�ane, it

an make omparing parameters aross datasets di�ult due to the presene or absene

of quadrati trends whih do not have any meaning independent of the data.

In addition, a failure to fully identify the model an lead to ine�ient �tting algorithms,

whih take a long time to onverge to a solution, as disussed in Hunt and Villegas

(2015). Furthermore, they an also give parameter estimates whih are not robust to

small hanges in the data (e.g., an additional year of data), sine suh hanges an ause

the �tting algorithm to abruptly hange the alloation of the unidenti�able trends. For

these reasons, it is very important to ensure that the APC mortality models we use are

fully identi�ed by imposing su�ient identi�ability onstraints to uniquely estimate all

the parameters in the model.

Following the same approah as used for the lassi APC model, we might hoose to

impose the onstraints in Setion 4.3 and extend these to impose

∑

y ny(y− ȳ)2γy = 0 to

remove quadrati trends in the ohort parameters and apportion them to the age/period

terms. However, as with the lassi APC model, this hoie is arbitrary and a di�erent

hoie of onstraints will make no di�erene to the �tted mortality rates, only to the

interpretation we give to the parameters.

In Setion 4.3, we saw that the lak of identi�ability of the linear trends in the model,

due to the transformation in Equation 4.6, was of pratial as well as theoretial im-

portane beause linear trends were often observed in both the age and period terms.

Similarly, the transformation in Equation 4.13 is of pratial importane when �tting

the Plat model, beause we usually see some urvature in αx at high ages and also sys-

temati departures from the linearity of the period funtions.

18

These quadrati trends

will, therefore, not be distinguishable from a quadrati trend in the ohort parameters

18

For instane, see Booth et al. (2002), who urtailed the use of the data in the Lee and Carter (1992)

model based on when a linear assumption for κt is no longer appropriate.
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in the Plat model. However, beause the observed magnitude of suh trends is typially

smaller than the linear trends observed in the age/period terms, failure to fully identify

the quadrati trend in the data will typially have a lower, though still important, impat

than a failure to identify the linear trend.

It is worth noting that the transformation in Equation 4.13 does not treat the di�erent

period funtions equally, i.e., a term whih is quadrati in t is added to κ
(1)
t , a term linear

in t is added to κ
(2)
t , whilst κ

(3)
t is unhanged by the invariant transformation for the

Plat model. However, this is true only for the partiular de�nition of the age funtions

shown. To illustrate, instead of the Plat model in Equation 4.11, we ould instead have

hosen an equivalent model of the form

ln(µx,t) = αx + κ
(1)
t + (x− x̄)+κ

(2)
t + (x̄− x)+κ

(3)
t + γt−x (4.14)

Suh a model will trivially give the same �tted mortality rates as that in Equation

4.11 and has the same number of parameters, and so will have the same number of

identi�ability issues. However, the transformation orresponding to Equation 4.13 for

this model will now add terms linear in t to both κ
(2)
t and κ

(3)
t . Spei�ally, for this

model, we have the invariant transformation

{α̂x, κ̂
(1)
t , κ̂

(2)
t , κ̂

(3)
t , γ̂y} = {αx − d(x− x̄)2, κ

(1)
t − d(t− t̄)2,

κ
(2)
t − 2d(t− t̄), κ

(3)
t + 2d(t − t̄), γ + d(y − ȳ)2} (4.15)

in ontrast to the transformation in Equation 4.13. Spei�ally, we note that whilst the

transformation in Equation 4.13 did not involve κ
(3)
t , the transformation in Equation

4.15 does. The invariant transformations of the model are therefore spei� to the age

funtions present, and may be di�erent in di�erent models, even if those models give an

equivalent �t to data.

4.4.2 Exponential and trigonometri age funtions

The other ase where Equation 4.10 potentially yields invariant transformations of the

parameters ours when the derivatives of g(y) are ylial with period M ≤ N .

Theorem 4.2. APC mortality models of the form in Equation 4.1 with exponential or

trigonometri age funtions possess invariant transformations whih add similar expo-

nential or trigonometri funtions to the ohort parameters.

112



Identi�ability in Age/Period/Cohort Mortality Models

Sketh of Proof In order for the derivatives of g(y) to be ylial with period M , we

require

dMg

dyM
= Kg (4.16)

for some non-zero onstant K. Substituting this into Equation 4.10 and omparing with

Equation 4.9 gives

g(t− x) =

M−1
∑

j=0

djg

dyj

∣

∣

∣

∣

y=−x

∞
∑

k=1

1

(j + kM)!
tj+kM

=
M−1
∑

j=0

f (j)(x)k(t)

This is of the form of Equation 4.9 if we set k(t) =
∑∞

k=1
1

(j+kM)!t
j+kM

and have M age

funtions f (j)(x) = djg
dyj

∣

∣

∣

y=−x
present in the model. It is interesting to note, therefore,

that transformations of this form do not involve the stati age funtion, as there is no

term in the Taylor expansion of g(t− x) orresponding to a(x).19

Equation 4.16 has solutions of the form

g(y) =

M
∑

i=1

ℜ[ai exp(kiy)]

where ℜ[z] is the real part of the expression z, and the ki are the M roots of the equation

kMi = K. In general, these roots will be omplex, and, therefore, g(y) will be exponential,

trigonometri or a ombination of the two. In addition

f (j)(x) =
djg

dyj

∣

∣

∣

∣

y=−x

=
M
∑

i=1

ℜ[aikji exp(−kix)]

and so the age funtions present in the model will also be exponential or trigonometri.

Exponential age/period terms an be inluded in models onstruted using the �general

proedure� of Chapter 5, where they are typially used to explain infant mortality. As

19

This means that they are also present in models without a stati age funtion, as disussed in

Appendix 4.B.

113



Identi�ability in Age/Period/Cohort Mortality Models

an example, onsider a model of the form

ηx,t = αx + κ
(1)
t + e−λxκ

(2)
t + γt−x (4.17)

This is an extension of the �exponential� model of Chapter 3, with an additional ohort

term. We typially require λ > 0 to give the age funtion the demographi signi�ane

of governing rates of mortality at low ages. This model will allow the parameters to be

transformed using

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx, κ

(1)
t , κ

(2)
t − a eλt, γy + a eλy} (4.18)

This means that exponential trends in time within the (transformed) data are not

uniquely identi�able as either age/period or ohort e�ets.

20

This transformation gives

us an extra degree of freedom in the model whih ould be used to impose an additional

identi�ability onstraint.

In this ase, however, the imposition of an identi�ability onstraint will be of little pra-

tial importane. In Setion 4.3, we said that in order to be pratially important, the

unidenti�able deterministi trends must be present in both the age and period dimen-

sions of the transformed data. Whilst exponentially inreasing trends in the age funtion

are frequently observed in the data (due to low age mortality e�ets), exponential trends

in the period funtions are not.

21

We therefore do not experiene problems when �tting

the model to data as a result of any failure to be able to assign uniquely suh a trend to

the either age/period or the ohort terms.

As another example, onsider a model with trigonometri age funtions of the form

ηx,t = αx + κ
(1)
t + cos(θx)κ

(2)
t + sin(θx)κ

(3)
t + γt−x (4.19)

For this model, we an transform the parameters using

{α̂x, κ̂
(1)
t , κ̂

(2)
t , κ̂

(3)
t , γ̂y} = {αx, κ

(1)
t ,

κ
(2)
t − a cos(θt)− b sin(θt),

κ
(3)
t + a sin(θt) + b cos(θt),

γy + a cos(θy) + b sin(θy)} (4.20)

20

Note that this transformation has g(y) = a exp(λy) and therefore

dg

dy
= λg as per Equation 4.16.

21

An exponential inrease or derease in the period funtion will typially orrespond to super-

exponential growth or deline in the observed mortality rates if either ηx,t = ln(µx,t) or ηx,t = logit(qx,t).
Super-exponential growth in mortality rates are not typially observed.

114



Identi�ability in Age/Period/Cohort Mortality Models

This means that periodi patterns are not uniquely identi�able as either age/period or

ohort e�ets.

22

As with the exponential funtions, the presene of unidenti�able trigonometri trends

in the model will be of little pratial importane. Whilst the (transformed) data often

exhibits periodi behaviour in the ohort and period e�ets, it is rare to see periodi

behaviour aross ages.

23

Again, we do not have the unidenti�able deterministi trends

for the model in both the age and period dimensions and onsequently do not experiene

pratial di�ulties when �tting the model to data as a result of any failure to be able

to assign uniquely suh trends to the either age/period or the ohort terms.

4.4.3 Other age funtions

Other parametri age funtions do not admit any additional invariant transformations

involving the ohort parameters, exept in the ase where they are atually rede�ned

polynomials, exponentials or trigonometri funtions. For instane, the third age/period

term in the Plat model did not generate any extra interations with the ohort param-

eters, beyond those of the redued Plat model. This simpli�es the identi�ability issues

of more omplex mortality models with di�erent types of age funtions, suh as those

produed by the �general proedure� of Chapter 5, ompared with what would otherwise

be neessary, were, for instane, only polynomial age funtions to be used.

4.4.4 Summary

In summary, issues with the identi�ability of APC models relate to funtions of year of

birth whih an be deomposed into purely age/period terms. However, this is only true

in models where the age funtions take spei� parametri forms - namely polynomial,

exponential and trigonometri funtions. In suh models, ertain deterministi trends

annot be uniquely alloated between the age/period and ohort terms in the model

and so require the imposition of arbitrary identi�ability onstraints in order to uniquely

speify the model.

24

This is summarised in the �ow hart in Figure 4.1.

22

Note that this transformation has g(y) = a cos(θy) + b sin(θy) and therefore

d2g

dy2 = −θ2g as per

Equation 4.16.

23

The lak of periodi struture aross ages also explains why trigonometri age funtions are not

widely used in pratie.

24

As disussed in Appendix 4.B, APC mortality models with non-parametri age funtions will not

have any additional transformations that leave the �tted mortality rates exatly unhanged. However,
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4.5 Projetion

In the preeding setions, we have seen that APC mortality models are not fully iden-

ti�ed and that we an impose arbitrary identi�ability onstraints on the parameters in

order to �t them to the historial data. Two di�erent modellers using the same data and

the same model but di�erent arbitrary identi�ation onstraints will obtain di�erent sets

of parameters, but these will give idential �tted mortality surfaes and, therefore, �ts

to the data.

For the majority of pratial purposes, we not only need to �t a mortality model to

historial data but also to use it to projet mortality rates into the future. In Chapter

3, we found that we needed to be areful when doing so in AP mortality models in order

to ensure that the projeted mortality rates will not depend on the arbitrary identi�a-

bility onstraints imposed when �tting the models to data. The same is true in APC

mortality models. However, the addition of a set of ohort parameters and the presene

of unidenti�able deterministi trends ompliate this analysis signi�antly.

The most obvious hange when moving from an AP to an otherwise similar APC mor-

tality model is the presene of a set of ohort parameters whih will also need to be

projeted into the future. The period and ohort parameters in the APC model are

oneptually di�erent and need to be treated separately when making projetions. This

is beause ohort e�ets have very di�erent demographi signi�ane from the period ef-

fets and are treated separately when �tting the model. It is therefore ommon pratie

to projet the period and ohort parameters independently.

Some authors (e.g., Haberman and Renshaw (2011)) disagree with this approah, argu-

ing that it may only be appropriate to do this when the ohort parameters are estimated

using the residuals from the �tted primary age/period struture. This means that the

ohort struture �tted by the model is independent of the age/period struture by on-

strution. However, suh �tting tehniques will not give parameter estimates whih

maximise the �t to data and an lead to hierarhial issues (beause the ohort param-

eters are only estimated onditional on the previously �tted estimates of the age/period

struture). We, therefore, have a lear preferene for model �tting tehniques where all

suh models may have transformations that leave the �tted mortality rates approximately unhanged,

as disussed in Hunt and Villegas (2015).
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parameters are estimated together in order to generate the best �t to the historial data.

25

More generally, it is oneivable that events suh as in�uenza pandemis will ause both

an immediate rise in mortality and also lifelong health e�ets in infants born during the

pandemi due to seletion e�ets, leading to orrelations between extreme period and

ohort e�ets. However, it is di�ult to analyse any dependene struture between the

ohort and period parameters as the ohort parameters will be observed over a longer

time period, but potentially at a lag of some deades. While it is possible that some

extreme mortality events may generate distintive e�ets in both the period and ohort

parameters, the evidene supporting this onjeture is urrently ambiguous (for instane,

see Murphy (2009)) and will not generally be relevant for more typial period and ohort

e�ets. An assumption of independene is, therefore, both pratial and parsimonious.

In order to make projetions of future mortality rates, we typially model the period

and ohort parameters as being generated by independent time series proesses and use

these to projet the parameters stohastially into the future. However, the preise form

of the time series proesses generating the parameters is unknown. Therefore, we anal-

yse the �tted parameters by statistial methods, suh as the Box-Jenkins proedure, to

determine whih proesses from the ARIMA family provide the best �t.

Nevertheless, when it omes to projeting mortality rates, we need to reognise that

there is a fundamental symmetry between the proesses of estimating a model and pro-

jeting it: the former takes observations to alibrate the model, whilst the latter uses

this alibration to produe projeted observations of the future. Due to this symmetry,

identi�ation issues whih exist when �tting the model may also yield problems when

projeting it. When estimating the model, these identi�ability issues were solved by

imposing arbitrary identi�ability onstraints on the parameters. However, any time se-

ries struture that we �nd in the parameters needs to be independent of the arbitrary

identi�ation sheme used when �tting the model to historial data.

We formalise this by saying that:

Two sets of model parameters, whih give idential �tted mortality rates for

the past, should give idential projeted mortality rates when projeted into

the future.

25

For example, in the general proedure of Chapter 5, all parameters are re-estimated every time the

struture of the model is hanged, in order to ensure a lose �t to the data.
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We say that time series proesses whih satisfy this property are �well-identi�ed�.

In partiular, the invariant transformations of the parameters of the model whih leave

the �tted mortality rates unhanged should also leave the projeted mortality rates un-

hanged and, hene, the time series proesses used to generate the projeted mortality

rates unhanged. Consequently, we should use the same time series proesses for all sets

of parameters from a model whih give the same �tted mortality rates. If this is not

the ase, di�erent proesses will be used for di�erent arbitrary identi�ability onstraints,

giving di�erent projeted mortality rates. A well-identi�ed time series proess should

be equally appropriate for all equivalent sets of parameters. To on�rm this, we need

to hek that applying the invariant transformations to the parameters, whih leave the

�tted mortality rates unhanged, do not also a�et the time series proesses used to

projet the parameters.

Chapter 3 disussed how the identi�ation issues in the lass of AP models meant that

methods for projeting the period parameters from these models into the future needed

to be hosen with are in order to ensure they are well-identi�ed. In general, we argued

that we should hoose to projet the model using multivariate methods whih are as

unstrutured as possible, i.e., we should not impose features suh as independene, levels

of mean reversion or di�erent orders of integration on the time series a priori, but allow

these to emerge during the �tting proess. However, we also saw that, in models with

parametri age funtions, the age/period terms were no longer interhangeable one we

de�ned their forms in the model. This allowed us to prioritise biologial reasonableness

26

over using the same proesses for equivalent models, i.e., models giving the same �tted

mortality rates with di�erent de�nitions of the age funtions.

Current pratie is to:

1. �t the hosen model to data, imposing any arbitrary identi�ability onstraints

needed in order to speify the parameters uniquely;

2. selet time series proesses for projeting the parameters based on either using

a statistial method (suh as the Box-Jenkins proedure to selet the preferred

proesses from the ARIMA lass of models) or by diretly hoosing the time series

proesses to ensure biologially reasonable projetions by making an appeal to the

demographi signi�ane of the parameters.

26

Introdued in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a ausal

assoiation (or relationship) between two fators that is onsistent with existing medial knowledge�.
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However, suh an approah often leads to projetions of mortality rates whih are not

well-identi�ed. This is beause the seond step assumes that the parameters found at the

�rst step are known, rather than merely estimated up to an arbitrary identi�ability on-

straint. This means that urrent pratie builds the arbitrary identi�ability onstraint

into the projetion proess, ensuring that the projeted mortality rates are also arbitrary.

To avoid this, we propose to work bakwards from our desire for projetions whih are

biologially reasonable and well-identi�ed to determine the time series proesses we need

to use to ahieve these aims. Before �tting the model, we need to ondut a thorough

analysis of the identi�ability issues in the hosen model, using the priniples established

in Setion 4.4, to determine whih features of the parameters are set by the data and

whih are set by the arbitrary identi�ability onstraints. Then, suitable time series pro-

esses should be seleted to model only the former, identi�able features of the parameters,

while still allowing for the unidenti�able trends in a way that guarantees that they do

not a�et the projetion of future mortality rates. By following this proedure, we an

ensure that the time series proesses are well-identi�ed and that the projeted mortality

rates do not depend on the arbitrary hoies we make when �tting the model.

In this setion, we will �rst look at the broad set of riteria needed for well-identi�ed

projetion methods in general APC mortality models in Setion 4.5.1. Setion 4.5.2 looks

in more detail at why urrent pratie an lead to projetions whih are not well-identi�ed

and depend on the arbitrary identi�ability onstraints hosen in the ontext of the lassi

APC model from Setion 4.3. We then revisit the general ase of an APC mortality model

in Setion 4.5.3, in order to determine general rules for hoosing time series proesses

whih are well-identi�ed. These are then applied in the ontext of the lassi APC model

again in Setion 4.5.4 and it is demonstrated that projeted mortality rates are genuinely

independent of the hoie of arbitrary identi�ability onstraint. Setion 4.5.5 then applies

the general rules in the ontext of the Plat model from Plat (2009a) and Setion 4.4.1.1

to see how they work in the ontext of more sophistiated mortality models with more

omplex identi�ability issues.

4.5.1 Projeting general APC models

Consider the ase of projeting an APC mortality model, whih has been �tted using

data over the period [1, T ] to give mortality rates at time τ > T . From Equation 4.2, we
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ould write this as

ηx,τ = αx + β⊤
x κτ + γτ−x

If the model has identi�ability issues, then the projeted mortality rates should be un-

hanged under exatly the same invariant transformations as the �tted mortality rates

were, i.e., if we have an invariant transformation of the form of Equation 4.8, namely

α̂x = αx − a(x)

β̂x = βx

κ̂t = κt − k(t)

γ̂y = γy + g(y)

where a(x), k(i)(t) and g(y) satisfy Equation 4.9, in whih ase

ηx,τ = α̂x + β̂
⊤
x κ̂τ + γ̂τ−x

The projeted κτ (and potentially the γτ−x) will be random variables, whose distribution

is a funtion of the historial, �tted values, i.e., κτ = Pκ(τ ; {κ}) and γy = Pγ(y; {γ}).
We said previously that we should use the same method of projetion for all sets of

parameters as a �rst step to ensure that the projeted mortality rates do not depend

upon the identi�ability onstraints. However, for di�erent identi�ability onstraints,

these proesses will be estimated from di�erent sets of �tted parameters, e.g., if we use

Pκ(τ ; {κ}) to projet the untransformed period parameters, we must use Pκ(τ ; {κ̂}) to
projet the transformed period parameters. If we ombine this with the invariane of the

projeted mortality rates, we have

αx + β⊤
x Pκ(τ ; {κ}) + Pγ(τ − x; {γ}) = α̂x + β̂

⊤
x Pκ(τ ; {κ̂}) + Pγ(τ − x; {γ̂})

= αx − a(x) + β⊤
x Pκ(τ ; {κ − k}) + Pγ(τ − x; {γ + g})

Pγ(τ − x; {γ + g})− Pγ(τ − x; {γ}) = a(x) + β⊤
x (Pκ(τ ; {κ})− Pκ(τ ; {κ − k}))

Using Equation 4.9, we an eliminate a(x)

Pγ(τ − x; {γ + g}) − Pγ(τ − x; {γ}) = g(τ − x) + β⊤
x (Pκ(τ ; {κ})− Pκ(τ ; {κ − k})− k(τ))

In order for this to hold for all τ and x requires

Pκ(τ ; {κ − k}) = Pκ(τ ; {κ})− k(τ) (4.21)

Pγ(y; {γ + g}) = Pγ(y; {γ}) + g(y) (4.22)
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This means that we should obtain the same results if we projet the transformed param-

eters as if we transform the projeted parameters, i.e., the proesses of projetion and

transformation are ommutative. Consequently, we see that, in order for a projetion

method to be well-identi�ed under the invariant transformation, it needs to preserve the

unidenti�able trends in the model, i.e., Pκ must preserve the trends k(t), and Pγ must

preserve the trend g(y). This also means that it does not matter in whih order we per-

form the proesses of projetion and transformation, the distribution of the transformed

parameters projeted into the future will be idential to the distribution of the projeted

parameters whih are then transformed.

In addition, sine

Var(κτ ) = Var(κτ − k(τ)) = Var(κ̂t)

Var(γy) = Var(γy + g(y)) = Var(γ̂y)

we note that the variability of the parameters around the trend is identi�able and so

does have a meaning independent of the identi�ability onstraints imposed. Therefore,

we onlude that, while the deterministi trends may be unidenti�able and not meaning-

ful, the variation around the trend is of genuine signi�ane, sine it is independent of

the identi�ability onstraints. Therefore, this variation needs to be projeted onsistent

with our demographi signi�ane for the parameters and what has been observed in the

historial data.

However, the time series proesses seleted via urrent pratie often do not preserve the

unidenti�able trends in the period and ohort parameters, as we shall now see using the

lassi APC model.

4.5.2 Projeting the lassi APC model

It has long been known, at least sine Osmond (1985), that the lak of identi�ability in

the lassi APC model has important onsequenes when making projetions from the

model. Di�erent sets of arbitrary identi�ability onstraints are based on di�erent allo-

ations of the linear trends in the data between the age, period and ohort parameters.

The outome of urrent pratie an therefore be in�uened by the presene or absene

of a linear trend in the �tted parameters, despite this being purely dependent upon the

identi�ability onstraints hosen.
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To illustrate this, we onsider projeting the lassi APC model �tted using four di�erent

sets of identi�ability onstraints. The �tted mortality rates given using these four sets

of onstraints are idential; however, the time series proesses found by urrent pratie

di�er whih means that urrent pratie would give di�erent projeted mortality rates in

the four di�erent ases. Consequently, these time series proesses are not well-identi�ed.

We start by �tting the lassi APC model to mortality data for the USA from Human

Mortality Database (2014) for ages 50 to 100 and year 1950 to 2010. As disussed in

Setion 4.3, a number of equally valid identi�ability onstraints an be imposed on this

model, whih give idential �tted mortality rates. We onsider the following four sets of

identi�ability onstraints:

Case 1:

∑

t κt = 0,
∑

y nyγy =
∑

x,t γt−x = 0 and
∑

y nyγy(y− ȳ) =
∑

x,t γt−x((t− t̄)−
(x− x̄)) = 0. This was disussed in Setion 4.3 and restrits the ohort parameters

to be zero on average and without any linear trends, onsistent with our desired

demographi signi�ane for the ohort parameters.

Case 2:

∑

t κt = 0,
∑

y γy = 0 and

∑

y γy(y − ȳ) = 0. These onstraints impose the

same demographi interpretation on the parameters, exept that the averages are

not weighted by the number of observations of eah ohort.

Case 3:

∑

t κt = 0,
∑

x,t γt−x = 0 and

∑

x,t γt−x(x − x̄) = 0. This set of onstraints is

the same as imposed on the lassi APC model in Cairns et al. (2009), where it

was written as imposing

∑

x(αx − 1
T

∑

t ηx,t)(x − x̄) = 0, i.e., that the stati age

funtion, αx, explains all the linearity aross ages in the data.

Case 4:

∑

t κt = 0,
∑

x,t γt−x = 0 and

∑

x,t γt−x(t− t̄) = 0. Similar to Case 3, this set

of onstraints imposes that the period funtion, κt, aounts for all of the linearity

aross years in the data.

The �rst thing to note is that all of these onstraints were developed to give the ohort

parameters the same demographi signi�ane, i.e., that they should be entred on zero

and the other funtions in the model should apture any linear trends. Beause of this,

the �tted parameters in eah ase are very similar. However, they are not idential, unlike

the �tted mortality rates. We therefore see that demographi signi�ane, whilst helpful

in seleting an appropriate set of identi�ability onstraints, does not speify a unique set

of onstraints to use. Model users with the same interpretation of the parameters an

reasonably hoose to impose di�erent onstraints and obtain di�erent �tted parameters

when using the same model with the same data. The fat that demographi signi�ane

is subjetive and, in pratie, di�erent model users adopt a range of interpretations for
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the di�erent parameters highlights the fat that we must take are to ensure that any

onlusions regarding projeted mortality rates are independent of the arbitrary hoie

of onstraints made when �tting the model, and undersores the extent to whih the

identi�ability onstraints we hoose is arbitrary.

Current pratie is to take the �tted parameters and then determine whih time series

proesses to use to projet them. This may involve performing a Box-Jenkins analysis

on the �tted parameters, as was done in Lee and Carter (1992) and Cairns et al. (2011a).

Alternatively, urrent pratie may appeal to the demographi signi�ane assigned to

the parameters, as in Plat (2009a). Suh an appeal might determine that the period

funtion is non-stationary (as it is primarily responsible for the evolution of mortality)

and, based on the disussion in Chapter 2, that the ohort parameters are stationary

around zero. It might therefore appear reasonable to hoose

27

to use a random walk with

drift proess for κt and an AR(1) proess for γy

κt = κt−1 + µ+ ǫt (4.23)

γy = ργy−1 + εy (4.24)

Table 4.1 shows the �tted parameters for the four ases above using these time series

proesses.

Case 1 Case 2 Case 3 Case 4

κ2010 -0.3526 -0.3439 -0.3550 -0.3478

µ -0.0110 -0.0107 -0.0111 -0.0109

σκ = StDev(ǫt) 0.0161 0.0161 0.0161 0.0161

γ1950 -0.1459 -0.1125 -0.1422 -0.1530

ρ 0.9513 0.9577 0.9499 0.9542

σγ = StDev(εy) 0.0193 0.0184 0.0193 0.0194

Table 4.1: Time series parameters for the period and ohort funtions in the lassi

APC model �tted using di�erent identi�ability onstraints

For τ − x > 1950,28 we �nd

Eηx,τ = αx + κ2010 + (τ − 2010)µ + ρτ−x−1950γ1950 (4.25)

27

Note that we are not saying that these are the most appropriate time series proesses to use for this

set of parameters. We use them for illustrative purposes as they are relatively simple and not atypial

of the proesses used in pratie. However, it is important to observe that seleting alternative time

series proesses on a purely statistial basis from the �tted parameters would not solve the issues we

have identi�ed.

28

That is, for ohort parameters that are projeted rather than �tted from historial data, taking into

onsideration that ohort parameters for the ten most reent years of birth are not �tted from the data

due to insu�ient observations.
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Year
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Figure 4.2: Projeted µ60,t using di�erent sets of identi�ability onstraints

We an therefore see that, inserting the �tted time series parameters from Table 4.1

for the four di�erent ases, we do not �nd the same expeted values for the future

mortality rates.

29

This is shown in Figure 4.2. In addition, the variability of the projeted

parameters depends on σκ, ρ and σγ . However, ρ and σγ di�er between ases, meaning

that the variability of projeted mortality rates will also be di�erent for the di�erent

ases. These di�erenes in the distribution of projeted mortality rates might be felt to

be relatively small, although they will grow with projetion time. However, the most

important point is that the di�erenes should not exist at all - the �tted mortality rates

for the di�erent ases were idential and so should be the distribution of the projeted

mortality rates. We therefore see that the time series proesses used above to projet

the lassi APC model are not well-identi�ed.

4.5.3 Projeting general APC mortality models: Revisited

From Setion 4.5.1 above, we note that we must use the same time series proesses to

projet sets of parameters whih give idential �tted mortality rates, i.e., if Pγ(y; {γ})
29

For example, Eη60,2020 = −4.5449 for the Case 1 parameters, −4.5598 for the Case 2 parameters,

−4.5459 for the Case 3 parameters and −4.5433 for the Case 4 parameters.
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is a suitable proess (with time series parameters estimated from the �tted ohort pa-

rameters, {γy}), then Pγ(y; {γ̂}) is a suitable proess, albeit with time series parameters

estimated from the transformed ohort parameters, {γ̂y = γy + g(y)}.

In pratie, we usually desribe our projetion methods in terms of time series proesses

rather than projetion funtions. However, the two are equivalent, sine the projetion

funtion is found by �solving� the di�erene equation form of the time series. For instane,

the AR(1) proess has the di�erene equation form in Equation 4.24, but has solution

Pγ(y; {γ}) = ρy−Y γY +

y
∑

s=Y+1

ρy−sεs

where Y is the last year of birth for whih we �tted the ohort parameters.

The general form of ARIMA di�erene equations for γy an be written as

30

(1− L)dΦ(L)(γy − Γ(y)) = Ψ(L)εy (4.26)

where L is the lag operator, d is the order of integration of the proess, Φ and Ψ are

polynomials of order p and q governing the autoregressive and moving average parts of

the proess, respetively,

31 εy are the innovations and Γ(y) is a deterministi funtion of

year of birth. Taking unonditional expetations (i.e., with no onditioning on previous

lags of the proess), we see that

E [γy − Γ(y)] = 0 ∀y

and that the funtion Γ(y) represents the trend around whih the ohort parameters vary.

The invariant transformation of the model in Equation 4.9 adds a deterministi funtion

- the unidenti�able trend g(y) - to the ohort parameters. However, this deterministi

funtion must not hange the error term, εy, of a well-identi�ed proess and so

εy = (1− L)dΨ−1(L)Φ(L)(γy − Γ(y))

= (1− L)dΨ−1(L)Φ(L)(γ̂y − Γ̂(y))

= (1− L)dΨ−1(L)Φ(L)(γy + g(y) − Γ̂(y))

30

For simpliity, we use the ohort funtion as an illustrative ase. The analysis is idential for κt,

however.

31

In order to be stationary, these polynomials have roots with modulus less than unity.
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In order to ensure that the variation around the trend, given by the error term, remains

unhanged by the invariant transformation, we require

Γ̂(y) = Γ(y) + g(y)

In this ase, the deterministi trend, Γ(y), has hanged under the invariant transforma-

tion but not the variation around the trend.

We stated above that the time series proesses being used for the parameters should be

equally appliable for all sets of parameters whih give the same �tted mortality rates.

This implies that the form of the deterministi trends should be the same, and, therefore,

that Γ̂(y) is of the same form as Γ(y). This an only be true if Γ̂(y), Γ(y) and g(y) are

all of the same form. For instane, if g(y) is a linear funtion of year of birth (as in the

ase of the lassi APC model), then Γ(y) and Γ̂(y) must also be linear funtions of year

of birth and so will not hange form under the invariant transformations of the model.

If we solve Equation 4.26, we see that

γy = Pγ(y; {γ}) =
Ψ(L)

(1− L)dΦ(L)
εy + Γ(y) (4.27)

In this form, it an also be seen that suh time series proesses preserve unidenti�ed

trends in the manner disussed in Setion 4.5.1

γ̂y = γy + g(y)

=
Ψ(L)

(1− L)dΦ(L)
εy + Γ(y) + g(y)

=
Ψ(L)

(1− L)dΦ(L)
εy + Γ̂(y)

i.e., the projeted parameters after applying the invariant transformation will have the

same variation,

Ψ(L)
(1−L)dΦ(L)

εy, but around a di�erent deterministi trend, Γ̂(y), ompared

with the original parameters projeted using the same method. The use of the invariant

transformations will not a�et our measurement of any oe�ients in Ψ(L) or Ψ(L) at

the �tting stage. Thus, we also see that the two ways of looking at the projeted param-

eters, namely as time series proesses and via projetion funtions, are equivalent.

As an example, onsider the ohort parameters in the lassi APC model. From Setion

4.3, we see that, in this model, the ohort parameters have an unidenti�ed onstant and

linear trend, i.e., g(y) = b + c(y − ȳ) from Equations 4.5 and 4.6. In Setion 4.5.2, we
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said that urrent pratie might use an AR(1) proess for the ohort parameters, whih

has ARIMA form

(1− ρL)γy = εy

Comparing this with Equation 4.26, we see that urrent pratie assumes that Γ(y) = 0,

whih is not of the same form as g(y) above. Therefore, the time series proess hanges

form when using an alternative set of parameters γ̂y = γy + g(y) in plae of γy,

(1 − ρL)γ̂y = (1− ρL)(γy + b+ c(y − ȳ))

= (1− ρL)γy + (1− ρ)(b+ c(y − ȳ)) + ρc

= εy + (1− ρ)(b+ c(y − ȳ)) + ρc

6= εy

and therefore the proess is not well-identi�ed.

When analysed in this form, however, a solution beomes immediately apparent: we

need to introdue a linear funtion, Γ(y) = β0 + β1y, into the AR(1) proess to ensure

that the proess is well-identi�ed, i.e.,

(1− ρL)(γy − β0 − β1y) = εy (4.28)

Using the alternative parameters γ̂y would produe

(1− ρL)(γ̂y − β̂0 − β̂1y) = (1− ρL)(γy + b+ c(y − ȳ)− β̂0 − β̂1y)

= (1− ρL)(γy − β0 − β1y)

= εy

if β̂0 = β0−b−cȳ and β̂1 = β1−c. Therefore, the form of Equation 4.28 does not hange

under the invariant transformations of the lassi APC model, and we onlude that

this time series proess is well-identi�ed. Again, we also see that the variation around

the linear trend, given by εy, is unhanged by the invariant transformation, whilst the

unidenti�able trend is a�eted by the invariant transformation.

The time series proess in Equation 4.28 has been suggested previously for the ohort

parameters in Cairns et al. (2009) where it was referred to as the �AR(1) proess around

a linear drift �. However, in Cairns et al. (2009), it was not used for the lassi APC

model, nor was it seleted for being well-identi�ed, but rather on the grounds of �tting
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the observed ohort parameters well.

The AR(1) around linear drift proess is solved to give

Pγ(y; {γ}) = ρy−Y (γY − β0 − β1Y ) + β0 + β1y +

y
∑

s=Y+1

ρy−sεs

We an also verify, by substituting the forms for γ̂y, β̂0 and β̂1 found above, that this

proess also satis�es the requirement of Equation 4.22 in Setion 4.5.1, namely

Pγ(y; {γ̂}) = Pγ(y; {γ}) + a+ b(y − ȳ)

Hene, projeting the transformed ohort parameters gives us the same results as trans-

forming the projeted ohort parameters.

Returning to the form of the time series proess in Equation 4.26, it is ommon to write

this in an alternative, but equivalent form

(1− L)dΦ(L)γy − (1− L)dΦ(L)Γ(y) = Ψ(L)εy

(1− L)dΦ(L)γy = ξ(y) + Ψ(L)εy (4.29)

where ξ(y) is a deterministi funtion of y and Γ(y) solves the di�erene equation

(1− L)dΦ(L)Γ(y) = ξ(y) (4.30)

In this form, ξ(y) is often referred to as the �drift�. Knowing the form that Γ(y) must

take (i.e., the same form as g(y) from the unidenti�able trends in the model in Equation

4.8), we an therefore speify the orret form of ξ(y).

As an example of this, onsider the lassi APC model again, but, this time, onsider

the period parameters. We know from Setion 4.3 that the period parameters have an

unidenti�ed linear trend in muh the same way as the ohort parameters, i.e., k(t) =

a − c(t − t̄) if we re-write Equations 4.4 and 4.6 using the notation of Equation 4.9.

Random walk proesses are often used for the period parameters, i.e., we assume d = 1

and Φ(L) = Ψ(L) = 1. It is then important to speify the orret form for the drift ξ(t).

Based on similar arguments to the ones used above for the ohort parameters, we should

look for time series proesses of the form

(1− L)(κt − ν0 − ν1t) = ǫt
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whih has a linear trend K(t) = ν0 + ν1t. To obtain a well-identi�ed time series of the

form of Equation 4.29, we need the drift, ξ(t), of the random walk to satisfy

ξ(t) = (1− L)(ν0 + ν1t)

= ν0 + ν1t− ν0 − ν1(t− 1)

= ν1

i.e., the drift is onstant. This shows that the random walk with drift is well-identi�ed

for the period parameters in the lassi APC model.

We an also verify this diretly, sine

ǫt = κt − κt−1 − µ

= κ̂t − a+ c(t− t̄)− κ̂t−1 + a− c(t− 1− t̄)− µ

= κ̂t − κ̂t−1 − µ̂

if µ̂ = µ−c. Thus the transformed period parameters, κ̂t, follow a random walk with drift

if the original period parameters do. However, the value of the drift, whih determines

the unidenti�able linear trend, will hange under the invariant transformation, although

the innovations, ǫt, whih determine the variability around this drift do not.

In summary, we have the following proedure for seleting a well-identi�ed time series

proess for any spei� APC mortality model:

1. Determine the identi�ability issues in the spei� APC model by �nding the uniden-

ti�able deterministi trends for the parameters whih annot be assigned between

the di�erent age/period and ohort terms in the spei� model. This will need to

be done prior to the �tting stage in order to �t the model robustly to data.

2. Speify a time series proess for the variation around these trends. This an either

be done by analysing this variation using statistial tehniques, or by seleting a

proess whih aords with our demographi signi�ane for the parameters. Doing

so will set the form of Φ(L) and Ψ(L), whih determine the stohasti struture of

the ARIMA proess.

3. Speify the deterministi trends, Γ(y), in the time series proess in Equation 4.26,

whih will need to be of the same form as g(y). Equivalently, this an be ahieved

by �nding a drift funtion, ξ(y), in the alternative form of the time series proess

in Equation 4.29, with the requirement that (1− L)dΦ(L)Γ(y) = ξ(y).
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It is important to reognise that this proedure works bakwards from the variation

around the trends in the parameters, whih is independent of the identi�ability on-

straints and then adds bak in the unidenti�able trends whih will depend upon the

spei� set of identi�ability onstraints we use when �tting the model. In this fash-

ion, we an ensure that the projeted parameters are both well-identi�ed and possess

our desired demographi signi�ane when speifying a suitable form for the time series

proess.

4.5.4 Projeting the lassi APC model: Revisited

In Setion 4.5.2, it was demonstrated that the urrent pratie approah to seleting time

series proesses for the period and ohort parameters in the lassi APC model yielded

projetions of mortality rates whih depended upon arbitrary hoies made when �tting

the model. In Setion 4.5.3, we then showed that the issue in this ase was not the use

of the random walk with drift for the period parameters, but the seletion of an AR(1)

proess, rather than an AR(1) proess around a linear drift for the ohort parameters.

If we use the AR(1) around linear drift proess for the ohort parameters for the four

ases disussed in Setion 4.5.2, we obtain the time series parameters in Table 4.2.

Case 1 Case 2 Case 3 Case 4

γ1950 -0.1459 -0.1125 -0.1422 -0.1530

β0 0.1388 0.1852 0.1388 0.1388

β1 -0.0053 -0.0056 -0.0052 -0.0055

ρ 0.9636 0.9636 0.9636 0.9636

σγ = StDev(εy) 0.0184 0.0184 0.0184 0.0184

Table 4.2: Time series parameters for di�erent identi�ability onstraints

As previously mentioned in Setion 4.5.2, ρ and σγ ontrol the variation of projeted

ohort parameters. It is, onsequently, important to see that these parameters do not

hange in the four di�erent ases using the well-identi�ed time series proesses. The

variability of projeted mortality rates will be idential in eah of the four ases. Using

the AR(1) around linear drift proess, we also �nd

Eηx,τ = αx + κ2010 + (τ − 2010)µ

+ ρτ−x−1950(γ1950 − β0 − β1 × 1950) + β0 + β1 × (τ − x) (4.31)

From the results of Setion 4.5.3, we an see that if we transform the parameters of

the lassi APC model using the transformation in Equations 4.4, 4.5 and 4.6, and then
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projet them using well-identi�ed time series proesses, we obtain

α̂x = αx − a− b+ c(x− x̄)

Eκ̂τ = κ̂2010 + µ̂(τ − 2010)

= κ2010 + a− c(2010 − t̄) + (µ − c)(τ − 2010)

= κ2010 + a− c(τ − t̄) + µ(τ − 2010)

Eγ̂τ−x = ρτ−x−1950(γ̂1950 − β̂0 − β̂1 × 1950) + β̂0 + β̂1 × (τ − x)

= ρτ−x−1950(γ1950 + b+ c(1950 − x− ȳ)− β0 − b− cȳ − (β1 + c)× 1950)

+ β0 + b+ cȳ + (β1 + c)× (τ − x)

= ρτ−x−1950(γ1950 − β0 − β1 × 1950)

+ β0 + β1(τ − x) + c(τ − x− ȳ)

Hene, the expetation of ηx,t in Equation 4.31, after applying the invariant transforma-

tions, beomes

Eη̂x,τ = α̂x + κ̂2010 + (τ − 2010)µ̂

+ ρτ−x−1950(γ̂1950 − β̂0 − β̂1 × 1950) + β̂0 + β̂1 × (τ − x)

= αx − a− b+ c(x− x̄) + κ2010 + a− c(τ − t̄) + µ(τ − 2010)

+ ρτ−x−1950(γ1950 − β0 − β1 × 1950)

+ β0 + β1(τ − x) + c(τ − x− ȳ)

= αx + κ2010 + (τ − 2010)µ

+ ρτ−x−1950(γ1950 − β0 − β1 × 1950) + β0 + β1 × (τ − x)

= Eηx,τ

We an therefore see how hanges in the linear drift of the period funtions between the

di�erent ases anel with the hanges in the linear drift in the ohort funtions to give

exatly the same expeted projeted mortality rates in all four ases.

32

We, therefore,

see in pratie what was derived theoretially in Setion 4.5.3, namely that using a ran-

dom walk with drift proess for the period parameters and an AR(1) around linear drift

proess for the ohort parameters gives well-identi�ed projetions for the lassi APC

model, and so the projeted mortality rates whih do not depend upon the identi�ability

onstraints imposed.

Projetions using an AR(1) proess around a linear drift might be felt to on�it with

our desired demographi signi�ane for the ohort parameters, i.e., that they should

32

For example, in all four ases Eη60,2020 = −4.6413.
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exhibit no long-term trends. However, demographi signi�ane is subjetive and so

should not be used to override a greater onern that the projeted mortality rates do

not depend upon the arbitrary identi�ability onstraints. Fortunately, there are methods

for obtaining well-identi�ed projetions of the ohort parameters whih do onform to

our desired demographi signi�ane of trendlessness.

In order to lak trends, the drift oe�ients of the proess, β0 and β1, should be zero.

Looking again at Table 4.2, one might think that the values of β0 and β1 are quite small,

and therefore be tempted to test them statistially with a view to setting them to zero.

This, however, would be a mistake. As shown in Setion 4.5.3, the values of β0 and

β1 hange under the invariant transformations of the lassi APC model and, therefore,

will depend upon the identi�ability onstraints hosen. Consequently, the results of any

statistial analysis of their signi�ane will also depend upon the arbitrary identi�ability

onstraints, whih is not desirable.

The reason that β0 and β1 are �small� is beause we have imposed this via the iden-

ti�ability onstraints. All four sets of identi�ability onstraints were hosen to set the

level of the ohort parameters to be around zero and to have no linear trends over the

whole range of the data. Therefore, we would expet to �nd low values of β0 and β1,

whih ontrol the level and drift to whih the proess mean-reverts. We ould have ho-

sen other, equally reasonable onstraints based on alternative subjetive interpretations

of the demographi signi�ane of the period and ohort parameters whih would have

resulted in far larger values of β0 and β1 and given exatly the same �tted and projeted

mortality rates. We therefore see that whether or not these parameters are �small�, and

onsequently whether or not they pass a statistial test of their signi�ane, is solely

dependent upon the arbitrary identi�ability onstraints we have hosen.

The four ases in Setion 4.5.2 were motivated by the same desired demographi signi�-

ane for the ohort parameters - that they should be entred around zero and not have

any linear trends. However, the four di�erent ases used four di�erent interpretations of

these subjetive requirements, and therefore arrived at four di�erent interpretations of

what it means to be entred around zero and trendless. These di�erent interpretations

resulted in the four di�erent sets of identi�ability onstraints. Using an AR(1) around

linear drift proess to projet the ohort funtions introdues a �fth interpretation for

the meaning of being entred around zero and having no linear drift, in this ase, that

the time series parameters β0 and β1 are equal to zero. Therefore, we ould use another

set of parameters with the identi�ability onstraints
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Figure 4.3: Projeting the parameters of the lassi APC model: Cases 1 and 5

Case 5:

∑

t κt = 0, β0 = 0 and β1 = 0

This set of onstraints gives idential �tted and projeted mortality rates to the other

ases, but gives projeted ohort parameters whih mean-revert around zero, whih a-

ords better with our demographi signi�ane. However, the restritions in Case 5

annot be known at the time of �tting the model to data, sine the appropriate time

series proess that will be used to projet the ohort parameters annot be known at

that stage. To use this set of onstraints, we need to do the following:

1. �t the model to data, applying some onvenient set of identi�ability onstraints

whih an be known in advane of analysing the time series struture of the pa-

rameters, e.g., those in Case 1;

2. estimate values for β0 and β1 for these historial parameters by �tting the AR(1)

around a linear drift proess in Equation 4.28 to them;

3. use these estimated values for β0 and β1 in the transformations in Equations 4.5

and 4.6 to obtain a new set of (equivalent) age, period and ohort parameters.

The period and ohort parameters for Case 5, ompared with those for Case 1, are

shown in Figure 4.3. Using the Case 5 parameters may appear unnatural as the ohort

parameters in this ase appear to possess a linear trend. However, when we projet

using the well-identi�ed AR(1) around linear drift proess, we �nd no linear drift in

these parameters, merely mean reversion to a level of zero, whih �ts well with the

demographi signi�ane for the ohort parameters disussed in Chapter 2.
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4.5.5 Projeting the Plat model

We will now use this analysis to speify a set of well-identi�ed projetion proesses for

the Plat model disussed in Setion 4.4.1.1. As desribed in that setion, the invariant

transformations of the model an be written in the form of Equation 4.9 with

α̂x = αx − a1 − a2 − a3 − b+ c(x− x̄)− d(x− x̄)2 = αx − a(x)

κ̂
(1)
t = κ

(1)
t + a1 − c(t− t̄)− d(t− t̄)2 = κ

(1)
t − k(1)(t)

κ̂
(2)
t = κ

(2)
t + a2 + 2d(t− t̄) = κ

(2)
t − k(2)(t)

κ̂
(3)
t = κ

(3)
t + a3 = κ

(3)
t − k(3)(t)

γ̂y = γy + b+ c(y − ȳ) + d(y − ȳ)2 = γy + g(y)

by omposing the transformations in Equations 4.4 (for eah period funtion), 4.5, 4.6

and 4.13.

Starting with the ohort parameters, we may wish to retain the demographi interpre-

tation that they should be stationary and mean reverting and so wish to use an AR(1)

struture. However, from the disussion in Setion 4.5.3 and the observation that g(y) is

quadrati for the Plat model, we therefore require that Γ(y) in Equation 4.26 is quadrati.

In order to give well-identi�ed projetions, we would therefore projet the ohort param-

eters using an AR(1) around quadrati drift proess, i.e.,

(1− ρL)(γy − β0 − β1y − β2y
2) = εy (4.32)

Simple insertion of γ̂y = γy+g(y) into this shows that it does not hange struture under

the invariant transformation and so is well-identi�ed. In prinipal, we ould then deide

to swith to an equivalent set of parameters with the onstraints β0 = β1 = β2 = 0 in

the same manner as for the lassi APC model. This may be desirable as it gives pro-

jeted ohort parameters whih mean-revert around zero, in line with our demographi

signi�ane. In addition, when more ompliated methods are used to projet the ohort

parameters, it might be felt to simplify the proess of projetion.

33

For the period parameters, we may wish to use a random walk with drift struture as

we did for the lassi APC model on the demographi interpretation that the period

funtions should be non-stationary. This would be written as

(1− L)κt = ξ(t) + ǫt (4.33)

33

For an example where this is the ase, see Chapter 6.
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where κ =
(

κ
(1)
t , κ

(2)
t , κ

(3)
t

)⊤
as disussion in Setion 4.2 and similarly for ξ(t) and ǫt.

Using this notation, we an group the transformations of the period funtions as

κ̂t = κt +









a1 + ct̄− dt̄2

a2

a3









+









−c+ 2dt̄

2d

0









t+









−d

0

0









t2

= κt + k0 + k1t+ k2t
2

In Setion 4.5.3, we showed that in order to ensure identi�ability, we needed

ξ(t) = (1− L)(k0 + k1t+ k2t
2)

= k0 + k1t+ k2t
2 − k0 − k1(t− 1) + k2(t− 1)2

= k1 − k2 + 2k2t

=









−c+ 2dt̄+ d

2d

0









+ 2









−d

0

0









t

Therefore, we see that, in order for the Plat model to have well-identi�ed projetions, we

require a onstant drift omponent for κ
(2)
t (i.e., ξ(2)(t) = µ

(2)
0 , a onstant) and a linear

drift omponent for κ
(1)
t (i.e., ξ(1)(t) = µ

(1)
0 + µ

(1)
1 t, a linear funtion of time). This an

be written as

κt = κt−1 + µXt + ǫt (4.34)

where

µ =









µ
(1)
0 µ

(1)
t

µ
(2)
0 0

0 0









and Xt =
(

1, t

)⊤
. We an see that this form of the random walk with drift pro-

ess extends naturally to allow for other unidenti�able trends by hoosing the �trend�

matrix, Xt, and orresponding �drift� matrix, µ, appropriately. The need to use a ran-

dom walk with linear drift is often overlooked, for instane in Plat (2009a) and Börger

et al. (2013) (who used a model whih nests the redued Plat model) - see also Chapter 6.

We also see that di�erent drifts are required for di�erent period funtions in order to

give well-identi�ed projetions of mortality rates. This runs ounter to the desire to
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treat all the period funtions the same, as disussed in Chapter 3. However, using the

same drifts for all the period funtions an give projetions whih are not biologially

reasonable. For example, allowing for a quadrati trend in κ
(3)
t an result in apparent

hanges in trend whih are inonsistent with the historial data. In Chapter 3, we also

found that we an treat di�erent period funtions di�erently in models with parametri

age funtions, beause there were no invariant transformations of the model whih ould

be used to interhange the age/period terms. It may, therefore, be preferable to allow

for di�erent drifts in di�erent period funtions in the Plat (2009a) model to obtain well-

identi�ed projeted mortality rates whih are also biologially reasonable.

34

We should,

therefore, be prepared to override the desire to treat the period funtions identially if

the alternative is to put biologial reasonableness at stake. See Chapter 6 for an example

of this issue in pratie.

4.5.6 Summary

APC mortality models whih have unidenti�able trends at the �tting stage require extra

are when projeted to ensure that the projetions do not depend on the identi�ability

onstraints hosen. In general, we �nd that the projetion method used must preserve

whatever trends were unidenti�able at the �tting stage. For example, the proesses whih

were well-identi�ed for the lassi APC model disussed in Setion 4.5.4 preserved linear

trends, whih were shown to be unidenti�able in Setion 4.3.

Suh an approah generalises naturally for more ompliated mortality models, suh as

the Plat model disussed in Setions 4.4.1.1 and 4.5.5. However, models with higher

order polynomial age funtions have higher order unidenti�able trends (as shown in Se-

tion 4.4.1), and so require projetion proesses whih allow for these trends. This may

ause problems for long term projetions.

For example, onsider the model

ηx,t = αx + κ
(1)
t + (x− x̄)κ

(2)
t + ((x− x̄)2 − σx)κ

(3)
t + γt−x (4.35)

whih extends model M7 of Cairns et al. (2009) with a stati age funtion (as was done

in Haberman and Renshaw (2011)). We an see that a model of this form possesses

age funtions whih span the polynomials to quadrati order. From Setion 4.4.1, we

know, without performing any additional analysis, that it has unidenti�able ubi trends

34

Using di�erent drifts for the di�erent period funtions will mean, however, that time series proesses

will be required for equivalent models.
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in both the ohort parameters and κ
(1)
t whih will need to be allowed for in projetion.

However small they may be in the historial data, these ubi trends will eventually

ome to dominate the long term evolution of mortality rates, potentially yielding pro-

jeted mortality rates whih lak biologial reasonableness due to apparent hanges in

trend.

Consequently, it may be prudent to avoid unidenti�able ubi (and higher) order polyno-

mial trends in an APC mortality model. Suh trends arise when we use more ompliated

models with higher-order polynomial age funtions. It is therefore useful, when seleting

suh models, to have a larger �toolkit� of age funtions for use in the models than simply

extending existing models by using higher-order polynomial terms. Chapter 5 proposed

suh a toolkit, whih allows for more ompliated mortality models that do not su�er

from exessive identi�ability issues and an give biologially reasonable, well-identi�ed

projetions of mortality rates, as shown in Chapters 6 and 8.

4.6 Conlusions

In Chapter 3, we saw how AP mortality models are not fully identi�ed, and that in order

to identify these models, most users impose additional arbitrary identi�ability onstraints

on them when �tting the models to data. Some APC mortality models have extra iden-

ti�ability onstraints, aused by the ollinearity between age, period and ohort, whih

are unlike anything found in similar AP models. These depend upon the form of the age

funtions in the model and so are spei� to individual models. The identi�ability issues

involve deterministi trends whih annot be uniquely alloated between the age, period

or ohort terms and so an arbitrary alloation must be made via additional arbitrary

identi�ability onstraints. The nature of the unidenti�able trends present in spei�

models are summarised in Figure 4.1.

These unidenti�able deterministi trends have important onsequenes when we ome to

projet the model. We must �rst determine the identi�ability issues in the spei� model

we are using, in order to �nd whih deterministi trends are unidenti�able. When this is

done, we an speify suitable time series proesses for the variation around these trends.

Only by doing this an we ensure that our projeted mortality rates are independent of

the arbitrary identi�ability onstraints imposed when �tting the model.
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By understanding these identi�ability issues, however, we an build more omplex mor-

tality models, for instane, via the �general proedure� of Chapter 5, and be on�dent

that they are founded on a seure knowledge of the underlying mathematial struture of

APC mortality models. We are also able to use more sophistiated time series projetion

methods, as in Chapters 6 and 8, knowing that our projetions are free from dependene

on the arbitrary hoies we made when �tting the model to data.

4.A Identi�ability in APC models with non-parametri age

funtions

The matrix form of AP mortality models, given by Equation 3.3 in Chapter 3, an be

extended to allow for ohort e�ets

H = α1⊤T + βκ+ γ (4.36)

where γ is an (X × T ) Toeplitz matrix, i.e., a matrix where the diagonal elements are

onstant. It is lear that the transformations in Equations 3.11 and 3.12 are still invari-

ant transformations of Equation 4.36 and therefore the onlusions of Chapter 3 are still

appliable in the wider ontext of APC mortality models. Indeed, the transformation

in Equation 4.4 of the lassi APC model is simply the transformation in Equation 3.12

applied to this spei� model.

Generalising Equation 4.5 in this ontext for more ompliated invariant transformations,

we an see that the transformation

{α̂, β̂, κ̂, γ̂} = {α− c1X , β, κ, γ + c1X1
⊤
T } (4.37)

is ommon to all APC models of the form in Equation 4.36 (where 1X is a (X×1) olumn

vetor of ones and similarly for 1T ). This transformation was also disussed (using alter-

native notation) in Setion 4.4. This allows us to set the level of the ohort parameters -

typially to be around zero to impose the demographi signi�ane disussed in Chapter

2.
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To generalise the transformation in Equation 4.6, if we an �nd a Toeplitz matrix Γ suh

that

35

Γ = a1⊤T + βk (4.38)

(with a an (X × 1) matrix and k an (N × T ) matrix), we then have the transformation

{α̂, β̂, κ̂, γ̂} = {α − a, β, κ − k, γ + Γ} (4.39)

In the ase of the lassi APC model, we have β = 1X and so an �nd a Toeplitz matrix

Γ = c(1XT⊤ −X1

⊤
T ) where X is the (X × 1) olumn vetor Xi = {i− x̄} where i runs

from 1 to X (and similarly for T ).

Theorem 4.3. There are no invariant transformations of general APC mortality models

with non-parametri age funtions, i.e., no suh A, k and Γ exist unless a spei� shape

for β is assumed in the model.

Sketh of Proof Consider the general term a1⊤T + βk, whih is analogous to the pre-

ditor struture of an AP mortality model. As we argue in Chapter 3, this has dimension

X +N(X + T )−N(N + 1), i.e., the X parameters in a, the NX parameters in β, and

the NT in k redued by the N(N + 1) degrees of freedom in the transformations in

Equations 3.11 and 3.12.

In ontrast, in the general ase, Γ has dimension X + T − 1, i.e., one degree of freedom

for eah diagonal. For Equation 4.38 to be true, these matries must have the same

dimension and therefore

X +N(X + T )−N(N + 1) = X + T − 1

N2 +N(1−X − T ) + T − 1 = 0 (4.40)

However, N , X and T are integers, set by the struture of the model and the range of

the data, and therefore Equation 4.40 will not generally be true. Hene Equation 4.39

will not be an invariant transformation of a general APC mortality model with non-

parametri age funtions.

35

We atually require the more general statement that Γ = a1⊤T + bk with b a (X ×N) matrix suh

that β = bA, i.e., the olumns of b lie within the span of the olumns of β. However, without loss of

generality, we de�ne k̃ = Ak to obtain the result shown.
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The argument used in this proof relies on a1⊤T + βk being of full rank and therefore

breaks down if β is of lower dimension than the maximum possible. However, this is

equivalent to imposing a parametri form on the age funtions and aordingly, the line

of reasoning above is not possible in the general ase.

Therefore, general non-parametri APC mortality models do not possess any other in-

variant transformations apart from the ones in Equations 3.11, 3.12 and 4.37. They

require only identi�ability onstraints whih set the normalisation sheme of the age

funtions, impose orthogonality between the age and period funtions (both using the

transformation in 3.11), set the levels of the period funtions κ
(i)
t using Equation 3.12,

and the level of the ohort parameters γt−x using Equation 4.37.

For instane, we see that for the H1 model of Haberman and Renshaw (2009) and Hunt

and Villegas (2015),

ηx,t = αx + βxκt + γt−x (4.41)

we annot �nd an invariant transformation of the parameters similar to that in Equa-

tion 4.6. This is beause of the lak of shape in either age or period in the βxκt term

whih an be used to deompose the ohort term. However, this model does possess an

�approximate� identi�ability onstraint, whih leaves the �tted mortality rates almost

unhanged in the majority of ases. This is aused by κt often having a form that is

lose being parametri, whih is disussed in detail in Hunt and Villegas (2015).

Some, espeially demographers, have argued that all ohort e�ets are simply mis-

spei�ed age/period e�ets and are best modelled as suh.

36

Although this may be

true in a stritly mathematial sense, a large number of age/period terms are required

to repliate any general ohort term in the model. It is therefore more parsimonious to

inlude a set of ohort parameters rather than multiple age/period terms. This, again,

is similar to the argument in Wilmoth (1990), whih states that it is plausible and par-

simonious to inlude a single set of ohort parameters rather than an exessive number

of age/period terms whih ahieve the same e�et.

Some datasets may show little or no struture aross years of birth, in whih ase the

deision to inlude a ohort term beomes one deided on the basis of the demographi

and statistial signi�ane of the parameters for that dataset. Suh a deision an be

36

For instane, Cairns et al. (2011a) raised �the possibility that ohort e�ets might be partially or

ompletely replaed by well-hosen age and period e�ets� and also see Murphy (2010)
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made only after all signi�ant age/period terms have been identi�ed. We therefore

reommend a proedure, suh as the �general proedure� in Chapter 5, whih only adds

suh a term when justi�ed by the data.

4.B Models without a stati age funtion

As we disuss in Chapter 2, a number of APC mortality models have been proposed

whih do not have an expliit stati age funtion, αx, the most prominent of whih being

the extensions of the CBD model in Cairns et al. (2009). If the model does not have

an expliit stati age funtion, the age funtions in the model must be parametri and

therefore known in advane of �tting the model to data. The struture of the APC model

in this ase is therefore

ηx,t =
N
∑

i=1

f (i)(x)κ
(i)
t + γt−x

The identi�ability issues in suh models an be onsidered in the same fashion as in

Setion 4.4. In partiular, we noted in Setion 4.4.2 that the invariant transformations

of models with exponential or trigonometri age funtions did not involve the stati age

funtion, and therefore are also appliable in models without one.

The invariant transformations of models with polynomial age funtions, in ontrast, did

involve the stati age funtion expliitly. The proof of Theorem 4.1 involves expanding

a polynomial funtion of year of birth, g(y), into polynomial terms in x and t and then

ombining these in the appropriate age/period terms. In partiular, the term in this

expansion with no t dependene was ombined into the stati age funtion. This is seen

most learly in the transformation in Equation 4.6, but also in the transformation in

Equation 4.13 for the Plat model.

However, we an see that the lak of a stati age funtion to absorb this term in the

expansion of g(y) is not an insurmountable problem as long as there is an age/period

term with the appropriate age funtion. This means that if g(y) is a polynomial of order

M , we must have age funtions in the model up to order M as well. This ontrasts with

models with a stati age funtion, whih only require age funtions up to order M − 1.

Theorem 4.4. APC mortality models with no stati age funtion and age funtions

spanning the polynomials to order M possess invariant transformations whih adds a

polynomial of order M to the ohort funtion.
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Sketh of Proof The proof is similar to that of Theorem 4.1. Take g(y), a general

polynomial of order M , and expand as a funtion of x and t. This an then be regrouped

into an equivalent form that orresponds to the age/period terms in the model, in order

to see how g(y) an be absorbed into the age/period struture

g(y) =

M
∑

n=0

any
n

⇒ g(t− x) =

M
∑

n=0

an(t− x)n

=
M
∑

n=0

an

n
∑

m=0

(

n

m

)

tm(−x)n−m

=

M
∑

n=0

n
∑

l=0

an

(

n

l

)

tn−l(−x)l

=
M
∑

l=0

(−x)l
M
∑

n=l

an

(

n

l

)

tn−l

=

M
∑

l=0

(−1)lf (l)(x)

M
∑

n=l

an

(

n

l

)

tn−l

=

M
∑

l=0

f (l)(x)k(l)(t)

whih is of the form of Equation 4.9 if the age funtions in the model are of the form

f (j)(x) = xj of j = 0, 1, . . . M .

To see this in pratie, onsider model M6 of Cairns et al. (2009)

ηx,t = κ
(1)
t + (x− x̄)κ

(2)
t + γt−x (4.42)

and ompare it with the redued Plat model of Equation 4.12 in Setion 4.4.1.1. For

the redued Plat model, we saw that the transformation in Equation 4.13 was invariant,

and involved adding a quadrati funtion of year of birth to the ohort parameters,

with adjustments to κ
(1)
t , κ

(2)
t and the stati age funtion αx. For model M6, this

transformation is not permitted, as there is no stati age funtion to adjust in this

model. Instead, the model only has the simpler linear invariant transformation

{κ̂(1)t , κ̂
(2)
t , γ̂y} = {κ(1)t − c(t− t̄), κ

(2)
t − c, γy − c(y − ȳ)} (4.43)

We an also see this using the analysis of Chapter 2, where it was shown that models

without a stati age funtion an be written as though they do have one of a spei�,

parametri form that has been ombined with the other age/period terms in the model.
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In the ase of model M6, we see that this implies a stati age funtion whih is a linear

funtion of age, whih then ould not be used to absorb a quadrati age term oming

from the addition of a quadrati funtion of year of birth to the ohort parameters.

Consequently there is a trade-o�: models without a stati age funtion have simpler

identi�ability issues than (otherwise similar) models possessing one, but are unable to

provide a good �t to mortality data aross the full age range, as disussed in Chapter 2.

4.C Maximal invariants

An alternative approah to using an arbitrary identi�ation sheme was suggested by

Kuang et al. (2008b,a) and Nielsen and Nielsen (2014) for the lassi APC model. This

is to hange the parameterisation of the model to an equivalent form with redued di-

mensionality whih does not su�er from identi�ability issues. The new parameters are

known as �maximal invariant� parameters, sine they are the set with the largest number

of parameters (i.e., are �maximal�), and are injetive

37

and give the same �tted mortality

rates as the original model in Equation 4.1 (i.e., the reparameterisation is �invariant�) .

We an think of this as �nding a parameterisation of the model whih gives the same

�t to data, but where every possible degree of freedom in the model is fully utilised in

�tting the data.

Kuang et al. (2008b) and Nielsen and Nielsen (2014) proposed an approah to generating

a maximally invariant parameterisation for the lassi APC model based on �nding the

seond di�erenes of the age, period and ohort terms. These seond di�erenes do not

hange under the invariant transformations of the model and so have a meaning inde-

pendent of the identi�ability onstraints. In this Appendix, we review this approah and

disuss how it an be extended to deal with the identi�ability issues in some of the more

omplex APC mortality models. However, we also �nd that it su�ers from a number of

limitations whih make it unsuitable for many APC models and whih an ause proje-

tions to be biologially unreasonable.

37

A transformation is injetive if di�erent points in the domain get mapped to di�erent points in the

image of the transformation.
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First, the age, period and ohort funtions in the lassi APC model are expanded as

telesopi sums in terms of their seond di�erenes, i.e.,

αx = αX −
X
∑

i=x+1

∆αi

= αX −
X
∑

i=x+1



∆αX −
X
∑

j=i+1

∆2αj





= αX − (X − x)∆αX +

X
∑

i=x+1

X
∑

j=i+1

∆2αj

κt = κ1 + (t− 1)∆κ2 +

t
∑

i=2

t
∑

j=3

∆2κj

γy = γ1−X + (y − 1 +X)∆γ2−X +

y
∑

i=2−X

y
∑

j=3−X

∆2γj

In the ase of the age funtion, αx, we work bakwards from αX due to the negative

dependene of ohort on age. However, it is important to note that this expansion has

not hanged the number of parameters in the model, merely written them in a new form.

This, of itself, will not solve the identi�ability issues. However, Kuang et al. (2008b)

and Nielsen and Nielsen (2014) then substituted the seond di�erene expansions of the

parameters into the lassi APC model and group the deterministi terms together

ηx,t = a0 + (X − x)a1 + (t− 1)b1 +

X
∑

i=x+1

X
∑

j=i+1

∆2αj +

t
∑

i=2

i
∑

j=3

∆2κj +

t−x
∑

i=2−X

i
∑

j=3−X

∆2γj

(4.44)

where

a0 = αX + κ1 + γ1−X

a1 = ∆γ2−X −∆αX

b1 = ∆κ2 +∆γ2−X

In Kuang et al. (2008b) and Nielsen and Nielsen (2014), these new parameters were in-

trodued by onsidering three points of the �tted mortality surfae. The most important

point about the proedure is that it replaes six parameters in the original parameterisa-

tion with only three in the maximally invariant parameterisation. The maximally invari-

ant parameterisation therefore ontains 3+(X−2)+(T −2)+(T +X−3) = 2X+2T −4

free parameters. This ompares with 2X + 2T − 1 parameters and the three additional

identi�ability onstraints required by the three invariant transformations - Equations

4.4, 4.5 and 4.6 - for the original parameterisation of the lassi APC model. Hene the
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Figure 4.4: Seond di�erenes from the lassi APC model

maximally invariant parameterisation gives the same �tted mortality rates with the same

number of e�etive parameters but without the over-parameterisation and onsequent

need for identi�ability onstraints in the original formulation of the model.

However, by doing this, we have lost muh of the demographi signi�ane assoiated

with the original parameters in the lassi APC model. For example, whilst αx in the

original parameterisation of the lassi APC model relates to an age e�et spei� to

age x, ∆2αx relates to the urvature of the mortality urve in the age dimension at age

x and will impat mortality rates at all ages below x. It is therefore harder to explain

its demographi signi�ane to other model users or develop an intuition about what

values are reasonable in order to hek the validity of the model. Although demographi

signi�ane is subjetive, it is still not desirable to lose it if it an be avoided. This may

restrit the usefulness of the maximally invariant approah.

In order to projet the model into the future, we need to analyse the ∆2κt and ∆2γy

parameters as time series. These are shown in Figure 4.4 for the same dataset as used

in Setion 4.5.2. As an be seen,

38

these parameters appear to be stationary and so it is

natural to projet them using an ARMA proess.

If we were to �integrate up� the double di�erenes to reover our original κt and γy

parameters, these would both be I(2) proesses. This on�its with the demographi

signi�ane for the ohort parameters disussed in Chapter 2. I(2) proesses are also not

38

We have removed the large outlier ohort e�ets for years of birth 1918/19 using indiator variables,

as they are believed to be data artefats resulting from the surge of births due to the demobilisation of

soldiers after the First World War, based on similar reasons as those presented in Rihards (2008) and

Cairns et al. (2014).
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likely to be biologially reasonable, as the unertainty in projeted mortality rates would

grow very quikly. This would have important rami�ations if the model is projeted.

The maximal invariant approah also works with some other APC mortality models.

For instane, onsider the redued Plat model of Equation 4.12. This model has X +

2T + (X + T − 1) = 2X + 3T − 1 parameters and, as disussed in Setion 4.4.1.1, we

know that it requires �ve identi�ability onstraints to fully identify (two for the level of

the period funtions and one eah for the level, linear trend and quadrati trend in the

ohort parameters).

In order to �nd a maximally invariant parameterisation, we follow the same logi as in

Kuang et al. (2008b) and onsider the telesopi sums of the parameters. However, as

αx, κ
(1)
t and γy all possess unidenti�able quadrati trends, we need to onsider the third

di�erenes of these parameters, but only onsider the seond di�erenes of κ
(2)
t , sine it

only has unidenti�able linear trends

αx = αX − (X − x)∆αX +
1

2
(X − x)(X − 1− x)∆2αx −

X
∑

i=x+1

X
∑

j=i+1

X
∑

k=j+1

∆3αk

κ
(1)
t = κ

(1)
1 + (t− 1)∆κ

(1)
2 +

1

2
(t− 1)(t− 2)∆2κ

(1)
3 +

t
∑

i=2

t
∑

j=3

t
∑

k=4

∆3κ
(1)
k

κ
(2)
t = κ

(2)
1 + (t− 1)∆κ

(2)
2 +

t
∑

i=2

t
∑

j=3

∆2κ
(2)
j

γy = γ1−X + (y − 1 +X)∆γ2−X +
1

2
(y − 1 +X)(y − 2 +X)∆2γ3−X

+

y
∑

i=2−X

y
∑

j=3−X

y
∑

k=4−X

∆3γk

Combining these in Equation 4.12 and grouping the deterministi terms of the same type

redues the dimension of the parameter set in the same manner as for the lassi APC

model. Therefore, we �nd the maximally invariant form of the redued Plat model

ηx,t = a0 + (x− x̄)a1 + (x− x̄)2a2 + (t− t̄)b1 + (t− t̄)2b2 + (x− x̄)(t− t̄)c1

−
X
∑

i=x+1

X
∑

j=i+1

X
∑

k=j+1

∆3αk +
t
∑

i=2

t
∑

j=3

t
∑

k=4

∆3κ
(1)
k + (x− x̄)

t
∑

i=2

t
∑

j=3

∆2κ
(2)
j

+

y
∑

i=2−X

y
∑

j=3−X

y
∑

k=4−X

∆3γk (4.45)
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The �nal step to prove that this is a maximally invariant parameterisation would be to

hek that eah of the parameters an be estimated uniquely from the data. Alternatively

and more easily, we an see that it is maximally invariant from a dimensional argument,

sine the parameterisation has 6+(X−3)+(T −3)+(T −2)+(X+T −4) = 2X+3T −6

free parameters, whih is the same as the number of parameters in the original redued

Plat model less the number of identi�ability onstraints imposed. Therefore, the freely

varying parameter spae has the same dimension as the model spae and gives the same

�tted mortality rates as the original model, and so the parameters represent maximal

invariants. Beause of this, the revised model does not possess any identi�ation issues.

As in the ase of the lassi APC model, moving to a maximally invariant form for the

model means losing the demographi signi�ane of the parameters. The maximally in-

variant form of the redued Plat model is highly unintuitive ompared with the original

parameterisation, and it would be di�ult to ommuniate the impat of the various

parameters to anyone not intimately familiar with the maximally invariant approah.

As disussed in Chapter 2, sine demographi signi�ane is a major reason for hoosing

a model with parametri, as opposed to non-parametri age funtions, this is highly un-

desirable. Also, and again similar to the lassi APC model, the use of third di�erenes

for κ
(1)
t and γy leads naturally to using I(3) proesses when we projet the model, whih

are unlikely to give biologially reasonable projetions.

Further, the maximal invariant approah does not work with all APC mortality models.

If we follow the same logi to try to �nd the maximally invariant parameterisation for

the full Plat model in Equation 4.11 we obtain

ηx,t = a0 + (x− x̄)a1 + (x− x̄)2a2 + (t− t̄)b1 + (t− t̄)2b2 + (x− x̄)(t− t̄)c1

−
X
∑

i=x+1

X
∑

j=i+1

X
∑

k=j+1

∆3αk +

t
∑

i=2

t
∑

j=3

t
∑

k=4

∆3κ
(1)
k + (x− x̄)

t
∑

i=2

t
∑

j=3

∆2κ
(2)
j

+ (x− x̄)+κ
(3)
1 + (x− x̄)+

t
∑

i=2

∆κ
(3)
i +

y
∑

i=2−X

y
∑

j=3−X

y
∑

k=4−X

∆3γk (4.46)

We know, from Setion 4.4.1.1, that the Plat model hasX+3T+(X+T−1) = 2X+4T−1

parameters and requires six identi�ability onstraints (three on the levels of the period

funtions and one eah for the level, linear trend and quadrati trend in the ohort

parameters). However, the maximally invariant parameterisation in Equation 4.46 has

7+ (X − 3) + (T − 3) + (T − 2) + (T − 1) + (X + T − 4) = 2X +4T − 6 free parameters,

i.e., one too many. This is beause the (x− x̄)+κ
(3)
1 term annot be ombined with the

expanded form of αx, sine it is not a polynomial. Consequently, there is no dimensional
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redution with respet to this age/period term.

Beause of this, we will still require an additional identi�ability onstraint to �t the

model in Equation 4.46 to data. However, it is no longer lear what this should be

or what the underlying invariant transformation of the parameters is. The maximally

invariant approah has therefore not solved the identi�ability issues for this model, but

has made making an arbitrary identi�ation onsiderably more di�ult.

This will be true for any age/period term whih does not have a polynomial age funtion.

As disussed in Setion 4.4.3, suh terms do not generate any additional identi�ability

issues beyond the unidenti�able level of the period funtion, as disussed in Chapter 3.

It therefore may be possible to deal with this using an approah similar to that proposed

for the model of Lee and Carter (1992) in Nielsen and Nielsen (2014) and disussed in the

Appendix of Chapter 3. However, as these two tehniques for obtaining maximally invari-

ant parameterisations are fundamentally di�erent, it is unlear how to ombine them in

models whih mix polynomial and non-polynomial age funtions, suh as the Plat model.

In summary, the maximally invariant approah proposed in Kuang et al. (2008b) and

Nielsen and Nielsen (2014) for the lassi APC model an be generalised, but only to

models with purely polynomial age funtions. For models with other forms for the age

funtions (or whih mix polynomial and non-polynomial age funtions), the maximally

invariant approah, at best, o�ers a partial solution. However, in using suh an approah,

we lose our desired demographi signi�ane regarding the parameters in the model and

are likely to obtain projeted mortality rates whih are not biologially reasonable, so

this approah is not, in general, reommended.
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Chapter 5

A General Proedure for

Construting Mortality Models

5.1 Introdution

In reent years, there has been an explosion in the number of new mortality models that

have been proposed. This has been triggered, in part, by the greater fous plaed on

longevity risk by demographers, atuaries and governments. It has also been prompted

by the failure of existing models to identify adequately the full extent of the omplexities

involved in the evolution of mortality rates over time.

Yet these new models often involve ad ho extensions to existing models, whih have

questionable demographi signi�ane.

1

Despite having more terms than the older mod-

els, they still fail to apture a lot of the information present in the data, suh as the

level of lifespan inequality in the population. They also have di�ulties providing real-

isti foreasts of spei� mortality rates. Laking a formal proedure for interrogating

the data to establish what struture remains to be explained, modellers too often add

new terms based on theoretial models of mortality or on assumptions regarding the

shape of the mortality urve rather than evidene. This is espeially dangerous in mod-

els with ohort parameters intended to apture generational e�ets. The result of any

mis-spei�ation in these extra age/period terms an result in struture being wrongly

attributed to the ohort e�et. This is then projeted inorretly, moving up the age

range with the passage to time, with the result that implausible foreasts are generated

1

Demographi signi�ane is de�ned in Chapter 2 as the interpretation of the omponents of a model

in terms of the underlying biologial, medial or soio-eonomi auses of hanges in mortality rates

whih generate them.
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at higher ages.

In view of this, we feel that the time has ome to take a fresh look at mortality model

onstrution. But, rather than propose yet another new model, what we do in this study

is outline and implement a �general proedure� (GP) for building a mortality model from

srath, driven by a forensi examination of the data. Through an iterative proess, the

GP identi�es every signi�ant demographi feature in the data in a sequene, begin-

ning with the most important. For eah demographi feature, we need to apply expert

judgement to hoose a partiular parametri form to represent it. To do this, we need a

�toolkit� of suitable funtions.

By following the GP, it is possible to onstrut mortality models with su�ient terms to

apture aurately all the signi�ant information present in the age, period and ohort

dimensions of the data. In partiular, the GP prevents struture in the data whih is

genuinely assoiated with an age/period e�et being wrongly alloated to a ohort e�et.

The proedure is general in the sense that it an be applied to any dataset to give a fully

spei�ed model tailored to the features of the population under onsideration. Most sig-

ni�antly, the GP provides evidene for the addition of eah term to an existing model; it

allows eah new term to be assoiated with a spei� demographi and biologial proess

driving the evolution of mortality rates.

Setion 5.2 presents a summary of the struture of the lass of mortality models we

are onsidering and sets out the desirable properties that we believe a good mortality

model should possess. The general proedure is disussed in Setion 5.3. In Setion

5.4, we apply the GP to data for men in the UK and desribe how the steps in Setion

5.3 operate in pratie. In Setion 5.5, we assess the goodness of �t of this model and

hek whether there is any remaining struture present in the �tted residuals. Setion

5.6 ompares the GP with the Lee-Carter model and with a proedure based on prini-

pal omponent analysis as an alternative method of onstruting mortality models with

multiple age/period terms. Finally, Setion 5.7 onludes with an assessment of how the

�nal model found measures up against our set of desirable properties from Setion 5.2

as well as its advantages and disadvantages.
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5.2 The strutural form of mortality models

The majority of existing mortality models proposed in the atuarial literature fall into an

age/period/ohort framework. This transforms the observed mortality rates and then

�ts a series of terms to aount for the interations between the age, x, the year of

observation, t, and the year of birth, y = t − x, for the population within eah ell of

data. Mathematially, this an be written as:

2

η

(

E

(

Dx,t

Ex,t

))

= αx +

N
∑

i=1

f (i)(x; θ(i))κ
(i)
t + γt−x (5.1)

This equation has the following omponents:

• a link funtion η to transform the observed data into a form suitable for modelling.

The raw data usually onsists of death ounts Dx,t and exposures to risk Ex,t at

ages x and for years t;

• a stati age funtion αx to apture the general shape of the mortality urve that

does not hange with time;

• N age/period terms f (i)(x; θ(i))κ
(i)
t , onsisting of ompanion pairs of period terms

κ
(i)
t (or �trends�) whih give the evolution of mortality rates through time and age

funtions f (i)(x; θ(i)) whih determine whih segments of the age range these trends

a�et; and

• ohort parameters γt−x whih determine the lifelong e�ets that are spei� to

di�erent generations as disussed in Willets (2004), denoted by their year of birth;

Many mortality models proposed to date an be written in this form. These inlude the

Lee-Carter (LC) model proposed in Lee and Carter (1992) and extensions of this, suh

as those of Renshaw and Haberman (2003b) and Yang et al. (2010). It also inludes the

Cairns-Blake-Dowd family of mortality models (in Cairns et al. (2006a) and Cairns et al.

(2009)), the lassi age/period/ohort model of Hobraft et al. (1982) and developments

of these models suh as the models proposed by Plat (2009a) and O'Hare and Li (2012a).

In addition, it inludes various other mortality models not ontained within these fam-

ilies suh as the ones proposed in Wilmoth (1990) and Aro and Pennanen (2011). The

models of the rate of mortality hange proposed in Haberman and Renshaw (2012, 2013)

2

This strutural form and demographi signi�ane of the terms in it are disussed in depth in Chapter

2.

153



A General Proedure for Construting Mortality Models

and Mithell et al. (2013) also fall within this struture for suitable hoie of the link

funtion ηx,t. These models and the relationships between them are disussed in greater

depth in Chapter 2. Examples of models whih fall outside this framework inlude those

with a onstant, Makeham term, the extension to the LC model proposed in Renshaw

and Haberman (2006) (due to the presene of the β
(0)
x term modifying the ohort pa-

rameters) and the P-splines models of Currie et al. (2004).

A good mortality model should satisfy the following �desirability riteria�:

1. provide an adequate �t to the data, with su�ient terms to apture all the signi�-

ant struture in the data;

2. be biologially reasonable;

3

and have terms whih have demographi signi�ane in

the sense that they are explainable in terms of the underlying biologial, medial

or soio-eonomi auses of hanges in mortality rates at spei� ages

3. be parsimonious, with the smallest number of terms needed to apture this stru-

ture, and with eah term using as few parameters as possible;

4. be robust, in that parameter unertainty should be low and small hanges in the

data should not result in signi�ant hanges in the estimates of the parameters and

in our interpretation of them;

5. span the full age range, with su�ient terms to model the omplex shape of and

dynamis observed in mortality rates at younger ages; and

6. inlude ohort e�ets if justi�ed by the data and allow for these to be learly

distinguished from age/period e�ets to allow plausible projetions of the model.

The GP has been designed with these riteria (and the trade-o�s between them) in mind.

Most spei�ally, the GP hooses parametri age funtions,

4 f (i)(x; θ(i)), whih take a

spei� funtional form and are parameterised by a small number of variables θ(i), over

more general non-parametri age funtions,

5 β
(i)
x , due to their parsimony and beause

we an use our judgement to assign demographi signi�ane to the term in question.

The advantages and disadvantages of using parametri age funtions are disussed in

greater depth in Chapter 2. However, a key feature of the GP is to use the information

disovered from �rst using a non-parametri age funtion to provide guidane on the

shape of that demographi feature. This will improve the goodness of �t for eah term

and avoid the need to make a priori assumptions regarding whih age funtions to use.

3

Introdued in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a ausal

assoiation (or relationship) between two fators that is onsistent with existing medial knowledge�.

4

De�ned in Chapter 2 as one taking a spei� funtional form that is de�ned by an algebrai formula.

5

De�ned in Chapter 2 as one �tted without imposing any a priori struture aross ages.
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5.3 A general proedure for onstruting mortality models

The general proedure onsists of the following steps:

1. Start with a stati age funtion αx to apture the time-independent shape of the

mortality urve aross ages in the data set under onsideration;

2. Add a ompanion pair of non-parametri age and period funtions βxκt to �nd the

most signi�ant age/period e�et not aptured by the model so far, where the age

term βx is free to take the shape that maximises the �t to the data;

3. Observe the shape of the estimated age term βx aross ages and how κt has evolved

through time;

4. Chek that the addition of the new pair of terms improves the overall goodness of

�t to the data;

5. Use judgement to selet a spei� smooth funtional form f(x; θ) to replae the

non-parametri age term βx where the funtion is de�ned by a small number of

free parameters θ;

6. Chek whether the �tted model with this spei� funtional form

(a) produes a similar evolution over time as the non-parametri term by om-

paring the �tted κt's for the two ases and

(b) ahieves omparable improvements in the goodness of �t as the non-parametri

term.

7. Chek whether the addition of the new ompanion pair of terms has signi�antly

hanged the shape of previously seleted terms, in whih ase we might need to

hange and re-estimate the earlier terms;

8. Repeat steps 2 to 7 until we are satis�ed that the model aptures all signi�ant

age and period struture in the data;

9. Add a ohort term γt−x to apture any year of birth e�ets;

10. Test the �nal model for goodness of �t and robustness, and the residuals for the

properties of normality and independene, thereby on�rming that there is no

signi�ant unexplained demographi struture remaining in the data;

11. Compare the �nal model to alternative models estimated using the same data set.
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After eah modi�ation of the model struture (e.g., replaing a non-parametri age

funtion, βx, with a parametri alternative, f(x), or the addition of the ohort term),

all the terms are re-estimated by �tting the model to historial data.

6

This ensures that

all of the parameters are estimated on the basis of maximising the �t to data and that

there is no expliit hierarhy within the model struture. Figure 5.1 shows a �ow hart

of the GP summarising these steps.

The GP is a data-driven proedure, with terms being seleted based on their ability to

apture features of the observed mortality rates. At high level, it is a spei�-to-general

model building proedure (as de�ned in Campos et al. (2005)) as it begins with a sim-

ple model and sequentially adds terms in order to build a model that fully re�ets the

features ontained in the dataset under investigation. This approah is unavoidable,

sine to begin with a fully general mortality model, as required by the general-to-spei�

methodology, would ontain suh a large number of terms that it would be impossible

to �t it to data and di�ult to simplify. However, at the �miro� level, eah age/period

ompanion pair is added in a general-to-spei� fashion - the most general form of the

funtion is added to the model and then simpli�ed into a spei�, parametri form, whilst

seeking to retain its explanatory power. Thus, we believe that the GP bene�ts from both

model-building frameworks.

The GP selets the funtional form of the age/period terms in two stages. First, it allows

eah age/period term within the data to be identi�ed by a non-parametri age funtion

without requiring any a priori assumptions to be made by the modeller. Seond, it al-

lows the shape of these non-parametri age funtions to guide the hoie of parametri

funtion that is seleted from the toolkit to math as losely as possible the explanatory

power of the former, whilst bene�ting from parsimony in terms of the number of param-

eters to be estimated. However, judgement is required in the seletion of the parametri

funtion, although that the GP provides evidene to justify the deision made.

Appendix 5.A gives details of the �toolkit� of parametri age funtions needed to im-

plement the GP; it also gives a general algorithm for estimating the free parameters in

them. However, a toolkit is never omplete and so we do not o�er this as an exhaustive

list of funtions - only as those we have onsidered so far. Two highly desirable features

for a funtion to be inluded in the toolkit are a small number of free parameters (in our

experiene, more than two free parameters leads to unstable estimates) and the ability

6

The only exeption to this is when an exploratory βxκt term is added to the model, sine these

models are often very unstable due to over-parametrisation.
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to adjust the loation of the funtion in the age range.

At eah stage of the GP, we need to assess whether the resulting model is in aordane

with our desirability riteria. First, we will need to test whether an additional age fun-

tion improves the �t of the model to data. It is well known that a measure suh as the

log-likelihood will always show an improvement in the �t of a series of nested models to

the data due to the inreased number of free parameters. In order to ahieve our desire

for a parsimonious model, it is therefore neessary to penalise the number of free param-

eters used by onsidering a measure suh as the Bayes Information Criterion (BIC).

7

The

log-likelihood is still useful, however, when adding an additional non-parametri term as

the hange in this measure represents the maximum possible improvement in the �t from

the addition of a single new term. We an therefore use this maximum possible improve-

ment as the benhmark for measuring the suess of the spei� parametri form being

trialled: a parametri age funtion whih produes 80-90% of the same improvement in

log-likelihood an be regarded as highly desirable.

Seond, we need to ompare whether the struture identi�ed by a non-parametri age

funtion is the same as that found when a spei� parametri funtion is introdued.

Plots of the two are useful for revealing the general pattern of mortality hange and

identifying features suh as trend hanges and outliers that the two series have in om-

mon.

Finally, we will need to test the residuals from the data. As disussed in Pitao et al.

(2009), under a Poisson model for deaths (suh as the one we use), the standardised

deviane residuals rx,t are given by

rx,t = sign(dx,t − d̂x,t)

√

√

√

√

2Wx,t

φ

(

dx,t ln

(

dx,t

d̂x,t

)

− (dx,t − d̂x,t)

)

with atual death ount dx,t, �tted death ount d̂x,t = Ec
x,tµx,t, and φ the sale parameter

given by the total �tted deviane divided by the number of degrees of freedom

8

of the

model. This assumes that the residuals have onstant variane aross age and time. For

large expeted death ounts, these should be approximately standard normal variables,

so we an test the residuals for normality using the Jarque-Bera test of the skewness and

kurtosis to hek this. The residuals should also be independent and show no obvious

struture aross ages, periods and ohorts. To look for struture within the residuals, we

7

De�ned as max(Log-likelihood)− 0.5× No. free parameters × ln(No. data points).
8

Number of data points less number of free parameters.
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plot heat maps and visually inspet for obvious vertial, horizontal or diagonal banding

patterns. This would indiate the presene of further age, period or ohort e�ets. We

also alulate the orrelations of the residuals with their neighbours in the age and period

diretions, and test these orrelations against the assumption of independene.

To exit the yle of adding new age/period terms, we need a stopping rule in the GP

to determine when there are no further demographially signi�ant age/period terms

left unidenti�ed in the data. Suh a stopping rule will inevitably be subjetive. This

means that the GP is not a �blak-box� algorithm; it requires the ative engagement and

exerise of judgement by the modeller at eah stage of the model building proess.

Finally, we add the ohort parameters as the last step in the GP. The reason for this

re�ets a preferene for a model where the majority of the temporal dependene in the

data is alloated to the age/period terms. The reasons for this preferene are disussed

in detail in Chapter 2, but in our experiene, the pattern of �tted ohort parameters

produed by some models does not seem to have any demographi signi�ane and may

be aused by the model trying to ompensate for inadequate age/period terms. We

therefore seek to avoid this in the GP.

5.4 Appliation of proedure to male UK data

To illustrate the GP, we apply it to data for men in the UK from 1950 to 2009 overing

ages 0 to 100 (ungrouped) downloaded from the Human Mortality Database (Human

Mortality Database (2014)). We restrit the data to the period sine the Seond World

War as it is free from major on�its and abrupt soial upheaval. Sine the Human

Mortality Database provides entral exposures to risk for eah age and year, we assume

that the death ounts are Poisson random variables and therefore use a log-link funtion

for ηx,t as it is the anonial link funtion for the Poisson distribution, as disussed in

Chapter 2. We �t the model at eah stage using Poisson maximum likelihood estimation

using the algorithms desribed in Appendix 5.A.

5.4.1 Stage 0 - Stati age funtion

The stati age funtion produed by �tting ln(µx,t) = αx onstitutes the �rst step in the

GP. The �tted values of αx (not shown) show the usual pattern of mortality aross the
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full age range: with high mortality rates at age zero due to infant mortality, the log-linear

pattern of mortality inreases at high ages (from 50 to 90) and the inreased rates of

mortality due to the aident hump between ages 15 and 25. Whilst the age funtion is

re�tted at eah stage of the GP, this shape does not hange signi�antly throughout the

di�erent stages of the model building proess.

5.4.2 Stage 1 - First age/period term

The next step is to add the �rst non-parametri age/period term to the stati model to

arrive at ln(µx,t) = αx + βxκ
(1)
t , whih has the form of the LC model. This gives the

familiar βx and κ
(1)
t terms shown in Figure 5.2.

In order to fully identify the model, we impose

∑

x

|βx| = 1 (5.2)

∑

t

κ
(1)
t = 0 (5.3)

and adopt these identi�ability onstraints for all subsequent age/period terms in the

model for onsisteny. For parametri age funtions, imposing Equation 5.2 involves

resaling the age funtion by either a onstant or with a funtion of the free parameters,

θ(i) (i.e., ensuring that the age funtion is �self-normalising�). This is disussed further

in Appendix 5.A and Chapter 3.

In the interests of parsimony and demographi signi�ane, we believe that it is highly

desirable to �nd a simpler parametri form than the age funtion of the LC model to

apture the impat of the dominant trend within the data - ideally the simplest age

funtion that will apture the same trend. This parametri form should be ontinuous to

avoid any issues with the smoothness of projeted mortality rates. As the �tted βx age

funtion is positive aross the whole age range, it might be felt to represent a general im-

provement in mortality rates aross all ages. Appealing to this demographi signi�ane,

we therefore try the simplest possible age funtion - a onstant. As Figure 5.2 shows, this

simple age funtion e�etively aptures the same trend as the non-parametri βx funtion

with 100 fewer parameters, and ahieves approximately 92% of the same improvement in

log-likelihood. We are therefore satis�ed that there is no need to use a more omplex and

less parsimonious age funtion, although we would expet that muh of the age struture

present in the �tted βx will need to be aptured by subsequent age/period terms.
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Figures 5.2a and 5.2b shows the age and period funtions generated by Stage 1 of the

GP. We an see that the population has experiened sustained improvements in mortal-

ity whih have aelerated slightly in reent years. The model also detets the inreased

mortality in 1951 owing to the in�uenza epidemi in that year whih a�eted muh of

England.

So far, so good, but a plot of the residuals - not shown here - indiates that additional

terms are neessary to fully apture all the struture within the data.

5.4.3 Stage 2 - Seond age/period term

In order to �nd the next most signi�ant age/period e�et within the data, we now add

another non-parametri age/period term to the model to arrive at

ln(µx,t) = αx + f (1)(x)κ
(1)
t + βxκ

(2)
t (5.4)

The �tted model gives the values of βx and κ
(2)
t shown in Figure 5.3. It is not a trivial

task to selet an appropriate parametri age funtion from the shape of βx and this is

where judgement beomes important. By inspetion, the non-parametri age funtion

appears to have two omponents - an upward-sloping linear trend aross the entire age

range and a large �hump� superimposed on the age range 10 to 50. Sine we an assign

di�erent demographi signi�ane to eah of these features, it is appropriate that we

separate them into two di�erent age/period terms in the fully spei�ed model. However,

these trends will probably be highly orrelated whih is why the non-parametri funtion

has ombined them.

We hoose to �t a straight line as our hoie of f (2)(x) as it is a simpler potential fun-

tion than one with a hump shape; indeed it is the simplest possible funtion after a

onstant. In our experiene, a straight line is often the seond hoie of age funtion

that arises naturally when applying the GP, espeially for data restrited to higher ages.

This lends support for the use of the Cairns-Blake-Dowd lass of models. A straight

line an be interpreted as determining hanges in the slope parameter in a Gompertz

model of mortality for models with a logarithmi link funtion. This is related to the

�retangularisation� of the mortality urve, as a greater proportion of deaths at high age

our around the median age of death. We also note that κ
(1)
t and κ

(2)
t are negatively

orrelated, onsistent with the Strehler-Mildvan law of mortality disussed in Finkelstein
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(2012).

5.4.4 Stage 3 - Third age/period term

Our disussion of the hoie of an appropriate age funtion at Stage 2 should give us a

strong idea as to the appropriate shape of the age funtion for Stage 3. The GP gives

us the evidene to support or rejet our onjeture by �rst extending the model with a

new non-parametri age/period term

ln(µx,t) = αx +

2
∑

i=1

f (i)(x)κ
(i)
t + βxκ

(3)
t (5.5)

The �tted non-parametri model gives the values of βx and κ
(3)
t shown in Figure 5.4. This

on�rms that a suitable hoie for f (3)(x) ould indeed be some form of hump-shaped

funtion entred around age 25 and so we experiment with

f (3)(x; x̂, σ) ∝ 1

σ
exp

(

−(x− x̂)2

σ2

)

(5.6)

This funtion has two free parameters, x̂ and σ whih, by analogy with the normal dis-

tribution, govern the loation of the hump and its width. These are estimated using

Poisson maximum likelihood estimation. We hoose the starting values for these pa-

rameters by observing the pattern of the βx funtion, before applying our optimisation

algorithm. The �nal, �tted values should not be overly sensitive to the initial hoie. If

they are, this indiates that the hoie of age funtion may be inappropriate and will

ause problems with the model when additional terms are added.

The �nal �tted f (3)(x; x̂, σ) and κ
(3)
t funtions are shown in Figure 5.4. When adding

a new term to the model, we need to hek that it does not signi�antly alter the de-

mographi interpretation of the previous terms. Plots of the �rst two terms - not shown

here - indiate that they have not hanged signi�antly due to the presene of the third

term.

Visual inspetion of the heat map of residuals in Figure 5.5 shows us that a) there ap-

pear to be additional age/period e�ets in the data, most obviously entred on age 0

and age 18 and b) there is a lear need for a ohort e�et in the model as shown by

the prominent diagonal lines on the heat map indiating features whih follow individual

years of birth as they age. The evidene gleaned from the heat map plot is useful when
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deiding on subsequent terms, espeially when trying to determine if the shape shown

by an exploratory βxκt funtion is trying to approximate for a ohort e�et - something

we believe is essential to avoid.
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Figure 5.5: Heat map of residuals from Stage 3

5.4.5 Stage 4 onwards - Additional age/period terms

The format of the GP from Stage 4 onwards follows the same pattern as for Stages 1, 2

and 3: hoose an appropriate funtional form for the age term in order to apture the

main e�et revealed by the non-parametri βxκt term.

We have already dipped into our toolkit of age funtions, most notably by using the two-

parameter Gaussian funtion at Stage 3. Stage 4 and onwards require us to have a far

greater range of funtions available in the toolkit that we an potentially use. Appendix

5.A ontains a list of the parametri funtions onsidered in this analysis.

Figure 5.6 shows plots of the �nal �tted age funtions f (i)(x, θ(i)) and trends κ
(i)
t for

i = 4, 5, 6, 7. It is useful to note that the order of disovery of these funtional forms
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provides a natural order of importane for the age terms.

The age funtions we have �tted are:

• Stage 4: a broken linear funtion similar to the payo� of a put option, whih we

an assoiate with hildhood mortality rates;

9

• Stage 5: a Rayleigh funtion, whih we assoiate with the postponement of deaths

from late middle age to old age that results from medial improvements over the

past 60 years;

• Stage 6: a log-normal funtion entred on ages 18-19 whih we assoiate with the

peak age of the aident hump; and

• Stage 7: a normal funtion entred on ages 55 to 65 whih may be assoiated with

the major auses of death in late middle age, suh as lung aner and oronary

heart disease and the e�orts made to takle them.

The residual heat map for Stage 7 (Figure 5.7) is dominated by the diagonal lines repre-

senting the ohort e�ets whih have been exluded from the model so far. This might

lead us to onlude that we have extrated all of the important age/period e�ets from

the data. This is on�rmed by adding a further exploratory non-parametri term to the

model. Whilst the resulting BIC for the model does inrease, there is little struture to

the βx �tted (shown in Figure 5.8a) exept for the periodi pattern at high ages whih

is learly trying to apture a series of ohort e�ets.

10

We therefore onlude that, for

UK male data over the sample period, there are seven distint age/period e�ets in the

data.

9

This funtion an be thought of as a very simple linear spline with a single knot, similar to those

used as basis funtions in Aro and Pennanen (2011). More omplex splines ould also be onsidered as

part of the toolkit of age funtions.

10

We have tested whether the use of an indiator funtion at age 18 or a narrow, triangular �spike�

funtion entred on this age would improve the goodness of �t. However, when using the BIC whih

penalises for exessive parametrisation, the use of these funtions did not improve the �t of the model.

The use of an indiator funtion also leads to mortality rates at age 18 being �t perfetly whih does

not aord with our desire for parsimony and may lead to disontinuous mortality rates whih are not

biologially reasonable.
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Figure 5.7: Heat map of residuals from Stage 7

5.4.6 Stage 8 - Cohort term

The �nal stage is to add the ohort parameters γt−x to yield the �nal model

ln(µx,t) = αx +

7
∑

i=1

f (i)(x; θ(i))κ
(i)
t + γt−x

Due to the limited number of observations on very early and late ohorts, we do not

estimate ohort parameters in the �rst and last ten years of birth. Instead, we linearly

interpolate these to zero for smoothness. The �nal model gives the ohort parameters

shown in Figure 5.9. Adding a ohort term to the model also reates additional issues

with the identi�ability of the parameters, whih are solved by applying extra identi�a-

bility onstraints.

11

The full set of identi�ability onstraints required by the �nal model

produed by the GP is given in Appendix 5.A.

From this, we an identify the major features of interest and an try to relate them to

the life histories of the a�eted ohorts. Most obviously, there is a lear disontinuity

between years of birth 1918 and 1919. This may relate to the impat of the in�uenza

11

This issue is disussed in Chapter 4.
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Figure 5.9: γt−x ohort e�ets from Stage 8 of the general proedure

epidemi that year. Alternatively, it ould be a data artefat aused by a �ood of births

after the First World War distorting the assumptions used to onstrut exposures to risk

(for a disussion, see Rihards (2008)). Following this is the deline in ohort mortality

observed in Willets (1999, 2004) and disussed in Murphy (2009) relating to the �golden

ohort� of individuals born in the late 1920's and early 1930's. We also observe a further

(although smaller) disontinuity between 1945 and 1946 relating to the end of the Seond

World War, strengthening the data artefat argument presented in Rihards (2008). We

are unsure what demographi signi�ane the exess ohort mortality observed for years

of birth between 1960 and 1980 has. These are individuals urrently aged between 30

and 50 and therefore we have limited mortality experiene data for them and so any

attempt at assigning demographi signi�ane is somewhat speulative. However, this

feature is robust when adjusting the range of the data for the model and when additional

age/period terms are added. This feature will be signi�ant for projeting mortality rates

if this exess mortality is ontinued later into life. Finally, we observe a distint ohort

e�et for individuals born around the year 1900 (whih again is robust to the model and

data spei�ation). This may be due to the formative impat of experiene during the

First World War as young men and the lifetime health e�ets this may have indued.
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5.5 Testing the �nal model

Our �nal model onsists of the seven age period terms desribed in Table 5.1 plus terms

for the stati life table αx and the ohort parameters γt−x.

Term Desription f (i)(x) ∝ Demographi

Signi�ane

1 Constant 1 General level

of mortality

2 Linear x− x̄ �Gompertz slope�,

retangularisation

3 Normal exp
(

− (x−x̂)2

σ2

)

Young adult

mortality

4 �Put option� (xc − x)+ Childhood

mortality

5 Rayleigh (x− x̂) exp
(

−ρ2(x− x̂)2
)

Postponement of

old age mortality

6 Log-normal

1
x exp

(

− (ln(x)−x̂)2

σ2

)

Peak of

aident hump

7 Normal exp
(

− (x−x̂)2

σ2

)

Late middle /

old age mortality

Table 5.1: Age/period terms in the �nal model

Figure 5.10 shows (on a logarithmi plot) the ontribution eah of these terms makes to

improving the goodness of �t (measured by the BIC) of the model. It an be seen that

the majority of the improvement in goodness of �t omes from the �rst three age/period

terms. However, the other terms (as well as being statistially and demographially sig-

ni�ant) are still important in desribing genuine struture in the data suh as the level

of inequality in lifespan in the population, desribed by measures suh as the entropy

or Gini oe�ient of the life table (for instane, see Shkolnikov et al. (2003)). Without

them, the ohort term - as the �nal ath-all term added to the model - would attempt

to apture this struture, leading to it being wrongly spei�ed and generating inaurate

and implausible foreasts of mortality rates when projeted.

Our �nal model should, ideally, satisfy the desirable properties relating to the adequay

and goodness of �t of the model disussed in Setion 5.2. Spei�ally

1. it should provide a good and parsimonious �t to the data (whih should have been

ahieved through the model �tting proedure);
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Figure 5.10: Improvement in goodness of �t at di�erent stages of the general proe-

dure

2. it should extrat all of the signi�ant struture from the data, leaving residuals

whih are independent and identially distributed; and

3. it should give parameter estimates whih are robust to small hanges in the data.

To test for struture within the standardised deviane residuals, we extend the proedures

in Dowd et al. (2010). We �rst plot the heat map shown in Figure 5.11. This shows an

apparent lak of any major age/period or ohort features and there are very few �hot�

and �old� regions or lusters in the plot. We then alulate the sample moments of

the residuals whih are shown in Table 5.2. With large exposures and death ounts and

assuming the residuals have onstant variane, we an use an approximation to assume

that they are N(0, 1) variables under the null hypothesis and so use the Jarque-Bera

statisti to test for this.

The ritial statisti for the Jarque-Bera test at 95% is 5.99, whilst at 99% it is 9.21.

This means that we deisively rejet the assumption of normality for the standardised

deviane residuals. Next, we onsider the orrelations of the residuals with those adjaent
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Figure 5.11: Heat map of residuals from Stage 8

Residual Standard Residual Residual Jarque-Bera

mean deviation skewness kurtosis statisti

General proedure -0.01 0.94 -0.03 3.38 37.70

Lee-Carter -0.02 0.98 0.47 9.75 11,700

PCA 0.00 0.94 0.06 3.26 21.25

Table 5.2: Properties of the residuals from Stage 8 of the general proedure and the

Lee-Carter and PCA models

in the age and period diretions, i.e.

ρXx = corr(ǫx−1,., ǫx,.)

ρTt = corr(ǫ.,t−1, ǫ.,t)

Figure 5.12 shows the plot of these orrelations against age and year and the relevant

statistis if we test against the null hypothesis of independene (a two-tailed test at 95%

signi�ane) for the �nal model from the general proedure. Clearly, the hypothesis of

independene is not supported overall. Testing these jointly (i.e., as a series of indepen-

dent binomial trials where the probability of failure is 5% under the null) on�rms the

lak of independene in both the age and period diretions at the 99% level.
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This lak of normality and independene should be investigated further. In pratie, this

may be due to isolated outliers (often aused by data errors) or due to strutural hanges

within the data. This would ause the variane of the residuals to hange with age or

time. Plots of the residuals from the model against age, period and ohort (not shown)

indiate that there are no extreme outliers that would need to be investigated and that

the variane of the residuals is roughly onstant. Therefore, it is probable that there is

unexplained struture remaining within the data whih is not aptured by the model.

However, omparing these results to those from the PCA model and other models suh

as the Lee-Carter model show that the GP gives results whih are at least as good as

those from alternative mortality models.
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Figure 5.12: Correlations and tests statistis for residuals from the general proedure

We also perform a number of tests of the robustness of the model to hanges in the data.

These inlude:

1. Fitting the model to di�erent periods of data by inreasing the start date sequen-

tially from 1950 to 1980;

12

We will ompare the relative performane of alternative mortality models in Setion 5.6.
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2. Bootstrapping the standard deviane residuals using a method based on the pro-

edure of Koissi et al. (2006) to test the extent of parameter unertainty; and

3. Removing ages and years from the data by setting their weights to zero to test that

none of the age/period funtions are overly sensitive to spei� ages and years.

The �rst of these tests is based on the proedure in Cairns et al. (2009). Graphs of the

�tted parameters (not shown but available from the authors) indiate that the model �ts

similar patterns for the evolution of the di�erent κ
(i)
t period funtions and slowly varying

age funtions as the age range of the data is hanged.

The seond robustness test we perform is to look at parameter unertainty under resid-

ual bootstrapping. Standard bootstrapping tehniques, suh as that implemented by

Koissi et al. (2006) were developed for use with the Lee-Carter model and assume that

the residuals from the model are independent. However, this assumption is not valid.

13

Nevertheless, for simpliity, we implement an approah based on this method of residual

bootstrapping in order to test our �nal model for parameter unertainty. This method

samples randomly from the �tted residuals and adds them to the �tted mortality surfae

to generate arti�ial death ounts, to whih the model is re�tted to generate new param-

eter estimates. In this fashion, the degree of parameter unertainty an be asertained.

The plots in Figure 5.13 depit fan harts (see Dowd et al. (2010a)) showing the 90%

on�dene interval for the period and ohort parameters produed by this bootstrap-

ping proedure using 1,000 simulations. As an be seen, the underlying pattern of the

parameters remains unhanged and there is no evidene to suggest that any terms are

not signi�ant when allowane is made for parameter unertainty. The age funtions are

not shown, but these are onsiderably more robust to the e�et of parameter unertainty

than the period and ohort e�ets.

As a �nal test of the model, we systematially remove ages and years from the data

by setting their weights to zeros and then re�tting the parameters. This tests if any of

the �tted funtions are overly sensitive to the spei� rows or olumns of the data grid,

and the model's ability to interpolate sensibly for missing data. Figures 5.14 and 5.15

shows the impat of this analysis on the ohort parameters γt−x and on the age/period

terms f (6)(x) and κ
(6)
t .

14

As an be observed, while removing spei� ages and years an

distort the ohort parameters at the end of the range of data, it does not substantially

13

More reently, strati�ed (see D'Amato et al. (2011)) and blok-bootstrapping (see Liu and Braun

(2010)) proedures have been used, as have those based on geo-statistial tehniques whih look at the

orrelation struture aross residuals (see Debón et al. (2008, 2010)).

14

This age/period term was hosen as the most spei� age funtion �tted and therefore probably the

most suseptible to unertainty under this analysis.
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a�et those estimated aross more data points in the entre of the range. κ
(6)
t is also

robust under this analysis.

15

. We are therefore satis�ed that our �nal model is robust

under small hanges to the data.

5.6 Comparison with alternative models

The model produed by the GP in Setion 5.5 had some unexplained struture aording

to our analysis of the residuals. How serious a problem is this? Perhaps the best way to

answer this question is to ompare the model from the GP with some alternative mortal-

ity models: the LC model (as the most widely used mortality model) and a method based

on prinipal omponent analysis whih extends the Lee-Carter approah with multiple

age/period and ohort terms.

The LC model, introdued in Lee and Carter (1992) has subsequently been muh stud-

ied, developed and extended, most notably in the work of Lee (2000), Brouhns et al.

(2002a), Booth et al. (2002), Renshaw and Haberman (2003b, 2006) and Hyndman and

Ullah (2007). It has rapidly beome the benhmark mortality model against whih others

are ompared (for instane in Cairns et al. (2009) or Plat (2009a)) and so is a natural

starting point for omparing the model produed by the GP against. However, it is a

relatively simple model with only one age/period term and no ohort term, and so we

would expet the GP to give signi�antly better �ts to the data.

The singular value deomposition used to �t the model to data in Lee and Carter (1992)

is a partiular implementation of prinipal omponent analysis (PCA) - see Huang et al.

(2009) for more details. It is therefore the natural extension of the Lee-Carter methodol-

ogy apable of giving multiple age/period terms. It �nds age and period funtions that

explain the maximum amount of variane (aross the period dimension) in the model.

PCA has long been used in the study of mortality rates: for example Wilmoth (1990)

used it to detet higher order age/period funtions, Booth et al. (2002) and Renshaw and

Haberman (2003b) both proposed its use to extend the Lee-Carter model with additional

age/period terms and the models of Hyndman and Ullah (2007) and Yang et al. (2010)

used it diretly to �t multiple age/period e�ets. However, it annot diretly �nd ohort

e�ets. Therefore a diret omparison of PCA with our model is not appropriate.

15

Corresponding graphs for the age funtions and other period funtions, not shown here, also show

onsiderable robustness.
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In order to ompare proedures, we use a method similar to that used in Wilmoth (1990).

We �rst use PCA to �nd age/period funtions for ln(µx,t) in the absene of ohort e�ets.

We then add a ohort e�et to the underlying model and use the PCA age/period e�ets

as the starting point when maximising the Poisson log-likelihood using the algorithms in

Appendix 5.A. This proess is repeated for di�erent numbers of age/period terms and

the model with the highest BIC seleted for omparison against our �nal model.

5.6.1 Results

Table 5.3 ompares the three models and shows the goodness of �t to our dataset. The

LC is a single fator model and so it is unsurprising that the other two models give

onsiderably better �ts to the data, although at the ost of a far greater number of

parameters. The PCA method also requires substantially fewer age/period terms to

ahieve a very similar goodness of �t to the model produed by the GP. Beause eah

of these age funtions has approximately one hundred free parameters ompared with

a maximum of two using the GP, this does not result in a more parsimonious model,

however. Further, as we are primarily interested in the evolution of mortality rates over

the period, we onsider that it is desirable to have a high proportion of the parameters

relating to the period and ohort e�ets of interest. This is not the ase in the PCA

model.

Model No. A/P No. free Log- BIC

terms parameters likelihood

General proedure 7 679 −3.09 × 104 −3.38 × 104

Lee-Carter 1 259 −5.13 × 104 −5.25 × 104

PCA 3 735 −3.07 × 104 −3.39 × 104

Table 5.3: Goodness of �t for the di�erent models

Figures 5.16 and 5.17 show the age and period funtions for the GP and PCA proedure

- the age and period funtions for the LC model are the same as the non-parametri

terms shown in Figure 5.2. We �nd it di�ult to assign demographi signi�ane to

the age funtions in the LC and PCA models. The ohort parameters for the GP and

PCA models are shown in Figure 5.18 - there is no orresponding plot for the LC model

due to the absene of a ohort term. Here it is worth noting the similarities as well as

the di�erenes in the �tted parameters. Both approahes detet the disontinuities after

the First and Seond World Wars and the inrease in ohort mortality for years of birth

around 1900 and between 1960 and 1980.
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However, there are substantial di�erenes in both the magnitude and the pattern of o-

hort parameters. Cohort e�ets for the GP are less pronouned than those from the

PCA proedure. In addition, the PCA model fails to �nd a sustained derease in ohort

mortality for the �golden ohort� disussed previously. Most seriously, there appear to

be large ohort e�ets at the beginning and end of the range of years of birth whih are

not explainable demographially. We believe that these e�ets are trying to ompensate

for the seond and third age funtions in the PCA model, whih do not tend to zero at

high ages (as shown in Figure 5.17a). This has very serious e�ets when these models

are projeted into the future. We therefore believe that the ohort parameters produed

by the GP are more biologially reasonable and demographially signi�ant than those

�tted by the PCA proedure.

Table 5.2 above shows the moments and results of the Jarque-Bera tests on the residuals

for the three approahes. We note that none of the three models tested give normally

distributed standardised residuals, although the residuals from the GP and PCA models

ome onsiderably loser than those from the LC model.

We also ompare plots of the residual heat maps in Figure 5.19 and test for orrelation

amongst the standardised deviane residuals in Figure 5.20 from the Lee-Carter and PCA

models in Figure 5.20 - omparable plots for the GP are shown in Figures 5.11 and 5.12

respetively. The heat maps for the Lee-Carter and PCA models shows obvious lusters

in the �tted residuals, indiating that there is still substantial struture remaining in

the residuals of the PCA model. The LC residuals in partiular show the lear need

for a ohort term to apture the impat of the ohorts born after the First and Seond

World Wars. The PCA model yields residuals whih are loser to normality than the GP,

although they still do not pass the Jarque-Bera test. The orrelations aross residuals

from the PCA proedure are higher than from the GP. Probably this is due to the

smaller number of age/period terms. However, adding additional terms to the PCA

model results in worse BICs and therefore will not improve the goodness of �t. This

reinfores the onlusion that there is still struture in the data whih is not adequately

aptured by the PCA model.
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Figure 5.13: Parameter unertainty due to residual bootstrapping
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Figure 5.15: Parameter unertainty due to removal of one year of data
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Figure 5.16: Age and period funtions for the general proedure
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Figure 5.17: Age and period funtions for the PCA model
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Figure 5.18: Cohort parameters for the GP and PCA models
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Figure 5.19: Residual heat maps for the Lee-Carter and PCA models
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Figure 5.20: Residual orrelations aross age and period for the Lee-Carter and PCA models
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5.7 Conlusions

As the level of interest in longevity risk inreases, it beomes inreasingly important to

be able to onstrut more sophistiated mortality models reliably and robustly. These

will need to apture most of the identi�able struture in mortality rates within the data

- whih alls for more terms - but to do so with the smallest number of free parameters

- whih alls for parsimony. Where ohort e�ets are believed to be real and important,

they will need to be aptured by the model. However, they must also be learly distin-

guished from age/period e�ets in order that they an be projeted orretly. This, in

pratie, means that all the signi�ant age/period e�ets must be identi�ed before any

attempt is made to estimate the ohort e�et. Finally, terms within the model should be

apable of being assoiated with underlying biologial or soial proesses. This requires

judgement to be used to guide their projetion and aid their ommuniation with other,

non-tehnial, stakeholders who are subjet to longevity risk and wish to understand the

impliations.

In this hapter, we have introdued a new, general proedure for onstruting mortality

models. The general proedure is driven by forensially examining the data to provide

evidene for the seletion of eah and every term in the �nal model produed. We believe

this improves the goodness of �t of the model parsimoniously and with demographi sig-

ni�ane. We have applied the general proedure to a spei� dataset, assoiated eah

term generated with an underlying demographi and/or soio-eonomi fator for the

population being modelled, analysed the residuals to on�rm that there is no identi�able

struture remaining in the data whih is not aptured by the model, and ompared the

results with those from other methods of onstruting mortality models.

The general proedure requires the modeller to engage intelligently with the data and

make various subjetive deisions in its implementation. It is not a �blak box� algorithm

whih an be deployed mehanially on various datasets, but rather requires a substan-

tial investment of time to understand the underlying fores driving mortality within the

population of interest and how these fores an be represented mathematially. But far

from this being a disadvantage, we would argue that our approah aords perfetly with

good model building pratie, whih seeks to move beyond a purely algorithmi approah

in order to understand better the underlying struture of the data.
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In onlusion, we believe that the general proedure is apable of produing models

whih are in aordane with the desirability riteria of adequay of �t to the data, de-

mographi signi�ane, parsimony, robustness and ompleteness (by inluding su�ient

terms to over all ages and ohorts).

However, we are aware that in order to be pratially useful, a good �t to historial data

needs to be aompanied by the ability to use the model to make reliable foreasts of

future mortality rates. Projeting models with multiple age/period and ohort terms

onsistently is a di�ult problem as the historial time series are often highly orrelated

and display urvature, outliers or subtle trend hanges whih need to be aommodated

(as have been desribed in Li and Chan (2005), Li et al. (2011) and Coelho and Nunes

(2011)). We address these issues in Chapters 6 and 8.

5.A Appendix: Algorithms and toolkit of funtion

In order to implement the general proedure, we need the ability to introdue new terms

to existing models and to �t these to data. At eah stage, all parameters within the

model are freely estimated (although the values found at previous stages are used as

onvenient starting points for later stages of the maximisation algorithm). The exep-

tion to this is when new non-parametri terms are added to the model and the previously

�tted age funtions are not re-estimated as this often leads to model instability. As these

terms are added purely for exploratory purposes and all parameters will be re-estimated

one they are replaed with suitable parametri forms, we do not believe this will have

a signi�ant impat on the �nal model.

As we have entral exposures to risk from the Human Mortality Database (Human Mor-

tality Database (2014)), we adopt a Poisson likelihood maximisation approah whih

enables us to do this quikly and e�iently. This proedure is based on that imple-

mented in Brouhns et al. (2002a) and is desribed in Algorithm 1 at high level below.

The �tting algorithm used by the general proedure di�ers from the Brouhns et al.

(2002a) method in that the log-likelihood is maximised with respet to eah set of pa-

rameters sequentially rather than simultaneously. It ould be argued that this may lead

the algorithm to �nd loal rather than global maxima for the parameter values. In

pratie, we have not found this to be an issue and believe it an be largely resolved

through �nding the full set of identi�ation issues for the parameters within the model
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Algorithm 1 Algorithm for Poisson likelihood maximisation

1: Set initial starting values and alulate initial log-likelihood

2: while Inrease in log-likelihood less than threshold value (e.g. 10−2
) do

3: Maximise log-likelihood with respet to αx holding all other parameters onstant

4: for Eah age/period term i do

5: Maximise log-likelihood with respet to κ
(i)
t holding all other parameters on-

stant

6: Maximise log-likelihood with respet to free-parameters θ(i) in age funtion

f (i)(x; θ(i)) or with respet to βx holding all other parameters onstant

7: end for

8: Maximise log-likelihood with respet to γt−x holding all other parameters onstant

if model ontains a ohort term

9: Impose identi�ability onstraints through use of invariant transformations

10: Calulate updated log-likelihood

11: end while

12: Calulate residuals and BIC

(as disussed in Chapters 3 and 4). The maximisation of eah set of parameters (i.e.

ξ = αx, βx, κ
(i)
t , γc, θ

(i)
) is done as per Algorithm 2 below.

Algorithm 2 Algorithm for maximisation of individual parameters

1: Start with values for maximisation passed from parent algorithm

2: while Inrease in log-likelihood less than threshold value (e.g. 10−4
) do

3: Calulate �rst derivative of log-likelihood with respet to parameters

∂L
∂ξ

4: Calulate seond derivative of log-likelihood with respet to parameters

∂2L
∂ξ2

5: Update estimate of parameters ξ̂ = ξ − φ
∂L
∂ξ

∂2L
∂ξ2

6: Impose identi�ability onstraints, e.g. on the level of κ
(i)
t , using invariant trans-

formations

7: Update �tted surfae µx,t and log-likelihood

8: end while

9: Return updated parameter estimates, �tted mortality rates and log-likelihood to

parent algorithm

This is nothing more than the repeated appliation of the Newton-Raphson proedure.

The parameter φ ∈ (0, 1] is a simple saling whih an be lowered to improve the stability

of parameter estimates (albeit at the ost of inreasing the run time of the algorithm).

In most ases, the parameter sets are treated as vetors meaning that

∂2L
∂ξ2

is the Hessian

matrix. However, this matrix usually has a diagonal struture (e.g.

∂2L
∂αx∂αy

= 0 for

x 6= y) whih simpli�es the implementation signi�antly.

Models produed by the GP will not be fully identi�ed and so will require additional

identi�ability onstraints to be robustly estimated. A disussion of the origin and nature

of this lak of identi�ability and the seletion of appropriate identi�ability onstraints
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was given in Chapters 3 and 4. In summary, we impose the following identi�ability

onstraints upon the �nal model from Stage 8.

∑

t

κ
(i)
t = 0 ∀i (5.7)

∑

x

|f (i)(x; θ(i))| = 1 ∀i (5.8)

∑

y

nyγy = 0 (5.9)

∑

y

nyγy(y − ȳ) = 0 (5.10)

∑

y

nyγy((y − ȳ)2 − σy) = 0 (5.11)

Not all of these onstraints will be appliable at all stages (e.g., the onstraints in Equa-

tions 5.9, 5.10 and 5.11 will not apply to models without a ohort term) whilst for models

with a non-parametri age funtion, we require the additional onstraints below.

∑

x

|βx| = 1 (5.12)

∑

x

βxf
(i)(x; θ(i)) = 0 ∀i (5.13)

(5.14)

We refer to Equations 5.8 and 5.12as the normalisation of the age funtion. In ontrast to

some authors (e.g. Haberman and Renshaw (2009)) we do not require that age funtions

are non-negative. In order to normalise age funtions with free parameters θ(i), we must

modify the form of the age funtion so that

∑

x |f (i)(x; θ(i))| is not a funtion of θ(i).

This means that the normalisation sheme in Equation 5.8 holds as θ(i) is varied when

�tting the model. This is usually ahieved by multiplying it by a �self-normalisation�

funtion N(θ(i)). This was disussed in greater depth in Chapter 3. Equation 5.13 is

only applied in exploratory models with a non-parametri term in order to maximise the

distintness of the age/period terms.

The funtions in the toolkit we have developed so far are given in Table 5.4 along

with the free parameters they require and the self-normalisation funtions N(θ(i)). In

this, the age range is assumed to run from age 1 to age X with x̄ = 1
X

∑X
x=1 x and

σx = 1
X

∑X
x=1(x − x̄)2. Some of these normalisations are only approximate or are true

up to a onstant, so it is still neessary to resale the age funtions after applying Algo-

rithm 2 to optimise the value of the free parameters. Similar de�nitions for ȳ and σy are
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used in Equations 5.9, 5.10 and 5.11.

Name

Funtion Normalisation

Free Parameters

f(x) ∝ N(θ)

Constant 1 1
X none

Linear x− x̄
1

x̄(x̄+1) none

Quadrati (x− x̄)2 − σx
1
12X(X + 2)2 none

�Put option� (xc − x)+ 1
xc(xc−1) xc - pivot

�Call option� (x− xc)
+ 1

(X−xc)(X−xc−1) xc - pivot

Exponential exp(−λx) 1− exp(−λ) λ - width

Gumbel exp(exp(−λx)) λ λ - width

Spike

(x− (xc − a))I(xc − a ≤ x < xc)+ 1
a

xc - peak

((xc + a)− x)I(xc ≤ x < xc + a) a - width

Normal exp
(

− (x−x̂)2

σ2

)

1
σ

x̂ - loation

σ - width

Log-Normal

1
x exp

(

− (ln(x)−x̂)2

σ2

)

1
σ

x̂ - loation

σ - width

Rayleigh (x− x̂) exp(−ρ2(x− x̂)2) 0.5ρ2
x̂ - loation

ρ - width

−1

Ellipse

√

1− (x−x̂)2

a2
2
aπ

x̂ - loation

a - width

Table 5.4: Age funtions in toolkit

Figure 5.21: Age funtions in toolkit
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Chapter 6

Consistent Mortality Projetions

Allowing for Trend Changes and

Cohort E�ets

6.1 Introdution

The last two deades have seen dramati hanges in the modelling and management

of longevity risk, both in theory and in pratie. One important hange has been the

swith from using deterministi models based on expert judgement to stohasti models

whih extrapolate the observed trends within the data to give probabilisti foreasts of

mortality rates.

The extrapolative approah to projeting mortality has the ore assumption that there

is onsisteny between the evolution of mortality rates in the past and the future. After

all, today is both yesterday's future and tomorrow's past. While it is easy to ritiise

this assumption as simplisti - as, for example, Gutterman and Vanderhoof (1998) do -

and point out the many potential new advanes in mediine whih may our in future,

it is important to remember that the past also experiened profound innovations that we

take for granted today. Revolutions in the provision of healthare, new epidemis and

pandemis, and hanges in lifestyle have all a�eted mortality rates in developed oun-

tries sine the Seond World War. It therefore seems reasonable to use the experiene

gained from analysing past developments to help us with foreasting the future.
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When using extrapolative mortality models, there is a fundamental symmetry between

the proesses of �tting the model to historial observations in order to estimate parame-

ters, on the one hand, and projeting parameter values to generate future observations,

on the other. It is important that the models we use to projet mortality genuinely

ahieve onsisteny between the past and the future. This ensures that our projetions

are as similar to those observed in the historial data as possible, both in their entral

estimates of future mortality rates and in the levels of unertainty around these esti-

mates. For example, when we �t models to the past, we often see hanges in trends

in the parameters. For onsisteny, similar trend hanges should also be present in our

projetions of these parameters in the future. We must also take are when looking at

the lifelong features of mortality a�eting spei� ohorts, sine our data only shines a

partial light on the life histories of those ohorts with members who are still alive.

We must be aware of the arbitrary hoies we make when �tting a model to data, for

instane, our hoie of whih onstraints to apply in order to identify the parameters in a

model fully. Di�erent hoies imply di�erent interpretations of the parameters, but not

the �tted mortality rates themselves, and therefore it is important to ensure that these

hoies do not hange our projeted mortality rates either. This subjet is onsidered

in depth in Chapters 3 and 4 for general age/period/ohort mortality models. In this

study, we apply the priniples established in those studies to the spei� ontext of the

mortality model onstruted in Chapter 5 to see how they are applied in pratie and

the impat they make on the projetion of mortality rates.

This hapter disusses the extrapolative approah to projeting mortality and some of

the ritiisms of it in Setion 6.2. It then reviews the mortality model developed in

Chapter 5 for men in the UK using the �general proedure� in Setion 6.3 and proposes a

number of new tehniques to projet mortality aross periods and along ohorts in Se-

tions 6.4 and Setion 6.5. These tehniques attempt to ensure that there is onsisteny

between the past and the future whih is independent of our arbitrary hoies made

when �tting the model. They are presented in the ontext of the model developed in

Chapter 5, however, they an be applied more generally to any age/period/ohort mor-

tality model, suh as those disussed in Chapter 2. Doing so allows us to obtain more

aurate foreasts of mortality rates in the short term, but also gives greater variability

in our long-term foreasts. In Setion 6.6, we show this by using a baktesting exerise

to demonstrate the improvements in short-term preditive power and then demonstrate

how standard projetion methods may understate both the expeted values and the risk-

iness of annuities in payment for example. An additional bene�t of these new tehniques

is more e�etive risk management, as traditional tehniques may understate the risks in
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providing long-term bene�ts.

6.2 The extrapolative approah to projeting mortality rates

The extrapolative approah to projeting mortality analyses the patterns in the evolution

of mortality rates statistially and then uses time series methods to projet these into

the future. It therefore has, as a entral assumption, that there is onsisteny between

the past and the future. As Booth (2006, p. 550) said

Extrapolative methods are essentially atheoretial; the only assumption is

that the future will be (in some sense) a ontinuation of the past. This is

their strength, but it is also their fundamental weakness: historial patterns

may not be the best guide to the future, notably beause hanges in the trend,

or strutural hanges, may be missed. Extrapolative methods make no use

of exogenous variables: they do not inorporate urrent knowledge about

atual and prospetive developments in relevant areas suh as mediine and

new diseases, lifestyles and the eonomy.

This embodies the entral ritiism of the extrapolative method; that a failure to under-

stand and inorporate information regarding medial progress and soio-eonomi fators

makes extrapolative projetions unsuitable, as disussed in Gutterman and Vanderhoof

(1998). A lot of researh has been onduted into analysing these exogenous auses

and their impat on mortality rates, for instane in Manton et al. (1980), Ruhm (2000,

2004), Reihmuth and Sarferaz (2008), Gaille and Sherris (2011) and Hanewald (2011).

However, it is fair to say that we are still a long way from truly understanding these un-

derlying fators. As stated by Andreev and Vaupel (2006): �Cause-spei� foreasts are

of less bene�t to long-term foreasts than they are to the short-term variant, however, due

to the urrent lak of knowledge about disease etiology and about the fators underlying

mortality trends in the distant future.� A similar point is made in Continuous Mortality

Investigation (2004): �if the explanatory variables themselves are as di�ult to predit

as the dependent variables (or indeed more so), then the projetion's reliability will not

be improved by inluding them in the model�. Beyond this, Wilmoth (1998) observed

that �even if we understood these interations and wanted to predit future mortality on

the basis of a theoretial model, we would still need to antiipate trends in eah of its

omponents� and, hene, we are still left with a problem of extrapolation.
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We, therefore, believe that, whilst the analysis of the exogenous auses of hanging

mortality rates is important to understanding the past, it is not a useful method for

making long-term projetions into the future. We are fored by neessity to adopt an ex-

trapolative approah for most pratial purposes, espeially those requiring model-based

stohasti foreasts of mortality rates, suh as risk management in the life insurane

industry.

Furthermore, exponents of exogenous ause based models often start from the assumption

that we exist at a privileged point in human history. This assumption an be optimisti,

as in de Grey (2006), whih argued that revolutions in the understanding of human

genetis and biology just around the orner. Alternatively, this assumption an be pes-

simisti, as in Olshansky et al. (1998), whih argued that we are approahing a hard

limit in human longevity based on the fundamental obsolesene programmed into the

human body beyond reprodutive ages, or in Olshansky et al. (2005), whih argued that

the rise in obesity will soon threaten the inreases in longevity we have witnessed to date.

However, arguments suh as these are not unique to the present time. The past entury

and more has been one of ontinuous medial progress (antibiotis, vainations, trans-

plants, et), but with new threats ontinuously arising (smoking, HIV/AIDS, obesity,

et). Wilmoth (1998) pointed out that � extrapolations of past mortality trends assume,

impliitly, a ontinuation of soial and tehnologial advane on a par with these earlier

ahievements�. However, at every point within the past entury, there were individuals

making arguments very similar to those seen today, and that the time in whih they lived

was unlike any other whih had ome before and would ome afterwards. What has been

observed, however, is a steady improvement in human health and longevity, whih is

remarkable both for its endurane and its regularity. It is �This ombination of stability

and omplexity should disourage us from believing that singular interventions or barri-

ers will substantially alter the ourse of mortality deline in the future� (Wilmoth (1998)).

We, therefore, dispute the argument that onsisteny between the past and future when

projeting mortality rates is, in fat, a weakness of the extrapolative approah. If we wish

to understand what hanging mortality rates look like during periods of rapid hanges in

mediine, lifestyle and soiety, then that information is available in the historial reord.

In analysing UK mortality data sine 1950, for instane, we are basing our foreasts on

a period of time whih has witnessed far-reahing hanges in lifestyle (for instane, the

prevalene of smoking and the impat of diet on health) and mediine. It is also a period

whih saw a number of in�uenza pandemis (in 1951, 1957/58, 1968/69 and 2009) as well

as the emergene of new diseases suh as HIV. In short, we believe that areful analysis

of the past and projetions based upon this analysis if fully able to aommodate these
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ritiisms of the extrapolative approah.

When making extrapolative foreasts of mortality, it is, therefore, important to onstrut

a mortality model whih is fully apable of apturing the information in the historial

data. For that reason, in Setion 6.3, we use the �general proedure� (GP) desribed in

Chapter 5 to onstrut a mortality model whih an identify as muh of the struture in

the historial data as parsimoniously as possible. However, in order to make projetions,

we must ensure that the time series proesses used to projet the parameters in suh

models an repliate the features observed in the past. To this end, in Setion 6.4, we

introdue a method for deteting and projeting trend hanges in the period parame-

ters, and so address, at least partially, the ritiism in Booth (2006) quoted above. For

the ohort parameters, however, we su�er from the issue that we only have inomplete

observations on generations whih are still alive, and therefore require that the uner-

tainty in our parameter estimates for urrently living generations blends smoothly into

our projetions for future years of birth. We disuss how this an be ahieved in Setion

6.5.

This is not to say, however, that events unpreedented in the historial reord ould not

our in future and have an important impat on future mortality rates. However, by

de�nition, suh events annot be antiipated in advane and all attempts to do so are,

neessarily, somewhat spurious. Certainly, unpreedented events should not form the ba-

sis of a �best estimate� of future mortality rates, but should only be inluded as unusual

or �extreme� senarios. Exploring the impat of unpreedented events via senario anal-

ysis an be a useful tool to explore some extreme situations. However, it annot perform

any degree of quanti�ation of the risk of these events ourring. In addition, the extrap-

olative approah is useful for establishing where suh �extreme� senarios should start

from, by de�ning the limits of what is normal. For example, an extreme senario based

on an event unpreedented in the historial reord must, by de�nition, produe an impat

that is greater than, say, two standard deviations of the entral foreast produed by an

extrapolative approah using the past 50 years of data. However, we believe that suh a

subjetive senario analysis should only be performed after statistial and extrapolative

projetions have been produed, to examine the reasonableness of the projetions, give

insights into the tails of the projeted distribution of mortality rates and allow results

to be ommuniated with non-speialist stakeholders, rather than as the primary means

of foreasting the future.
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6.3 Fitting the past and identifying the model

We �rst use the GP to onstrut a suitable mortality model for data from the Human

Mortality Database (2014) for men aged 0 to 100 in the UK over the period 1950 to

2009. The GP onstruts a bespoke mortality model in the lass of age/period/ohort

models disussed in Chapter 2, of the form

ln(µx,t) = αx +

7
∑

i=1

f (i)(x; θ(i))κ
(i)
t + γt−x (6.1)

where

• age, x, is in the range [0, 100], period, t, is in the range [1950, 2009] and therefore

that year of birth, y, is in the range [1850, 2009];

• αx is a stati funtion of age;

• κ
(i)
t are period funtions governing the evolution of mortality with time;

• f (i)(x; θ(i)) are parametri age funtions (in the sense of having a spei� funtional

form seleted a priori) modulating the impat of the period funtion dynamis over

the age range, potentially with free parameters θ(i);1 and

• γy is a ohort funtion desribing mortality e�ets whih depend upon a ohort's

year of birth and follow that ohort through life as it ages.

A summary of the terms in the models and their demographi signi�ane

2

is given in

Table 6.1 and the age and period funtions shown in Figures 6.1a and 6.1b, respetively.

Many mortality models are not fully identi�ed. This means that we an �nd transforma-

tions of the parameters

3

in the model whih leave the �tted mortality rates unhanged.

To uniquely speify the parameters, we impose identi�ability onstraints. These on-

straints are arbitrary, in the sense that they do not a�et the �t to data, but they do

allow us to impose our desired demographi signi�ane on the terms in the model. These

issues are disussed in detail in Chapters 3 and 4.

1

For simpliity, the dependene of the age funtions on θ(i) is supressed in the notation used in the

remainder of this hapter, but not in the model itself.

2

Demographi signi�ane is de�ned in Chapter 2 as the interpretation of the omponents of a model

in terms of the underlying biologial, medial or soio-eonomi auses of hanges in mortality rates

whih generate them.

3

These are alled �invariant transformations� in Chapters 3 and 4.
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Term Desription Demographi signi�ane

αx Stati age funtion Constant shape of mortality urve

f (1)(x)κ
(1)
t Constant age funtion Level of mortality urve

f (2)(x)κ
(2)
t Linear age funtion Slope of mortality urve

f (3)(x)κ
(3)
t Gaussian age funtion Young adult mortality

f (4)(x)κ
(4)
t �Put option� age funtion Childhood mortality

f (5)(x)κ
(5)
t Rayleigh age funtion Postponement of old age mortality

f (6)(x)κ
(6)
t Log-normal age funtion Peak of aident hump

f (7)(x)κ
(7)
t Gaussian age funtion Late middle / old age mortality

γy Cohort parameters Lifelong year of birth e�ets

Table 6.1: Terms in the �nal model of Chapter 5
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Figure 6.1: Age and period funtions for the mortality model

In the ontext of the model generated by the GP for the UK, we impose the following

standard identi�ability onstraints

∑

t

κ
(i)
t = 0 ∀i (6.2)

∑

x

|f (i)(x)| = 1 ∀i (6.3)

These identi�ability onstraints, respetively, allow us to:

• set a onsistent level for eah of the period funtions, so that they represent devi-

ations from an �average� level of mortality in the period, and

• selet age funtions a priori so that they have a onsistent normalisation sheme.

This enables us to ompare the magnitudes of the period funtions with eah other

and between populations and gauge their relative importane.
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However, using the results of Chapter 4, we observe that the following transformations

involving the ohort parameters leave the �tted mortality results unhanged

4

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx − a0, κ

(1)
t , κ

(2)
t , γy + a0} (6.4)

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx + a1(x− x̄), κ

(1)
t − a1(t− t̄), κ

(2)
t , γy + a1(y − ȳ)} (6.5)

{α̂x, κ̂
(1)
t , κ̂

(2)
t , γ̂y} = {αx − a2((x− x̄)2 − σy + σt), κ

(1) − a2((t− t̄)2 − σt),

κ
(2)
t + 2a2(t− t̄), γy + a2((y − ȳ)2 − σy)} (6.6)

The degrees of freedom represented by the free parameters a0, a1 and a2 in these trans-

formations need to be used to impose three identi�ability onstraints on the ohort

parameters when �tting the model. We hoose these to be

∑

y

nyγy = 0 (6.7)

∑

y

nyγy(y − ȳ) = 0 (6.8)

∑

y

nyγy((y − ȳ)2 − σy) = 0 (6.9)

where ny is the number of observations of eah ohort in the data. The justi�ation

for these onstraints is that they appear to remove polynomial trends up to quadrati

order in the ohort parameters at the �tting stage, so that they onform better with

the demographi signi�ane desribed in Chapter 2, i.e., that the ohort parameters

should be entred around zero and not have any long-term trends. It is important to

note that the hoie of these onstraints is still arbitrary and it is important that they

do not a�et our projetions of mortality rates. This will in�uene our hoies for the

time series models we use to projet the parameters in Setions 6.4.1 and 6.5 below.

6.4 Period funtions

The �tted period parameters given in Figure 6.1b exhibit the following features:

4

Here, x̄ = 1
X

∑

x x, σx = 1
X

∑

x(x− x̄)2 and X is the number of ages in the data, and similarly for

t̄, ȳ, et. These onstants have been introdued to maintain the onstraint that

∑

t κ
(i)
t = 0. Also note

that, to aid understanding these omplex relationships, Equations 6.4, 6.5 and 6.6 do not inorporate the

normalisation fators required on the age funtions in order to ensure that

∑

x |f
(i)(x)| = 1 ∀i. These

will need to be inluded before the model is �tted to data.
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• Most (but not all) of them appear to be non-stationary, aording to statistial

tests suh as the ADF test.

5

• The time series appear to be orrelated, sometimes highly so. For instane, κ
(2)
t

and κ
(3)
t have a sample orrelation of 92.6%.

• Some of the time series appear to show one or more hanges in trend over the

period.

6

Our projetions of the parameters should inorporate these features to ensure that our

foreasts of the future are not systematially di�erent from the struture observed in the

historial data.

The period funtions in mortality models have typially been projeted using random

walks with drift

κ
(i)
t = κ

(i)
t−1 + µ

(i)
0 + ǫ

(i)
t (6.10)

The use of this proess for the period funtions runs from the earliest stohasti mortal-

ity model in Lee and Carter (1992), through Cairns et al. (2006a), to the more reent

models in Plat (2009a), Cairns et al. (2011a) and Haberman and Renshaw (2011). In

some ases, this time series proess was seleted after performing a Box-Jenkins analysis

(e.g., Lee and Carter (1992)). In others, the proess was hosen a priori without any

statistial justi�ation (e.g., Cairns et al. (2006a)), but based on its ability to produe

biologially reasonable

7

foreasts of mortality rates.

The random walk with drift model has a number of desirable harateristis whih make

it an attrative proess to use when projeting the period funtions. It has a de�nite

trend, allowing for mortality rates to derease with time. It also has non-stationary

variation around this trend, i.e., our projetions get more variable as we make foreasts

further into the future, whih is important for making long-term projetions. Further,

it is not mean-reverting around this trend, and has a long memory of historial mortal-

ity shoks. By giving non-stationary and orrelated period funtions, the multivariate

5

In partiular, κ
(6)
t is found to be stationary at the 5% level, whilst all other period funtions are

found to be non-stationary.

6

Some studies refer to these as �strutural breaks� rather than �trend hanges�. In this study, we use

the terms �trend hange� and �strutural break� as synonyms.

7

Introdued in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a ausal

assoiation (or relationship) between two fators that is onsistent with existing medial knowledge�.
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random walk with drift is also onsistent with the �rst two observations in the histor-

ial data desribed above.

8

For these reasons, a multivariate random walk with drift

has beome the standard proess for projeting period funtions in mortality models and

has therefore been used in the �naïve� projetions of mortality we introdue in Setion 6.6.

6.4.1 Identi�ability of projetions

When projeting mortality rates, it is important to use time series proesses whih do not

depend on the arbitrary identi�ability onstraints we imposed on the parameters when

�tting the model to data. Sine these hoies did not a�et our analysis of the past, it

is important that they do not a�et our projetion of the future. In partiular, we must

be ertain that any onlusions we draw when using these models do not depend on ear-

lier arbitrary hoies when �tting the model.

9

We all time series whih give projeted

mortality rates that are independent of the identi�ability onstraints �well-identi�ed�.

How to obtain well-identi�ed projetion methods was disussed in depth in Chapters 3

and 4 in the ontext of general APC mortality models. Chapter 3 established that the

period funtions from age/period mortality models should be projeting using time series

proesses whih

• are multivariate, to allow for any potential orrelations between the time series,

and

• do not treat the di�erent period funtions di�erently. In pratie, this means that

the various time series should be integrated to the same order (in this ase, I(1)).

This gives us an initial set of requirements, whih are satis�ed by using a multivariate

random walk with drift proess to projet all of the period funtions in the model.

However, the analysis of Chapter 4 disussed the more ompliated identi�ability issues

present in models with a ohort term. These were aused by the ollinearity between age,

period and year of birth and meant that, in some models, spei� deterministi trends

8

However, in order to inorporate hanges in trend, we must go beyond the random walk with drift

proess, whih we do in Setions 6.4.2 and 6.4.3 below.

9

In addition, identi�ability onstraints that are sensible when estimating the model might not be the

most suitable when making projetions. We will see this in Setion 6.5 where we hoose to hange the

identi�ability onstraints from those imposed when �tting the model to a new set whih is more helpful

when projeting the ohort parameters. We therefore need to ensure that our results are not a�eted by

our new hoie of identi�ability onstraints.
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were unidenti�able, i.e., they ould not be alloated between the age/period terms and

the ohort term by the model and so required additional identi�ability onstraints to

make this alloation manually. The alloation of these unidenti�able trends was per-

formed using the transformations in Equations 6.4, 6.5 and 6.6, whih were used to

obtain a set of parameters satisfying the arbitrary onstraints.

In this study, we apply the analysis of Chapter 4 to extend the random walk with drift

proess, as disussed in Setion 6.4.1.1 below. Doing so, we ensure that the same time

series proess is appropriate for all possible sets of potential identi�ability onstraints

and so will give the same projeted mortality rates. However, in order to ahieve this,

there is a potential on�it between the seond requirement from Chapter 3, namely

that all period funtions should be projeted using the same proesses, and the need to

obtain biologially reasonable projetions of mortality rates. This is disussed in Setion

6.4.1.2, along with a potential resolution that provides projeted mortality rates whih

are biologially reasonable and preserves the spirit of the requirements in Chapter 3.

6.4.1.1 First period funtion

Sine the random walk with drift proess is the most ommon time series proess used to

projet the period parameters, we �rst need to show that it does not give well-identi�ed

projetions of mortality rates for the model desribed in Setion 6.3. We do this by

showing that, if the random walk with drift proess is suitable for κ
(1)
t under one set of

identi�ability onstraints, it will not neessarily be appropriate for a transformed κ̂
(1)
t

under an alternative set of identi�ability onstraints.

To do this, �rst we note that Equation 6.5 adds a term linear in time to κ
(1)
t and Equation

6.6 adds a term quadrati in time to κ
(1)
t . In addition, as disussed in Chapter 3, the

level of κ
(1)
t is unde�ned, meaning we an add a onstant to it without hanging the

�tted mortality rates. Combining these, for κ
(1)
t , we write

κ̂
(1)
t = κ

(1)
t + a

(1)
0 + a

(1)
1 t+ a

(1)
2 t2 (6.11)

This transformation onverts one set of �tted parameters, satisfying one set of identi�-

ability onstraints, into an alternative set of parameters whih satisfy a di�erent set of

identi�ability onstraints. These two sets of parameters, κ
(1)
t and κ̂

(1)
t are equivalent:

they give the same �tted mortality rates and so there is no statistial reason for prefer-

ring one over the other. As disussed in Chapters 3 and 4, this further implies that the
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same time series proess should be equally appropriate for either set of parameters.

For the time series proess used for κ
(1)
t to be appropriate for all equivalent sets of

parameters (suh as κ̂
(1)
t ), we need to make sure that it does not hange form if we

use the transformation in Equation 6.11 to move between κ
(1)
t and κ̂

(1)
t , i.e., that if

κ
(1)
t follows a random walk with drift proess in Equation 6.10, then κ̂

(1)
t also follows a

random walk with drift proess. However, the random walk with drift proess hanges

form when we apply the transformation in Equation 6.11 to it and, so, does not satisfy

this requirement. We an see this by substituting the κ̂
(1)
t into the random walk with

drift proess to give

κ
(1)
t = κ

(1)
t−1 + µ(1) + ǫ

(1)
t

κ̂
(1)
t − a

(1)
0 − a

(1)
1 t− a

(1)
2 t2 = κ̂

(1)
t−1 − a

(1)
0 − a

(1)
1 (t− 1)− a

(1)
2 (t− 1)2 + µ(1) + ǫ

(1)
t

κ̂
(1)
t = κ̂

(1)
t−1 + µ(1) + a

(1)
1 − a

(1)
2 + 2a

(1)
2 t+ ǫ

(1)
t

We see that, if a random walk with drift was appropriate for κ
(1)
t , then a random walk

where the drift hanges linearly with time is appropriate for κ̂
(1)
t . Hene, the random

walk with onstant drift is not appropriate for all equivalent sets of parameters and,

therefore, all sets of identi�ability onstraints. This means that projetions using suh a

proess, the most ommonly used in the literature to date, are not well-identi�ed under

the transformations in Equation 6.11 and, therefore, that we should not use it to projet

the model in Setion 6.3.

However, this an be easily reti�ed. A random walk with drift proess is not well-

identi�ed under the transformation in Equation 6.11 beause the transformation intro-

dued a term linear in time into the drift whih was not present in the original time

series. It is therefore natural to extend the random walk with drift proess to introdue

a term linear in time into the original time series. The transformation would then not

add anything new to the proess, merely modify what was already present. This suggests

that we should use a random walk with linear drift for κ
(1)
t

κ
(1)
t = κ

(1)
t−1 + µ

(1)
0 + µ

(1)
1 t+ ǫ

(1)
t (6.12)
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Again, we an hek that this is well-identi�ed by substituting κ̂
(1)
t into Equation 6.12

to on�rm that we have the same time series proess for both sets of parameters

κ
(1)
t = κ

(1)
t−1 + µ

(1)
0 + µ

(1)
1 t+ ǫ

(1)
t

κ̂
(1)
t − a

(1)
0 − a

(1)
1 t− a

(1)
2 t2 = κ̂

(1)
t−1 − a

(1)
0 − a

(1)
1 (t− 1)− a

(1)
2 (t− 1)2 + µ

(1)
0 + µ

(1)
1 t+ ǫ

(1)
t

κ̂
(1)
t = κ̂

(1)
t−1 + µ

(1)
0 + µ

(1)
1 t+ a

(1)
1 − a

(1)
2 + 2a

(1)
2 t+ ǫ

(1)
t

= κ̂
(1)
t−1 + µ̂

(1)
0 + µ̂

(1)
1 t+ ǫ

(1)
t

Although the numerial values we �nd for µ
(1)
0 and µ

(1)
1 are di�erent for di�erent sets

of parameters (and, hene, identi�ability onstraints), the form of the time series is not.

Hene, if a random walk with linear drift is appropriate for κ
(1)
t , it is also appropriate for

κ̂
(1)
t , and so, in turn, it is appropriate for all di�erent sets of identi�ability onstraints.

Therefore, the random walk with linear drift is well-identi�ed.

We may �nd that under some sets of identi�ability onstraints, µ
(1)
1 takes an apparently

low value, and so we might be tempted to ignore it. Alternatively, we might be tempted

to �t a random walk with linear drift and then test µ
(1)
0 for statistial signi�ane, with

a view to setting it to zero. However, as shown above, the magnitude of µ
(1)
1 is entirely

dependent upon the identi�ability onstraints used, i.e., even if µ
(1)
0 is lose to zero,

µ̂
(1)
0 = µ

(1)
0 +2a2 an be arbitrarily large depending upon the value of a2. Therefore any

deision to ignore µ
(1)
1 would also be entirely dependent upon the arbitrary identi�ability

onstraints. Thus, the hoie of time series to use for κ
(1)
t annot be motivated by argu-

ments based on statistial signi�ane or goodness of �t, but must be determined by the

identi�ability issues present in the model. Hene, we must use a random walk with linear

drift for κ
(1)
t , regardless of the apparent size of µ

(1)
0 to avoid generating poorly-identi�ed

projetions of mortality rates that depend on the arbitrary onstraints imposed when

�tting the model.

In summary, the transformation in Equation 6.6 means that we must allow for quadrati

trends in the �rst period funtion in the model. We do this by extending the onventional

random walk with drift model to a random walk with linear drift proess. This time

series proess is not hanged fundamentally by hanging from one set of identi�ability

onstraints to another, and therefore will give projetions whih do not depend on the

spei� set of identi�ability onstraints adopted.
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6.4.1.2 Other period funtions

As with κ
(1)
t , we �nd that the invariant transformation in Equation 6.6, plus the uniden-

ti�able level in the period funtions, means that the �tted mortality rates are unhanged

by a transformation of κ
(2)
t in the form of

κ̂
(2)
t = κ

(2)
t + a

(2)
0 + a

(2)
1 t (6.13)

and of the form

κ̂
(i)
t = κ

(i)
t + a

(i)
0 i = 3, . . . 7 (6.14)

for the other period funtions.

A similar analysis to that performed in Setion 6.4.1.1 shows that both the random walk

with onstant drift and the random walk with linear drift proesses are well-identi�ed

under these transformations. The onlusions of Chapter 3, desribed at the beginning

of this setion, suggest that we should use random walks with linear drifts for all seven

period funtions in the model in order avoid treating κ
(1)
t di�erently from the other

period funtions. However, if we do so, however, we obtain projetions whih are not

biologially reasonable.

10

We therefore have a on�it between our desire for projetions whih are biologially rea-

sonable, on the one hand, and well-identi�ed, on the other. Suh on�its were disussed

in Chapter 3, where it was onluded that it was possible to treat age/period terms with

parametri age funtions as distint, sine there was no invariant transformation of the

model whih fored them to be interhangeable. However, using the same proesses to

projet all the period funtions in a model was still highly desirable beause it was un-

likely that the demographi signi�ane of the term would lead to spei� requirements

for how it should be projeted.

Models produed by the GP have parametri age funtions, where eah age funtion has

a de�ned funtional form, seleted in advane of �tting the model to data to give eah

term distint demographi signi�ane. We, therefore, feel that it is justi�able to pre-

serve this distintiveness in order to ensure that the projetions of mortality rates from

10

Experiments have shown that using random walks with linear drifts for all period funtions produes

projetions where mortality rates at some ages are predited to ontinue dereasing and then start

inreasing in the near future with probability lose to unity under this model. Without any biologial

reason why this should be the ase, we onsider this model to be inonsistent with existing medial

knowledge.
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the model are biologially reasonable. Furthermore, it is only the drift term whih varies

between the random walk proesses used for the di�erent period funtions. We do not

assume that the period funtions di�er in terms of stationarity, dependene struture or

any other statistial property. Therefore, we feel that the use of a random walk with

linear drift for κ
(1)
t , but random walks with onstant drifts for the other period funtions

minimises the extent to whih the various period funtions are treated di�erently. This

ompromise preserves the spirit of the requirements in Chapter 3, whilst maintaining

biologially reasonable projeted mortality rates.

11

Aordingly, we will use the random walk with drift model for the seond to seventh

period funtions, but must use a random walk with linear drift proess for κ
(1)
t for the

identi�ability reasons disussed in Setion 6.4.1.1, i.e., we use

κ
(i)
t =







κ
(i)
t−1 + µ

(i)
0 + ǫ

(i)
t if i 6= 1

κ
(i)
t−1 + µ

(i)
0 + µ

(i)
1 t+ ǫ

(i)
t if i = 1

(6.15)

with innovations, ǫ
(i)
t , whih are allowed to be ontemporaneously orrelated.

As stated at the start of Setion 6.4, we observed hanges in trend in the historial

period funtions. However, the random walk model is not apable to reproduing this

trend hanges in future, even when it is well-identi�ed. Consequently, we extend the

random walk with drift model to allow for hanges in trend, as desribed below.

6.4.2 Historial trend hanges

We observed in Setion 6.3 that some of the period funtions appear to exhibit sharp

hanges in trend, whih should be allowed for when projeting the model. A number of

other studies have sought to detet and analyse hanges in trend in mortality models

using eonometri tehniques to detet strutural breaks, for instane, Coelho and Nunes

(2011), Sweeting (2011), Börger and Ruÿ (2012) and O'Hare and Li (2012b) whih we

disuss below.

Another, oneptually similar approah is to use �regime hange� models, suh as in

Milidonis et al. (2011), Hainaut (2012) and Lemoine (2014). All of these studies have

11

However, we note that it is theoretially possible to onstrut mortality models whih give exatly

the same �tted mortality rates to the model presented in Setion 6.3, but whih would require di�erent

time series proesses to give well-identi�ed projetions and, hene, may give di�erent projeted mortality

rates.
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the disadvantage, however, that they assume only a �nite number of regimes (usually

two) and, therefore, disount the possibility for more radial hanges in the evolution of

mortality in future.

Our approah is to follow the strutural break literature and aommodate hanges in

trend by allowing the drift funtions for the random walks to be subjet to infrequent

and random jumps, i.e., we replae

µ
(i)
0 with µ

(i)
0 +

N(i)
∑

j=1

ν
(i)
j I

t≥τ
(i)
j

i 6= 1 and

µ
(1)
1 t with µ

(1)
1 t+

N(1)
∑

j=1

ν
(1)
j (t− τ

(1)
j )+ (6.16)

in the random walk model in Equation 6.15, where N (i)
is a Poisson ounting proess

for the number of hanges in trend ourring at times τ
(i)
j , j = 1, . . . , N (i)

,

12 I is an

indiator value and x+ = max(x, 0).

To allow for hanges in trend in future, we must �rst identify the trend hanges that

are present in the historial data. This, in part, addresses the ritiism of Booth (2006)

raised in Setion 6.2. A number of methods have been proposed to do this.

13

We use the

method developed in Bai and Perron (1998),

14

sine it is apable of identifying multiple

strutural breaks and we �nd it to be relatively intuitive to implement. An outline of

this proedure is given below, but it is disussed in greater detail in van Berkum et al.

(2014):

• Eah period funtion is onsidered independently.

• Conditional on k trend hanges ourring at dates τ
(i)
j in period funtion i, the

magnitude and diretion of the trend hanges ν
(i)
j an be alulated using least

squares regression, as well as the log-likelihood and Bayes Information Criterion

(BIC)

15

of the observed time series.

• Conditional on k trend hanges ourring, we test every possible set of dates for

the trend hanges to selet the values of τ
(i)
j whih maximises the log-likelihood

12

By onvention,

∑N(i)

j=1 Xj = 0 for N (i) = 0.
13

For instane, Sweeting (2011) and Börger and Ruÿ (2012) use a method based on the DW (Durbin

and Watson (1951)) statisti to identify multiple trend hanges in a trend-stationary proess and Coelho

and Nunes (2011) use the method of Harris et al. (2009) in onjuntion with testing for a unit root.

14

This tehnique is also used in O'Hare and Li (2012b) and van Berkum et al. (2014).

15

De�ned as max(Log-likelihood)− 0.5× No. free parameters × ln(No. data points).
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(and BIC) of the �tted time series. Consistent with van Berkum et al. (2014), to

prevent over-�tting the model and �nding spurious hanges in trend, we assume

that trend hanges annot our within �ve years of eah other, or within the �rst

and last �ve years of the dataset.

• k is then inreased sequentially until the BIC has stopped inreasing to give N (i) =

argmax BIC(k).

It is important to note that this proedure an be very omputationally intensive if long

datasets are used, and so may ause pratial issues in implementation. Bai and Per-

ron (2003) presented an approah for deteting multiple strutural breaks in time series

whih gives the same results as the proedure desribed above, but is based on dynami

programming and is onsiderably faster to implement. Sine we only onsider 60 years of

data in this study, this tehniques was not used in this study. However, we aknowledge

that, in order to gain a more omprehensive understanding of the dynamis of trend

hanges, a longer period of data is required, as in Sweeting (2011) and Börger and Ruÿ

(2012).

16

i µ
(i)
0 µ

(i)
1 N (i) τ

(i)
j ν

(i)
j

Constant drift Linear drift No. trend hanges Date of trend hange Size of trend hange

1 0.0350 -0.0397 0 N/A

2 0.1036 N/A 0 N/A

3 -1.0236 N/A 1 1970 1.4842

4 -0.2441 N/A 0 N/A

5 0.1296 N/A 1 1993 -0.7905

6 0.0295 N/A 0 N/A

7 -0.1766 N/A 0 N/A

Table 6.2: Fitted time series parameters for the period funtions

Using this proedure, we obtain the estimates of the time series parameters in Equations

6.15 and 6.16 given in Table 6.2 for the historial period funtions (without allowing

for parameter unertainty). We have not attempted to relate the timing and diretion

of these trend hanges to spei� underlying soio-eonomi drivers of mortality for the

population as suh relationships would be highly speulative. The model detets just

two signi�ant trend hanges in seven period funtions, eah over 60 years of data. This

is a omparatively small number, whih makes a sophistiated statistial analysis of

the nature of the trend hanges impossible. Aordingly, we must make a number of

simplifying assumptions in order to projet trend hanges in the future.

16

However, using longer periods of data runs into problems aused by the jumps in mortality rates

during the First and Seond World Wars. This is why we have limited our analysis to only use data

sine 1950.
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6.4.3 Projeting trend hanges

It is desirable that projetions of future mortality are onsistent with the features whih

have been observed in the historial data. Just as we have seen that the historial data

ontains strutural breaks where the trend rate of improvement in mortality has hanged,

so we an envision senarios where these may our at an unknown point in future, aused

by medial breakthroughs in the treatment of disease or soio-eonomi hanges in the

population, for example. Aordingly, we should projet hanges in the trends in our

parameters to our in future if they have been deteted in the past. This is in ontrast

to the work of Coelho and Nunes (2011) and van Berkum et al. (2014), who do not allow

for future trend hanges in projetions.

We believe that allowing for trend hanges is also important for managing longevity

risk, as an aeleration of the trend rate of improvements would dramatially inrease

the present value of annuity liabilities. To do so, we need to make assumptions on the

dependene, frequeny, diretion and magnitude of potential trend hanges in future, in

order to give both biologially reasonable projetions and to be as onsistent with the

observed historial trend hanges as possible. Finally, we have a strong preferene for

simple, parsimonious models due to the small number of observed trend hanges available

to alibrate our models.

6.4.3.1 Dependene between period funtions

We do not have su�ient observed data to be able to determine whether trend hanges in

the di�erent time series are more or less likely to our simultaneously. Spei�ally, we do

not test for the phenomenon of o-breaking

17

and assume that breaks in the di�erent time

series our independently of eah other. This ontrasts with the approah of Sweeting

(2011), where trend hanges were often observed simultaneously in the di�erent period

funtions.

6.4.3.2 Frequeny of trend hanges

We assume that future trend hanges our with the same frequeny as the historial

trend hanges observed in the �tted time series, e.g., if we observe two trend hanges

in a 60-year sample period for a period funtion, we assume that the probability of a

trend hange ourring in any projeted year is

1
30 . We also assume that the number

17

De�ned in Hendry and Massmann (2005) as when strutural breaks are observed in two or more

time series, but not in a linear ombination of them.
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of trend hanges is a Markov proess and, aordingly, this probability does not hange

depending on when the previous trend hange was observed. This is the same approah

as was adopted in Sweeting (2011) and Börger and Ruÿ (2012).

This assumption may be onsidered to be unrealisti, sine it ould reasonably be argued

that a trend hange is more likely to be observed in a year if none have been observed

for a long time. However, beause only one trend hange has been observed for any

individual time series in the past, any more omplex dependene struture would have

to be justi�ed in terms of the underlying biologial and demographi proesses driving

the period funtions. Sine suh a justi�ation would, neessarily, be highly subjetive,

we opt for a Markov proess for simpliity.

Nevertheless, we should be aware that this assumption has a number of weaknesses.

First, the Markov assumption is inonsistent with the restrition that trend hanges in

the historial data annot our within �ve years of eah other. Although the projetion

method an easily be modi�ed to allow for a minimum length of time between trend

hanges, in pratie, the probability of two projeted trend hanges ourring within �ve

years is very low. When we restrited projeted trend hanges so they ould not our

within �ve years of eah other, it made little di�erene to the projetions of mortality

rates.

Seond, it implies that for time series where no trend hange has been observed in

the past, we assume with ertainty that no trend hange an our in future. This

is unavoidable, sine even if we were to allow for a non-zero hane of trend hanges

ourring in future in these time series, we would have no data to alibrate the magnitude

of any hanges. This problem an be mitigated to an extent by allowing for parameter

unertainty in the �tted period funtions using a bootstrapping method suh as that

developed in Koissi et al. (2006). This generates a large number of pseudo-datasets

by bootstrapping the �tted residuals from the original model to give resampled death

ounts. The model in Setion 6.3 is re�tted to eah of these sets of death ounts, giving

a re-estimate of the di�erent period funtions and, hene, an estimate of the level of

parameter unertainty in them. These resampled estimates of the period funtions are

then tested individually for the number and timing of trend hanges. Thus, parameter

unertainty is allowed for, both in the period funtions and in the parameters of the

time series proesses assumed to generate them. Beause of this, we may identify trend

hanges in some sets of bootstrapped period funtions, even when we did not detet any
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in the original period funtion. We use this tehnique to generate the results shown in

Figure 6.3 and in Setion 6.6.

6.4.3.3 Diretion of trend hanges

We assume that trend hanges are as likely to be positive as negative, i.e., there is an

equal hane of them improving mortality as worsening it. The limited number of his-

torial trend hanges means that any spei� assumption on the diretion of a trend

hange would need to be justi�ed by the underlying soio-eonomi drivers of mortality.

Biologial and demographi arguments an be made on either side to support the ase

that the dereases in mortality rates urrently observed will ease in future (for instane,

the rise of obesity in the population, as disussed in Olshansky et al. (2005)) or that

breakthroughs in medial progress will lead to an aeleration of the improvements in

mortality (for instane, see de Grey (2006)). In light of this �great debate�

18

in demogra-

phy, we remain agnosti as to whether future hanges in trend are more likely to improve

or worsen mortality rates at this point.

Our hosen model for projeted trend hanges leaves the median foreast of mortality

unhanged (ompared with a model whih extrapolated the most reent observed trend),

but a�ets the tails of the projeted distribution. This is onsistent with the notion that

extrapolating the most reent past represents a �best estimate� of future improvements

in mortality in the short run. Allowing for hanges in trend, however, is important for

risk management purposes, as disussed in Setion 6.6.3.

6.4.3.4 Magnitude of trend hanges

The magnitude of projeted trend hanges is the most subjetive of the assumptions we

need to make. Sweeting (2011) and Börger and Ruÿ (2012) assume that the magnitude

of a trend hange is normally distributed, with mean and standard deviation alibrated

from the observed values. Instead, we assume that the magnitude of the trend hanges

follows a Pareto distribution, based on a onsideration of the trend hanges we have

observed.

All methods of deteting trend hanges in the historial data will fail to detet genuine

but small trend hanges, sine these will not be found to be statistially signi�ant.

18

So named by Siegel (2005).
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Consequently, the trend hanges found in the past and available for analysis are not

representative of the full distribution of trend hanges, but merely a trunation of this

distribution. Assuming that the threshold size for a trend hange to be deteted is suf-

�iently �large�, the relevant distribution for the observed trend hanges will therefore

be the Pareto distribution, regardless of the �true� underlying distribution for the trend

hanges.

Our projetions of mortality from the model should be onsistent with what was observed

in the past. A model that projets trend hanges whih it ould not have found in the

data violates this onsisteny. The Pareto distribution an generate future trend hanges

whih are above the threshold for statistial signi�ane and therefore will be onsistent

with those observed in the past. We believe that this is preferable to the methods used

in Sweeting (2011) and Börger and Ruÿ (2012), whih may generate a signi�ant number

of �small� trend hanges whih ould not have been deteted had they ourred in the

historial data.

Another desirable property of the Pareto distribution is that it is long tailed and so an

generate some very large future trend hanges, whih may be useful for the risk assess-

ment of extreme mortality senarios. It also has only two parameters for eah period

funtion - the size of the threshold, ν
(i)
crit, and a sale parameter, α(i)

- whih are relatively

easy to estimate based on the limited number of historial observations.

The threshold, ν
(i)
crit, for the period funtion an be approximated by onsidering the

minimum size of a trend hange that would be found to be statistially signi�ant at a

given on�dene level.

19

Consider a period funtion generated by a random walk proess

with a trend hange at t = 0, when the drift hanged from known drift, µ, to µ+ ν

∆κt =







µ+ ǫt if t ≤ 0

µ+ ν + ǫt if t > 0

where the magnitude of the hange in drift, ν, is unknown. Considering the period [1, T ],

where T is the average time between trend hanges, we would obtain the least squares

19

Although this is not the tehnique desribed in Setion 6.4.2 above, it gives a threshold trend hange

size onsistent with those seen in pratie.
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estimate

µ̂ =
1

T − 1

T−1
∑

t=1

∆κt

= µ+ ν +
1

T − 1

T−1
∑

t=1

ǫt

for the drift of the time series. If we were to perform a hypothesis test to determine

whether the estimated drift in [1, T ], µ̂, is equal to the drift in the earlier period, µ, the

null hypothesis would be that there was no hange in trend. Therefore, we would rejet

the null hypothesis if

|µ̂ − µ| = |ν +
1

T − 1

∑

t

ǫt|

≈ |ν| ≥ Z
σ√

T − 1

i.e., we would only expet to detet trend hanges above the threshold |ν| ≥ Z σ√
T−1

,

where Z is the ritial statisti from the normal distribution at a given signi�ane level

and σ is the standard deviation of the innovations (whih is assumed to be known but

whih an be estimated from our �tted period funtion). Similar onsiderations for the

random walk with linear drift yield |ν| ≥ Z 6σ√
T (T−1)(2T−1)

. These values for eah time

series, with Z taken from the normal distribution at the 99% level, are then used as the

threshold values ν
(i)
crit when generating Pareto random variables.

One the threshold of the Pareto distribution has been estimated, the sale parameters,

α(i)
, an be estimated by mathing the sample means of the observed trend hanges,

ν̄(i) = 1
N(i)

∑N(i)

j=1 ν
(i)
j , with the mean of the theoretial distribution to give

α(i) =
ν̄(i)

ν̄(i) − ν
(i)
crit

We derive values of ν
(i)
crit and α(i)

for eah time series, i = 1, . . . 7, and, when allowing for

parameter unertainty, for eah set of resampled period funtions. Thus, we also allow

for parameter unertainty in the distribution of future trend hanges as well as allowing

for unertainty in their number and timing.
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Figure 6.2: 95% fan harts for projeted period funtion, κ
(3)
t , under three di�erent

assumptions regarding trend hanges

6.4.3.5 Impat of trend hanges on projeted period funtions

Figure 6.2 shows fan harts of the 95% on�dene intervals for the projeted κ
(3)
t period

funtion using �rst a standard random walk with drift without allowing for historial

or projeted trend hanges (Figure 6.2a), then allowing for historial trend hanges but

not projeting any in future (Figure 6.2b - similar to the approah in van Berkum et al.

(2014)) and �nally the approah disussed above (Figure 6.2), allowing for both his-

torial and projeted trend hanges. In all ases, parameter unertainty is allowed for

in the �tted parameters using the bootstrapping method disussed by Koissi et al. (2006).

It an be seen that allowing for trend hanges alters the fan hart of the projeted period

funtion in a number of ways ompared to the ase when trend hanges are not allowed.

• Allowing for trend hanges gives di�erent median projetions for the period fun-

tions. The median projetion from a random walk ontinues the trend found by
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drawing a straight line between the �rst and last values of κ
(3)
t . By allowing for a

trend hange to our during the historial period, our median projetions extend

the more reent trend operating sine 1970, as shown in Figures 6.2a and 6.2b.

• Allowing for trend hanges gives narrower projetion intervals in the short run, as

shown in Figure 6.2b. This is beause our improved estimate of the trend in the

historial period funtions has redued our measured variability around this trend.

When this is projeted, it leads to narrower projetion intervals around the entral

trend in the short run (i.e., until we projet a hange in trend). We argue that

this is more plausible as mortality rates in the near future are unlikely to be very

di�erent from a simple extrapolation of those observed today.

• Allowing for trend hanges gives wider projetion intervals in the long run, as shown

in Figures 6.2b and 6.2. This is beause we allow for the entral trend to hange

in future. Whilst the width of the projetion interval from a random walk with

drift will grow with projetion time τ at the rate τ
1
2
, the projetion interval from

a random walk with a drift hanging at random disrete intervals will grow at the

rate τ
3
2
.

20

We argue that this is more plausible as the more distant future is highly

unertain, with numerous medial, demographi and soio-eonomi fators whih

might impat mortality rates radially in a fundamentally unpreditable manner.

All of these hanges give projetions whih we onsider to be more onsistent with the

historial period funtion, and allow for a more plausible assessment of the relative

unertainty of both the near and more distant future. This is despite these methods

being fairly simple and yielding only quite rude estimates for the distribution of trend

hanges. However, we are onstrained by the limited number of observed trend hanges

found in the historial data and therefore are prevented from using more sophistiated

methods. We also feel that, sine the purpose of our projetions is to provide more

plausible allowanes for extreme longevity risk in projeted mortality rates, any greater

sophistiation would be somewhat spurious. Fan harts for all of the projeted period

funtions, allowing for parameter unertainty using the residual bootstrapping method

of Koissi et al. (2006), are shown in Figure 6.3.

In summary, we propose a method for deteting trend hanges in the historial period

funtions, based on the approah in Bai and Perron (1998), and projeting future trend

hanges based on assumed distributions for the frequeny, diretion and magnitude of

these future trend hanges whih are onsistent with what has been observed in the

past. We have taken steps to ensure that these time series are well-identi�ed, in the

20

A proof of this result, whih is independent of the assumed distribution of the trend hanges, is

given in Appendix 6.A.
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Figure 6.3: 95% fan harts for projeted period funtions with historial and projeted

trend hanges

sense that our projetions of mortality rates do not depend on the arbitrary identi�-

ability onstraints we imposed when �tting the model. Allowing for trend hanges to

our in future gives projetions whih are onsiderably more unertain, espeially as we

projet further into the future, whih we believe is more biologially reasonable and has

signi�ant impats on risk management, as disussed in Setion 6.6.3.

6.5 Cohort parameters

The ohort parameters in the model, shown in Figure 6.4, represent lifelong mortality

e�ets spei� to distint years of birth whih we interpret in terms of the life histories

of the relevant ohorts in Chapter 5.
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Figure 6.4: Cohort parameters

Given our desire for the ohort parameters to have the demographi signi�ane disussed

in Chapter 2, we would like our projetions of the ohort parameters to have the following

properties:

• The ohort parameters should represent genuine lifelong mortality e�ets, rather

than merely being mis-lassi�ed age/period e�ets resulting from an inorret spe-

i�ation of the model. This is an espeially large problem for the most reent years

of birth, sine ohort parameters for these are only estimated on the basis of data

at younger ages, where it is more di�ult to properly speify the age/period terms

in a model. We ahieve this by using the general proedure to sequentially selet

age/period terms whih apture all the signi�ant age/period struture in the data,

before adding a set of ohort parameters to the model.

• The ohort parameters should lak trends, i.e., have Eγy = 0 unonditionally for

all y for both past and future years of birth. This is onsistent with the notion that

the ohort e�ets represent a deviation from the level of mortality for a �typial�

ohort. We ahieve this through areful hoie of our identi�ability onstraints, as

disussed in Setion 6.5.2.
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• The projeted ohort parameters should be stationary, in the sense that the vari-

ability of the ohort parameters around the entral trend should not hange with

time. We do not believe there is any ompelling reason to suppose that the vari-

ability in the lifelong mortality fators should be any greater for future ohorts

than for those observed to date. This is also onsistent with the belief that ohort

e�ets may persist for several years or deades, but should not result in permanent

hanges in the level of mortality, otherwise they should be re-lassi�ed as period

e�ets.

• The projeted ohort parameters should be independent of the period e�ets. We

believe that ohort e�ets have very di�erent demographi signi�ane from the

period e�ets and are treated separately when �tting the model. For a full disus-

sion of this issue, see Chapter 4. In addition, an assumption of independene is

both pratial and parsimonious.

• The projetion method used for the ohort parameters should take aount of

�unusual� birth ohorts, suh as those in 1919/1920 and 1946/1947. Based on the

analysis of Rihards (2008) and Cairns et al. (2014), we believe that the unusual

mortality rates assoiated with individuals born in these years are not due to

genuine ohort e�ets, but are artefats of the data. These are aused by the

atypial and uneven pattern of births ourring in these years as a result of the

demobilisations of soldiers after the First and Seond World Wars, respetively,

whih, in turn, led to a mis-estimation of the size of the exposed population for

those years of birth. A Third World War lies outside the sope of any mortality

model to projet, and therefore it seems reasonable not to allow for similar ohort

e�ets to re-our in future. Nevertheless, the observed ohort e�ets will persist in

observed mortality rates in future. We aommodate this by allowing for indiator

variables to apture the outliers in these years and deal with them in the historial

parameters without a�eting our estimates of the time series used to projet the

parameters into the future.

There is urrently no well-established method for projeting the ohort parameters. A

number of tehniques are disussed in Cairns et al. (2011a) and van Berkum et al. (2014).

Many of these �t time series from the ARIMA family in order to make projetions.

The lassial approah to projeting the ohort funtion is to use Box-Jenkins methods

to �t a preferred time series proess to the historial ohort parameters and then to

use this proess to projet them into the future. The limitations of this approah in

obtaining projeted parameters whih have onsisteny between the past and future are

disussed in Setion 6.5.1. In addition, there is no guarantee that the preferred time

series found by Box-Jenkins methods will be well-identi�ed (i.e., they do not depend on
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the identi�ability onstraints imposed in Setion 6.3 when the model was �tted to data).

We therefore disuss how well-identi�ed ohort projetions an be obtained in Setion

6.5.2 and then o�er a Bayesian approah whih both gives well-identi�ed projetions and

allows adequately for the unertainty in the parameters in Setion 6.5.3.

6.5.1 The lassial time series approah

When �tting time series models to the ohort parameters, many authors use Box-Jenkins

methods to selet an appropriate model. Impliitly, these methods assume that the ob-

served values of the time series are all known with the same degree of ertainty. However,

we have onsiderably less information about the latest ohorts than the earlier ones. It

is therefore important to use methods whih apply less weight to the later ohorts when

estimating any time series parameters. Therefore, the lassial Box-Jenkins framework

is not appropriate.

To demonstrate this, onsider the pattern of ohort e�ets shown in Figure 6.4 and, in

partiular, the most reent downward trend in the parameters dating from around 1975.

Fitting a time series using standard Box-Jenkins methods would give these 25 years'

worth of data points the same weight as the parameters overing the period from 1920

to 1945, for instane. However, the ohort e�ets for the most reent years of birth are

onsiderably more unertain for two reasons.

First, we have observed these ohorts for less time and so have fewer annual observations

of them. For example, we have only 30 observations of the ohort born in 1980 in our

data, whilst we have 90 observations of the ohort born in 1920. We reognised this was

an issue in �tting the model to the extent that we did not attempt to estimate parameters

for years of birth with fewer than ten observations. It would, therefore, be inonsistent

to then disregard this issue when we ome to projet the ohort parameters.

Seond, these ohorts omprise young people whom we would not expet to have died in

large numbers during the period we have been observing them. Not only are we making

estimates based on fewer observations, but these observations are assoiated with very

few deaths. As a onsequene, any onlusions on the mortality in these most reent

ohorts is subjet to very onsiderable unertainty.
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We an see this more formally by onsidering the Fisher information matrix under max-

imum likelihood estimation assuming the death ount, Dx,t, for eah age and period is a

onditionally Poisson-distributed random variable, whih will give a lower bound for the

standard deviation of our parameter estimates via the Cramér-Rao bound:

I(γy) = −E

[

∂2L
∂γ2y

]

=
∑

x

Wx,y+x Ec
x,y+x µx,y+x

=
∑

x

Wx,y+x EDx,y+x (6.17)

≥ 1

Var(γy)

where Ec
x,t are the observed entral exposures to risk and Wx,t are a set of weights for

eah age and period. This shows that the variane of a ohort parameter is inversely pro-

portional to the number of deaths expeted to date for that year of birth. The observed

ohort parameters are therefore unavoidably heteroskedasti. In ontrast, Box-Jenkins

methods assume that the observations of the time series proess under investigation are

either known with ertainty or estimated with the same degree of unertainty, and so

Equation 6.17 invalidates the traditional approah to seleting a time series model in

these irumstanes.

There are two potential �lassial� methods whih ould be used to resolve this issue:

• We ould �t an ARIMA time series proess using a weighted least squares approah,

and expliitly give less weight to ohort parameters felt to be more unertain when

estimating the time series parameters.

• We ould allow for parameter unertainty in our estimates of the historial ohort

e�ets, for instane, by using Bayesian tehniques (as in Pedroza (2006)) or by

residual bootstrapping (as in Koissi et al. (2006)).

Both of these methods make some attempt to orret for the higher level of unertainty

in the reent ohort e�ets when we ome to selet a time series proess and estimate

the parameters within it.

However, lassial approahes assume that the existing parameter estimates will not be

revised in light of the new information that future data will ontain. This, therefore,

still assumes that there is a disontinuity between the �known� historial parameters
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used to estimate the proess and the unknown future parameters whih are projeted.

This disontinuity leads to a sharp inrease in the modelled level of unertainty in the

parameters between the historial parameters and the projeted parameters.

While this is true for the period funtions, sine no new data obtained for future years

will make us revise our estimate for κ
(1)
1975, it does not hold for the ohort parameters.

This is beause we will ontinue to observe ohorts born reently for deades into the

future and use these observations to revise the estimated ohort parameters on an on-

going basis. To illustrate, the last �tted ohort parameter we have is for year of birth

1999 and the �rst projeted ohort parameter is for 2000. The lassial approah would

assume that γ1999 is known with ertainty whilst γ2000 needs to projeted. However, we

will ontinue to observe both ohorts for nearly a entury, and so our urrent estimate of

γ1999 should be onsidered an approximation based on partial information and subjet

to future revision. In addition, we possess only slightly more information for estimating

γ1999 than γ2000 and so the assumption that one is known whilst the other is unknown is

inonsistent with the data we possess. In order to obtain a desired onsisteny between

the historial and projeted ohort e�ets, we use the Bayesian approah desribed in

Setion 6.5.3 whih is apable of allowing for the inomplete nature of the information we

have regarding ohorts whih are urrently alive when projeting the ohort parameters.

6.5.2 Identi�ability in projetions

In addition to the onsiderations disussed above, the use of Box-Jenkins methods to

selet a time series proess for the ohort parameters an lead to the use of time series

proesses whih are not well-identi�ed. Just as in the disussion onerning identi�ability

in the period parameters in Setion 6.4.1, we need to ensure that our projeted mortality

rates are well-identi�ed, i.e., they do not depend on the identi�ability onstraints im-

posed. To hange the identi�ability onstraints on the ohort parameters, we need to

use the transformations in Equations 6.4, 6.5 and 6.6 to obtain a new (but equivalent)

set of parameters. We therefore need to ensure that the time series proess used for the

ohort parameters does not hange if we use these transformations and so are equally

appropriate for all sets of identi�ability onstraints.

We see that Equation 6.4 adds a onstant to γy, Equation 6.5 adds a term linear in year

of birth to γy and Equation 6.6 adds a term quadrati in year of birth to γy. These an
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be ombined and written as

γ̂y = γy + a0 + a1y + a2y
2 = γy +AXy (6.18)

where Xy =
(

1, y, y2
)⊤

. As with the period funtions in Setion 6.4.1, this transfor-

mation onverts one set of �tted parameters (using one set of identi�ability onstraints)

into an alternative set of parameters whih satisfy a di�erent set of identi�ability on-

straints. These two sets of parameters, γy and γ̂y, are equivalent: they give the same

�tted mortality rates and so there is no statistial reason for preferring one over the other.

As disussed in Chapter 4, identi�ability under this transformation means that we need

to allow for linear and quadrati trends within the ohort parameters, even if they are

not apparent visually. The desire for a stationary distribution around these entral,

deterministi trends leads us to use an ARMA time series proess of the form

Φ(L)(γy − βXy) = Ψ(L)ǫy (6.19)

where β is a matrix of regression oe�ients found from analysing the �tted parameters

and L is the lag operator. We an see that this is well-identi�ed by applying the trans-

formation in Equations 6.18 to Equation 6.19 to obtain an equivalent set of parameters,

whih we then substitute into Equation 6.19 to give

Φ(L)(γ̂y −AXy − βXy) = Φ(L)(γ̂y − β̂Xy) = Ψ(L)ǫy (6.20)

Doing this has hanged the numerial values of the regressors in β, but nothing funda-

mental about the time series, suh as the moving average and autoregressive terms, Φ

and Ψ. Hene, if the time series proess was appropriate for γy, it is also appropriate for

γ̂y and, therefore, appropriate for all di�erent sets of identi�ability onstraints. Hene,

this time series model is well-identi�ed.

The spei� nature of the time series an be set by hoosing the polynomials Φ(L) and

Ψ(L). In priniple, these ould be seleted via a modi�ed Box-Jenkins proess, but tak-

ing are to inlude the βXy term. Alternatively, we an work bakwards from our desired

demographi signi�ane of the ohort parameters to selet Φ(L) and Ψ(L), whilst also

inluding the βXy term to ensure that the proess is well-identi�ed.

For instane, an AR(1) proess, with Φ(L) = 1 − ρL and Ψ(L) = 1, might be felt to

be onsistent with the desired demographi signi�ane as it is stationary, parsimonious,
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but still allows for persistent ohort e�ets. AR(1) proesses are often used for the ohort

parameters in mortality models, for instane in Cairns et al. (2011a). In order to make

this well-identi�ed, however, we ould hoose to projet using an AR(1) proess around a

quadrati trend by inluding a βXy term, as disussed above. This is the �AR(1) proess

around a quadrati drift� proess disussed in Chapter 4 for the model of Plat (2009a).

When we projet using the AR(1) proess around a quadrati drift, we obtain Eγy = βXy

unonditionally. Consequently, it might be felt that there is a on�it between the need

for the time series proess to be well-identi�ed and our desired demographi signi�ane

for the ohort parameters, namely that they lak trends. We need to allow for quadrati

trends in order to give well-identi�ed projetions, but we would like these trends to be

zero based on our (subjetive) demographi signi�ane, i.e., we would like to have β = 0.

Clearly, the need to have well-identi�ed projetions whih do not depend upon arbitrary

identi�ability onstraints is more important. However, it is possible to ahieve both aims

simultaneously.

As shown by Equation 6.20, the value of β found depends upon the identi�ability on-

straints imposed. In Chapter 4, we argued that the hoie of identi�ability onstraints is

arbitrary, and no one set of identi�ability onstraints is preferable on statistial grounds

to any other. We also know that the transformations in Equations 6.4, 6.5 and 6.6

allow us to hange between di�erent, equivalent sets of parameters (i.e., di�erent arbi-

trary identi�ability onstraints) without hanging the historial �t to data, whilst using

well-identi�ed projetion proesses for the period and ohort parameters means that the

arbitrary hoie of identi�ability onstraints will not a�et the projeted mortality rates.

We therefore propose the following approah.

First, we �t the model as in Setion 6.3, imposing the onstraints in Equations 6.7, 6.8

and 6.9. These onstraints are onvenient when �tting the model as they are simple to

apply (by regressing the ohort parameters on the relevant deterministi trends) and do

not depend upon what time series proess we subsequently use to projet the period and

ohort parameters.

Seond, we selet an appropriate time series proess for the ohort parameters, working

bakwards from our desired demographi signi�ane for the parameters and the need

for the proess to be well-identi�ed, as disussed in Chapter 4. For illustrative purposes,
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we selet the AR(1) around quadrati drift proess disussed above.

21

Third, we �t an AR(1) around quadrati drift to the historial ohort parameters. In do-

ing so, we �nd β =
(

−5.05 × 10−4, −1.24× 10−5, −2.49× 10−7
)

. Numerially, these

regression oe�ients are small, however it is important to note that they are not equal

to zero. In the long run, therefore, the small quadrati trend in the ohort parameters

will result in the projeted ohort parameters diverging signi�antly from zero, whih

on�its with our desired demographi signi�ane.

However, the magnitude of β is entirely dependent upon the identi�ability onstraints

used, i.e., even if β is small, we see from Equation 6.20 that β̂ = β+A an be arbitrarily

large depending upon the value of A. Therefore, any deision to ignore β would also be

entirely dependent upon the arbitrary identi�ability onstraints. Thus, we are unable

to test β and set it to zero if it proves statistially insigni�ant, sine the results of any

statistial tests on them would also depend upon the arbitrary identi�ability onstraint.

Hene, the hoie of time series to use for γy annot be motivated by arguments based on

statistial signi�ane or goodness of �t, but must be determined by the identi�ability

issues present in the model, in order to avoid generating poorly-identi�ed projetions of

mortality rates that depend on the arbitrary onstraints imposed when �tting the model.

Sine the value of β depends upon the identi�ability onstraints, we an work bakwards

to impose β = 0 by hoosing a new set of identi�ability onstraints. To do this, we use

the transformations in Equations 6.4, 6.5 and 6.6, with the values of the free parameters

in these transformations given by the �tted values of β found above. This gives an equiv-

alent set of historial parameters, with the original onstraints in Equations 6.7, 6.8 and

6.9 over-ridden by the new onstraint, β = 0. Imposing β = 0 in this fashion does not

hange our �tted mortality rates (as it merely involves using the invariant transforma-

tions), nor does it a�et the projeted mortality rates, sine all the time series proesses

used for the period and ohort parameters are well-identi�ed. However, it will ensure

that our projeted ohort parameters have the subjetive demographi signi�ane we

desire for them from Chapter 2, namely that they lak deterministi trends.

The identi�ability onstraint β = 0 ould not have been imposed when �tting the model

to data, sine it depends on knowing whih time series proess we would use to projet

21

However, in Setion 6.5.3, we will extend this using a Bayesian approah to allow for the issues

disussed in 6.5.1.
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the ohort parameters a priori.

22

It therefore makes sense - and is ertainly more onve-

nient - to use the original set of identi�ability onstraints (Equations 6.7, 6.8 and 6.9),

to �t the model to data and analyse the �tted ohort parameters. One we have done

this and hosen an appropriate time series proess to projet the ohort parameters,

the �tting onstraints an be revisited and we an swith to the more onvenient set

of identi�ability onstraints for projeting the model. Beause all sets of �tted param-

eters give the same �tted mortality rates, and beause using well-identi�ed projetion

methods for both the period and ohort parameters means that, when we projet any

of these sets of parameters, we obtain the same projeted mortality rates, we are free to

swith between them at any stage of the analysis depending on whih set of identi�a-

bility onstraints is most onvenient at the time. This is disussed in depth in Chapter 4.

6.5.3 A Bayesian approah for projeting the ohort parameters

From Setion 6.5.1, we see that we must be areful when allowing for the unertainty in

the ohort parameters, as our estimates to date will be based only on inomplete infor-

mation. In attempting to allow for this unertainty, it therefore makes sense to develop

a proess that is onsistent with the nature of our observation of eah ohort.

We do this using a Bayesian tehnique, sine Bayesian methods are well suited to al-

lowing for the inherent unertainty in parameter estimates based on partial information,

but there are prior views regarding the proess generating the data. Bayesian methods

have been used extensively in order to �t various mortality models to data, for instane

in Pedroza (2006), Cairns et al. (2006b), Reihmuth and Sarferaz (2008) and Mavros

et al. (2014), often using Markov hain Monte Carlo (MCMC) tehniques. However,

they have not been used to model the underlying proesses generating the ohort pa-

rameters. Aordingly, the �tted values of γy from models with ohort parameters �tted

using MCMC tehniques will su�er from exatly the same issues as those desribed in

Setion 6.5.1. Instead, we onstrut a Bayesian framework for the ohort parameters

from the ground up, starting by speifying the underlying data generating proess of

eah individual ohort parameter and then inorporating a (well-identi�ed) time series

22

In priniple, if the �nal time series proesses are known in advane or determined by a trial two

step sequential estimation of the model and time series proesses, it is possible to �t the model and

time series proesses to data jointly in a one step proess. This an be done either using maximum

likelihood tehniques (as in Dowd et al. (2011b), or Bayesian Markov hain Monte Carlo tehniques,

as in Pedroza (2006). However, suh tehniques are ompliated to implement and so are not pratial

when using sophistiated mortality models or if the model is intended to be used for di�erent datasets,

where di�erent time series proesses might be appropriate.
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proess governing the evolution of the ohort parameters aross years of birth.

6.5.3.1 The data generating proess

We start by noting that our dataset gives us a limited number of observations for eah

ohort, eah of these observations giving us a small amount of information regarding the

mortality e�ets spei� to that ohort. We also note that the value of eah observation

is proportional to the fration of the ohort whih dies at that age, with ages with many

deaths giving relatively more insight than ages experiening few deaths. We formalise

this intuition as follows.

Consider a ohort born in year y where a proportion, dx, of the total ohort dies at age

x (assuming ages in the range [1,X] and no other derements from the population other

than death, suh as migration). For simpliity, dx is assumed to be the same for all o-

horts.

23

Therefore, by the time the ohort has reahed age x, we have seen a proportion

Dx =
∑x

ξ=1 dξ of the ohort die. Trivially, DX =
∑X

ξ=1 dξ = 1.

We start by assuming that eah observation of ohort y at age x gives us a paket of

information, γxy , relating to the ohort-spei� mortality e�ets. We assume

γxy |Γy, σ
2 ∼ N

(

Γy,
σ2

dx

)

(6.21)

where Γy is the ommon mean of the information pakets for year of birth y. We as-

sume that the information pakets are onditionally independent of eah other, apart

from sharing a ommon mean. This implies that an observation of a ohort at age 50

only depends upon the observation of the same ohort aged 40 via the mean, Γy, and so

observations of the γxy an be used to estimate this unknown variable. We will assume

a prior distribution for Γy based on the time series struture for the ohort parameters

onsidered in Setion 6.5.3.2.

What we are primarily interest in, however, is the �ultimate� ohort parameter, γy. This

is the lifelong mortality e�et experiened by the ohort, and is onstruted from the

pakets of information observed at eah age. Beause the ultimate ohort parameter is

a lifelong e�et, it will only be known fully at the extintion of the ohort (i.e., at time

23

In pratie, we take dx to be given by the �tted mortality rates in the �nal year of the data. However,

the results are relatively insensitive to the hoie of dx as long as these re�et a plausible pattern of

deaths from a ohort aross di�erent ages.
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y +X), but will be unobservable at any time before this. We assume that the ultimate

ohort parameter is given by the weighted sum of the information pakets, with the

weights given by the shedule of deaths for the ohort, i.e.,

γy =

X
∑

x=1

dxγ
x
y (6.22)

From this, we �nd the distribution of the ultimate ohort parameter, assuming we have

observed no information pakets to date (e.g., for ohorts whih have yet to be born)

γy|Γy, σ
2 ∼ N(Γy, σ

2) (6.23)

Thus, Γy is also the mean of the ultimate ohort parameter, as well as the mean of the

information pakets. Note that the pakets are all a lot more variable than the ultimate

ohort parameter, sine dx will tend to be small (of the order of a few perent of people

in a ohort dying at eah age).

Before the extintion of the ohort, γy is unobservable and we will have only partial

information regarding the ohort, based on the pakets of information observed to date.

The hallenge, therefore, is to �nd the distribution of the ultimate ohort parameter

given the partial information we have at time t. We will typially assume that t is �xed

at the urrent year of observation (i.e., the last year of the dataset).

24

At this time, we

have reeived the �rst t− y pakets of information, i.e., γxy , x ∈ [1, t− y]. We, therefore,

de�ne the partial sum of the pakets, γ
y
(t) =

∑t−y
x=1 dxγ

x
y . The distribution of this partial

sum is given by

γ
y
(t)|Γy, σ

2 ∼ N
(

Dt−yΓy,Dt−yσ
2
)

(6.24)

Unlike the individual information pakets, γxy , the partial sums, γ
y
(t), are, in priniple,

observable at time t and ould be found from the available data . However, they are not

the same as the estimated ohort parameters found when �tting a mortality model to the

available data at time t. This is beause the expeted value of the partial sums depends

upon Dt−y, i.e., the proportion of the ohort expeted to have died to date, and so we

observe very small values of γ
y
(t) for ohorts whih have just been born, but onsiderably

larger values for older ohorts (for �xed Γy). This is inonsistent with the assumption,

impliit in the majority of APC mortality models, that the ohort parameters have the

24

In Chapter 12, this is relaxed and the year of observation is allowed to hange to re�et the impat

of new observations on the previously estimated ohort parameters.
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same sale.

25

Therefore, we de�ne �interim� ohort parameters, γy(t) = 1
Dt−y

γ
y
(t). From Equation

6.24, we see that the γy(t) have distribution

γy(t)|Γy, σ
2 ∼ N

(

Γy,
1

Dt−y
σ2

)

(6.25)

Not only do the γy(t) have means independent of Dt−y, but they have varianes whih

are inversely proportional to the number of deaths expeted from the ohort to date,

whih is onsistent with Equation 6.17 and the analysis of Setion 6.5.1. Therefore, we

identify the interim ohort parameters, γy(t), with the ohort parameters estimated by

the model in Setion 6.3 and shown in Figure 6.4. Hene, we are able to obtain values

of γy(t) by �tting the APC model to data. The interim ohort parameters, γy(t) are

assumed to be known at time t, as opposed to having the distribution in Equation 6.25,

and similarly the partial sums, γ
y
(t), are also assumed to be known at time t. It is

trivial to move between the �tted γy(t) and the partial sums, γ
y
(t), whih are more

fundamental in the analysis.

We an use the knowledge of γy(t) (and γ
y
(t)) to update the distribution for the ultimate

ohort parameter, γy by onditioning on the partial information we have to time t. To

do this, we note that, for times in the interval y ≤ t < y +X

γy =

t−y
∑

x=1

dxγ
x
y +

X
∑

x=t−y+1

dxγ
x
y

= γ
y
(t) +

X
∑

x=t−y+1

dxγ
x
y (6.26)

Therefore, from Equation 6.21, we �nd

γy|γy(t),Γy, σ
2 ∼ N(γ

y
(t) + (1−Dt−y)Γy, (1−Dt−y)σ

2) (6.27)

Thus, we have found the distribution of the ultimate ohort parameters for year of

birth y, onditional on our observations of the ohort to date and its prior expeted

value. However, we have not made any assumptions regarding the form that this prior

expetation should take and, in partiular, how this expeted value relates to the values

for other neighbouring ohorts.

25

This is a onsequene of having a simpli�ed age/ohort struture and setting β
(0)
x = 1 disussed in

Chapter 2.
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6.5.3.2 Time series dynamis

The dependene of the ultimate ohort parameters, γy, upon the preeding ohorts is

given by the time series proess driving the dynamis of the ohort parameters. These

assumed time series dynamis at as a prior distribution in the Bayesian approah. Work-

ing bakwards from our desired demographi signi�ane for the ohort parameters, we

said in Setion 6.5.2, that an AR(1) proess around a quadrati drift an provide pro-

jetions in line with our desire for stationary but persistent ohort parameters relatively

parsimoniously. Writing the AR(1) proess around a quadrati drift in distributional

terms gives

γy|γy−1, β, ρ, σ
2 ∼ N

(

βXy + ρ(γy−1 − βXy−1), σ
2
)

(6.28)

Comparing this with Equation 6.23, we see that using the AR(1) proess around a

quadrati drift is equivalent to setting Γy = βXy + ρ(γy−1 − βXy−1).
26

This hoie for

Γy also feeds through into the distributions both of the partial sums, γ
y
(t), in Equation

6.24 to give

γ
y
(t)|γy−1, β, ρ, σ

2 ∼ N
(

Dt−y(βXy + ρ(γy−1 − βXy−1)),Dt−yσ
2
)

(6.29)

and of the information pakets, γxy , in Equation 6.21 to give

27

γxy |γy−1, β, ρ, σ
2 ∼ N

(

βXy + ρ(γy−1 − βXy−1),
σ2

dx

)

(6.30)

To inorporate both soures of information regarding the ultimate ohort parameter, γy

(i.e., the partial information observed to date for the ohort and that from the ohort

parameter for the previous year of birth using the time series struture), we substitute

the expression for Γy into Equation 6.27, to obtain

γy|γy(t),γy−1, β, ρ, σ
2 ∼

N
(

γ
y
(t) + (1−Dt−y)(βXy + ρ(γy−1 − βXy−1)), (1 −Dt−y)σ

2
)

(6.31)

This expression gives the distribution of the ultimate ohort parameter for ohort y,

given our observations of the ohort parameter to date and the previous ultimate ohort

parameter, γy−1. It an, therefore, be onsidered as the posterior distribution in the

Bayesian approah, sine it takes the prior distribution given by the time series dynamis

26

The model ould, theoretially, be extended to allow for more lags and an AR(p) struture via a

di�erent hoie for Γy.

27

While the distribution for γx
y is not used here, it is neessary when updating the estimates of the

ohort parameters for additional data, as done in Chapter 12.
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in Equation 6.28 and updates it by inorporating the information observable in γ
y
(t).

This posterior distribution an be used for simulation purposes, espeially when it is

rewritten in the form

γy = γ
y
(t) + (1−Dt−y)(βXy + ρ(γy−1 − βXy−1)) + ǫy (6.32)

ǫy ∼ N(0, (1 −Dt−y)σ
2)

We refer to this as the �updating equation�, whih we an use to simulate sample paths

for the ultimate ohort parameters, γy, over the range t −X < y < Y (where Y is the

last ohort in the data for whih we have estimated a ohort parameter).

If we were to write Equation 6.32 using the interim ohort parameters, γy(t), estimated

by the model, instead of the partial sums, γ
y
(t), we an see that the expetation of

the ultimate ohort parameter is of the form of a weighted sum of the �tted parameter

based on observations of the ohort to time t and the expeted value from the time series

dynamis

Eγy|γy
(t), γy−1, β, ρ, σ

2 = Dt−1γy(t) + (1−Dt−y)(βXy + ρ(γy−1 − βXy−1))

In this form, the approah an be ompared to a �redibility analysis� of the ohort pa-

rameters as disussed in Chapter 7 of Kaas et al. (2001), sine our estimate of the true

parameter is formed as a weighted average of our observed parameter and what would be

predited by the time series. These weights, i.e., the proportion of eah ohort expeted

to have died by the observation date, are shown in Figure 6.5. We an see that we plae

a high degree of on�dene in our estimates of the ohort parameters before . 1930 (i.e.,

individuals urrently aged around 80), but this falls rapidly for younger ohorts. For

these, the seond term in Equation 6.32 will dominate.

While useful for simulation purposes, Equation 6.31 is not the end of the story, sine it is

still onditional on knowing the previous ultimate ohort parameter, γy−1. However, for

the majority of ohort parameters, the previous ultimate ohort parameter will also be

unknown at time t. However, it is possible to solve Equation 6.31 iteratively to remove

the dependene on γy−1 and obtain the distribution for the ohort parameter γy at time

t, based solely on the observations made to date. We do this by writing

γy|Ft,y, β, ρ, σ
2 ∼ N(M(y, t), V (y, t)) (6.33)

where Ft,y represents the sum total of information known at time t about ohorts up to

and inluding year of birth y, i.e., {γ
υ
(t) υ ≤ y}, and M(y, t) and V (y, t) are the mean
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Figure 6.5: Deeased proportion of ohort, Dy

and variane funtions, respetively. From Equation 6.31 and Bayes Theorem, we work

bakwards to give

γy|Ft,y, β, ρ, σ
2 ∼ N

(

γ
y
(t) + (1−Dt−y)(βXy + ρ(M(y − 1, t)− βXy−1)),

(1−Dt−y)σ
2 + (1−Dt−y)

2ρ2V (y − 1, t)
)

⇒ M(y, t) = γ
y
(t) + (1−Dt−y)(βXy + ρ(M(y − 1, t) − βXy−1)) (6.34)

V (y, t) = (1−Dt−y)σ
2 + (1−Dt−y)

2ρ2V (y − 1, t) (6.35)

This gives us iterative equations for the mean and varianes funtions, respetively, for

the ultimate ohort parameters based on the information observed to date, whih an be

solved to give

M(y, t) =

∞
∑

s=0

[

s−1
∏

r=0

(1−Dt−y+r)

]

ρs
[

γ
y−s

(t) + (1−Dt−y+s)β(Xy−s − ρXy−s−1)
]

(6.36)

V (y, t) =

∞
∑

s=0

[

s−1
∏

r=0

(1−Dt−y+r)
2

]

(1−Dt−y+s)ρ
2sσ2

(6.37)

in losed form. We adopt the onvention that empty produts equal unity (i.e.,

∏s−1
r=0(1−
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Dt−y+r) = 1 for s = 0). It is also important to note that, although these are written as

in�nite sums, they will in fat terminate as DX = 1.

So far, this analysis has assumed that we know the parameters of the underlying time

series dynamis, i.e., Equation 6.33 is onditional on knowing the values of β, ρ and

σ2
. In pratie, these parameters an be estimated from the �tted ohort parameters,

one we �nd the preditive distribution for γ
y
(t)|Ft,y−1, i.e., the observed γ

y
(t), given

all previous γ
υ
(t). This an be alulated using Bayes Theorem and Equation 6.29 to

give

γ
y
(t)|Ft,y−1, β, ρ, σ

2 ∼ N (Dt−y(βXy + ρ(M(y − 1, t)− βXy−1)),

Dt−yσ
2 + ρ2D2

t−yV (y − 1, t)
)

(6.38)

This preditive distribution gives us the distribution of an observable quantity, γ
y
(t), in

terms other observable quantities, γ
υ
(t) (in M(y, t)), and the unknown time series pa-

rameters. This means that we an use quasi-maximum likelihood methods to estimate β,

ρ and σ2
. As disussed in Setion 6.5.2, in general, we will observe non-zero values for β,

whih is undesirable given our demographi signi�ane for the ohort parameters. We,

therefore, use the invariant transformations in Equations 6.4, 6.5 and 6.6 to set β = 0,

as disussed in Setion 6.5.2. This also has the bene�t of simplifying both the expression

for M(y, t) in Equation 6.36 and the projetions of the ohort parameters onsiderably.

So far, we have only onsidered the situation where we have two soures of information for

eah ohort, the observations to date and the time series struture. In order to projet

the ohort parameters into the future (i.e., beyond year of birth Y ), we do not have

any observations to date and therefore we simply use the AR(1) struture to generate

projetions. To projet beyond the last �tted ohort parameter (assumed to be known

for the time being), the AR(1) proess gives

γY+η|γY , ρ, σ2 ∼ N

(

ρηγY ,
1− ρ2η

1− ρ2
σ2

)

To remove the dependene on γY , whih will be unknown in pratie, we use Bayes

Theorem to obtain

γY+η|Ft,Y ∼ N

(

ρηM(Y, t),
1− ρ2η

1− ρ2
σ2 + ρ2ηV (Y, t)

)

(6.39)

The variane of this ontains two parts. First, the variability from projeting the time

series, whih inreases to a onstant σ2(1− ρ2)−1
as η → ∞ as expeted. Seond, there
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Figure 6.6: 95% fan hart of the projeted ohort parameters using the Bayesian

approah

is the variability from the fat that our initial value γY is unknown: this soure of vari-

ability deays exponentially. However, as V (Y, t) < σ2(1− ρ2)−1
,

28

this means that our

on�dene intervals for γY+η inrease with time towards a limit.

As with Equation 6.31, it is helpful to rewrite Equation 6.39 in the form of an updating

equation

γY+η = ργY+η−1 + εy

εy ∼ N(0, σ2)

whih an be used for generating sample paths. Again, we see that this is simply the time

series proess for an AR(1) proess and is similar to Equation 6.32, but with Dt−y = 0

and β = 0, i.e., we are foreasting ohorts for whih there have been no observed deaths

to date.

28

Mathematially, this is a onsequene of Dt−Y > 0. More intuitively, it an be seen that σ2(1−ρ2)−1

is the variability of a ohort parameter under the prior distribution from the AR(1) time series without

any additional information from the data to re�ne the parameter estimate.
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Figure 6.6 shows a fan hart of the values of the ohort parameters using this method,

with the �tted parameters indiated by a dotted line for omparison. We note that the

ohort parameters have three regimes:

1. y ≤ t−X (i.e., y ≤ 1909): our data has a omplete set of observations regarding

the ohort and therefore we do not have any unertainty in the ohort parameters

(i.e., γy = γ
y
(t) = γy(t)).

2. t − X < y ≤ Y (i.e., y ∈ [1910, 1999]):29 we have partial observations for eah

ohort and, therefore, γy is not known with ertainty but is onstruted from the

observations to date and the time series dynamis. However, older ohorts are

onsiderably less variable as we have a greater number of observations for these

years of birth (and observations inluding ages where a larger proportion of the

ohort is expeted to die). In ontrast, the unertainty in the parameter estimates

grows rapidly for more reent ohorts.

3. Y < y (i.e., y ≥ 2000): we have no observations for these years of birth and so

the projeted ohort parameters are based solely upon the time series dynamis

assumed.

It is important to note that, despite the qualitative di�erenes between these three

regimes, the on�dene interval showing the unertainty in the parameters blends smoothly

between the �tted and the projeted parameters, with no sharp disontinuity at the

regime boundary. This is in ontrast to the lassial approahes disussed in Setion

6.5.1, whih would have the unertainty of the ohort parameters inrease sharply at the

boundary between estimated ohort parameters, y ≤ Y (assumed known) and projeted

ohort parameters, y > Y (projeted using the time series). This is important in many

appliations, suh as projeting annuity values, as disussed in Setion 6.6.3, and also

for valuing longevity-linked seurities, as disussed in Chapter 8.

We also note from Figure 6.6 that the expetation of the ultimate ohort parameter,

M(y, t) (given by the entre of the on�dene interval in Figure 6.6), an be signi�antly

di�erent from the ohort parameters estimated from data to time t, γy(t). Sine these

estimated ohort parameters were �tted (along with the other parameters in the model)

on the basis of maximising the goodness of �t to data, using the Bayesian approah will

worsen the �t to the historial data. However, the redution in the goodness of �t is

29

As disussed in Chapter 5, we do not �t ohort parameters for the last 10 years of birth in the

data, due to the lak of observations. Instead, these are linearly interpolated to zero to prevent them

interfering with the age/period terms.
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relatively marginal,

30

as the di�erene between the two is only signi�ant for the most

reent ohorts, for whom we have relatively little data to �t the model. This worsening

of the goodness of �t is also more than ompensated by the more plausible projetions

and inreased allowane for unertainty in these parameter estimates. In addition, the

use of the Bayesian approah for the ohort parameters may appear inonsistent with

the use of the other �tted age and period funtions in the model. However, these other

parameters are estimated over a wide range of years of birth and so are not signi�antly

a�eted by the hanges to the most reent years of birth aused by using the Bayesian

approah for the ohort parameters.

31

Finally, we also see that the pattern of the �tted ohort parameters shown in Figure 6.4

after 1950 (i.e., a rapid inrease and then derease in ohort mortality relative to the

baseline) is smoothed out, sine it is not based on su�ient observations to be redible.

Therefore, using the Bayesian approah will tend to avoid the issues found in Cairns

et al. (2011a), where distintive patterns in the most reent ohort parameters lead to

projeted mortality rates whih are not biologially reasonable.

In summary, we propose a new Bayesian approah for projeting the ohort parameters,

whih involves updating a prior distribution for them based on assumed time series

dynamis with the partial observations we have for eah ohort from the available data.

This is similar oneptually to a reditability analysis of the form familiar to atuaries.

In addition, we have ensured that these projetions are well-identi�ed, in the sense that

the projeted mortality rates do not depend upon any arbitrary set of identi�ability

onstraints imposed. Although this approah is ompliated, it yields projetions of the

ohort parameters whih we believe are more plausible and also allow for the unertainty

in the historial ohort parameters as we have only partial data regarding them.

6.6 Testing the projeted mortality rates

Our aim is to develop tehniques for projeting mortality rates that are more onsistent

with the features observed in the historial data and whih make suitable allowane for

longevity risk. This annot be done by looking at the parameters of the model in iso-

lation. Rather, we must look at the plausibility of the projeted mortality rates and

30

We �nd log-likelihoods of −3.09× 10−4
using the estimated parameters and −3.25× 10−4

using the

expetation of the ultimate parameters, whih is mainly due to worsening the �t to mortality data at

age zero. This may indiate that the �tted ohort parameters attempt to over�t data at this unusual

age, rather than apturing genuine lifelong mortality e�ets.

31

In priniple, the other age/period terms in the model ould be re-estimated subsequent to deter-

mining M(y, t). In pratie, however, this was not done in this study.
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assoiated indies in order to assess the reasonableness of the models developed. To

test our projetions, we follow the approahes of Dowd et al. (2010b) and Cairns et al.

(2011a) by �rst baktesting the projetion model to see if it ould have predited the

mortality rates observed in the past, and then make longer term foreasts to assess the

qualitative nature of the mortality foreasts.

We ombine the trend hange model for the period funtions and the Bayesian approah

for the ohort parameters to projet mortality rates into the future. We will all this

the �onsistent� approah sine it has been designed to give projetions whih are on-

sistent with the observed features of the historial data. For a omparison, we use an

approah whih simply uses a multivariate random walk for the period parameters and

an AR(1) proess for the ohort parameters. This approah is more typial of the pro-

jetion methods used by previous studies, e.g. Cairns et al. (2006a), Cairns et al. (2009)

and Haberman and Renshaw (2011). We will denote this the �naïve� approah, sine,

due to its simpliity, it is unable to give projetions whih are independent of the identi-

�ability onstraints, allow for strutural breaks in the period funtions, or allow for the

unertainty in the ohort parameters.

Our projetions also allow for parameter unertainty using the residual bootstrapping

tehnique of Koissi et al. (2006). We also allow for idiosynrati (Poisson) risk in the

projeted mortality rates when these are ompared with the observed mortality rates in

the baktesting exerise onduted in the following setion.

6.6.1 Baktesting the �onsistent� and �naïve� approahes

We �rst test the onsistent model using a baktesting proedure similar to that devel-

oped in Dowd et al. (2010b). The model is �rst �tted to data from 1950 to 1999 and

then projeted for the period 2000 to 2009. These projeted mortality rates (allowing

for both parameter unertainty and idiosynrati mortality risk) are then ompared with

the rates observed during this period. Results of this proedure at ages 60, 70 and 80 are

presented in Figures 6.7 and 6.8 for the naïve and onsistent approahes, respetively.

32

These show fan harts overing the 95% on�dene interval for the projeted mortality

rates with rosses representing the observed mortality rates.

32

These ages have been hosen as they are of greatest interest to annuity providers, suh as life

insurane ompanies and pension shemes, whih are most a�eted by longevity risk. Similar �gures for

younger ages do not show any signi�ant di�erene between the two models in terms of the ability to

foreast mortality rates for the period 2000 to 2009.
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Figure 6.7: 95% on�dene intervals for baktested mortality rates - Naïve approah

The fan harts show that at these key ages, the onsistent approah gives onsiderably

more aurate foreasts of mortality rates in omparison with the naïve approah. In

partiular, it is noted that the naïve projetion method gives poor projetions of mor-

tality rates between ages 70 and 90 for more than �ve years ahead. Sine it is these ages

that are of most interest to providers of annuities and pension produts and also where

the numbers of deaths are greatest, this is of great onern.

To test this statistially, we use the Dawid-Sebastiani soring rule (DSS) disussed in

Gneiting and Raftery (2007), as used in Riebler et al. (2012) and van Berkum et al.

(2014).

33

To do this, we alulate the statisti

DSSx,t =
1

5, 000

5,000
∑

j=1

(

ln
(

µ
(j)
x,t

)

− ln (mx,t)
)2

σx,t
+ ln

(

σ2
x,t

)

(6.40)

33

We are indebted to Frank van Berkum for bringing this test to our attention.
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Figure 6.8: 95% on�dene intervals for baktested mortality rates - Consistent ap-

proah

where µ
(j)
x,t are the projeted mortality rates for simulation j for age x and period t,

mx,t =
dx,t
Ec

x,t
are the observed mortality rates, and σx,t is the standard deviation of the

projeted log mortality rates, estimated on the basis of 5,000 Monte Carlo simulations.

34

Thus, the Dawid-Sebastiani soring rule gives a larger value if the observed mortality

rates are a great distane from the entre of the on�dene interval of the projeted

mortality rates, whilst taking into aount the width of this on�dene interval.

The di�erene between the DSS statistis using the onsistent and naïve approahes at

eah age and period are shown in Figure 6.9. As an be seen, the onsistent approah

gives generally lower DSS statistis, indiating that the projeted mortality rates are

loser to those observed, for most ages and years, but espeially at younger ages and

34

We look at projeted log mortality rates, unlike projeted death ounts as in van Berkum et al.

(2014), sine we expet these to be approximately normally distributed, and hene, Equation 6.40 is

similar to a log-likelihood.
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Figure 6.9: Heat map of di�erenes in Dewid-Sebastiani sore statistis between the

onsistent and naïve approahes aross ages and projeted years

ages 60 to 70. We an also alulated aggregate DSS statistis over all ages and years as

DSS =
1

101 × 10

100
∑

x=0

2009
∑

t=2001

DSSx,t

Doing this, we �nd aggregate DSS statistis of -3.80 for the onsistent approah and -3.77

for the naïve approah, indiating that the onsistent approah gives projetions whih

are marginally loser to the observed mortality rates than the naïve approah overall.

However, this statisti does not give greater weight to those ages of greatest interest (i.e.,

those at higher ages) and so should be used with aution.

In summary, visual inspetion of the baktesting exerise gives some evidene to suggest

that the onsistent approah gives more aurate projetions of mortality rates, espeially

at the ages of greatest interest to pension and annuity providers. This is supported by the

use of the Dawid-Sebastiani soring rule to evaluate the loseness between the projeted

and observed mortality rates.
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Figure 6.10: 95% fan harts of projeted mortality rates - Naïve approah

6.6.2 �Consistent� and �naïve� mortality density foreasts

We use the onsistent and naïve approahes to projet mortality rates 50 years into the

future. Figures 6.10 and 6.11 show projetions for mortality rates at ages 40, 60 and 80

under these two alternative approahes.

35

The �rst thing we note is that the naïve approah gives median projeted mortality rates

whih are far less smooth than those given by the onsistent approah. This is beause

they fully take aount of the lak of smoothness in the �tted ohort parameters. In on-

trast, the Bayesian tehnique used in the onsistent approah smooths the most reent

ohort parameters via the prior time series model for them, leading to smoother median

projeted mortality rates overall, whih might be felt to be more biologially reasonable.

35

These ages have been hosen as representative of the pattern of improvements aross a broader range

of ages than those shown in Figures 6.7 and 6.8.
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Figure 6.11: 95% fan harts of projeted mortality rates - Consistent approah

Seond, the onsistent projetion approah gives projeted mortality rates whih are

onsiderably more variable than those using the naïve approah, espeially at younger

ages. For instane, Figure 6.10a shows that some tail senarios have mortality rates for

40 year olds in 2060 in exess of those observed in the historial data, and omparable to

those seen during the Seond World War. This is mainly due to the potential for trend

hanges in κ
(3)
t . Allowing for these tail senarios may appear extreme, but is desirable

for onsisteny with the historial data, where these mortality rates have been more

variable than those at higher ages. It is also onsistent with our desire for biologially

reasonableness as younger ages, whih are typially subjet to a wider range of signif-

iant auses of death, suh aidents, suiides and disease pandemis (suh as HIV or

pandemi in�uenza) than older individuals. This means that our projetion of mortality

rates for these ages should be onsiderably more unertain.

The di�erenes between the two projetion approahes also show up in the projetions

of aggregate measures of mortality, suh as period life expetany at birth as seen in

Figure 6.12. In both ases, we see that our projetion methods allow the high rates of

244



Consistent Mortality Projetions Allowing for Trend Changes and Cohort E�ets

1950 2000 2050
60

65

70

75

80

85

90

95

100

105

110

Year

Period Life Expectancy at Birth

(a) Naïve approah

1950 2000 2050
60

65

70

75

80

85

90

95

100

105

110

Year

Period Life Expectancy at Birth

(b) Consistent approah

Figure 6.12: 95% fan harts of projeted period life expetany at birth

inrease in life expetany observed in the reent past to ontinue in future. In the naïve

approah, the rate of improvement in period life expetany tails o� in future. This is

beause the naïve approah uses a random walk with drift for κ
(1)
t , and so this parameter

dereases roughly linearly. This leads to inreases in life expetanies whih get progres-

sively slower and tail o� as the entropy of the life table (as de�ned in Key�tz (1985))

inreases. In ontrast, the onsistent model uses a random walk with linear drift for κ
(1)
t

for reasons of identi�ability, as disussed in Setion 6.4.1. This gives projetions for κ
(1)
t

whih derease faster than linearly, and these, in turn, have the onsequene that life

expetanies do not tail o� in future but ontinue to inrease at roughly the same rate

as is urrently observed. Projetions using the onsistent model therefore do not on-

tradit the �ndings of Oeppen and Vaupel (2002) whih show life expetany inreasing

linearly over long time periods and predit that this linear inrease in life expetany

will ontinue in future. Inreases in life expetany whih do not tail o� might also be

onsidered to give more prudent (i.e., less �nanially optimisti) estimates of the long-

term improvements in mortality rates for risk management purposes for annuity books,

ompared with models whih impliitly assume that improvements in life expetany tail

o� in future.

In addition, the higher variability of mortality rates at younger ages has the impat that

the projeted period life expetany at birth under the onsistent approah has asym-

metri projetion intervals. This is beause improvements in mortality at younger ages

have limited sope to redue the number of deaths (whih is already low) and so lengthen

average life span, but deteriorations in mortality rates at younger ages have onsiderable

sope to inrease the number of premature deaths and so redue life expetany. How-

ever, in aggregate, we note that the extreme senarios in Figure 6.12 show period life

expetany returning to a level last seen in 1950, whih is not biologially unreasonable.
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6.6.3 Risk management

One of the motivations in developing these tehniques is to allow fully for the longevity

risk present in bene�ts suh as annuities. In respet of these bene�ts, a stylised life

insurer will:

• hold reserves su�ient to meet a �best estimate� of the present value of the liabil-

ities, and

• hold apital in exess of the reserves su�ient to ope with unexpeted events up

to a ertain perentile in the probability distribution.

Figure 6.13 shows the �best estimates� of the present values of annuities for individuals

aged 65 to 90 as the median projeted annuity value using a real disount rate of 1%

p.a. for both the onsistent and naïve approahes. The onsistent approah signi�antly

inreases the �reserves� required to bak the annuities ompared to the naïve approah,

by between 5 and 15% depending on age. Mostly, this is due to κ
(1)
t dereasing faster

than linearly in future.

We an also look at the 95th perentile of the distribution of present values to illustrate

the additional �apital� required on top of these �reserves� using the onsistent and naïve

approahes.

36

In addition to inreasing the reserves, the onsistent approah inrease

the riskiness of the annuities slightly, requiring �apital ratios�

37

of about 11 to 13%

depending on age, whih is about 1 to 2% higher at ages below 80 than required using

the naïve approah.

In summary, the onsistent approah gives projeted mortality rates whih are more

unertain than the naïve approah, espeially in the long term. This is of onsiderable

importane for the providers of annuities, suh as life insurane ompanies and pension

shemes, as not allowing fully for the risk in these long-term projetions may ause them

to understate their apital requirements and reserves.

36

For the avoidane of doubt, this is not diretly omparable to the approah adopted in the alulation

of the apital required under many modern solveny regimes, suh as Solveny II (see EIOPA (2014)).

This requires alulating the apital needed to protet against a hange in the value of the reserves over

a spei�ed time period (usually one year) at a higher on�dene level (e.g., the 99.5% level). Studies

whih look at this issue inlude Stevens et al. (2010), Plat (2011), Bauer et al. (2012) and Chapter 12.

37

That is,

P95%−P50%
P50%

where Pα is the α perentile of the distribution of annuity values.
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Figure 6.13: Expeted present values of annuity using the naïve and onsistent ap-

proahes (valued using 1% net disount rate)

6.7 Conlusions

The extrapolative approah to projeting mortality makes the ore assumption that there

is onsisteny between the evolution of mortality rates in the past and the future. We

believe that assuming suh onsisteny is pratial and neessary. When using mortality

models, there is a fundamental symmetry between the proesses of �tting the model to

historial observations to �nd parameter estimates and projeting parameter values to

derive future observations. Therefore, we desire our projetions of future patterns of

mortality to be as similar to those observed in the historial data as possible.

In Chapter 5, we developed a �general proedure� for onstruting mortality models,

the purpose of whih is to detet all of the statistially and demographially signi�ant

struture present in the data. In this study, we have developed tehniques to make on-

sistent projetions into the future of many of the features found in the past, suh as

trend hanges in the period funtions. Further, we have allowed for unertainty in our

estimates of the ohort parameters due to the partial information we have observed to

date for reent birth ohorts. Whilst these methods have been desribed in the ontext
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of the model in Chapter 5, they an be easily adapted for any other age/period/ohort

mortality model.

We also wanted to ensure that neither the model's �t to historial data nor its proje-

tions of future mortality rates are a�eted by the arbitrary hoies made to identify the

parameters in the model. To aomplish this, we had to utilise the results of Chapters 3

and 4 to selet well-identi�ed projetion methods.

When using these tehniques, we are able to obtain projetions whih are biologially

reasonable and onsistent with the most reent trends observed in the historial data.

The tehniques also suggest that standard approahes to projeting mortality rates may

understate the risk inherent in projeting them into the future, as they do not fully allow

for the possibility that features whih have ourred in the past will reur in future.

The past few deades have witnessed dramati hanges in mortality rates, and there is

no evidene to suggest that the forthoming deades will be di�erent in terms of the

magnitude of the pae of hange or the hallenges in making preditions. It is, therefore,

vital that we make best use of our understanding of the past to inorporate su�ient

unertainty into our projetions of what lies ahead.

6.A Foreast projetion interval widths

Consider the model in Equation 6.16 with a onstant drift subjet to random hanges in

trend

∆κt = µ0 +

N
∑

j=1

νjIt≥τj + ǫt

We an solve this di�erene equation to give

κt = κ0 + µ0t+
N
∑

j=1

νj(t− τj)
+ +

t
∑

s=1

ǫs

= κ0 + µ0t+

t
∑

s=1

|νs|Js(t− s)+ +

t
∑

s=1

ǫs

where Js is an indiator variable denoting whether a trend hange ourred at time s and

so takes the value +1 with probability 0.5p (orresponding to a positive trend hange), −1

with probability 0.5p (orresponding to a negative trend hange) and 0 with probability

(1 − p) (no trend hange). Assuming that the magnitudes of the trend hanges |νs| are
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independent and identially distributed, and are independent both of the proess Js (i.e.,

the diretion of a trend hange) and the innovations proess ǫs, we have

Var(κt) = Var

(

t
∑

s=1

|νs|Js(t− s)

)

+ Var

(

t
∑

s=1

ǫs

)

=
t
∑

s=1

(t− s)2Var(|νs|Js) + σ2t

=
t
∑

s=1

(t− s)2[(E|νs|)2Var(Js) + (EJs)
2Var(|νs|) + Var(|νs|)Var(Js)] + σ2t

=

t
∑

s=1

(t− s)2[p(E|νs|)2 + pVar(|νs|)] + σ2t

= pE|ν|2
t
∑

s=1

(t− s)2 + σ2t

= pE|ν|2(1
6
t(t− 1)(2t − 1)) + σ2t

Therefore, for large t, StDev(κt) ∼ t1.5. This result is independent of the distribution of

the trend hange magnitudes |ν|.

A similar result holds for the random walk with linear drift subjet to random hanges

in trend. In this ase, we �nd that

κt = κ0 + (µ0 + 0.5µ1)t+ 0.5µ1t
2 +

t
∑

s=1

|νs|Js(0.5((t − s)2 + (t− s))) +
t
∑

s=1

ǫs

whih an be solved in a similar fashion to give StDev(κt) ∼ t2.5 for large t.
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Chapter 7

Identi�ability, Cointegration and

the Gravity Model

7.1 Introdution

Chapters 3 and 4 disussed the issue of identi�ability in single population age/period/-

ohort (APC) mortality models, and in partiular how to obtain projetions of mortality

rates whih do not depend upon the arbitrary identi�ability onstraints imposed.

Issues with identi�ability in projetions also exist if we projet mortality for multiple

populations rather than just one. Suh multi-population projetions are vital in order

to allow for the orrelations and dependenies between related populations that are in-

�uened by similar biologial and soio-eonomi drivers of hanging mortality. It is

essential that, in suh a model, our projetions do not depend on the arbitrary identi�a-

bility onstraints imposed when �tting the model, but only on the underlying drivers of

mortality evolution.

Many multi-population mortality models go beyond merely allowing for ovariation be-

tween the stohasti evolution of mortality in di�erent populations, and instead impose

the stronger assumption of �oherene�, i.e., that mortality rates in di�erent populations

should not diverge with time. Suh an imposition is popular and intuitively appealing;

however, we �nd that it usually annot be imposed on a model in a fashion whih does

not depend on the arbitrary identi�ability onstraints. In addition, it an often lead to

overriding the evidene from the historial data in order to impose our preoneptions
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on projeted mortality rates in a manner whih we onsider to be unsienti�.

One model designed to ahieve oherent projetions of mortality between two popula-

tions is the �gravity model� of Dowd et al. (2011b). This model adopted a ointegration

framework to projet the period and ohort terms from the lassi APC model �tted

to eah population. However, as originally formulated, the model is not well-identi�ed,

sine the projetions from it depend on the identi�ability onstraints imposed when �t-

ting the lassi APC model. Later work by Zhou et al. (2014) applied the framework

of the gravity model to the period terms from the Lee-Carter model (Lee and Carter

(1992)) and avoided some of the issues present in the original model of Dowd et al.

(2011b). However, this new form of the model is still not well-identi�ed, sine it gives

projetions dependent upon the identi�ability onstraints imposed by the user.

In this study, we disuss the issue of identi�ability in ointegration models and apply this

to the spei� ontext of the gravity model in order to obtain a well-identi�ed model.

Setion 7.2 disusses the lassi APC model whih was used in Dowd et al. (2011b) to �t

mortality rates in both populations. Setion 7.3 outlines the gravity model introdued

in Dowd et al. (2011b) and plaes it in the ontext of more general ointegration models.

Setion 7.4 disusses why the gravity model is not well-identi�ed and how it an be

modi�ed to give well-identi�ed projetions. Setion 7.5 disusses the model of Zhou

et al. (2014), how it di�ers from the gravity model of Dowd et al. (2011b) and the issues

with identi�ability whih are still present. Finally, Setion 7.6 generalises these results

to a broader lass of mortality models and Setion 7.7 onludes.

7.2 Identi�ability in the lassi APC model

The simplest APC model (referred to here as the �lassi APC model�) has a long history

and is widely used in the �elds of mediine, epidemiology and soiology as well as in

demography and atuarial siene. It has the form in Equation 7.1

1

ln(µx,t) = αx + κt + γt−x (7.1)

The parameters in the lassi APC model annot be estimated uniquely by referene to

the data alone. A model is fully identi�ed when all the parameters in it an be uniquely

determined by referene to the available data. In ontrast, the lassi APC model is not

1

In this hapter, we assume that ages, x, are in the range [1, X] and periods, t, are in the range [1, T ]
and therefore that years of birth, y, are in the range (1−X) to (T − 1).
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fully identi�ed beause there exist di�erent sets of parameters whih will give the same

�tted mortality rates and onsequently the same goodness of �t for any data set.

We an see that this model is not fully identi�ed, sine if we use the transformations in

Equations 7.2, 7.3 and 7.4 to obtain new sets of parameters, we do not hange our �t to

the data (we all suh transformations �invariant� for this reason)

{α̂x, κ̂t, γ̂y} = {αx − a, κt + a, γy} (7.2)

{α̂x, κ̂t, γ̂y} = {αx − b, κt, γy + b} (7.3)

{α̂x, κ̂t, γ̂y} = {αx + cx, κt − ct, γy + cy} (7.4)

Beause di�erent sets of parameters give the same �t to the data, we annot use the

data to hoose between them. Typially, we impose identi�ability onstraints on the

parameters in order to speify them uniquely. For instane, a ommonly used set of

identi�ability onstraints is

∑

t κt = 0,
∑

y nyγy = 0 and

∑

y nyγy(y − ȳ) = 0.2 We refer

to these identi�ability onstraints as �natural�, sine they allow us to impose our interpre-

tation of the demographi signi�ane

3

of the parameters onto the model. For example,

the �rst two of these onstraints mean that αx an be interpreted as an �average� level

of mortality at age x over the period, with κt and γy representing deviations from this

average level. The third onstraint requires that there are no deterministi linear trends

within the �tted ohort parameters, sine any linear trend has been arbitrarily assigned

to the age and period e�ets. This is in line with the demographi signi�ane we assign

to the ohort parameters in Chapter 2, namely that the ohort parameters should be

entred around zero and should not show any long term trends. This means that ohort

e�ets are interpreted as deviations in the mortality experiened by one ohort relative

to that of adjaent years of birth.

However, it is important to note that these additional identi�ability onstraints, although

having a natural interpretation, are arbitrary and ad ho. While they might allow us to

interpret the parameters in terms of their demographi signi�ane, this interpretation

nevertheless depends entirely on the user's judgement rather than on the underlying

data. Of spei� importane in the ontext of this study, Dowd et al. (2011b) used the

2

Here ny is the number of observations of ohort y in the data and so

∑

y nyγy =
∑

x,t γt−x, and a

bar denotes the arithmeti mean of the variable over the relevant data range, e.g., ȳ = 1
X+T−1

∑

y y =
0.5(X + T ) .

3

Demographi signi�ane is de�ned in Chapter 2 as the interpretation of the omponents of a model

in terms of the underlying biologial, medial or soio-eonomi auses of hanges in mortality rates

whih generate them.
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onstraints

∑

t κt = 0,
∑

y nyγy = 0 and a third onstraint desribed in terms of min-

imising a tilting parameter δ, whih an be written as

∑

x,t(x− x̄)γt−x = 0. The impat

of using either the �natural� or the Dowd et al. (2011b) identi�ability onstraints when

making projetions is assessed in Setion 7.4.3.

Sine the identi�ability onstraint we hoose to impose are arbitrary and do not a�et the

historial �tted mortality rates, they should also not a�et the future projeted mortality

rates either. In onsequene, we should obtain the same projeted mortality rates for any

set of identi�ability onstraints, inluding but not limited to the two disussed above.

We say that models with this property are �well-identi�ed�.

7.3 The gravity model

The �gravity� model was introdued in Dowd et al. (2011b) in order to obtain mortality

projetions for two di�erent populations whih do not diverge with time.

4

This model

might be appropriate for a small population, suh as the lives in an annuity book or pen-

sion sheme, whih is a subpopulation of a muh larger population, suh as a national

population. The analogy the authors use is of the smaller population being like a planet

in orbit around a star (the larger population).

The gravity model requires that the lassi APC model of Equation 7.1 is �tted to two

populations

5

and the period funtions projeted using

κ
(I)
t = ν(I) + κ

(I)
t−1 + ǫ

(I)
t

κ
(II)
t = ν(II) + κ

(II)
t−1 + φ(κ

(I)
t−1 − κ

(II)
t−1 ) + ǫ

(II)
t (7.5)

The parameter φ ∈ [0, 1) is designed to ensure that the di�erene, κ
(I)
t − κ

(II)
t , is sta-

tionary and, therefore, the period funtions in the di�erent populations do not diverge.

4

This model is funtionally equivalent to the model in Cairns et al. (2011b), whih di�ers only in the

presentation of the model and the tehniques used to �t it to data. Therefore, the omments made in

this hapter for the gravity model are also appliable to the model of Cairns et al. (2011b).

5

In Dowd et al. (2011b), these were referred to as populations 1 and 2, with the period and ohort

funtions numbered aordingly. To avoid onfusion with the di�erent period funtions κ
(i)
t for models

with more than one age/period term �tted to a single population, we shall refer to the populations as I

and II and label the period funtions κ
(I)
t and κ

(II)
t respetively.
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We an rewrite Equation 7.5 as

∆

(

κ
(I)
t

κ
(II)
t

)

=

(

ν(I)

ν(II)

)

+

(

0

φ

)

(

1, −1
)

(

κ
(I)
t−1

κ
(II)
t−1

)

+

(

ǫ
(I)
t

ǫ
(II)
t

)

(7.6)

This model is just a speial ase of a more general ointegration model, although this in-

terpretation was not ommented upon in Dowd et al. (2011b). A number of papers have

suggested or implemented ointegration as a means of projeting the period parameters

of mortality models for di�erent populations. Cointegration was �rst suggested in the

work of Carter and Lee (1992), but was more reently used in the modelling of Li and

Hardy (2011) and Yang and Wang (2013).

Cointegration between the period funtions requires that we model the vetor of time

series proesses as

∆κt = νXt +

p−1
∑

i=1

Γi∆κt−i +Πκt−p + ǫt (7.7)

The rank of the matrix Π is then tested in order to identify the number of ointegrating

relationships between the period funtions in the model. If it is of rank r < N (the

number of period funtions in κt), then Π an be deomposed as Π = αβ⊤
, where α

and β are N × r matries to give the interpretation that the rows of β⊤κt−p represent

r stationary ointegrating relationships between the di�erent period funtions. In order

to use ointegration robustly, we need to ensure that any statements we make about the

rank of Π are independent of our hoie of identi�ability onstraints.

We an therefore see that the gravity model in Equation 7.6 has the same form as Equa-

tion 7.7, with p = 1, Xt =
(

1
)

, r = 1, α =
(

0, φ

)⊤
and β =

(

1, −1
)⊤

. The

presribed form for β imposes that there is a stationary ointegrating relationship of

the form κ
(I)
t − κ

(II)
t = Zt, and so ensures that relative mortality rates will not diverge

between the two populations, whilst the presribed form for α allows the interpretation

that population I is dominant and so has no dependene on population II.
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A related proess was used in Dowd et al. (2011b) to projet the ohort parameters from

the model. This an be written as

∆

(

γ
(I)
y

γ
(II)
y

)

=

(

µ(I)

µ(II)

)

+

(

α(I) 0

0 α(II)

)

∆

(

γ
(I)
y−1

γ
(II)
y−1

)

+

(

0

φ

)

(

1, −1
)

(

γ
(I)
y−1

γ
(II)
y−1

)

+

(

ε
(I)
y

ε
(II)
y

)

(7.8)

We an therefore see that this is also similar to the ointegration relationship in Equation

7.7.

6

7.4 Identi�ability in the gravity model

7.4.1 Period funtions

The values of κ
(I)
t and κ

(II)
t are not uniquely identi�able by the lassi APC model, but

instead depend upon our hoie of identi�ability onstraints. Equations 7.2 and 7.4 give

us the freedom to add linear trends in time to either or both time series independently,

i.e.

(

κ̂
(II)
t

κ̂
(II)
t

)

=

(

κ
(I)
t

κ
(II)
t

)

+

(

a(I)

a(II)

)

+

(

c(I)

c(II)

)

t

κ̂t = κt + a+ ct (7.9)

However, this transformation, despite leaving the �tted mortality rates unhanged if we

make the appropriate o�sets to the stati age funtions and ohort parameters, funda-

mentally alters the ointegration relationship in Equation 7.6 sine

∆κ̂t = ∆κt + c

= ν + αβ⊤κt−1 + ǫt + c

= ν + c− αβ⊤(a+ ct) + αβ⊤κ̂t−1 + ǫt

= ν̂ − αβ⊤ct+ αβ⊤κ̂t−1 + ǫt

The transformed time series has a deterministi linear term, αβ⊤ct, whih was not

present in the original parameterisation. This means that the time series struture in

6

There is a slight di�erene between Equation 7.8 and the standard form of the ointegration rela-

tionship in Equation 7.7, in that Equation 7.8 involves a stationary term in γy−1 =
(

γ
(I)
y−1, γ

(II)
y−1

)⊤

rather than γy−2. This ould be solved by rearranging Equation 7.8 using A∆γy−1 + αβ⊤
γy−1 =

(A + αβ⊤)∆γy−1 − αβ⊤
γy−2 and rede�ning the matrix A. However, this solution involves losing the

partiular struture imposed upon A in Dowd et al. (2011b).
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Equation 7.6 is not well-identi�ed. In pratie, this has the onsequene that the gravity

model an be di�ult to �t to historial time series and may give implausible values.

We might onjeture that a solution to this problem would be to allow for deterministi

trends up to linear order in the ointegrating relationship, i.e., using ν0 + ν1t in plae

of ν in Equation 7.6 to give

∆

(

κ
(I)
t

κ
(II)
t

)

=

(

ν
(I)
0

ν
(II)
0

)

+

(

ν
(I)
1

ν
(II)
1

)

t+

(

0

φ

)

(

1, −1
)

(

κ
(I)
t−1

κ
(II)
t−1

)

+

(

ǫ
(I)
t

ǫ
(II)
t

)

∆κt = ν0 + ν1t+ αβ⊤κt−1 + ǫt (7.10)

Suh a model is well-identi�ed as it does not hange form under the transformation in

Equation 7.9

∆κ̂t = ν0 + ν1t+ c− αβ⊤(a+ ct) + αβ⊤κ̂t−1 + ǫt

= ν̂0 + ν̂1t+ αβ⊤κ̂t−1 + ǫt

ν̂0 = ν0 + c− αβ⊤a

ν̂1 = ν1 − αβ⊤c

However, beause we have the �rst di�erene of the time series on the left-hand side of

Equation 7.10, when we integrate this equation, we obtain quadrati trends in the levels

of the period funtions. This is undesirable as we do not generally observe quadrati

trends in the �tted parameters and they might hange diretion when projeted into the

future with near ertainty for no ompelling biologial reason. Therefore, the model in

Equation 7.10 on�its with our desire for biologially reasonable

7

projetions.

There is, however, a way to obtain both biologial reasonableness and identi�ability un-

der the transformations in Equation 7.4. This is to restrit the linear deterministi trend

in Equation 7.10 by imposing ν1 = αβ1 where β1 is an arbitrary onstant. This will

ensure that the relevant deterministi trend is present in κt, but is onstrained within

the stationary ointegrating relationships and is not present in the non-stationary part

of the relationship.

7

Introdued in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a ausal

assoiation (or relationship) between two fators that is onsistent with existing medial knowledge�
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This means that we need to inlude onstrained deterministi linear trends in the oin-

tegrating relationship, but leave an unonstrained onstant term, i.e.

∆κt = ν0 + αβ1t+ αβ⊤κt−1 + ǫt

= ν0 + α(β⊤κt−1 + β1t) + ǫt (7.11)

To see that this struture is well-identi�ed under the transformations in Equation 7.4,

let us transform the parameters using Equation 7.9 to obtain

∆κ̂t = ν0 + c− αβ⊤a+ α
(

β⊤κ̂t−1 + (β1 − β⊤c)t
)

+ ǫt

= ν̂0 + α
(

β⊤κ̂t−1 + β̂1t
)

+ ǫt

where ν̂0 = ν0+c−αβ⊤a, as previously, and β̂1 = β1−β⊤c. This model also gives bio-

logially reasonable values for φ whih do not depend upon the identi�ability onstraints

imposed when �tting the models, as demonstrated in Setion 7.4.3.

7.4.2 Cohort parameters

As with the period parameters, the values of γ
(I)
y and γ

(II)
y are not uniquely identi�able in

the lassi APC model, but instead depend upon our hoie of identi�ability onstraints.

Equations 7.3 and 7.4 give us the freedom to add linear trends in time to either or both

time series independently, i.e.

(

γ̂
(II)
y

γ̂
(II)
y

)

=

(

γ
(I)
y

γ
(II)
y

)

+

(

b(I)

b(II)

)

+

(

c(I)

c(II)

)

y

γ̂y = γy + b+ cy (7.12)

Rewriting Equation 7.8 in the form

∆γy = µ+A∆γy−1 + αβ⊤γy−1 + εy

we see that this is also not well-identi�ed as it hanges form under the transformation

in Equation 7.12

∆γ̂y = µ+ c−Ac− αβ⊤ (b+ cy) +A∆γ̂y−1 + αβ⊤γ̂y−1 + εy
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as the transformed drift term, µ̂ = µ+ c −Ac− αβ⊤ (b+ cy), is now a linear funtion

in year of birth, y.

However, in the same manner as used for the period parameters above, we an introdue a

onstrained linear trend into the ointegrating relationship in order to give well-identi�ed

projetions whih are biologially reasonable

∆γy = µ+A∆γy−1 + α
(

β⊤γy−1 + β̃1y
)

+ εy (7.13)

This an be shown to be well-identi�ed by transforming the ohort parameters in a sim-

ilar fashion.

7.4.3 Appliation to England & Wales and CMI Assured Lives data

In order to illustrate how the original gravity model gives projetions of mortality whih

depend upon the identi�ability onstraints hosen, we apply the gravity model to the

same data used in Dowd et al. (2011b), i.e., the dominant population is the ombined

populations of England & Wales and the subordinate population is that of assured lives

in the UK as reorded by the Continuous Mortality Investigation, i.e., those people who

purhase life assurane poliies with UK insurane ompanies. In both ases, we use

data for ages 50 to 90 and years 1947 to 2006.

8

We start by �tting the lassi APC model to the data.

9

In doing so, we have a hoie

over the identi�ability onstraints imposed on the models for England & Wales and the

CMI Assured Lives. We investigate four di�erent sets of identi�ability onstraints, whih

were used for the lassi APC model in Chapter 4, i.e.,

Case 1:

∑

t κt = 0,
∑

y nyγy =
∑

x,t γt−x = 0 and
∑

y nyγy(y− ȳ) =
∑

x,t γt−x((t− t̄)−
(x− x̄)) = 0.

Case 2:

∑

t κt = 0,
∑

y γy = 0 and

∑

y γy(y − ȳ) = 0.

8

Data for England & Wales is taken from Human Mortality Database (2014) and we are indebted to

the Continuous Mortality Investigation for providing CMI Assured Lives dataset.

9

To do this, we use a two-step proedure to �t the model for simpliity, i.e., we �t the lassi APC

model to the data �rst, and then �t the time series proess to the �tted parameters using a least squares

approah. This is in ontrast with the approah used in Dowd et al. (2011b), where a one-step method

is used. However, Dowd et al. (2011b) introdue additional parameters into the one-step method in a

Bayesian-type approah whose purpose appears to be to onstrain the value of φ and prevent it taking

values whih are not biologially reasonable. However, as disussed later, this issue arises beause the

gravity model is not well-identi�ed and therefore should not be neessary in a well spei�ed model.
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Case 3:

∑

t κt = 0,
∑

x,t γt−x = 0 and

∑

x,t γt−x(x− x̄) = 0.

Case 4:

∑

t κt = 0,
∑

x,t γt−x = 0 and

∑

x,t γt−x(t− t̄) = 0.

We investigate the onstraints shown in Case 1 and Case 3 as they are the �natural�

onstraints and the onstraints used in Dowd et al. (2011b), respetively, as disussed

in Setion 7.2. The onstraints in Case 2 are similar to those in Case 1, exept that the

summations are taken over eah year of birth rather than over all ages and years in the

dataset. This has the e�et of moving from a weighted average of the ohort parameters

being equal to zero (with the weights determined by the number of observations for eah

ohort) in Case 1 to a simple arithmetial average in Case 2, and similarly for the linear

trend. Although not used for the lassi APC model, similar onstraints were imposed

on the ohort term in Model M6 in Cairns et al. (2009) and so have been inluded for

omparison. As disussed in Setion 7.2, the logi underpinning the seletion of the Case

3 onstraints in Dowd et al. (2011b) was that the stati age funtion in the model should

explain all the observed linearity aross ages. We an apply similar logi to the period

funtion in the lassi APC model, i.e., that the period funtion, κt should explain all of

the observed linearity aross time, to give the onstraints in Case 4.

It is important to note that all four sets of onstraints were developed to give the same de-

mographi signi�ane to the ohort parameters, i.e., that they should be entred around

zero and the other funtions in the model should apture any linear trends. Beause of

this, these four sets of onstraints give very similar sets of �tted parameters when these

are plotted. These sets of parameters also give idential �tted mortality rates, sine they

an be transformed into eah other using Equations 7.2, 7.3 and 7.4. However, the di�er-

ent sets of parameters are not idential. We therefore see that demographi signi�ane,

whilst helpful in seleting an appropriate set of identi�ability onstraints, does not spe-

ify a single, unique set of onstraints to use. Model users with the same interpretation of

the parameters an reasonably hoose to impose di�erent onstraints and obtain di�erent

�tted parameters when using the same model with the same data. Furthermore, the fat

that demographi signi�ane is subjetive and, in pratie, di�erent model users adopt

a range of interpretations for the di�erent parameters highlights the fat that we must

take are to ensure that the projeted mortality rates are independent of the arbitrary

hoie of onstraints made when �tting the model, and undersores the extent to whih

the identi�ability onstraints we hoose is arbitrary.

In eah ase, we apply the same identi�ability onstraints to both populations. Figure 7.1

shows the �tted values of κ
(I)
t − κ

(II)
t using the Case 1 onstraints. Dowd et al. (2011b)
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assumed that these di�erenes are stationary, however, Figure 7.1 shows that they have

a lear linear trend whih would bias the estimation of φ in the original spei�ation of

the model. Sine the magnitude and diretion of this trend is dependent upon the iden-

ti�ability onstraints imposed, the degree of this bias is dependent upon our hoie of

identi�ability onstraints. However, the modi�ed gravity model allows for the potential

presene of a linear trend in the ointegrating relationship and therefore any estimates

for φ will not be biased by suh a trend.
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Figure 7.1: Di�erene between the period funtions

To demonstrate this numerially, for eah set of �tted period parameters, we then �rst �t

the original gravity model in Equation 7.6 and then the modi�ed model in Equation 7.11.

We pay partiular attention to the estimated value of φ found, as this will determine the

rate at whih divergene between the two populations mean reverts.

Original gravity model Modi�ed gravity model

Case 1 0.0706 0.3234

Case 2 0.0702 0.3234

Case 3 0.0701 0.3234

Case 4 0.0700 0.3234

Table 7.1: Values of φ for di�erent identi�ability onstraints

The results shown in Table 7.1 indiate that the rate of mean reversion (and therefore

the distribution of projeted mortality rates) is dependent upon the identi�ability on-

straints using the original gravity model, whereas this is not the ase for the modi�ed

model. The di�erenes between the ases for the original model appear relatively small.

261



Identi�ability, Cointegration and the Gravity Model

However, this is beause the four sets of identi�ability onstraints used were seleted on

the basis of the same demographi signi�ane for the parameters and therefore the �tted

parameters were broadly omparable. This will not neessarily always be the ase, as

demographi signi�ane is subjetive and di�erent model users may have very di�erent

understandings as to the interpretation of the parameters.

The most important point is not how small the di�erenes are but that they are di�erent

at all. The identi�ability onstraints made no di�erene to the the �tted mortality rates

for the di�erent ases - they were idential. However, the distribution of the projeted

mortality rates depends upon φ, whih varies between the four ases in the original spe-

i�ation of the model. Therefore, the projeted mortality rates would depend upon the

hoie of identi�ability onstraints. This is inonsistent with the �tting stage, where the

hoie of identi�ability onstraints made no di�erene to the �tted mortality rates. By

ontrast, the modi�ed gravity model avoids this, as shown by the �tted value of φ being

idential in all four ases in Table 7.1.

In partiular, we note that it is possible that some sets of identi�ability onstraints for

the lassi APC model would give values of φ in the original gravity model whih were

greater than unity or less than zero. Therefore, the arbitrary hoie of identi�ability

onstraint may lead to diverging projetions of mortality in the original gravity model,

despite having the same historial �tted mortality rates as the ases shown. This is

learly something whih should be avoided by use of the modi�ed gravity model.

It is also interesting to note that the modi�ed gravity model gives values for φ whih

are onsiderably larger than in the original model. This is beause the parameter now

aptures the genuine reversion between the period funtions (i.e., the saw-tooth pattern

in Figure 7.1) without additionally trying to apture the linear trend.

These modi�ations make a signi�ant di�erene to the projeted parameters when using

the gravity model, as shown in Figure 7.2 using the Case 1 identi�ability onstraints.

As an be seen in Figure 7.2a, the original spei�ation of the gravity model adjusts

the entral trend so that there is a sharp hange of trend in the CMI population at the

point where the projetions begin. In ontrast, the modi�ed gravity model in Figure

7.2b allows the trends observed in either population to ontinue in future.
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Figure 7.2: Projeted period parameters

The hange in trend exhibited by the period parameters in the original gravity model

is explained by the transition between the past, where the linear trends are diverging

in the period parameters �tted to the historial data, and the future, where the gravity

model is foring them together. Sine the linear trends in the �tted period parameters

were unidenti�able and, hene, entirely dependent upon the identi�ability onstraints

imposed upon the model, the magnitude of the trend hange also depends solely upon

the arbitrary identi�ability onstraints. Therefore, the existene of suh a trend hange

is not well-identi�ed and leads to projeted mortality rates whih depend upon the iden-

ti�ability onstraints hosen, unlike the �tted mortality rates.

Furthermore, the existene of suh a trend hange leads to inonsistenies between the

past and the future. This is not ompatible with the extrapolative approah to projet-

ing mortality, as disussed in Chapter 6. Although there might be insu�ient evidene

in the historial data to support the existene of hanges in trend in the �tted period

parameters, the original gravity model imposes a trend hange, preisely at the transition

between the historial data and the projeted mortality rates. One impliation of this is

that the data has been olleted at a unique point in time that is qualitatively di�erent

from the periods before or after it. We do not believe that suh an assumption is tenable.

In ontrast, the modi�ed gravity model does not predit a hange in trend at the transi-

tion between past and future. As disussed in Chapter 4, the linear trends in the lassi

APC model are unidenti�able and depend entirely upon the identi�ability onstraints,

whereas the variation around those trends is identi�able. Therefore, the modi�ed gravity

model leaves the linear trend in both populations unhanged, but allows the variation

around these trends to be ointegrated. This means that dereases in mortality whih
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are faster than expeted in England & Wales are orrelated with faster than expeted

delines in mortality rates in the CMI Assured Lives population. Capturing this orre-

lation is vital in the measuring of basis risk between populations, as in Li and Hardy

(2011) and Coughlan et al. (2011), and when modelling liabilities and seurities whih

depend upon mortality in multiple populations, as disussed in Chapter 8.

Not only is the modi�ed gravity model well-identi�ed, we also believe that it gives pro-

jetions whih give greater onsisteny between the past and the future. The behaviour

of the �tted parameters has been analysed and projeted into the future, without as-

suming a priori that this behaviour will hange. Suh an approah is far more onsistent

with the extrapolative approah to projeting mortality rates disussed in Setion 6.2

of Chapter 6 than the assumption of a trend hange present in the original gravity model.

Furthermore, we believe that an assumption whereby projetions maintain the same

trends in eah population but allow for orrelated variation around these trends is more

justi�ed in terms of biologial reasonableness than assuming that the period parameters

onverge in future. The fators impating deviations in mortality rates from trend in

one population are likely to be ommon aross populations, leading to orrelated vari-

ation around the trend in the two populations. In ontrast, the di�ering trend rates of

mortality improvement are likely to be generated by more fundamental soio-eonomi

auses, whih will remain unhanged for the foreseeable future.

In summary, we �nd that the modi�ed gravity model gives projeted mortality rates

for England & Wales and the CMI Assured Lives populations whih are well-identi�ed

and have variation whih is orrelated in a biologially reasonable fashion. However,

the modi�ed gravity model does not indue the trends present in either population to

hange sharply at the transition point between past and future, whih is a feature of the

original gravity model and whih was imposed to ensure that mortality rates in the two

populations are �oherent�.

7.4.4 Coherene

The term �oherene� was introdued in Li and Lee (2005), and was de�ned formally in

Hyndman et al. (2013) in terms of the relative mortality rates between populations, i.e.,

E

[

µ
(p1)
x,t

µ
(p2)
x,t

]

→ Rx (7.14)
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a funtion of age only. This means that relative mortality rates are stationary, and so the

mortality rates projeted in the two populations do not diverge with time. Coherene is

a stronger requirement for a multi-population mortality model than simply allowing the

ovariation observed in the past to ontinue into the future, as disussed in Setion 7.4.3

above.

10

The original gravity model was introdued in part to ensure that mortality rates in the

England & Wales and CMI Assured Lives populations are oherent. The original gravity

model has oherene built into it, sine

ln

[

µ
(I)
x,t

µ
(II)
x,t

]

=
(

α(I)
x − α(II)

x

)

+
(

κ
(I)
t − κ

(II)
t

)

+
(

γ
(I)
t−x − γ

(II)
t−x

)

=
(

α(I)
x − α(II)

x

)

+ β⊤ (κt + γt−x

)

whih is stationary in time by onstrution.

11

However, when the gravity model is modi�ed to ensure projetions are well-identi�ed,

oherene no longer neessarily holds, sine we an have di�erent linear trends in both

populations (i.e., β⊤
(

κt + β1t+ γt−x + β̃1(t− x)
)

is stationary, whilst β⊤ (κt + γt−x

)

is not). The level of divergene will be set by the observed divergene between the popu-

lations in the historial dataset, i.e., we will projet mortality rates that will ontinue to

diverge if they have been observed to do so in the past. Suh an approah gives greater

onsisteny between the historial data and projeted mortality rates.

Therefore, we see that there is the potential for on�it between the desire for oherent

projetions and the need for projetions of the model to be well-identi�ed. In general,

we believe that obtaining projeted mortality rates that do not depend on arbitrary

hoies made when �tting the model to data is more important than a desire to prevent

divergene between populations, for the reasons disussed below. However, we note that

identi�ability issues in mortality models are features of the parameters in mortality mod-

els, whereas oherene is a property of the projeted mortality rates, whih should be

10

Coherene is a potential feature of the projeted mortality rates and an result from a number of

di�erent tehniques for projeting mortality, rather than it being a tehnique in itself. For instane,

the original and modi�ed gravity models both involve the tehnique of ointegration, but one gives

oherent projeted mortality rates, whilst the other does not. Conversely, the original gravity model

and the SAINT model of Jarner and Kryger (2011) both give oherent mortality rates, but use di�erent

tehniques to ahieve this.

11

However, the long-run distribution of

µ
(I)
x,t

µ
(II)
x,t

, and spei�ally Rx, will depend upon the arbitrary

identi�ability onstraints imposed when �tting the model.
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independent of these issues. If oherene is desired, we therefore believe that methods of

imposing it should fous on onstraining the projeted mortality rates themselves, rather

than spei� features of the model parameters, whih will depend on the identi�ability

onstraints imposed.

However, we would often go further and question the desire to impose oherene a pri-

ori on projeted mortality rates. Muh of the work disussing oherent projetions of

mortality rates has been based on the idea that mortality rates should not diverge inde�-

nitely in future between related populations. For instane, Li and Lee (2005) stated that

�Obviously, mortality di�erenes between [losely related℄ populations should not inrease

over time inde�nitely if the similar soio-eonomi onditions and lose onnetions were

to ontinue.� We believe that there are two problems with this onjeture.

First, whilst it might be true that projeting divergenes inde�nitely into the future may

be unrealisti, we would point out that extrapolating any model inde�nitely into the

future is likely to give nonsensial results sooner or later. For example, the Lee-Carter

model will tend to give mortality rates arbitrarily lose to zero at all ages if projeted

far enough into the future. However, suh a phenomenon is more the fault of a modeller

misusing the model to make inappropriate foreasts than it is the fault of the model itself.

A general rule of thumb is that a model should not be projeted for a longer period than

the data used to estimate it. Given this, the question beomes why we should believe

that mortality di�erenes annot diverge for another 50 years (say) if we have observed

mortality di�erenes diverging for the previous 50 years. Assuming that the evolution of

mortality rates in the future will be qualitatively di�erent from the past is inonsistent

with the extrapolative approah.

Seond, we believe that it is simply untrue that di�erenes in mortality rates annot

persist for prolonged periods between ostensibly related populations. For example, life

expetany at age 65 varies onsiderably between areas in the same ity

12

in a pattern

whih has been stable for deades, let alone between di�erent soio-eonomi groups

within the same ountry (see Harper et al. (2007) and Villegas and Haberman (2014))

or between ountries. Whilst oherene does not impose the requirement that these

long-established di�erenes derease, it does assume that they are not expeted to grow

beyond their urrent level, whih we do not believe is supported by the evidene. It

also raises the question as to what is so speial about the urrently observed di�erenes

in mortality that they should at as a barrier beyond whih further divergene is not

12

Soure: http://data.london.gov.uk/dataset/life-expetany-birth-and-age-65-ward
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possible.

Therefore, we do not believe that oherene is a desirable property to impose upon an

extrapolative multi-population mortality model. As sienti� investigators, we should al-

low the data to speak for itself rather than impose any prior views onto the models that

we use. This is onsistent with the extrapolative approah disussed in Setion 6.2 of

Chapter 6, where analysis of historial data, rather than subjetive opinions and biases,

is used to projet mortality rates. If the data supports our beliefs, that is enouraging.

If the data does not, then we need to examine either our preoneptions to determine

whether they need to be revised or re-examine the model we are using to analyse and

projet the data.

Ultimately, many of the preoneptions whih lead to a desire for oherene between

di�erent populations have a basis in our knowledge of the spei� populations under

onsideration and the spei� fators ausing the divergene in these populations. For

example, the observed divergene between mortality rates in the England & Wales and

CMI Assured Lives populations ould be attributed to the seletive nature of the CMI

Assured Lives dataset, whih onsists of individuals who are likely to be wealthier than

the average itizen of England & Wales. In addition, this seletive population may adopt

di�erent lifestyles, with less smoking and a better diet than the wider population, for

example, leading to a di�ering pattern of mortality. We might reasonably feel that suh

di�erenes will get less important with time and the wider population adopts the same

lifestyle as the sub-population, and therefore that mortality rates in the two population

should stop diverging in future.

However, this kind of argument for imposing oherene on a model makes use of addi-

tional information regarding the auses of any divergene, information that was not used

when �tting the model. We therefore believe that, rather than imposing oherene on a

model to obtain the results we want, it would be better to inorporate into our model

the additional information that justi�es our desire for oherene in the �rst plae. Suh

information may inlude eonomi and lifestyle variables, for instane, as in Reihmuth

and Sarferaz (2008), Wang and Preston (2009) and Frenh (2014). This may help explain

any observed divergene in the past and potentially allow for oherent projetions whih

are still well founded in a rigorous analysis and extrapolation of the data.
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7.5 Identi�ability in the ointegrated Lee-Carter model

Zhou et al. (2014) applied a similar ointegration framework as developed for the gravity

model to the period parameters of the Lee-Carter model

ln(µx,t) = αx + βxκt (7.15)

for multiple populations. The period parameters are projeted using a time series proess

of the form

∆κt = ν + Γ∆κt−1 + αβ⊤κt−1 + ǫt (7.16)

whih is a ointegrated relationship of the form in Equation 7.7.

13

As in Dowd et al.

(2011b), β was onstrained so that β =
(

1, −1
)⊤

in order that relative mortality rates

do not diverge in the two populations. However, no assumption is made regarding the

dominane of one population over the other, and therefore no onstraint is made on α,

unlike the gravity model where α =
(

0, φ

)⊤
was used to impose the ondition that

population I dominates population II.

As disussed in Lee and Carter (1992) and Chapter 3, the Lee-Carter model is also not

well-identi�ed and possesses the invariant transformations

{α̂x, β̂x, κ̂t} = {αx,
1

a
βx, aκt} (7.17)

{α̂x, β̂x, κ̂t} = {αx − bβx, βx, κt + b} (7.18)

whih are used to impose identi�ability onstraints in a similar fashion to the lassi

APC model. These invariant transformations an be applied independently to the two

populations without a�eting the �tted mortality rates, and so we an write

κ̂t = A (κt + b) (7.19)

with A =

(

a(I) 0

0 a(II)

)

.

13

Again, the form of Equation 7.16 di�ers from the form of Equation 7.7 due to the stationary ointe-

grating term, αβ⊤
κt−1, as opposed to αβ⊤

κt−2 required by Equation 7.7. However, this an be resolved

in the manner outlined in footnote 6.
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If we apply this transformation to the time series proess in Equation 7.16 we obtain

∆κ̂t = Aν −Aαβ⊤b+AΓA−1∆κ̂t−1 +Aαβ⊤A−1κ̂t−1 +Aǫt

= ν̂ + Γ̂∆κ̂t−1 + α̂β̂⊤κ̂t−1 + ǫ̂t

whih is of the same form as Equation 7.16 if we rede�ne the terms appropriately. In

partiular, this involves setting

β̂ = A−1β

=

(

1
a(I)

0

0 1
a(II)

)(

1

−1

)

=
(

1
a(I)

, − 1
a(II)

)⊤

i.e., if the time series proess is well-identi�ed, β annot be restrited to have any parti-

ular form, sine these restritions will only apply for one set of identi�ability onstraints.

We also see that we are free to set α̂ = Aα, sine α is not onstrained to any partiular

form initially. Therefore, in order for the model of Zhou et al. (2014) to be well-identi�ed,

the restrition on β as well as the restrition on α must also be relaxed. This was om-

mented upon in Nielsen and Nielsen (2014).

The reason for the di�erene between the models of Zhou et al. (2014) and Dowd et al.

(2011b) arises beause of the di�erenes in the underlying APC mortality models used

in either study. In the Lee-Carter model used in Zhou et al. (2014), the �sale� of the

period funtions is de�ned by an identi�ability onstraint on βx. This sale is arbitrary,

and we an hange it without a�eting the �tted mortality rates from the model. There-

fore the projeted mortality rates from the model of Zhou et al. (2014) also need to

also be invariant to hanges in this sale. In ontrast, the sale of the period funtions

is de�ned by the parametri age funtion in the lassi APC funtion, and not by an

identi�ability onstraint. Therefore, it annot be hanged in the model, and so we do

not have to ensure that the projeted mortality rates are invariant to hanges in its sale.

Conversely, the Lee-Carter model does not have unidenti�able linear trends, unlike the

lassi APC model. Therefore the model of Zhou et al. (2014) does not require a linear

drift term, i.e., β1t, in the ointegrating relationships. The lassi APC model does on-

tain unidenti�able linear trends in the parameters, whih an be varied in the histori

parameters without a�eting the �tted mortality rates. It is, therefore, essential that the

projeted mortality rates from the model of Dowd et al. (2011b) are invariant to hanges

in the linear trend in the period an ohort funtions, whih is ensured by the presene
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of the linear drift term, β1t, in the ointegrating relationships.

We see, therefore, that the form the gravity model needs to take in order to be well-

identi�ed depends on the underlying APC mortality model being used and the identi�a-

bility issues within that partiular model. It is therefore essential that these identi�ability

issues are fully analysed and understood, as disussed in Chapters 3 and 4. In general,

we see that it is best to avoid making any impositions on the struture of α and β, and so

use the most general form of ointegrating relationship, in order to avoid any potential

identi�ability issues and avoid onstraining the form of the model unneessarily and,

potentially, inappropriately.

7.6 Extending the ointegration model

For the general ointegration model in Equation 7.7, our approah generalises naturally

to models where there are unidenti�able higher-order polynomial deterministi trends

in the parameters. If the period funtions of a model have unidenti�ed deterministi

trends whih are polynomial of order M , then in order to be well-identi�ed under the

orresponding invariant transformations, we will need to allow for unonstrained deter-

ministi trends up to polynomial order M − 1 and onstrained deterministi trends of

order M .

For instane, the model of Plat (2009a)

ln(µ
(p)
x,t) = α(p)

x + κ
(1,p)
t + (x− x̄)κ

(2,p)
t + (x− x̄)+κ

(3,p)
t + γ

(p)
t−x (7.20)

has unidenti�able quadrati trends, as disussed in Chapter 4. If the Plat (2009a) model

were �tted to two populations, we would have six period funtions in total - κ
(1,I)
t and

κ
(1,II)
t with unidenti�ed quadrati trends, κ

(2,I)
t and κ

(2,II)
t with unidenti�ed linear trends

and κ
(3,I)
t and κ

(3,II)
t with unidenti�ed onstants.

We ould look for a ointegration model involving all six period funtions. Cointegration,

by its nature, involves interations between the di�erent period funtions. We therefore

are unable to allow for deterministi trends of di�erent order in di�erent period funtions.

Allowing for ointegration between all six time series would therefore mean allowing for

onstrained quadrati trends and unonstrained linear trends in all six period funtions,
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whih may lead to projetions whih are not biologially reasonable for eah population.

It is more biologially reasonable to onsider eah pair of period funtions separately

based on their shared demographi signi�ane. This would mean looking for ointegrat-

ing relationships with onstrained quadrati (and unonstrained onstant and linear)

trends for the two κ
(1,p)
t funtions, relationships with onstrained linear trends for the

κ
(2,p)
t funtions, and so on. That is, we use

∆κ
(1)
t = ν

(1)
0 + ν

(1)
1 t+ α(1)

(

β(1)⊤κ
(1)
t−1 + β

(1)
2 t2

)

+ ǫ
(1)
t (7.21)

∆κ
(2)
t = ν

(2)
0 + α(2)

(

β(2)⊤κ
(2)
t−1 + β

(2)
1 t
)

+ ǫ
(2)
t (7.22)

∆κ
(3)
t = α(3)

(

β(3)⊤κ
(3)
t−1 + β

(3)
0

)

+ ǫ
(3)
t (7.23)

to projet the period funtions. This approah is used in Chapter 8, albeit in a model

with unidenti�ed ubi (as opposed to merely quadrati) trends.

7.7 Conlusions

Cointegration an be a powerful tool for projeting mortality rates in related populations.

However, it is a tool whih must be used with are to ensure that we have identi�ability

under any invariant transformations whih alloate unidenti�able polynomial trends be-

tween the parameters. In the ase of the gravity model of Dowd et al. (2011b) and the

model of Zhou et al. (2014), we have shown how to adapt the proess used to projet

the period funtions so that it gives well-identi�ed projetions that do not depend on

the arbitrary identi�ability onstraints imposed. We have also shown how this an be

generalised to more ompliated APC mortality models.

Further, we have shown that we annot also impose the ondition that mortality rates

are oherent and do not diverge in future. Not only does imposing oherene mean that

the projeted mortality rates will depend upon the arbitrary identi�ability onstraints

seleted, it is also inompatible with an extrapolative approah to modelling mortality.

An extrapolative approah must, �rst and foremost, take its lead from the evidene

of the historial data. While, in many irumstanes, a belief in oherene is quite

natural, we believe we should test for its existene in the historial data statistially

using well-identi�ed models, rather than assume its existene beforehand as an artile of

faith. If we do not �nd any evidene for oherene in the historial data, this should be

onsidered a puzzle to explain using more data and better models, and not just an error

to be orreted by an ad ho �x whih overrides the evidene of the data to obtain the
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results we antiipated in advane. Suh an approah is not only more rigorous and more

sienti�, but an also give new insights into the fators whih govern the evolution of

mortality rates and enhane our understanding of longevity risk.
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Chapter 8

Modelling Longevity Bonds:

Analysing the Swiss Re Kortis Bond

8.1 Introdution

The traded market for longevity risk ontinues to grow and develop. As the risks posed

by inreasing longevity for the providers of pensions and annuities have gained greater

prominene, a variety of di�erent vehiles have been proposed and implemented to trans-

fer longevity risk to the apital markets. These have inluded bonds, swaps and forwards,

eah linked to di�erent measures of mortality rates and survivorship.

A key ontribution to the development of the market was the issuane of the Kortis bond

by Swiss Re in 2010. Unlike previous mortality and longevity seuritisations, the Kortis

bond is linked to the divergene in mortality improvement rates between two ountries,

rather than to mortality rates diretly or to survivorship amongst a ohort. As suh, it

was promoted as the �rst �longevity trend bond�. The bond might herald a distintly

new way of transferring the risk of faster than expeted redutions in mortality rates,

from insurers and reinsurers to investors willing to hold these risks as part of a diversi�ed

portfolio.

The development of new longevity-linked seurities has been aided by and, in turn,

enouraged the development of inreasingly sophistiated mortality models. These are

neessary in order to estimate aurately the risk present in suh seurities. In partiular,

they need to projet mortality rates with omplex orrelation strutures, robustly esti-

mated ohort e�ets and dependenies between di�erent populations. Suh projetions
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Part III

Modelling Mortality for Pension

Shemes
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Chapter 9

Basis Risk and Pension Shemes: A

Relative Modelling Approah

9.1 Introdution

Longevity risk is inreasingly reognised as a major risk in developed ountries, as rising

life expetanies plae unantiipated strains on soial seurity and healthare systems (see

Oppers et al. (2012)). As well as being of onern for governments, however, longevity

risk also a�ets private organisations that have promised people an inome for life, be

this in the form of an insured annuity or an oupational pension. In the UK, this means

that longevity risk a�ets the thousands of oupational pension shemes

1

established

by ompanies during the 20th entury to provide �nal salary pensions to their employees.

However, when it omes to managing the longevity risk in a pension sheme, atuaries

fae a ritial problem: a shortage of mortality data for the sheme. A typial UK pen-

sion sheme has fewer than 1,000 members and may have reliable, omputerised member

reords going bak no more than a deade. This is insu�ient for use with the sophisti-

ated stohasti mortality models that have been developed in reent years to measure

longevity risk in national populations, sine these models require more data to estimate

parameters robustly and longer time series to make projetions into the future. While

the insights gained from the study of national populations are useful for the study of

longevity risk in pension shemes, atuaries are left with a nagging doubt: �What if my

1

In this hapter, we refer to �pension shemes� whih administer the provision of de�ned bene�ts to

members. We draw a semanti distintion between a �pension sheme� and a �pension plan�, whih we

would use as a more general term for any de�ned bene�t or de�ned ontribution pension arrangement

provided on either a group or an individual basis.
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sheme is di�erent from the national population?� The potential for divergene in mor-

tality rates between the sheme and the national population is alled �basis risk�, and,

anedotally, is often given as a key reason holding bak the use of standardised �nanial

instruments (based on national data) to manage longevity risk in pension shemes.

The atuarial profession in the UK initiated the Self-Administered Pension Sheme study

in 2002 in an attempt to overome these issues with data. The study pools data from

almost all large oupational pension shemes in the UK, allowing insights about how

typial pension shemes di�er from the national population to be established.

In this study, we use the data olleted by the Self-Administered Pension Sheme study

and develop a �relative� model for mortality in order to ompare the evolution of mortal-

ity rates in UK oupational pension shemes diretly with that observed in the national

population. Suh a relative model has the advantages of parsimony and robustness, im-

portant properties when dealing with the smaller datasets available for pension shemes.

We then use this relative model to investigate the phenomenon of basis risk between

pension shemes and the UK population, as well as the potential of using this approah

on even smaller populations omparable with the size of an individual sheme. In doing

so, we bring into question the potential importane of basis risk in small populations and

�nd that in most ontexts it is likely to be substantially outweighed by other risks in a

pension sheme. This is investigated further in Chapter 10 .

The outline of this hapter is as follows. Setion 9.2 desribes the Self-Administered Pen-

sion Shemes (SAPS) study and how the population observed by it di�ers struturally

from the national UK population. Setion 9.3 disusses the �relative� modelling frame-

work we will use to ompare the mortality experiene of these populations. Setion 9.4

then applies this framework to data from the SAPS study, tests the models produed

and onsiders the impat of parameter unertainty on these onlusions. Setion 9.5

uses the relative model to projet mortality rates for the sub-population in the ontext

of assessing the basis risk between it and the national population. Setion 9.6 then as-

sesses the feasibility of using the relative model for smaller populations whih have sizes

more omparable to those of atual UK pension shemes. Setion 9.7 disusses some of

the broader onlusions on the importane of basis risk we draw from this study, whilst

Setion 9.8 summarises our �ndings.
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9.2 The Self-Administered Pension Sheme study

The Institute of Atuaries in England & Wales and the Faulty of Atuaries in Sotland

initiated the SAPS study in 2002 to investigate the mortality experiene of pensioner

members of oupational pension shemes in the UK. Data from the SAPS study has

been analysed by the Continuous Mortality Investigation (CMI) to produe the gradu-

ated mortality tables

2

in use by the majority of pension shemes in the UK for funding

and aounting purposes.

3

The CMI has also analysed the SAPS data in terms of the

evolution of mortality during the study period

4

and the di�erenes in experiene for

shemes whose employers are in di�erent industries.

5

UK pension shemes with more than 500 pensioner members are asked to submit mortal-

ity experiene data to the SAPS study after eah triennial funding valuation. The CMI

provides summaries of the aggregate of this data to members of the study, ategorised

aross a number of di�erent variables, at regular intervals.

6

We have been provided

with this data in a more omplete form, omprising exposures to risk and death ounts

(unweighted by the amount of pension in payment) for all men and women in the SAPS

study between 2000 and 2011 by the CMI. A summary of the data used in this study is

given in Appendix 9.A.

Sine it is sampling from a distint subset of the national population, the dataset olleted

by the SAPS study is atypial of the UK population data for a number of reasons:

• The dataset is the mortality experiene of members of oupational, de�ned-bene�t

pension shemes. Typially, this will exlude the unemployed, the self-employed,

those employed in the informal setor or those working for newer ompanies (whih

typially do not o�er de�ned-bene�t pensions).

• The dataset is the mortality experiene of members of reasonably large pension

shemes. Aording to The Pensions Regulator (2013b), only around 20% of UK

pension shemes have more than 1,000 member in total, a large number of whom

are likely to be below retirement age. This means that employees of large, mature

ompanies are likely to be over-represented in the SAPS study.

2

The S1 tables in Continuous Mortality Investigation (2008) and the S2 tables in Continuous Mortality

Investigation (2014a).

3

The Pensions Regulator (2013a) and Sithole et al. (2012).

4

See Continuous Mortality Investigation (2011).

5

See Continuous Mortality Investigation (2012).

6

See Continuous Mortality Investigation (2014) for example.
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• The dataset is the mortality experiene of pension shemes subjet to triennial

funding valuations. This means that it exludes most publi setor employees, who

are members of unfunded state pension shemes.

• The dataset is likely to have some individuals in reeipt of pensions from multiple

soures, for instane, beause of employment at two or more di�erent ompanies,

and who will therefore be represented multiple times.

• The dataset will inlude members of UK pension shemes who emigrate and pos-

sibly die overseas, and who therefore would not be inluded in the UK national

population mortality data.

These fators explain why the experiene of the SAPS mortality study is believed to

be a better proxy for the mortality experiene of individual UK pension shemes (even

those not inluded in the SAPS study). The mortality tables graduated from the SAPS

data are therefore often used for pension sheme aounting and funding purposes, as

opposed to tables graduated from national population data or the experiene of indi-

viduals buying annuities diretly from life insurers. However, they also mean that the

future evolution of mortality rates for SAPS members may be di�erent from that of the

national population (although they may well be similar in other respets).

Unfortunately, the SAPS dataset poses a number of di�ulties for use with the more

sophistiated mortality modelling and projetion tehniques whih have been developed

in reent years. These inlude:

• relatively small exposures to risk (at most around 1.5 million members under ob-

servation in a single year), leading to greater parameter unertainty espeially in

omplex models;

• the short length of the study, with only twelve years of data in the sample for

analysing the trends present; and

• the method of data olletion - shemes submit data in respet of a three-year

period at a lag of up to 18 months after the period ends - leads to a distintive

pattern of exposures shown in the data in Appendix 9.A, with only partial data

having been submitted to date for the last �ve years in the study.

For these reasons, it is still advisable to use national mortality data, with its larger

exposures and longer period of availability, to produe projetions of mortality rates.

The SAPS data an then be used to quantify the ways that members of UK pension
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shemes are likely to di�er from this baseline. We do this by means of a �relative�

mortality model, whih we now desribe.

9.3 Relative mortality modelling

A �relative� mortality model for two populations is one that does not model mortality

rates in a smaller population diretly, but instead models the relative di�erene between

those rates and those found in a larger, referene population. That is, it models the

behaviour of the relative mortality rates, Rx,t, given by

Rx,t = f

(

µ
(S)
x,t

µ
(R)
x,t

)

(9.1)

where µ
(p)
x,t are the mortality rates in the small population, S, and referene population,

R. Typially, mortality rates in the referene population are modelled and projeted

independently of Rx,t.

A number of di�erent models of this form have been proposed in order to analyse mor-

tality for various di�erent populations. Those whih have expliitly adopted a relative

modelling approah inlude the models of Jarner and Kryger (2011), who used a series

of basis funtions aross age to model Rx,t for Denmark ompared to the wider EU and

assume it mean reverts deterministially in future, and Villegas and Haberman (2014),

who investigated the mortality of di�erent soio-eonomi groups within the UK relative

to the national average. However, a good many other multi-population mortality models

whih have been proposed, suh as those of Carter and Lee (1992), Li and Lee (2005),

Delwarde et al. (2006), Dowd et al. (2011b), Cairns et al. (2011b), Russolillo et al. (2011)

and Wan and Bertshi (2015), an be rewritten as relative mortality models although this

was not neessarily ommented on by the authors. See Villegas and Haberman (2014)

for a useful summary of many of these models and the similarities between them.

The advantage of a relative modelling approah is that it allows us to use a far simpler

model for the relative mortality rates, Rx,t, than would be used for the referene popu-

lation. This is desirable as we typially have insu�ient data for the smaller population

to estimate more omplex models robustly, but would like to use a sophistiated model

for the referene population in order to produe more aurate projetions of mortality

rates. In addition, there is no requirement that the data for the small population overs
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the same range of ages and years as that for the larger population.

9.3.1 The referene model

For the referene population, we hoose to use the �general proedure� (GP) of Chapter 5

in order to onstrut a model su�ient to apture all the signi�ant information present

in the national population data. This selets an appropriate model within the lass of

age/period/ohort (APC) models

7

of the form

ln
(

µ
(R)
x,t

)

= α(R)
x +

N
∑

i=1

f (R,i)(x; θ(R,i))κ
(R,i)
t + γ

(R)
t−x (9.2)

where

• age, x, is in the range [1,X], period, t, is in the range [1, T ] and hene that year

of birth, y, is in the range [1−X,T − 1];

• α
(R)
x is a stati funtion of age;

• κ
(R,i)
t are period funtions governing the evolution of mortality with time;

• f (R,i)(x; θ(R,i)) are parametri age funtions (in the sense of having a spei� fun-

tional form seleted a priori) modulating the impat of the period funtion dynam-

is over the age range, potentially with free parameters θ(R,i)
;

8

and

• γ
(R)
y is a ohort funtion desribing mortality e�ets whih depend upon a ohort's

year of birth and follow that ohort through life as it ages.

The GP selets the number of age/period terms, N , and the form of the age funtions

f (R,i)(x) in order to onstrut mortality models whih give a lose but parsimonious

�t to the data. This way, we aim to extrat as muh information as possible from the

national population dataset and have spei� terms within the model orresponding to

the di�erent age/period or ohort features of interest.

7

See Chapter 2 for a desription of this lass of models.

8

For simpliity, the dependene of the age funtions on θ(R,i)
is supressed in notation used in this

hapter, although it has been allowed for when �tting the model to data.
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9.3.2 The relative model

To analyse the data from the SAPS study, we propose using a model of the form

Rx,t = ln

(

µ
(S)
x,t

µ
(R)
x,t

)

= α(∆)
x +

N
∑

i=1

Λ(i)f (R,i)(x)κ
(R,i)
t + Λ(γ)γ

(R)
t−x + νXt−x (9.3)

Apart from the νXy term, this is an APC model of the same form as that used to model

the referene population, i.e., with the same age/period terms and ohort parameters.

However, these are modulated by the fators Λ(j)
where j ∈ {1, . . . , N, γ}. The νXt−x

term, where Xy is a set of deterministi funtions of year of birth and ν the orrespond-

ing regression oe�ients, has been added to the APC struture in order to ensure that

the model is identi�able under invariant transformations of the ohort parameters, as

disussed in Appendix 9.B.

The hoie of struture in Equation 9.3 is also motivated by the fat that we an write

the mortality rates for the sub-population as

ln
(

µ
(S)
x,t

)

= α(S)
x +

N
∑

i=1

λ(i)f (R,i)(x)κ
(R,i)
t + λ(γ)γ

(R)
t−x + νXt−x (9.4)

where α
(S)
x = α(R) + α

(∆)
x and λ(j) = 1 + Λ(j)

. We are therefore able to interpret α
(∆)
x

as the di�erene in the level of mortality between the two populations, whilst the λ(j)

orrespond to the �sensitivity� of the small population to the jth fator in the referene

population. In this form, it is possible to see the model as similar in spirit to that pro-

posed by Russolillo et al. (2011), as disussed in Setion 9.3.3.

It should be noted that there are two speial ases for these sensitivities:

1. λ(j) = 0 (i.e., Λ(j) = −1): the small population has no dependene on the jth

age/period or ohort term; and

2. λ(j) = 1 (i.e., Λ(j) = 0): there is no di�erene between the referene and small

populations with respet to the jth fator.

In order to obtain a more parsimonious model, it may also be desirable to simplify the

non-parametri struture

9

for α
(∆)
x by onstraining it to be of a spei� parametri form,

for example, a linear ombination of a set of pre-de�ned basis funtions. However, we

9

De�ned in Chapter 2 as being �tted without any a priori struture or funtional form.
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must take are when doing so in order that the relative model is robust to hanges in

the identi�ability onstraints for the referene model, as disussed in Appendix 9.B.

When �tting the relative model to data, we have a strong preferene for parsimony due to

the low volume of data for the sub-population. We therefore adopt a �spei�-to-general�

modelling approah: �rst testing a highly restrited form of the model with a parametri

form for α
(∆)
x and λ(j) = {0, 1} and then relaxing these restritions sequentially. The

�nal model is hosen to maximise the Bayes Information Criteria (BIC),

10

whih pe-

nalises exessive parameterisation. This proedure is performed algorithmially, and is

espeially important when we apply the relative model to very small datasets omparable

to the size of individual pension shemes, as done in Setion 9.6.

9.3.3 Comparison with �three-way Lee-Carter�

It was noted above that many alternative multi-population mortality models have been

proposed in the literature, inluding many whih were expliitly designed as relative

mortality models and others whih an be re-written in relative form. For a summary

and omparisons of some of these models, see Li and Hardy (2011) and Villegas and

Haberman (2014).

Of these, the model whih bears losest resemblane to the model outlined in Setion

9.3.2 is the �three-way Lee-Carter� model of Russolillo et al. (2011). This extends the

lassi model of Lee and Carter (1992) into a third �dimension� of population, beyond

the original two dimensions of age and period. They ahieve this by inluding an extra

ovariate in the Lee-Carter preditor struture to represent the di�erent populations, p,

i.e.,

ln(µ
(p)
x,t) = α(p)

x + λ(p)βxκt (9.5)

The parameters are �tted using multi-dimensional prinipal omponents tehniques. Vil-

legas and Haberman (2014) pointed out that an additional identi�ability onstraint is

required to obtain a unique set of parameters, whih they hoose to be

∑

p λ
(p) = Np, the

number of populations. In a two-population setting, this an be re-written as a relative

model, with

Rx,t = α(∆)
x + (λ(S) − λ(R))βxκt

10

De�ned as max(Log-likelihood)− 0.5× No. free parameters × ln(No. data points).
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and α
(∆)
x de�ned in the same fashion as in Equation 9.3.

We an, therefore, see that the relative model of Setion 9.3 an be thought of as a

�three-way� extension for multiple populations of the underlying model onstruted by

the general proedure for a single population, namely

ln
(

µ
(p)
x,t

)

= α(p)
x +

∑

i

λ(p,i)f (i)(x)κ
(i)
t + λ(p,γ)γt−x

We then introdue the νXy term in order to ensure that the model does not depend upon

the arbitrary identi�ability onstraints imposed in the referene model, as disussed in

Appendix 9.B. In our relative model, however, we set λ(R,j) = 1 ∀j, as opposed to

λ(R,j) + λ(S,j) = 1 ∀j as in Villegas and Haberman (2014). Our identi�ability onstraint

impliitly establishes a hierarhy between the populations, with population S subordi-

nate to population R. Setting λ(R,i) = 1 motivates the two-stage �tting proess, with the

age/period and ohort terms being �tted using data for the referene population alone.

In our ontext, as the two populations are of very di�erent sizes, this is both reasonable

and unlikely to make a material di�erene to the �tted parameters. However, it means

that the �tted parameters for the sub-population are onditional on those found for the

referene model. It is, therefore, important that tests of the model inlude full allowane

for parameter unertainty in both populations.

As with the model of Russolillo et al. (2011) and the analysis of Villegas and Haberman

(2014), it is also possible to apply our model to multiple sub-populations, suh as those

from di�erent pension shemes. In this ase, separate saling fators would be required

for eah sheme. For multiple shemes, the hierarhial struture of the model is an

advantage, sine eah sheme an be onsidered separately one the referene population

has been estimated.

9.4 Applying the relative model to SAPS data

9.4.1 The referene models for UK data

Our �rst task is to onstrut suitable mortality models for men and women in the na-

tional UK population. To do this, we apply the GP to data from the Human Mortality

Database (Human Mortality Database (2014)) for the period 1950 to 2011 and for ages

50 to 100. The GP produes a model with three age/period terms, desribed in Table
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9.1,

11

plus ohort terms for both men and women in the UK. All of these terms are

shown in Figures 9.1 and 9.2. Further details of the age funtions used in this model and

tests of the goodness of �t to data are given in Appendix 9.C.

Term Men Women

Desription Demographi Sig-

ni�ane

Desription Demographi Sig-

ni�ane

f (R,1)(x)κ
(R,1)
t Constant

age fun-

tion

General level of

mortality

Constant

age fun-

tion

General level of

mortality

f (R,2)(x)κ
(R,2)
t �Call� age

funtion

Older age mortal-

ity

�Call� age

funtion

Old age mortality

f (R,3)(x)κ
(R,3)
t �Put� age

funtion

Younger age mor-

tality

Gaussian

age fun-

tion

Younger age mor-

tality

Table 9.1: Terms in the referene models onstruted using the general proedure for

UK men and women ages 50 to 100

In Figures 9.1 and 9.2, the most notable features of the ohort parameters for both

men and women are the presene of large outliers in 1919/20 and 1946/47. We believe,

based on the analysis of Rihards (2008), that these are not genuine ohort e�ets, but

are merely data artefats arising from the surge of births following the large-sale de-

mobilisations after the First and Seond World Wars, whih biases the alulation of

the exposures to risk in the UK population data for those years. We do not expet to

�nd similar outliers in the SAPS data as this is based on aggregating individual sheme-

member data rather than population level estimates.

12

One method to solve this would

be to adjust the UK population exposures data as proposed in Cairns et al. (2014). How-

ever, for simpliity, we hoose to retain the original data and employ indiator variables

to remove the impat of outliers from the relevant ohort parameters. These adjusted

ohort parameters are then used in the analysis whih follows.

13

As disussed in Chapters 3 and 4, many mortality models are not fully identi�ed. To

uniquely speify the parameters, we impose identi�ability onstraints. These onstraints

11

Demographi signi�ane, as used in Table 9.1, is de�ned in Chapter 2 as the interpretation of the

omponents of a model in terms of the underlying biologial, medial or soio-eonomi auses of hanges

in mortality rates whih generate them.

12

This is borne out by using simple APCmodels �tted to the SAPS data, whih show ohort parameters

without these outliers.

13

It is interesting to note that these outliers may impat the e�etiveness of hedging strategies whih

use seurities indexed to national population data, as the index will ontinue to show a large (but

�titious) e�et for spei� ohorts whih will not be observed in the spei� population being hedged.

It is therefore important that any indies use national population data whih has been adjusted to

remove these data artefats, possibly using the approah of Cairns et al. (2014).
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Figure 9.1: Age, period and ohort funtions in the referene model for men in the UK
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are arbitrary, in the sense that they do not a�et the �t to data. However, they an be

used to impose our desired demographi signi�ane on the parameters.

Models generated by the GP impose the following standard identi�ability onstraints

100
∑

x=50

|f (R,i)(x)| = 1 ∀i, R = {UKm, UKf} (9.6)

on the age funtions to ensure that they have a onsistent normalisation sheme. This

enables us to ompare the magnitudes of the period funtions both with eah other and

between populations and gauge their relative importane.

14

In order to assist the visual omparison between the UK and SAPS data (the latter

of whih only spans ages 60 to 90 and years 2000 to 2011), we impose the following

onstraint on the period funtions

2011
∑

t=2000

κ
(R,i)
t = 0 ∀i, R = {UKm, UKf} (9.7)

This means that the period funtions represent deviations from an �average� level of

mortality in the period overed by the SAPS data, rather than over the whole period of

the UK data.

The results of Chapter 4 also indiate that we need to impose onstraints on the levels

and linear trends present in the ohort parameters. To identify their levels, we impose

the following onstraints on the ohort parameters for eah of the referene populations

1951
∑

y=1910

n(S)
y γ(R)

y = 0, R = {UKm, UKf} (9.8)

S = {SAPSm, SAPSf}

where n
(S)
y is the number of observations of eah ohort in the SAPS data. As with

the period funtions, this means that the ohort parameters should be entred around

zero over the range of the SAPS data, not the full range of the data overed for the UK

14

For both women and men, the seond and third age/period terms use age funtions whih are

�self-normalising� in the sense of Chapter 3.
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population. To onstrain the linear trends in the ohort parameters, we impose

1961
∑

y=1850

n(R)
y γ(R)

y (y − ȳ) = 0, R = {UKm, UKf} (9.9)

where n
(R)
y is the number of observations of eah ohort in the UK national data.

The justi�ation for these onstraints is that they allow us to remove linear trends in the

ohort parameters. This makes them onform better to the demographi signi�ane for

ohort parameters desribed in Chapter 2, namely that the ohort parameters should not

have any long-term systemati trends. We impose this over the whole range of the UK

data, whih is onsiderably longer than the range overed by the SAPS data, as there ap-

pear to be short-term trends (lasting for a few deades) whih are then reversed out over

a longer time horizon. However, this means that over the shorter range of years of birth

overed by the SAPS data, the ohort parameters appear to have strong, negative trends.

It is important to note, however, that our demographi signi�ane for the parameters

is highly subjetive and our hoie of onstraints is arbitrary. We have therefore taken

appropriate steps in Appendix 9.B to ensure that our hoie of identi�ability onstraints

does not a�et either the mortality rates �tted by the relative model or our overall on-

lusions.

9.4.2 The relative models for the SAPS data

We now estimate the relative model using these referene age, period and ohort terms

for the full SAPS dataset. As disussed in Setion 9.3, we do this in stages using a

spei�-to-general proedure. We start with the simplest and most restrited model,

i.e., where α
(∆)
x is restrited to take a parametri form and we restrit the saling fators

λ(j)
to be equal to zero. This model is referred to as Model 1 in Tables 9.2 and 9.3 below.

We then allow these restritions to be relaxed sequentially. This means that, in turn,

we estimate the relative model with all possible ombinations of onstraints, where α
(∆)
x

is either parametri or non-parametri and where λ(j)
an be restrited to be equal to

zero, unity or allowed to vary freely. This gives us 162(= 2× 34) di�erent ombinations

of onstraints for the two alternative strutures for α
(∆)
x and three alternatives for eah

of the four di�erent saling fators, λ(j)
. For eah of these di�erent models, the goodness
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Observed dataset for the

referene population

Observed dataset for

the sub-population

Fitted parameters for

the referene model

Fit relative model

with di�erent sets

of restritions

Fitted parameters for

the relative model with

restrition set j = 1

. . .
Fitted parameters for the

relative model with re-

strition set j = 162

Selet set of restri-

tions, j∗, whih

gives best �t to data

Fitted parameters for

the relative model

Figure 9.3: Flow hart illustrating the proedure for �tting and seleting the relative

model

of �t to the data is alulated, as measured by the BIC. The model whih gives the

best �t to data (i.e., the highest BIC) is then seleted as the preferred model, referred to

as Model 8 in Tables 9.2 and 9.3, for the dataset. This proess is illustrated in Figure 9.3.

Several of the models tested, with representative ombinations of restritions, are shown

in Tables 9.2 and 9.3 for the male and female SAPS data.

15

These have been hosen

to illustrate the impat of relaxing various restritions, for instane, omparing Models

1 and 2 illustrates the impat on the goodness of �t of using a non-parametri as op-

posed to a parametri struture for α
(∆)
x , whilst omparing Models 3 and 4 illustrates

the impat of introduing the set of ohort parameters from the referene population.

15

In Tables 9.2 and 9.3, �NP� stands for non-parametri while �P� stands for parametri.
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The preferred model whih maximises the �t to data is shown as Model 8. However, it is

important to note that the �tting proedure tests all 162 possible ombinations for the

struture of α
(∆)
x and any ombination of restritions on λ(j)

.

Model No. 1 2 3 4 5 6 7 8

α(∆)
P NP P P NP P NP P

λ(1)
0 0 1 1 1 1.36 1.37 1.35

λ(2)
0 0 1 1 1 1.78 1.93 1.73

λ(3)
0 0 1 1 1 2.01 1.97 2.00

λ(γ)
0 0 0 1 1 0.86 0.51 1

Log-likelihood ×103 -2.14 -2.06 -2.00 -1.94 -1.89 -1.91 -1.86 -1.92

Free parameters 3 31 3 3 31 7 35 6

BIC ×103 -2.15 -2.15 -2.01 -1.95 -1.98 -1.93 -1.96 -1.93

Table 9.2: Representative sets of restritions for the relative model using male SAPS

data

Model No. 1 2 3 4 5 6 7 8

α(∆)
P NP P P NP P NP P

λ(1)
0 0 1 1 1 1.24 1.20 1.22

λ(2)
0 0 1 1 1 2.35 2.45 2.42

λ(3)
0 0 1 1 1 0.09 -0.06 0

λ(γ)
0 0 0 1 1 1.06 0.97 1

Log-likelihood ×103 -2.05 -2.01 -1.94 -1.83 -1.80 -1.80 -1.77 -1.80

Free parameters 3 31 3 3 31 7 35 5

BIC ×103 -2.06 -2.10 -1.95 -1.83 -1.89 -1.82 -1.87 -1.82

Table 9.3: Representative sets of restritions for the relative model using female SAPS

data

For both men and women, the preferred model selets a parametri simpli�ation for

the di�erene in the level of mortality, α
(∆)
x . This substantially redues the number of

free parameters in the preferred model, leading to greater parsimony. This is also borne

out by omparing models whih di�er by the form of α
(∆)
x , but have similar restritions

plaed on the saling fators, λ(j)
, e.g., Models 1 and 2, or Models 4 and 5 in Tables 9.2

and 9.3. In some respets, this supports the traditional atuarial pratie of adjusting

mortality rates for a pension sheme by taking a mortality table from a referene pop-

ulation (in this ase, the full UK population) and making relatively simple adjustments

to it. We also see from Figures 9.5a and 9.5b that α
(∆)
x is generally negative aross all

ages. This indiates that the SAPS population has generally lower levels of mortality

rates than the national population, whih is onsistent with the results of Continuous

Mortality Investigation (2011).
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In the ase of the male data, the proedure selets a model where all the λ(i)
for the

age/period terms are allowed to vary freely, i.e., without any restritions plaed upon

them at the estimation stage. The same is true for the female data, exept that λ(3)
is

set to be equal zero. This is unsurprising given the other models shown in Table 9.3:

in the models where λ(3)
for women is allowed to vary (e.g., Models 6 and 7), it takes

a value omparatively lose to zero, and so it an be restrited to equal zero without

adversely a�eting the goodness of �t of the model.

We also see that the saling fators for the period funtions for both men and women

are greater than unity when their estimation is not restrited. This indiates that the

SAPS populations are responding to the same drivers of mortality rates as the national

population, but with greater sensitivity to these underlying auses. Sine mortality rates

are generally falling in the UK, this implies that the rate of improvement in longevity

is slightly faster for members of oupational pension sheme than for the national pop-

ulation. This ontrasts with the �ndings of Continuous Mortality Investigation (2011),

whih found that the falls in standardised mortality ratios for the SAPS populations

broadly mirrored the falls observed in the wider UK population. However, sine the

standardised mortality ratio is an aggregate measure of mortality, whih takes aount

of the level of mortality rates, it is likely that the di�erene between our results and

those of Continuous Mortality Investigation (2011) are not signi�ant.

In addition, for both sexes, λ(γ)
is restrited to be equal to unity. This means that we

do not expet any systematially di�erent ohort e�ets in the SAPS data ompared to

those observed in the referene population. It is interesting to ompare this to the results

of Li et al. (2013), whih also found that the ohort e�ets in related populations an

often be assumed to be equal to eah other without adversely a�eting the goodness of

�t for a model.

Finally, we note that the BICs of many of the models with di�erent restritions are very

similar, meaning that there is not muh to hoose between them. It may therefore be

justi�able to selet simpler models than suggested by looking just at goodness of �t, on

the grounds that they may be more robust to parameter unertainty or easier to projet

into the future, as done in Setion 9.5. This will be even more important when we in-

vestigate smaller, pension sheme-sized datasets, as in Setion 9.6.
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9.4.3 Parameter unertainty and model risk

We next onsider the robustness of the preferred model seleted, i.e., Model 8. We do

this in two stages, by onsidering the di�erent soures of unertainty outlined in Cairns

(2000). First, we onsider only parameter unertainty, i.e., the unertainty in the free

parameters of the preferred model, on the assumption that the restritions plaed on

the parameters in Model 8 are orretly spei�ed. Seond, we allow for model risk by

allowing the proedure to selet di�erent models using the sequential proedure disussed

above.

For both stages, we use a proedure based on the residual bootstrapping method of

Koissi et al. (2006) to generate new pseudo-data. This resamples from the �tted residu-

als to generate new simulated death ounts to whih the model is re�tted, allowing the

unertainty in the parameters to be measured. We do this �rst to allow for parameter

unertainty in the referene model. It is important to allow for parameter unertainty in

the referene model due to the hierarhial struture of the relative model, i.e., that the

parameters for the referene model are impliitly assumed to be known when the relative

model is �tted. Therefore, unertainty in the parameters of the referene model an be

magni�ed when we ome to investigate the unertainty in the parameters of the relative

model.

The next step is to bootstrap new pseudo-data for the sub-population. When using a

residual bootstrapping proedure, it is important that the �tted residuals being used

ontain as little struture as possible, so that very little of the information in the original

data is lost when these residuals are randomly resampled. This will be the ase for mod-

els whih provide a lose �t to the data (i.e., a high maximum likelihood), irrespetive

of the number of free parameters used by the model to ahieve this �t. Therefore, in our

residual bootstrapping proedure we use the expeted mortality rates and �tted residuals

from Model 7, sine this model has the highest log-likelihood in Tables 9.2 and 9.3 above.

However, sine Model 7 is outperformed by a number of other models when the goodness

of �t is penalised for the number of parameters, we do not spei�ally onsider it further.

9.4.3.1 Parameter unertainty

For the �rst stage, we onsider only parameter unertainty. To do this, we �t the rel-

ative model to 1,000 sets of pseudo death ounts, generated by the Koissi et al. (2006)
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Bootstrapped dataset i for

the referene population

Bootstrapped dataset i

for the sub-population

Fitted parameter set i

for the referene model

Fit relative model

with preferred set

of restritions j∗

Fitted parameter set i for

the relative model allowing

for parameter unertainty

Figure 9.4: Flow hart illustrating the proedure for �tting and seleting the relative

model allowing for parameter unertainty
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Figure 9.5: 95% fan harts showing the level of parameter unertainty in α
(∆)
x

residual bootstrapping proedure. For eah of these datasets, however, we do not test

whih set of restritions give the best �t to the data. Instead we impose the same set

of restritions as were used for Model 8 in Tables 9.2 and 9.3. We �t the relative model

with the restritions in Model 6 (whih allows all saling fators to freely vary) used as

a omparator. This proess is illustrated in Figure 9.4.

Figure 9.5 shows the impat of parameter unertainty on the level parameters by showing

the 95% fan hart. To interpret this, we note that a 95% on�dene interval for α
(∆)
x
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of width 0.1 at age, x, (i.e., α
(∆)
x ∈ (α̂∆

x − 0.1, α̂∆
x + 0.1)) roughly orresponds to a 95%

on�dene interval for the �tted mortality rates of (0.90µ̂x,t, 1.10µ̂x,t), where µ̂x,t is our

best estimate of the mortality rate. For omparison, di�erenes in the level of mortality

of around this order of magnitude are visible between di�erent industrial setors in Fig-

ures 8 and 9 of Continuous Mortality Investigation (2012). This implies that it may be

di�ult to robustly determine di�erenes in the level of mortality between individuals

who worked in di�erent industries one parameter unertainty is taken into aount. The

dashed lines in Figure 9.5 show the parameter-ertain estimates of α
(∆)
x , whih lie lose

to the entre of the on�dene intervals given by relative models.

16

Men Women

Model 6 Model 8 Model 6 Model 8

λ(1)
[1.21,1.40℄ [1.23,1.39℄ [1.13,1.31℄ [1.12,1.31℄

λ(2)
[1.47,1.93℄ [1.44,1.91℄ [1.66,2.96℄ [1.79,2.94℄

λ(3)
[1.44,2.33℄ [1.45,2.33℄ [-0.56,0.82℄ 0

λ(γ)
[0.71,1.09℄ 1 [0.87,1.22℄ 1

Table 9.4: 95% on�dene intervals for saling fators in Model 6 and Model 8 �tted

to male and female SAPS data

Table 9.4 shows the 95% on�dene intervals for the saling fators for men and women.

The �rst thing to note from these results is that the saling fators are subjet to sub-

stantial parameter unertainty. As the relative model is very parsimonious and ontains

relatively few free parameters, this should aution us against onsidering more sophisti-

ated models for the SAPS population. For instane, we are unlikely to have su�ient

data to robustly estimate separate period funtions for the SAPS data ompared with

the referene population, whih was done in Villegas and Haberman (2014).

We also note that the on�dene intervals for λ(1)
tend to be slightly narrower than those

for the other age/period terms, whih is to be expeted sine the �rst age funtion overs

the entire age range and therefore the estimate of λ(1)
uses more data. This autions

us against trying to estimate age-spei� or year-spei� parameters, sine these would

have relatively little data to support them, leading to substantial parameter unertainty

in their estimates. For instane, the unertainty in the estimate of a non-parametri

form for α
(∆)
x would be onsiderably higher, sine this requires separate parameters at

eah age to be estimated.

16

This indiates that our method for estimating parameter unertainty does not signi�antly bias the

results, whih is an important hek of its suitability.
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From Table 9.4, we an easily apply a simple but important hek of our modelling

approah by using an alternative method for determining suitable restritions of the rel-

ative model suh as a �general-to-spei�� approah desribed in Campos et al. (2005).

This would �t an unrestrited model (i.e., Model 6) to the data, observe the on�dene

intervals for eah parameter and use these to determine whih restritions to apply. To

illustrate, if the on�dene interval for λ(j)
inluded unity, the general-to-spei� ap-

proah would impose λ(j) = 1 on the grounds of statistial signi�ane. From Table

9.4, we see that the on�dene intervals for λ(γ)
for both men and women ontains zero,

whilst the on�dene interval for λ(3)
for women ontains unity. Therefore, the general-

to-spei� approah would arrive at the same set of restritions for the preferred model

as our approah, whih is based solely on onsidering the goodness of �t of the relative

model with di�erent sets of restritions.

We also see, by omparing the on�dene intervals for the unrestrited parameters in

Model 8 with their ounterparts from Model 6, that imposing the preferred set of restri-

tions does not signi�antly a�et the estimation of the other parameters in the model.

This, again, ats as a useful hek to ensure that the proedure we have used to selet the

preferred set of restritions does not remove statistially signi�ant parameters from the

relative model, and gives us on�dene that our approah merely removes unneessary

parameters and so leads to a more parsimonious model.

Inspetion of the boxplots of the bootstrapped parameters from Model 6, shown in

Figure 9.6, indiates that the on�dene intervals appear roughly symmetri around their

midpoints. However, on loser inspetion, λ(1)
shows substantial skewness. Investigating

this further, Jarque-Bera tests on the bootstrapped rejets the assumption of normality

for λ(1)
for both sexes and for λ(3)

for women at the 5% level. This indiates that we

annot reliably use asymptoti methods based on the information matrix (similar to

those used in Brouhns et al. (2002b)) to allow for parameter unertainty, sine these

methods assume that the parameters will be normally distributed. This justi�es the use

of residual bootstrapping proedures, suh as the one proposed here, in order to properly

investigate parameter unertainty in these models.

9.4.3.2 Model risk

The seond stage of testing the robustness of the model is to �t the relative model to

the bootstrapped data without speifying the form of the preferred model. Instead, we

allow the proedure to selet a potentially di�erent preferred model in eah simulation.
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Figure 9.6: Boxplots of the bootstrapped parameters from Model 6
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Bootstrapped dataset i for

the referene population

Bootstrapped dataset i

for the sub-population

Fitted parameter set i

for the referene model

Fit relative model

with di�erent sets

of restritions

Fitted parameters for

the relative model with

restrition set ji = 1

. . .
Fitted parameters for the

relative model with re-

strition set ji = 162

Selet set of restri-

tions, j∗i , whih

gives best �t to data

Fitted parameter set i for

the relative model allow-

ing for parameter uner-

tainty and model risk

Figure 9.7: Flow hart illustrating the proedure for �tting and seleting the relative

model allowing for parameter unertainty and model risk

This allows for �model risk�, in the sense of Cairns (2000), i.e., the risk that the model

seleted is not an aurate representation of the true proesses generating the data. This

proess is illustrated in Figure 9.7. However, we are still seleting a preferred model from

a relatively limited set of omparators, and so the proedure does not fully apture the

potential for model risk.

Looking �rst at the preferred form of α
(∆)
x , we �nd that, from 1,000 bootstrapped

datasets, we �nd that the preferred model restrits α
(∆)
x to have a parametri form

in 88% of the datasets for men and 100% of the datasets for women. The modelling ap-

proah, therefore, overwhelmingly prefers imposing a parametri struture for α
(∆)
x over
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allowing this to vary freely, even when allowing for model risk. This is not too surprising

when onsidering the results in Tables 9.2 and 9.3, as these showed that allowing α
(∆)
x

to take a non-parametri form signi�antly worsened the goodness of �t when this was

penalised for the additional number of parameters.

Restrition plaed on: λ(j) = 0 λ(j) = 1 λ(j)
unrestrited

Men:

λ(1)
0% 67% 33%

λ(2)
0% 0% 100%

λ(3)
0% 36% 64%

λ(γ)
1% 71% 28%

Women:

λ(1)
0% 69% 31%

λ(2)
0% 2% 98%

λ(3)
93% 7% 0%

λ(γ)
0% 97% 3%

Table 9.5: Frequeny of di�erent restritions being plaed upon the saling fators in

the preferred relative model, based on 1,000 bootstrapped datasets

Table 9.5 shows the frequeny of observing the various restritions on the saling fators

in the preferred model based on the same 1,000 bootstrapped datasets. We note that

the most likely form that these restritions take is the preferred one found for Model 8 in

Tables 9.2 and 9.3. The exeption to this is λ(1)
for both men and women: when model

risk is allowed for, the most likely outome is that λ(1)
is restrited to equal unity, while

this parameter was allowed to vary freely in Model 8 for both sexes. We are unsure why

this should be the ase. However, we note that it is inevitable that some information

in the original data will be lost due to the random resampling of the �tted residuals

in the Koissi et al. (2006) approah. Therefore, it is likely that the preferred model for

bootstrapped data will be simpler and have more restritions plaed upon it, as fewer pa-

rameters will be required to apture the redued level of information in the bootstrapped

data ompared with the original data.

In summary, we �nd that there is substantial model risk for both sexes, and no one set

of restritions out of the available options is universally seleted. This will be important

when we projet the model in Setion 9.5. It should also, again, aution us against using

overly ompliated models for the SAPS populations, as there is substantial unertainty

not only in any parameter estimates found but also in the fundamental form of the model.
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9.5 Basis risk and projeting mortality for the SAPS pop-

ulation

In Setion 9.4, the relative model was applied to historial data for the SAPS population.

Given projetions of the referene population, we an also use the relative model to map

these into projetions for the sub-population.

Many pension shemes are onerned about �basis risk�, the risk that the mortality ex-

periene of the sheme in question will be substantially di�erent to that of the national

population. This is important when assessing hedging strategies (for instane, in Li and

Hardy (2011), Coughlan et al. (2011) and Cairns et al. (2013)) using �nanial instruments

based on national mortality rates. More fundamentally, it is an important question when

funding a pension sheme, sine most standard projetions for future mortality rates are

based on analysing national populations (for instane, the CMI mortality projetion

model in Continuous Mortality Investigation (2009a) whih is widely used in the UK).

Intuitively, basis risk an arise beause of a di�erene in levels of mortality rates (e.g.,

the spei� population exhibiting systematially higher or lower mortality rates than the

referene population as a result of harateristis suh as soio-eonomi status whih

will hange only slowly) and a di�erene in trends in mortality rates (i.e., mortality rates

evolving di�erently in the sub-population, for instane, due to preferential aess to new

mediations) between the two populations. In terms of the relative model of Equation

9.3, these an be thought of as relating to α
(∆)
x and the λ(j)

, respetively. Level di�er-

enes an be measured relatively easily using traditional atuarial methods whih are well

within the apabilities of modern sheme atuaries. However, the di�erene in trends

between populations is more di�ult to measure reliably and, onsequently, is of greater

onern to many sheme atuaries.

In order to evaluate the potential impat of basis risk between the UK and SAPS popu-

lations, we �rst need to projet mortality rates for the national population. However, it

is important that our projetions of mortality rates are �well-identi�ed� in the sense of

Chapters 3 and 4 in that they do not depend upon our hosen identi�ability onstraints.

To projet the referene population, we therefore adopt the tehniques of Chapter 4 and

use random walks with drift

κ
(R)
t = µ(R) + κ

(R)
t−1 + ǫ

(R)
t (9.10)
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where κ
(R)
t =

(

κ
(R,1)
t , . . . κ

(R,N)
t

)⊤
, µ(R)

are drift oe�ients and ǫ
(R)
t are normally

distributed, ontemporaneously orrelated innovations. For the ohort parameters, we

make projetions using an AR(1) around �well-identi�ed� drifts

γ(R)
y − β(R)Xy = ρ(R)(γ

(R)
y−1 − β(R)Xy−1) + εy (9.11)

where Xy is a vetor of deterministi funtions

17

and β(R)
are drift oe�ients.

The deterministi funtions, Xy, are hosen to ensure that the projetions are �well-

identi�ed�, i.e., that the projeted mortality rates for the referene population do not

depend upon the identi�ability onstraints used when �tting the model. To ahieve this

in the ontext of the referene models developed in Setion 9.4.1 and Appendix 9.C, we

have

Xy =
(

1, (y − ȳ)
)⊤

β(R) =
(

β
(R)
0 , β

(R)
1

)

R = {UKm, UKf}

Any dependene between mortality rates for men and women is not relevant to the fol-

lowing disussion, where only the relationships between mortality rates in the referene

and sub-populations for the same sex are investigated. Therefore, in these projetions,

we do not take into aount any dependene between male and female mortality rates

in the referene population, and onsequently projet these populations independently.

A more omplete analysis of the mortality and longevity risks in pension shemes, suh

as in Chapter 10 , would need to allow for dependene between sexes in the referene

population. For tehniques whih ould allow for dependene between these populations,

see Chapter 8 and the referenes therein.

To illustrate the basis risk between the SAPS and UK populations, we onsider annuity

values at age 65 (alulated using a real disount rate of 1% p.a.). We perform 1,000

Monte Carlo simulations using the time series proesses above to give projeted mortality

rates in the national population, whih are then used to generate projeted mortality

rates in the SAPS population using the relative mortality models for men and women

separately. Basis risk is aounted for using the relative model in three stages:

17

We have used the same notation for the trends, Xy , in Equation 9.11 as was used for the additional

funtions of year of birth in the relative model in Equation 9.3. However, the reader should be aware

of the slight di�erene in de�nition between these two ontexts, namely that in Equation 9.11, Xy =
(

1, (y − ȳ)
)⊤

, whilst in Equation 9.3, Xy =
(

y − ȳ
)⊤

, i.e., Xy did not possess a onstant.
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1. First, we allow only for the impat of the random innovations, ǫ
(R)
t and ε

(R)
y , on

projeted mortality rates, i.e., we allow for proess risk in the terminology of Cairns

(2000). We do this by using Equations 9.10 and 9.11 to projet stohastially the

period and ohort parameters found for the referene population in Setion 9.4.1,

and then using the preferred relative model estimated in Setion 9.4.2 and shown as

Model 8 in Tables 9.2 and 9.3. Using this tehnique, we �nd orrelations between

annuity values in the UK and SAPS populations of 99% for men and 98% for

women.

2. Seond, we allow for parameter unertainty in both populations. To do this, we

use the approah illustrated in Figure 9.4 to generate new parameters for both the

referene and the sub-populations. The time series proesses in Equations 9.10 and

9.11 are then re-estimated for the bootstrapped period and ohort parameters for

the referene model, and mortality rates for the referene and sub-populations pro-

jeted from these. When allowing for parameter unertainty, we �nd orrelations

between annuity values in the UK and SAPS populations of 98% and 97% for men

and women, respetively, indiating than parameter unertainty has not added sig-

ni�antly to the basis risk between the two populations. This is surprising, given

the results of Setion 9.4.3.1 as shown in Figures 9.5 and 9.6, whih showed rela-

tively high levels of unertainty in the levels and saling parameters. However, this

may indiate that the basis risk arising from di�erent rates of hange in mortality

in di�erent populations may not be partiularly signi�ant, as disussed in Setion

9.7.

3. Finally, we allow for model risk in the seletion of the preferred model for the sub-

population. We do this using the same proedure as illustrated in Figure 9.7 to

generate new parameters for the referene population and a new preferred model for

the sub-population. The time series proesses in Equations 9.10 and 9.11 are then

re-estimated for the bootstrapped period and ohort parameters for the referene

model, and mortality rates for the referene and sub-populations projeted from

these. Using this proedure, we observe orrelations between annuity values in the

UK and SAPS populations of 95% for men and 96% for women. It is interesting to

note that for both sexes, we ahieve orrelations of over 90%, even when allowing

for all three soures of unertainty in the relative model.

Note that this analysis looks only at annuity values (i.e., the expeted present value of

payments to an individual) and so does not onsider the idiosynrati risk that would

also be present in the bene�ts payable from a pension sheme. This was investigated in

Donnelly (2014), Aro (2014) and, in partiular, in Chapter 10 where we �nd this is likely
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Figure 9.8: Projeted annuity values for the UK and SAPS populations from 1,000

Monte Carlo simulations

to be substantial for even relatively large pension shemes.

Figure 9.8 shows satter plots of annuity values alulated using mortality rates in the

UK and SAPS populations for men and women in the third, most general ase (i.e.,

inorporating proess risk, parameter unertainty and model risk). It is interesting to

note that, for both sexes, the systemati longevity risk (indiated by the range of values

the annuity value an take, e.g., 18 to 24 in the ase of men) is far greater than the basis

risk. Indeed, the systemati longevity risk aounts for around 90% of the unertainty

in an annuity value for the SAPS population, indiating that basis risk may be onsid-

erably less important than is ommonly believed. This is disussed further in Setion 9.7.

However, it is important to note that in all of these ases, there is no genuine trend basis

risk between the two populations. This is beause the same proesses, i.e., κ
(R)
t and γ

(R)
y ,

ontrol the evolution of mortality in both populations, albeit saled by unertain fators

in the sub-population. This helps explain why the orrelations we �nd are somewhat

higher than those found in other studies of basis risk, suh as Cairns et al. (2013). How-

ever, we note that most of these studies used sub-populations whih were onsiderably

larger and overed a longer period of time than the SAPS population. Consequently,

there is a trade-o�. On the one hand, we might wish to use more ompliated models

that might give a more aurate assessment of basis risk, but whih require larger vol-

umes of data to estimate robustly and, therefore, might involve using data for a larger

sub-population whih is less relevant for the mortality experiene of a spei� pension

sheme (for instane, the CMI Assured Lives dataset). On the other hand, we might

prefer to use simpler models, whih an be robustly estimated from smaller datasets that

are likely to be more relevant to the spei� sheme experiene, but give a less aurate
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assessment of basis risk. The impat of this trade-o� is disussed in Setion 9.7.

Finally, the importane of model risk and parameter unertainty will tend to inrease if

we onsider populations smaller than the SAPS population, as we do in Setion 9.6. We

would therefore expet to see orrelations of a similar size to those found in other studies

for population sizes that are more typial of UK pension shemes, due to the greater

parameter unertainty and model risk, even without allowing for genuine trend basis risk.

In addition, the ash�ows experiened by a pension sheme will also have (potentially

substantial) idiosynrati risk due to the relatively low number of lives under observation.

This suggests that, in pratie, it would be impossible to distinguish trend basis risk from

parameter and model unertainty for most pension-sheme sized populations. Therefore,

any onern about trend basis risk may be misplaed, sine it would be impossible to

reliably quantify and be small relative to the impat of the other risks in the model. This

is disussed further in Setion 9.7 and Chapter 10 .

9.6 Applying the relative model to small populations

While the SAPS population is small relative to the national UK population, it does have

annual exposures to risk of over one million lives eah for men and women, and so still

represents a population larger than almost all oupational pension shemes (with the

exeption of some state shemes). However, the methods developed in this study an be

applied to signi�antly smaller populations, suh as those more omparable with the size

of large oupational pension shemes.

As disussed in Setion 9.4.2, the relative model applied to the SAPS population ex-

hibited a strong preferene for parsimony. However, parameter unertainty and model

risk were still important onsiderations, even with a relatively simple model and the full

SAPS data. It is therefore exeedingly likely that in even smaller populations, these on-

siderations will dominate what we an and annot realistially say about the evolution

of mortality of a small sub-population suh as that assoiated with an individual pension

sheme.

We investigate the e�et of population size on the ability of the relative model to measure

mortality di�erenes with the national population by randomly generating sheme-sized

exposures to risk and death ounts (denoted by lower-ase s) based on the SAPS data.
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We adopt the following proedure to generate pseudo-data for a sheme with N lives

(onsidering eah sex separately):

1. We �rst resale SAPS exposures, E
(S)
x,t , to give a proxy for smaller pension shemes

with approximately N members. We ould, in priniple, do this very simply by

setting

E
(s)
x,t = E

(S)
x,t × N

∑

ξ E
(S)
ξ,t

This would give a sheme with a onstant exposure to risk over eah year, but

the same pattern of exposures to risk aross di�erent ages. However, this simple

approah does not apture the pattern of exposures aross years seen in the atual

SAPS data, due to the partial submission of sheme data in the �rst and last few

years of the SAPS datasets (disussed in Setion 9.2, see also Figure 9.13a). This

means that, were we to arti�ially generate a sheme of the same size as the SAPS

population, we would not reover the observed SAPS exposures and so would obtain

inonsistent results. Sine we will apply this proedure to generate pseudo-sheme

data for shemes of widely varying sizes, up to and in exess of the full SAPS data,

it is essential that our results are onsistent with the results we found in previous

setions. Consequently, we amend the saling fators so that

E
(s)
x,t = E

(S)
x,t × 5N

∑

ξ

∑2008
τ=2004 E

(S)
ξ,τ

This modi�es the denominator to re�et the average exposure to risk in the SAPS

data in years 2004-2008, for whih almost all relevant pension shemes have sub-

mitted data to the SAPS study. This approah therefore repliates the full SAPS

data when we generate a sheme of the same size as the SAPS population (inlud-

ing the pattern of relatively low exposures to risk for the �rst and last years, along

with the pattern of exposures at di�erent ages found in the SAPS data.

2. We then generate random death ounts for the sheme by modelling them as Pois-

son random variables. To do this, we use the exposures to risk generated using both

the proedure above and the rude mortality rates observed in the SAPS dataset,

D
(s)
x,t ∼ Po

(

D
(S)
x,t

E
(S)
x,t

E
(s)
x,t

)

We then �t the relative model to this pseudo-sheme data, testing all 162 sets of pos-

sible restritions on the parameters to determine the preferred model using the same

proedure desribed in Setion 9.4.3.2. This proedure is illustrated in Figure 9.9. Suh
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Figure 9.9: Flow hart illustrating the proedure for generating data and �tting the

relative model to sheme-sized populations, allowing for parameter unertainty and

model risk

an approah is oneptually similar to the �semi-parametri� bootstrapping tehnique in

Brouhns et al. (2005), exept we resale the exposures in order to simulate the range of

di�erent sheme sizes present in the UK.

To gain a better understanding of the impat of the size of the population on the omplex-

ity of the preferred model, we apply this proedure for sheme sizes at regular intervals

in the range N ∈ (102, 106) and for 1,000 sets of random death ounts at eah sheme

size. This range of population sizes overs almost the entire range of pension sheme

sizes in the UK, and the �tting of multiple models allows for potential model risk in the
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seletion of the preferred model. The results of this proedure for men and women are

shown in Figures 9.10 and 9.11.

First, let us onsider the results shown in Figures 9.10a and 9.11a. These �gures show

that the probability of the proedure preferring a parametri restrition for α(∆)
is al-

most unity for shemes up with up to one million members of eah sex, whih is far in

exess of all but the largest state shemes in the UK. This indiates an overwhelming

preferene for parametri restritions for α
(∆)
x in all but the very largest sheme sizes.

The impliation of this is that making simple adjustments to a standard mortality ta-

ble will be su�ient to apture the di�erene in levels in mortality for almost all UK

shemes, with little or no need to graduate a bespoke table (even if the data is available).

Looking at the saling fators for the age/period and ohort terms, we see that, typially,

the smallest shemes (fewer than 1,000 members of eah sex) are indi�erent between re-

striting λ(j)
to be equal to zero or unity. For instane, Figure 9.10b shows that the

proedure imposes the restrition λ(1) = 0 and λ(1) = 1 for men in approximately 50%

of the simulations for small shemes, with λ(1)
being estimated without restritions in

almost no ases. This pattern is repeated for the other saling fators shown in Fig-

ures 9.10 and 9.11. Sine the restritions λ(j) = 0 and λ(j) = 1 give models with the

same number of free parameters, the hoie between them depends entirely on the log-

likelihood found when �tting the model. However, the di�erene between λ(j) = 0 and

λ(j) = 1 is the di�erene between a model whih allows mortality rates to hange with

time and a stati model of mortality (λ(j) = 0 ∀j). We therefore �nd that, in very small

shemes it is almost impossible to say whether or not mortality rates are hanging, let

alone anything about the rate they are hanging.

Looking at Figure 9.10b again, we see that for larger shemes, with around 10,000 to

100,000 members, the relative model has a lear preferene for setting λ(1) = 1 for men,

whih is preferred in almost all simulations for shemes with around 200,000 members.

This pattern is also true for the majority of the saling fators shown in Figures 9.10

and 9.11. The impliation of this is that, although there is su�ient evidene to sug-

gest mortality is improving in these larger shemes (unlike the smaller shemes disussed

above), there is not enough data to quantify any di�erenes in this improvement between

the sheme and the national population. This supports the use of projetion methods

based on the national population for the majority of pension shemes in the UK. It also

makes it unlikely that we an detet trend basis risk between the sheme and the national
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population for shemes with fewer than 100,000 members of eah sex.

Only in the very largest shemes, with over one million members of eah sex, do we �nd

that there is su�ient data to estimate unrestrited λ(j)
, as illustrated by the preferene

for a freely varying λ(1)
for men for shemes with around two million members in Fig-

ure 9.10b. Therefore, it is only for these very large shemes that we an quantify any

di�erene in the evolution of mortality rates between a pension sheme and the national

population, i.e., any trend basis risk, although the results of Setion 9.5 indiate that,

even when this is allowed for, the impat on annuity values is likely to be quite limited,

espeially when onsidered in the ontext of the other mortality and longevity risks in

the sheme. This is investigated further in Chapter 10 .

In summary, we �nd that, for datasets that are the same size as a typial UK pension

sheme, there is insu�ient data to make more than a few simple adjustments to re�et

level basis risk. For most pratial irumstanes, we would therefore be unable to

quantify any trend basis risk in a pension sheme. Given that trend basis risk is often

given as a key onern for why pension shemes are relutant to use index based hedging

instruments to manage their longevity risk and, instead, prefer bespoke arrangements,

we believe that muh of this trepidation is misplaed, as we now disuss.

9.7 Disussion: Basis risk in pension shemes

There has been a lot of work regarding the quanti�ation of basis risk between di�erent

populations, most notably in Plat (2009b), Salhi and Loisel (2009), Li and Hardy (2011),

Coughlan et al. (2011), Cairns et al. (2013) and Li et al. (2013). The analysis of this risk

has also motivated many of the multi-population mortality models that have reently

been proposed, suh as those of Dowd et al. (2011b), Cairns et al. (2011a), Zhou et al.

(2014) and Chapter 8. However, muh of this work to date is not diretly relevant to

the situation faed by many UK pension shemes when assessing and trying to manage

their longevity risk.

Partly, this is beause the populations being onsidered in these studies are far larger

in terms of the size of the exposures to risk than that of a typial (or, indeed, even a

very large) UK pension sheme. This enables the authors of these studies to adopt a

�general-to-spei�� approah when analysing trend basis risk: �rst mortality models are
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�tted separately to the di�erent populations under investigation and then any depen-

dene between the period or ohort parameters is analysed. This approah is exempli�ed

by the study of Li et al. (2013), whih statistially determined whether or not to simplify

a model by using the same sets of parameters for di�erent populations (whih is a very

spei� form of dependene). Suh an approah therefore starts from the assumption

that mortality rates will have di�erent patterns of evolution in di�erent populations, and

then looks for evidene of similarities.

Suh an approah is entirely reasonable when looking at large populations where there

is su�ient data to estimate sophistiated mortality models in eah population under

investigation. However, this is not the situation in whih most pension shemes �nd

themselves. Instead, with relatively little data, it is neessary for them to adopt a

�spei�-to-general� approah, suh as that underlying the relative model proposed in

this study. As there is insu�ient data to estimate many sub-population-spei� pa-

rameters robustly, a spei�-to-general methodology starts from the assumption that

mortality rates in the sub-population evolve in the same fashion as those in the referene

population and then looks for evidene of di�erenes between the two. This approah

naturally leads to more parsimonious models, whih are therefore likely to be more ro-

bust. However, it is less likely to overturn the null hypothesis of no trend basis risk,

espeially when parameter unertainty and model risk are inluded in any analysis.

Our �ndings suggest that large volumes of data (in terms of both the size of the exposures

to risk and the period range of the data) are required to overturn the null hypothesis of

no trend basis risk, espeially when parameter unertainty and model risk are inluded

in the analysis. For the full SAPS dataset, the simple relative model we have proposed

ahieves relatively good and parsimonious �ts to the data for both men and women, as

shown in Setion 9.4. Furthermore, for the smaller datasets more typial of UK pension

shemes, even simpler models whih �x the saling fators in the model are preferred,

as shown in Setion 9.6. This is onsistent with the results of Haberman et al. (2014),

whih found that it is only possible to quantify basis risk for very large shemes.

In addition, in order to estimate the more ompliated multivariate time series proesses

used in many of the general-to-spei� models we need longer periods of data than a

typial pension sheme has. For instane, to estimate the ointegration-based models of

Salhi and Loisel (2009) and Chapter 8 requires several deades of mortality data, whih

is usually far in exess of what a pension sheme will have itself. Similarly, Haberman

et al. (2014) found that eight years or more of data is required for the quanti�ation of
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basis risk, even for very large pension shemes. Spei�-to-general models, however, do

not require suh long data ranges, as they start from the assumption that information

about the referene population an be used to �ll in gaps in the data if required.

However, Setion 9.5 shows that projetions from the relative model have many of the

features we would expet from models whih use more ompliated time series proesses,

when appropriate allowane is made for parameter unertainty and model risk, despite

there being no genuine trend basis risk using the relative approah. This implies that

it may be impossible to distinguish between genuine trend basis risk and the e�ets of

parameter unertainty and model risk in pratie. Indeed, it is notieable that few of the

studies to date whih have investigated basis risk allow for parameter unertainty and

model risk, and so the �ndings of these studies potentially wrongly attribute di�erenes

in historial improvements in mortality between di�erent populations to basis risk and,

thus, overstate its importane.

We �nd that for most UK pension shemes, the existene or not of trend basis risk be-

tween the sheme and the UK population is of little pratial relevane. The sheme

will never have su�ient information to be able to say with on�dene that the improve-

ments in mortality it experienes are signi�antly di�erent from that in the referene

population, as any suh di�erenes will be overwhelmed by the other soures of risk and

unertainty present in the sheme.

This is not to dispute that basis risk an exist between di�erent ountries or amongst

highly distint sub-populations of a referene population. Indeed, there are good rea-

sons to suggest that it does and that there is su�ient data to estimate it reliably using

a general-to-spei� approah as in previous studies. For instane, many studies (for

instane in Li and Hardy (2011) and Chapter 8) investigate di�erenes between the evo-

lution of mortality rates in di�erent ountries. However, populations in di�erent ountries

may have di�erent diets, lifestyles and aess to healthare, and so would be expeted to

have di�erent patterns of evolution in mortality rates. Other studies, suh as in Villegas

and Haberman (2014) onsider the di�erenes in the evolution of mortality rates between

highly seletive sub-populations of a ountry (for instane, based on deprivation). The

sub-populations in these studies have, therefore, been onstruted in suh as fashion as

to maximise the likelihood of observing di�erent patterns in the evolution of mortality

rates.

18

18

As well as being a highly seleted sub-population of the UK population, the data for CMI Assured

Lives has also varied onsiderably in the soio-eonomi makeup of the relevant population over the

period of the data due to hanges in the UK annuity market. As this dataset was used in Cairns et al.
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Nor do we argue that the evolution of mortality rates in a pension sheme is the same

as in the referene population. It may be true that for very large shemes, we may have

su�ient data to be able to detet trend basis risk (even when allowing for parameter

unertainty and model risk) if there is quite a large di�erene in the evolution of mor-

tality rates between the two populations.

However, a pension sheme, whose only membership requirement was employment with

a partiular ompany, would be expeted to be more similar to the national population

or di�er only due to persistent seletion e�ets whih a�et the level of mortality rates

but not how mortality rates evolve with time. In order to have su�ient data to re-

jet the assumption that the evolution of mortality rates in the pension sheme is the

same as in the national population, the sheme must be very large (suh as being the

pension sheme for a large and long-established national ompany) and so entry to suh

shemes is likely to be relatively unseletive. Therefore, these shemes are more likely

to represent a fair ross setion of the UK population. Consequently, the irumstanes

where we have enough data to quantify basis risk (for example, the pension sheme of a

large, national employer) are also the irumstanes when basis risk is least likely to be

important. Consequently, in most pratial situations, we will never have su�ient data

to tell the di�erene and therefore an assumption of no di�erene between the evolution

of mortality rates in the national population and the pension sheme is both pratial

and parsimonious.

The pratial impliations of these results are important for the development of any mar-

ket in longevity hedging. As trend basis risk is unlikely to be important enough to be

statistially signi�ant, it is also unlikely to be �nanially signi�ant. If longevity risk is

felt to be important, hedging an be ahieved by use of standardised instruments based

on projeted hanges in mortality rates in a referene population, making adjustments

to re�et the level of mortality observed in the pension sheme. Conerns that the trend

basis risk will make suh hedges ine�etive, suh as those raised against the EIB longevity

bond (see Blake et al. (2006)), should be regarded as seondary ompared with the other

risks a pension sheme faes, suh as idiosynrati mortality risk. Bespoke produts,

suh as longevity swaps tailored to the harateristis of the pension sheme, should be

regarded primarily as vehiles for hedging and transferring these other risks, rather than

any trend basis risk for the sheme, and their ost e�etiveness judged aordingly, as

(2011a), Dowd et al. (2011b) and Cairns et al. (2013), it is therefore unlear whether any di�erene in

the evolution of mortality deteted by these studies is the result of genuine trend basis risk or simply a

result of the hanging omposition of the dataset.

356



Basis Risk and Pension Shemes: A Relative Modelling Approah

disussed in Chapter 10 .

9.8 Conlusions

In onlusion, in this study we present a relative model for mortality in a sub-population,

whih models the mortality rates observed in a small population relative to those ob-

served in a larger referene population. Suh a model has the advantages of being more

parsimonious ompared with the approah of �tting separate mortality models for both

populations, whih has been adopted in many multi-population mortality studies, and

so is better suited to situations where there is little data for the sub-population.

We then apply the relative model to investigate the mortality rates observed in the SAPS

study of UK pension shemes. We �nd that this simple model is su�ient to ahieve a

good and parsimonious �t to the available data and reasonable projetions of mortal-

ity rates. Spei�ally, we �nd that, in aggregate, members of UK oupational pension

shemes generally experiene lower levels of mortality rates than the national population,

whih are also improving at a faster rate than those in the national population. However,

we �nd relatively high levels of unertainty in estimating the parameters even in this sim-

ple model and that the data is insu�ient to uniformly prefer one model over any other.

Furthermore, when we apply the relative modelling approah to sub-populations whih

are smaller than the SAPS population, and loser in size to those of typial UK pen-

sion shemes, we �nd that the modelling approah prefers very simple, highly restrited

models, whih do not allow for any di�erene in the evolution of mortality between the

referene and sub-populations.

These onsiderations lead us to the belief that the analysis of trend basis risk, whih

requires more sophistiated models than the relative model proposed, is not possible with

the datasets realistially available for most pension shemes. We �nd that, in pension

sheme sized datasets, we will never have su�ient evidene to determine whether there

is any di�erene in the evolution of mortality rates in the sub-population ompared

with the referene population when the other risks present are properly aounted for.

Therefore, we believe that an assumption of no di�erene in the evolution of mortality

rates between the two populations is pratial and parsimonious. Consequently, we

onlude that onerns regarding trend basis risk in the development of the market for

longevity hedging and risk management tools for pension shemes are misplaed.
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9.A Summary of SAPS data

We are indebted to the CMI for kindly providing death ounts and exposures, weighted

by individual lives, for the SAPS population for the period 2000 to 2011 and ages 60

to 90. These relate to all pensioners in the surveyed pension shemes, and so inlude

people reeiving bene�ts after retiring at normal retirement age, those who retired early

or in ill-health, and those in reeipt of spousal bene�ts. It is likely that some of these

sub-populations will have di�erent mortality harateristis, espeially those retiring in

ill-health. However, suh ases represent a relatively small proportion of the SAPS data

and are unlikely to materially impat our results.

Large pension shemes in the UK submit their mortality experiene to the SAPS study

following ompletion of a triennial funding valuation. Therefore, eah submission is in

respet of data with a onsiderable time delay, e.g., data submitted on 30 June 2013

may result from a funding valuation with an e�etive date of 31 Deember 2011 (due

to the time taken to perform the valuation) and over the period 1 January 2009 to 31

Deember 2011. Consequently, the last few years of the SAPS data only re�ets a par-

tial submission to date of the mortality experiene of the shemes whih will, ultimately,

submit data to the study. However, we have no reason to believe that the shemes that

have submitted to date are an unrepresentative sub-sample of the SAPS population, and

so do not believe this biases our results.

Similarly, there are fewer submissions for the earliest years of the SAPS data. Unlike the

most reent years, the missing data for this period will never be reeived by the CMI.

Therefore, we only have data we onsider omplete for roughly the period 2004 to 2008.

19

Figures 9.12 and 9.13 summarise the patterns of deaths and exposures for men and

women aross age and time.

19

However, we note that Continuous Mortality Investigation (2014b) and Continuous Mortality In-

vestigation (2014) have been published subsequently to us obtaining the data used in this study from

the CMI. These working papers inluded new data in respet of the SAPS study for 2012 and 2013,

respetively, along with revisions to the data for years prior to 2012 aused by new pension shemes

submitting data to the study. In the interests of avoiding data errors aused by merging multiple soures

of data, we have not ombined this new data with that provided previously by the CMI and, therefore,

it has not been inluded in this study. However, we have investigated the impat the new data would

have on our �ndings if it were inluded, and are satis�ed that it would not a�et our results materially.

358



Basis Risk and Pension Shemes: A Relative Modelling Approah

60−64 65−69 70−74 75−79 80−85 85+
0

500

1000

1500

2000

2500

3000

3500

E
xp

os
ur

e 
to

 R
is

k 
(’0

00
s)

 

 
Men
Women

(a) Exposure to risk by age band

60−64 65−69 70−74 75−79 80−85 85+
0

20

40

60

80

100

120

140

D
ea

th
s 

(’0
00

s)

 

 
Men
Women

(b) Death ount by age band

Figure 9.12: Exposures to risk and death ounts in the SAPS dataset by age
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Figure 9.13: Exposures to risk and death ounts in the SAPS dataset by year

9.B Identi�ability in the relative model

In Chapters 3 and 4, we disussed the identi�ability issues in age/period and age/pe-

riod/ohort mortality models, respetively. In partiular, we �nd that almost all APC

mortality models possess �invariant� transformations, i.e., transformations of the param-

eters of the model whih leave the �tted mortality rates unhanged. In order to �nd a

unique set of parameters, we impose a set of identi�ability onstraints on them. Typi-

ally, these are hosen so that we an assign our desired interpretation of the demographi

signi�ane to the parameters in question. However, beause this interpretation is sub-

jetive, it is important that our hoie of identi�ability onstraints does not have any

impat on any observable quantities. For instane, we disuss in Chapters 3 and 4 how

to ensure that projeted mortality rates are independent of the hoie of identi�ability

onstraints.
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The relative model in Equation 9.3 does not possess any additional identi�ability issues in

and of itself, one the parameters from the referene population are known. However, due

to the relative struture, transformations of the parameters in the referene population

model will have knok-on e�ets for those in the relative model. It is important therefore

that invariant transformations of the referene model are also invariant for the relative

model, so that our hoie of identi�ability onstraints for the referene population does

not a�et the suitability of the relative model. This requirement will determine both the

nature of the set of deterministi funtions of year of birth, Xy in Equation 9.3, and the

nature of any parametri simpli�ation imposed upon α
(∆)
x , i.e., if α

(∆)
x is restrited to

be a linear ombination of a set of basis funtions

α(∆)
x =

n
∑

i=1

α(i)g(i)(x)

then the nature of the basis funtions, g(i)(x), will be determined by the identi�ability

issues present in the model. We, therefore, onsider eah of the di�erent forms that the

invariant transformations of the referene model an take in turn, in order to ensure that

they will not a�et the relative model.

First, the sensitivities in the relative model trivially do not depend upon the normalisa-

tion sheme of the age/period terms in the referene model. Normalisation shemes are

imposed by using a transformation of the form

{f̂ (R,i)(x), κ̂
(R,i)
t } =

{

1

a(i)
f (R,i)(x), a(i)κ

(R,I)
t

}

and so it is obvious that Λ(i)f̂ (R,i)(x)κ̂
(R,i)
t = Λ(i)f (R,i)(x)κ

(R,i)
t .

Seond, we know from Chapter 3 that all APC models are invariant under the transfor-

mation

{α̂(R)
x , f̂ (R,i)(x), κ

(R,i)
t , γ̂(R)

y } = {α(R)
x − a(i)f (R,i)(x), f (i)(x), κ

(R,i)
t + a(i), γ(R)

y } (9.12)

i.e., the model using the transformed parameter set gives exatly the same �tted mor-

tality rates. This allows us to impose the �level� of the period funtions, κ
(R,i)
t , via the

identi�ability onstraints, suh as imposing

∑

t κ
(R,i)
t = 0 or κ

(R,i)
T = 0. However, suh

a set of identi�ability onstraints is arbitrary, and so should not have any onsequenes

for our relative modelling approah.
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Aordingly, we require that our relative model in Equation 9.3 is also invariant if the

transformed parameters are used for the referene population. In order to ensure this,

we require that Equation 9.3 is invariant under the transformation

α̂(∆)
x = α(∆)

x − a(i)Λ(i)f (R,i)(x) (9.13)

This transformation an be aommodated without α
(∆)
x fundamentally hanging form

if

1. α
(∆)
x is non-parametri, as in the original spei�ation in Equation 9.3; or

2. if α
(∆)
x is restrited to be of parametri form, then α

(∆)
x =

∑N
i=1 α

(i)f (i)(x) +
∑n

i=N+1 α
(i)g(i)(x), i.e., the age funtions in the referene model form a subset of

the basis funtions, g(i)(x).

As an example, onsider the ase where our model for the referene population is the

�lassi APC� model of Hobraft et al. (1982)

ln
(

µ
(R)
x,t

)

= α(R)
x + κ

(R)
t + γ

(R)
t−x

Rx,t = α(∆)
x + Λ(1)κ

(R)
t + Λ(γ)γ

(R)
t−x + νXt−x

The lassi APC model is invariant under the transformation

{α̂(R)
x , κ̂

(R)
t , γ̂(R)

y } = {α(R)
x − a, κ

(R)
t + a, γ(R)

y }

i.e., µ̂
(R)
x,t = µ

(R)
x,t . Substituting the transformed parameters into the relative model gives

R̂x,t = α̂(∆)
x + Λ̂(1)κ̂

(R)
t + Λ̂(γ)γ̂

(R)
t−x + ν̂Xt−x

= α̂(∆)
x + Λ̂(1)(κ

(R)
t + a) + Λ̂(γ)γ

(R)
t−x + ν̂Xt−x

In order to ensure R̂x,t = Rx,t, we must have Λ̂
(1) = Λ(1)

, ν̂ = ν and α̂
(∆)
x = α

(∆)
x −aΛ(1)

.

The requirement that α̂
(∆)
x is of the same form as α

(∆)
x implies that any parametri

simpli�ation for α
(∆)
x must be of the form α

(∆)
x = α(1) +

∑n
j=2 α

(i)g(i)(x), i.e., it has a

onstant basis funtion, g(1)(x) = 1, in order that the relative model does not hange if

the levels of the period funtions are transformed.

Third, the values of Λ(i)
depend upon the preise de�nition of the age funtions in the

referene model. �Equivalent� models for the referene population, whih use di�erent

de�nitions for the age funtions but give idential �tted mortality rates, will give di�erent
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values of Λ(i)
. To see this, onsider a referene model of the form

20

ln
(

µ
(R)
x,t

)

= α(R)
x + κ

(R,1)
t + (x− x̄)κ

(R,2)
t + γ

(R)
t−x

Rx,t = α(∆)
x + Λ(1)κ

(R,1)
t + Λ(2)(x− x̄)κ

(R,2)
t +Λ(γ)γ

(R)
t−x + νXt−x

The model for the referene population is equivalent to a model of the form

ln
(

µ
(R)
x,t

)

= α(R)
x + κ̂

(R,1)
t + xκ̂

(R,2)
t + γ

(R)
t−x

with κ̂
(R,1)
t = κ

(R,1)
t − x̄κ

(R,2)
t and κ̂

(R,2)
t = κ

(R,2)
t . The orresponding relative model in

this ase is

R̂x,t = α̂(∆)
x + Λ̂(1)κ̂

(R,1)
t + Λ̂(2)xκ̂

(R,2)
t + Λ(γ)γ

(R)
t−x + ν̂Xt−x

However, in this situation, we would �nd that Λ̂(2)x = Λ(2)(x− x̄)+Λ(1)x̄ in order to give

the same �tted mortality rates for both referene models. If so, the relationship between

the two would be a funtion of age, x, whih ontradits the assumption that the saling

fators are onstants independent of age. Consequently, we �nd that the values of the

saling fators and the �t provided by the relative model will depend on the spei�s of

the age funtions in the referene model and will di�er between equivalent models.

Finally, identi�ability under transformations of the ohort parameters is not as straight-

forward. From Chapter 4, we found that APC models may have unidenti�able trends

whih are alloated between the age/period and ohort terms by the identi�ability on-

straints. Invariane of the mortality rates in the relative model to a di�erent alloation

of these trends in the referene model depends upon the deterministi regressors, Xy, we

added to the relative model in Equation 9.3, and the form of any parametri simpli�a-

tion of α
(∆)
x . This is illustrated by the following example.

Consider the example of the lassi APC model for the referene population again. In

addition to the transformation above, the lassi APC model is also invariant under the

following two transformations involving the ohort parameters

{α̂(R)
x , κ̂

(R)
t , γ̂(R)

y } = {α(R)
x − b, κ

(R)
t , γ(R)

y + b}
{α̂(R)

x , κ̂
(R)
t , γ̂(R)

y } = {α(R)
x + c(x− x̄), κ

(R)
t − c(t− t̄), γ(R)

y + c(y − ȳ)}
20

We all this model the �redued Plat� model, sine it was suggested in Plat (2009a) as being a

redued form of the model tested in that paper that might be more suitable for high ages. This model

an also be thought of as an extension to model M6 in Cairns et al. (2009), with a stati age funtion,

or as an extension to the �CBDX� model disussed in Chapter 3 with a ohort term.
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where a bar denotes the arithmeti mean of the variable over the relevant data range.

21

Invariane of the relative model under the �rst of these transformations requires Λ̂(γ) =

Λ(γ)
and α̂

(∆)
x = α

(∆)
x − bΛ(γ)

, and therefore that any parametri restrition plaed upon

α
(∆)
x must have a onstant basis funtion, g(1)(x) = 1, as disussed above in respet of

the level of κ
(R)
t .

However, substituting the transformed parameters from the seond transformation in

Equation 9.3, we �nd

R̂x,t = α̂(∆)
x + Λ̂(1)κ̂

(R)
t + Λ̂(γ)γ̂

(R)
t−x + ν̂Xt−x

= α̂(∆)
x + Λ̂(1)(κ

(R)
t − c(t− t̄)) + Λ̂(γ)(γ

(R)
t−x + c((t− t̄)− (x− x̄))) + ν̂Xt−x

In order to have R̂x,t = Rx,t, we require

• Λ̂(j) = Λ(j)
, i.e., that our sensitivities do not hange from one set of identi�ability

onditions to any other;

• ν̂Xy = νXy − c(λ(γ) − λ(1))(y − ȳ), i.e., we an add terms linear in year of birth

to the deterministi term without it fundamentally hanging form, and therefore

that our deterministi regressors ontain a linear trend in year of birth; and

• α̂
(∆)
x = α

(∆)
x − cλ(1)(x − x̄), i.e., we an add linear funtions to any parametri

form for α
(∆)
x without it fundamentally hanging form, and therefore that it must

be either non-parametri or have a linear funtion of age, g(2)(x) = x− x̄, amongst

the basis funtions used in any parametri restrition.

In addition to the identi�ability issues disussed here, it is also important that any para-

metri simpli�ation for α
(∆)
x onsists of more than one, onstant term. As disussed in

Tuljapurkar and Edwards (2009), multiple terms in α
(∆)
x allow higher moments of the

observable distribution of deaths in the sub-population (suh as the variane of age at

death) to be aptured by the relative model, as well as the di�erene in life expetany

between the two populations. These higher moments are important in the allowane for

idiosynrati risk in the sub-population, whih is likely to be important in many irum-

stanes, suh as those disussed in Chapter 10 .

We also see from the analysis above that the form of our deterministi regressors, Xy, will

depend upon the mortality model being used for the referene population. From Chap-

ter 4, if the model for the referene population ontains age funtions whih span the

21

e.g., x̄ = 1
X

∑

x x = 0.5(X + 1) and similarly for t̄ and ȳ.
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polynomials to order p, then there will be unidenti�ed polynomial trends in the ohort

parameters of order p + 1. We must therefore ensure that the deterministi regressors

in Equation 9.3 span the polynomials to order p + 1 and that any parametri simpli�-

ation for the age funtion, α
(∆)
x , also ontains a basis funtion of the form g(i)(x) = xp+1

.

For the lassi APC model and the models onstruted by the general proedure in

Setion 9.4.1 and Appendix 9.C, p = 0 and therefore we require that the deterministi

regressors and age funtion are, at least, of linear order. Similarly, for the redued Plat

model, p = 1, and therefore we would require that the deterministi regressors are at

least of quadrati order.

In summary, the identi�ability issues present in APC mortality models and disussed

in Chapters 3 and 4 have important onsequenes for the relative mortality modelling

approah used in this study. Most importantly, we require an additional νXy term in

the model and must be areful when speifying any parametri simpli�ation for α
(∆)
x , in

order to ensure that our results do not depend on the arbitrary identi�ability onstraints

we impose on the referene model. In the ontext of the referene model used in this

study, desribed in Setion 9.4.1, this means that we need the term

νXy = ν1(y − ȳ)

in Equation 9.3, and any parametri simpli�ation of α
(∆)
x must be of the form

α(∆)
x =

(

α(1), α(2), α(3), α(4)
)















f (1)(x)

f (2)(x)

f (3)(x)

(x− x̄)















=
N+1
∑

i=1

α(i)f̃ (i)(x)

where f (i)(x) are the parametri age funtions in the referene model, desribed in Table

9.1.
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9.C Models onstruted by the �general proedure� for the

UK

In Chapter 5, a �general proedure� for onstruting mortality models tailored to the

spei� features of individual datasets was proposed. In outline, this

• starts from a simple stati mortality model with a non-parametri stati age fun-

tion;

• sequentially adds age/period terms to the model to detet and apture the age/pe-

riod struture in the data:

� struture is deteted by adding a non-parametri age/period term whih will

identify the feature explaining the largest proportion of the remaining stru-

ture in the data;

� then this term is simpli�ed into a parametri form whih identi�es the same

feature more parsimoniously and with greater demographi signi�ane;

� then the statistial signi�ane and robustness of the term is tested;

• �nally adds a ohort term one all age/period struture has been aptured by the

model;

• tests the standardised deviane residuals of the model for any remaining struture,

independene, and normality.

This proedure was applied to data from the Human Mortality Database (2014) for men

and women in the UK for ages 50 to 100 and years 1950 to 2011 in order to onstrut

mortality models apable of apturing all the relevant information in the data and there-

fore allowing it to be projeted appropriately.

A brief desription of the terms in the models and their demographi signi�ane is given

in Table 9.1. A fuller list of the parametri age funtions in the �toolkit� developed as

part of the general proedure is given in the Appendix of Chapter 5.

As disussed in Setion 9.4, we also require additional identi�ability onstraints in order

to obtain a unique set of parameters when �tting the model to data. These are given

in Setion 9.4 and have been hosen to aid omparability between the models for the

referene population and the relative model in Equation 9.3.
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Figure 9.14: Correlations for sequential years and ages of the residuals from �tting

the model developed by the general proedure to data for the UK
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Figure 9.15: Heat maps of the residuals from �tting the model developed by the

general proedure to data for the UK

When �tting the �nal models, we obtain the parameters shown in Figures 9.1 and 9.2.

These models have BICs of −1.95×104 and −1.99×104 for men and women, respetively,

with 345 and 346 free parameters.

22

We also test the standardised deviane residuals

from �tting the model as part of the general proedure. The moments of the residuals

and a Jarque-Bera test of their normality is given in Table 9.6. We an see that the

residuals are lose to normal, although they are slightly leptokurti for both datasets

and therefore fail the relevant Jarque-Bera tests for normality at the 5% level (p-values

of 2.8% for men and 0.2% for women). We also see from Figures 9.14a and 9.14b that

there appears to be relatively little orrelation struture over onseutive ages, although

the residuals show signi�ant autoorrelations during the early part of the data range,

whih diminishes towards the end of the period of the data.

22

For omparison, the Lee and Carter (1992) model �tted to the same data obtains BICs of −2.71×104

and −2.69 × 104 with 161 free parameters for both populations.
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Residual Standard Residual Residual Jarque-Bera

mean deviation skewness kurtosis statisti

Men -0.01 0.94 -0.01 3.19 4.76

Women -0.01 0.94 -0.01 3.32 13.97

Table 9.6: Moments of the residuals from �tting the model developed by the general

proedure to data for the UK for men and women in the UK

The heat maps for the residuals shown in Figure 9.15 indiate that the residuals for both

sexes in the UK have very little remaining struture in them. There is possibly some

remaining struture around age 80 for both men and women, although this appears to be

spei� to only a few neighbouring years and therefore it is di�ult to add an age/period

term to apture this without over�tting the models
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Chapter 10

Transferring Risk in Pension

Shemes via Bespoke Longevity

Swaps

10.1 Introdution

The pensions de-risking industry has grown enormously in reent years, espeially in

the UK whih has pioneered many of the de-risking tehniques whih have sine beome

international. The sponsors and trustees of pension shemes

1

in the UK have inreas-

ingly looked to both redue or transfer the risks in providing de�ned bene�t pensions to

sheme members. This has inluded reviewing shemes' investment strategies to math

the timing and nature of the projeted ash�ows (alled �liability-driven investment� or

LDI) and limiting the arual of bene�ts to new and existing members of the sheme.

Indeed, the majority of private setor pension shemes in the UK are now losed to the

future arual of bene�ts, meaning that they are now solely responsible for managing

the run-o� of the legay bene�ts for members. In more reent years, the fous of this

de-risking has been to transfer the �nanial and demographi risks of the sheme to third

parties, either by a �buy-out� or a �buy-in�.

Longevity swaps were developed to hedge and transfer mortality and longevity risks

diretly, without referene to the other investment and �nanial risks present in the

sheme. The market for bespoke longevity swaps - those de�ned with referene to the

1

In this hapter, we refer to �pension shemes� whih administer the provision of retirement bene�ts

de�ned in terms of salary and servie to members. We would draw a semanti distintion between a

�pension sheme� and a �pension plan�, whih we would use as a more general term for any de�ned

bene�t or de�ned ontribution pension arrangement provided on either a group or an individual basis.
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spei� harateristis of the pension sheme membership - has grown exponentially to

over ¿50bn in the UK, whih urrently leads the world in this area.

2

In this hapter, we present a modelling framework suitable for assessing the various mor-

tality and longevity risks within a stylised pension sheme and the e�etiveness of a

bespoke longevity swap in reduing the risks faed by the sheme. In partiular, we fo-

us on the possible interations between the di�erent risk fators that in�uene mortality

rates, whih are often overlooked in existing studies. Sine this is the �rst study to look

at these issues in detail, some of the allowanes we make for these risk fators are approx-

imate in nature, and are based on our professional experiene of pensions onsultany

in the UK, advising on buy-ins, buy-outs and longevity swaps, rather than established

stohasti models. However, we are on�dent that the impat of these allowanes is

broadly reasonable and onsistent with our pratial experiene, but are aware that fur-

ther researh is required.

In order to ahieve a omprehensive analysis of these risks, we distinguish between

�longevity risk�, referring to systemati mortality-related risks in the pension sheme

(i.e., those relating to nation-wide and sheme-wide populations), and �mortality risk�,

is referring to those mortality-related risks whih are spei� to the individual members

of the sheme. We do this by �rst investigating the systemati longevity risk in the na-

tional population, before assessing the sheme-spei� longevity basis risks present and,

�nally, making appropriate allowane for individual harateristis and the idiosynrati

mortality risk. We apply this analysis to stylised pension sheme data, whih has been

generated to inorporate many of the features observed in real pension shemes.

The hapter is strutured as follows. First, in Setion 10.2, we review the markets for

pension sheme de-risking in the UK, and, in partiular, the market for bespoke longevity

swaps. In Setion 10.3, we disuss the data for the stylised pension sheme used in

this study. Setion 10.4 onsiders the modelling approah used to quantify the various

mortality and longevity risks present in this illustrative sheme. In Setion 10.5, we

ompare the future ash�ows alulated using the assumptions for mortality rates whih

are often made in pratie in the UK with those whih would be projeted as a �best

estimate� from the stohasti mortality models we use to assess mortality and longevity

risks and provide a bridge between the two. Then, in Setion 10.6, we measure the

ontribution of the di�erent stohasti mortality and longevity risks for the sheme, with

a partiular emphasis on the ost e�etiveness of a bespoke longevity swap in managing

2

For instane, see Hymans Robertson (2015).
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these risks. Finally, in Setion 10.7 we disuss our �ndings and their impliations for the

further development of the longevity swap market both in the UK and internationally.

10.2 Longevity swaps

Over the past deade, as the pereived importane of longevity risk has grown, a number

of new tools have emerged to allow pension shemes to manage this risk.

3

Originally, a

pension sheme wishing to transfer longevity risk to an insurer would have to do so via a

�buy-out�. This would involve purhasing either immediate or deferred annuities in the

name of eah sheme member mathing the members' arued bene�ts within the sheme.

Thus, the sheme would fully transfer all of the assets and liabilities of the sheme to the

insurer and disharge its obligation ompletely. Typially, this was very expensive, in

part due to limited ompetition in the market for buy-outs, whih meant it was usually

only done when the sheme was wound up following the insolveny of the sponsoring

employer. However, the emergene of new life insurers speialising in buy-outs in the

mid-2000s brought the ost down to some extent and, so, made buy-outs feasible during

orporate transations to extinguish the ongoing obligation of the aquiring ompany to

the pension sheme.

One major innovation in the pensions risk-management market was the development of

pension �buy-ins� as an alternative to the full risk transfer of a buy-out. A buy-in in-

volves the sheme purhasing an insurane ontrat whih is tailored to exatly repliate

the bene�ts payable to a subset of the sheme members (usually pensioners). Unlike a

buy-out, the insurane ontrat is an asset of the sheme rather than of the individual

sheme members. Payments from the buy-in ontrat are not earmarked for the spe-

i� members overed by the ontrat and, in the event of insolveny of the insurane

ompany, the sheme retains the obligation to provide bene�ts to the overed members.

Therefore, a buy-in represents an investment deision to purhase a (perfet) hedging

instrument for the future bene�t payments rather than a full transfer of the risk to an-

other party.

Unlike a buy-out, the sheme an purhase a buy-in for a subset of sheme members with-

out adversely a�eting those not overed by the ontrat (sine the preferential treatment

of one setion of sheme members is not permitted in the UK). This enables buy-ins in

respet of only the pensioner members of the sheme, rather than deferred members,

3

See Blake et al. (2013) for a more detailed survey of developments in the �new life market�.
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whih substantially redues the ost of a buy-in arrangement.

4

Furthermore, in a buy-

in, the sheme remains liable for members' bene�ts in the event of insolveny of the life

insurer. In pratie, however, most life insurers are onsiderably more reditworthy than

the sponsoring employers of the sheme purhasing a buy-in and poliyholders reeive

a high level of ompensation under the Finanial Servies Compensation Sheme in the

unlikely event of insurer insolveny, and so redit risk is onsidered negligible in the UK.

Sine a buy-in ontrat mathes the bene�t struture of the overed members exatly,

it mitigates the investment and in�ation risk as well as the demographi risks, suh

as longevity risk, in respet of these members. However, the sheme retains �nanial

and demographi risks for non-pensioner members, whih may be desirable if it feels it

an pro�t from the upside of these risks or they are too expensive to transfer immediately.

In ontrast, a �longevity swap� represents a pure transfer of longevity risk, with no mit-

igation of investment or in�ation risks.

5

As a onsequene, longevity swaps are usually

less expensive than buy-ins or buy-outs, and allow the sheme to bene�t from any upside

of the remaining risks present in the sheme. In the same manner as a buy-in, purhasing

a longevity swap is an investment deision for the sheme and so is usually obtained for

only a subset (typially, the retired members) of the sheme. However, the limited insur-

ane provided by a longevity swap may still be attrative for pension sheme trustees,

sine they often ite unertainty in the long-term evolution of mortality rates as a major

onern for the sheme.

As with all swap arrangements, the parties to a longevity swap agree to exhange the

di�erene between a �xed and �oating series of ash�ows. In a longevity swap, the

payments omprising the �xed leg of the swap are usually alulated with referene to

the best estimate of the projeted bene�t payments from the sheme in respet of the

relevant members.

6

These are typially assessed using an agreed, deterministi set of

assumptions for individual mortality rates, as well as other assumptions regarding the

rate of pension inreases, et. These best estimate ash�ows are then inreased by a

4

The future ash�ows for deferred pensioners are more unertain, sine they are of longer term and

beause deferred members retain options regarding their post-retirement bene�ts. Therefore, deferred

bene�ts are more expensive to insure.

5

Longevity swaps are also alled �longevity reinsurane� if they are strutured as an insurane on-

trat.

6

Tehnially, longevity swaps should therefore be alled �survivor swaps�, as in Dowd et al. (2006a),

sine what is being swapped is the survivorship of an agreed ohort. In priniple, swaps ould be

onstruted using other measures of mortality or longevity, suh as probabilities of death (�q-swaps�

in the same fashion as q-forwards in Coughlan et al. (2007b)) or period life expetany. In pratie,

however, the term �longevity swap� has ome to refer uniquely to swaps on survivorship and this usage

is adopted in this study.
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Figure 10.1: Illustrative ash�ows from a longevity swap (Soure: adapted from

Kessler (2014))

�longevity swap premium�. This premium is set to re�et the degree of risk aversion of

both parties, and, anedotally, swap premiums of between 3% and 5% are not atypial.

The �oating leg of the swap is set to be equal to the atual bene�ts paid by the sheme.

Suh an approah is said to be �bespoke�, i.e., tailored to the spei� harateristis of

the pension sheme.

Figure 10.1, adapted from Kessler (2014), shows an illustrative longevity swap.

7

However,

it is important to realise that, in pratie, the design of a longevity swap will also need

to allow for:

• survivor bene�ts for potential spouses and dependants of sheme members;

• the di�erent tranhes of pension arued by members (espeially in the UK, where

di�erent portions of the bene�t are subjet to di�erent rules for in�ationary in-

reases in payment);

• a method for adjusting the �xed leg ash�ows to re�et the di�erene between

atual pension inreases granted and those assumed at the ineption of the swap;

8

and

7

In Figure 10.1, �fees� refers to the longevity swap premium.

8

At ineption, the �xed leg of the swap will be spei�ed on the basis of a set of assumptions for

future inreases in pensions in payment. Therefore, the �xed leg will need to be revised subsequently to

re�et the di�erenes between this assumption and the atual inreases granted by the sheme, in order

to ensure that in�ation risk is not also transferred in the swap.
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• a ollateralisation mehanism to redue the risk of default for either party (see

Bi�s et al. (2014));

along with various other pratial issues. Therefore, longevity swap deals are usually

preeded by a lengthy proess of negotiation and data leansing, allowing these pratial

issues to be resolved before the ontrat is signed.

Longevity swaps were �rst developed to transfer risk between life insurers and the apital

markets, with the �rst swap between Friends Provident and Swiss Re in the UK in 2007.

Sine then, the market has evolved to beome dominated by the transfer of risk from

pension shemes to life insurane ompanies and reinsurers, the �rst being the Babok-

/Credit Suisse transation in 2009.

In ontrast to the bespoke swaps disussed above, muh of the aademi literature has

entred around so alled �standardised� or �index-based� longevity swaps. These have

the �xed and �oating legs of the swap agreement de�ned with referene to an agreed

standard ohort, usually based on the national population. In an index-based swap, the

�oating leg an be seen as being equivalent to the ash�ows from a lassi survivor bond

(Blake and Burrows (2001)), suh as the proposed EIB/BNP Paribas longevity bond in

2004 whih has been disussed in previous studies (e.g., Cairns et al. (2006a), Blake et al.

(2006) and Lin and Cox (2008)). See Dowd et al. (2006a) and Dawson et al. (2010) for

a fuller theoretial disussion of index-based swap agreements.

However, the index-based approah has not been popular with pension shemes to date.

The bespoke approah has the advantage that it avoids �basis risk�, whih arises beause

systemati di�erenes between the mortality experiene of the sheme and of the refer-

ene ohort an lead to inomplete risk transfer. Although some studies indiate that

basis risk may not be a signi�ant problem (e.g., Coughlan et al. (2011) and Cairns et al.

(2013)), there is still a widespread pereption that basis risk is an important soure of

risk in any index-based transation. Beause most pension sheme trustees are highly

risk averse, they prefer a more omplete risk transfer solution and favour bespoke ar-

rangements.

To date, longevity swaps are mainly targeted at larger pension shemes. Smaller shemes

�nd it more ost e�etive to ondut a full buy-out, whih transfers all the risks asso-

iated with running the sheme to a life insurane ompany, or a buy-in whih redues

risk partially. Large shemes, however, may �nd it di�ult to undergo a full risk transfer
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due to apaity onstraints within the life insurane setor. Larger shemes also have

the ability to take risks, suh as investment risk, whih they may be rewarded for, and

so wish to manage internally.

As ounterparties, the majority of the longevity swaps to date have involved either spe-

ialised life insurane ompanies, the insurane subsidiaries of investment banks (who

reinsure most of the transferred longevity risk) or diretly with reinsurers. Only a rela-

tively small amount of the longevity risk transferred to date has been transferred to the

apital markets. It ould be argued that longevity risk has beome more onentrated

and less well diversi�ed in the eonomy, sine it has moved from the balane sheets of

dozens of ompanies and onto the balane sheets of a small number of life insurers and

reinsurers. This onentration of risk may, therefore, have inreased the risk to maro-

eonomi stability. However, the ounter argument to this is that the longevity risk in

an oupational pension sheme is held by the orporate sponsor of the sheme, whih

may not fully understand the nature of the risk. Transferring longevity risk, in ontrast,

means that it has moved to the strongly regulated and highly apitalised balane sheets

of insurane ompanies whih have onsiderable expertise in managing suh risks, and

so redues the threat to maro-eonomi stability. At the urrent, early stage of devel-

opment in the market for longevity risk, it is unlear whih of these two onsiderations

is most important.

10.3 The stylised pension sheme

There have been a number of aademi studies of longevity risk in pension shemes, for

instane, Cossette et al. (2007) and Rihards et al. (2013). However, these have analysed

far larger shemes than are typial in the UK. The tehniques and solutions whih are

appropriate for suh shemes are therefore not diretly appliable to the situation in

whih most UK pension shemes �nd themselves.

This study onsiders longevity risk management for a pension sheme more typial of

those found in the UK. Membership data for pension shemes is not publily available

and so, for the purposes of this study, we have generated representative member data for

a stylised pension sheme. The proedure for doing this has been hosen to reprodue

many of the key features of real pension sheme data that are likely to have a signi�-

ant impat upon longevity risk, as disussed in Appendix 10.A. The advantages of this

approah are that we an simplify ertain aspets of the ompliated bene�t strutures
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Figure 10.2: Sheme membership by age
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Figure 10.3: Sheme membership by individual pension amount

seen in most UK shemes when these are unlikely to be relevant for the management

of longevity risk, and we an also avoid problems with data errors and anomalies. The

generation of stylised data also overomes data protetion issues, whih limit the ability

to share and analyse genuine member data.

In this study, we generate a stylised pension sheme with 2,000 members. Figures 10.2

and 10.3 give a summary of the numbers and total pension in payment of men and women

in di�erent age and salary bands. In our experiene, the patterns shown are typial of

UK shemes, with relatively high inequality in the amount of pension in payment aused

by the �nal salary struture.

9

The stylised sheme assumes:

9

One rule of thumb used in pratie, whih we have adopted, is that 10% or the members reeive

50% of the pension in payment or, equivalently, that 1% of the members reeive 25% of the pension in

payment. In this regard, UK pension shemes have an inome inequality roughly equal to that of the

wider UK eonomy (Institute for Fisal Studies (2014)).
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• equal numbers of men and women retiring at age 65;

• equal average pensions in payment for men and women;

• in�ationary inreases to pensions in payment;

10

• no dependants' bene�ts to spouses and hildren on the death of members.

We do not believe that any of these assumptions signi�antly a�et out onlusions.

11

It is important to note, however, that our stylised sheme is still large by UK standards.

With 2,000 pensioner members, it would omfortably be amongst the largest 20% of

UK pension shemes

12

even without any non-pensioner members. It is, therefore, of a

size where longevity risk management solutions, suh as longevity swaps are feasible, as

disussed in Setion 10.2, albeit at the lower end of the range seen to date. This makes it

of greater pratial interest for modelling ompared to smaller shemes whih have fewer

options to manage their longevity risks.

10.4 Modelling approah

In order to model the longevity and mortality risks in the stylised pension sheme, we

start from a set of deterministi �baseline� assumptions for mortality, representative of

the assumptions used by pension shemes in the UK for funding or aounting purposes.

These assumptions are typially based on standard tables and projetions of mortality

rates and often do not make any sheme-spei� or individual-spei� assumptions about

mortality rates.

We then move from this set of baseline assumptions to our deterministi �best estimate�

assumptions. This set of assumptions onsists of a number of di�erent parts. First, we

use the �general proedure� of Chapter 5 to onstrut models of mortality for the na-

tional UK population to at as a referene. Then, we use the �relative model� approah

desribed in Chapter 9 to model urrent mortality rates in the stylised sheme, assuming

that they are onsistent with those observed in the Self-Administered Pension Sheme

10

To avoid needing to model in�ation, all ash�ows shown in this study are expressed in real terms,

and a real disount rate is used to alulate present values.

11

Not allowing for dependants' pensions may understate the impat of longevity risk, sine it redues

the term of the liabilities. However, this is o�set by assuming equal numbers and equal bene�ts for men

and women: in reality, there are likely to be fewer women than men in a typial pension sheme, who

typially reeive smaller pensions in payment. Allowing for this would redue the term of the liabilities

relative to what we assume and, hene, these fators will tend to o�set eah other.

12

See The Pensions Regulator (2013b).
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(SAPS) data. In addition, we then make an allowane for individual mortality rates to

vary aording to the inome of the member. Thus, we an inorporate the features of

our stylised sheme, disussed above, into the projeted ash�ows.

To model the mortality and longevity risks in our stylised pension sheme, we need to go

beyond our deterministi best estimate set of assumptions and inorporate unertainty

stohastially. So that our results are internally onsistent, we need to ensure that the

best estimate assumptions represent the median output of fully stohasti models for

eah of the omponent mortality and longevity risks. Consequently, the stohasti mod-

els give an equal probability of positive mortality shoks as negative shoks relative to

this best estimate. This allows us to separate out our analysis in Setions 10.5 and 10.6

into two parts: the impat of hanging the model used to projet the most likely sheme

ash�ows and the riskiness of these ash�ows.

13

For some of the omponent mortality and longevity risks, we have well-established

stohasti models to allow for the unertainty in projeted mortality rates. For instane,

systemati longevity risk an be allowed for by projeting the parameters of the referene

models for the national population stohastially. However, for other assumptions, suh

as trend basis risk or the inome-related saling fators applied to spei� individuals, no

widely-used model exists. To assess the potential impat of unertainty in these assump-

tions, we make more approximate allowanes, in line with our own pratial experiene

of buy-out, buy-in and longevity swap transations. Whilst the spei� details of these

allowanes may appear ad ho, we have taken steps to ensure that their impat on the

projeted ash�ows is broadly reasonable. However, we believe that further researh into

these subjets is neessary.

10.4.1 The baseline set of assumptions

As a set of baseline assumptions we use:

• Male and female mortality rates in 2008 given by the S2PMA and S2PFA mor-

tality tables, graduated in Continuous Mortality Investigation (2014a) from data

weighted on an �amounts� basis (see Setion 10.4.2.3) from the SAPS study. These

tables are typial of those used by pension shemes in the UK for aounting and

13

We feel that this distintion is often overlooked, as �longevity risk� is sometimes used to desribe

the impat of moving from inappropriate deterministi assumptions to more realisti ones (e.g., Antolin

(2007) and Oppers et al. (2012)), as opposed to the unertainty in the realisti assumptions.
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funding purposes (The Pensions Regulator (2013a) and Sithole et al. (2012)), but

do not allow for sheme-spei� or individual-spei� mortality e�ets.

• Improvements in mortality rates are given by the CMI Projetion Model

14

with

a long-term rate of improvement of 1.5%. This model is widely used in the UK

and has beome the benhmark method of projeting mortality for funding and

aounting purposes (for instane, see The Pensions Regulator (2013b)) and the

long-term rate of improvement is broadly onsistent with the assumption used for

funding and risk assessment purposes.

10.4.2 Modelling mortality and longevity risks

We lassify the omponent mortality and longevity risks present in the stylised pen-

sion sheme into three broad ategories, with separate (but inter-related) modelling ap-

proahes for eah.

1. First, in Setion 10.4.2.1, we onsider mortality rates in the national population

in order to model the systemati omponents of longevity risk. In order to do so,

we use �referene models� onstruted using the �general proedure� desribed in

Chapter 5.

2. Seond, in Setion 10.4.2.2, we investigate the sheme-spei� longevity basis risks

present, in order to onsider the ways in whih mortality rates may be di�erent

in the pension sheme ompared to the national population. We do this via a

�relative� modelling approah, as disussed in Chapter 9.

3. Finally, in Setion 10.4.2.3 we allow for individual-spei� mortality risks, suh

as inome-related saling fators adjusting the mortality rates for an individual

sheme member and the idiosynrati mortality risk in the timings of individual

deaths.

Eah of these omponents an modelled stohastially to assess the magnitude of the

mortality and longevity risks present in the sheme, or deterministially to obtain the

best estimate set of assumptions desribed above.

10.4.2.1 The referene models for the national population

To model mortality rates in the UK national population, we use data from Human Mor-

tality Database (2014) and �referene models� onstruted using the �general proedure�

14

Desribed in Continuous Mortality Investigation (2009a,b) and updated in Continuous Mortality

Investigation (2013).
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of Chapter 5 for eah sex. These models are of the form

ln
(

µ
(R)
x,t

)

= α(R)
x +

N
∑

i=1

f (R,i)(x; θ(R,i))κ
(R,i)
t + γ

(R)
t−x (10.1)

where

• R ∈ {UKm,UKf}, i.e., we �t separate models for male and female mortality data.

• age, x, is in the range [50, 100], period, t, is in the range [1950, 2011] and, therefore,

that year of birth, y, is in the range [1850, 2010];

• α
(R)
x is a stati funtion of age;

• κ
(R,i)
t are period funtions governing the evolution of mortality with time;

• f (R,i)(x; θ(R,i)) are parametri age funtions (in the sense of having a spei� fun-

tional form seleted a priori) modulating the impat of the period funtion dynam-

is over the age range, potentially with free parameters θ(R,i)
;

15

and

• γ
(R)
y is a ohort funtion desribing mortality e�ets whih depend upon a ohort's

year of birth and follow that ohort through life as it ages.

The general proedure selets the number of age/period terms, N , and the form of the

age funtions, f (R,i)(x), in order to onstrut mortality models whih give a lose but

parsimonious �t to the data. This way, we aim to extrat as muh information as pos-

sible from the national population dataset and have spei� terms within the model

orresponding to the di�erent features of interest. This proedure was performed on

male and female mortality data from the UK for ages 50 to 100 in Chapter 9, where a

full desription of the �nal models and the tests performed on them an be found. In

that study, the general proedure seleted models with three age/period terms for both

men and women of the forms given in Table 10.1.

16

Systemati longevity risk

15

For simpliity, the dependene of the age funtions on θ(R,i)
is supressed in notation used in this

study, although it has been allowed for when �tting the model to data.

16

Demographi signi�ane, as used in Table 10.1, is de�ned in Chapter 2 as the interpretation of

the omponents of a model in terms of the underlying biologial, medial or soio-eonomi auses of

hanges in mortality rates whih generate them.
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Term Men Women

Desription Demographi Sig-

ni�ane

Desription Demographi Sig-

ni�ane

f (R,1)(x)κ
(R,1)
t Constant

age fun-

tion

General level of

mortality

Constant

age fun-

tion

General level of

mortality

f (R,2)(x)κ
(R,2)
t �Call� age

funtion

Older age mortal-

ity

�Call� age

funtion

Old age mortality

f (R,3)(x)κ
(R,3)
t �Put� age

funtion

Younger age mor-

tality

Gaussian

age fun-

tion

Younger age mor-

tality

Table 10.1: Terms in the referene models onstruted using the general proedure

for UK men and women ages 50 to 100

To projet mortality rates in the national population, we use a random walk with drift

for the di�erent period funtions

κt =
(

κ
(UKm,1)
t , . . . κ

(UKm,3)
t , κ

(UKf,1)
t , . . . κ

(UKf,3)
t

)⊤

κt = κt−1 + µ+ ǫt (10.2)

and an AR(1) around linear drift proess for the ohort parameters

γy =
(

γ
(UKm)
y , γ

(UKf)
y

)⊤

γy − β0 − β1y = R(γy−1 − β0 − β1(y − 1)) + εy (10.3)

By using multivariate time series of this form, we allow for any orrelation in mortality

improvements between men and women in the UK whih is observed in the historial

data. These time series proesses have been hosen to be �well-identi�ed� in the sense of

Chapters 3 and 4, i.e., the projeted mortality rates are independent of the identi�ability

onstraints imposed upon the model.

To give deterministi best estimate assumptions, we set ǫt and εy to be equal to zero

in future. We refer to the variation generated by allowing ǫt and εy to be (normally-

distributed) random variables we refer to as �systemati longevity risk�, beause it a�ets

all members of the UK national population and so annot be redued by pooling or di-

versi�ation.

Parameter unertainty
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In addition to systemati longevity risk, we also investigate the impat of parameter

unertainty in the referene population. This is the unertainty due to the fat that

the parameters in the referene model and the time series proesses are not known with

ertainty, but are estimates based on �nite data. We do not antiipate parameter un-

ertainty in the referene population to be partiularly large, sine there is a lot of data

available for the national UK population. However, it is important to allow for parameter

unertainty to avoid hierarhial issues in the relative model (as disussed in Chapter 9),

whih are due to the parameters in the relative model being estimated onditional on

the previously estimated parameters of the referene population. To allow for parameter

unertainty, we use the residual bootstrapping proedure of Koissi et al. (2006) to gen-

erate multiple realisations of the parameters in the referene model, whih are then used

to re-estimate the parameters of the time series proess in Equations 10.2 and 10.3.

10.4.2.2 The relative models for the sheme

The next stage of the modelling proess is to investigate the sheme-spei� fators whih

an in�uene mortality rates. We all this the �basis� for the sheme. We deompose

this basis into two parts:

1. the di�erenes in the urrent level of mortality rates between the national popula-

tion and the sheme, whih we all the �level basis�; and

2. the di�erenes in the rates of hange in mortality rates between the national pop-

ulation and the sheme, whih we all the �trend basis�.

The unertainty in the measurement of these two parts we refer to as the �level basis

risk� and �trend basis risk�, respetively.

Before we begin to model the basis for the stylised pension sheme, we must �rst simulate

exposures to risk and death ounts for the sheme, whih we an then �t a model to. We

assume that the stylised sheme is typial of the SAPS population and, therefore, use

data from the SAPS study in order to estimate the parameters in the relative model.

17

However, sine the SAPS dataset is far larger than any oupational UK pension sheme,

we need to resale this data to make it omparable with the size of the stylised sheme.

To do this, we assume that the sheme membership has remained onstant at eah age

for a period of twelve years prior to 2011 (i.e., the period of the SAPS data) to give

17

We are indebted to the Continuous Mortality Investigation for providing this data. For further

details see Chapter 9.
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exposures to risk.

We then generate best estimate death ounts for the sheme using these exposures using

the observed mortality rates in the SAPS data, i.e.,

D
(S)
x,t = E

(S)
x,t m

(SAPS)
x,t

where E
(S)
x,t are the assumed entral exposures to risk at eah age and year, andm

(SAPS)
x,t =

D
(SAPS)
x,t

E
(SAPS)
x,t

are the entral mortality rates observed in the SAPS populations.

This proedure gives us simulated data for the stylised sheme that is onsistent with

that from the SAPS study, whih we an then use to model the basis for the stylised

sheme. To do this, we use the �relative� approah developed in Chapter 9. This proposes

a model of the form

ln
(

µ
(S)
x,t

)

= α(R) + α(∆)
x +

N
∑

i=1

λ(i)f (R,i)(x)κ
(R,i)
t + λ(γ)γ

(R)
t−x + νXt−x (10.4)

where α
(∆)
x is the di�erene in the level of mortality between the two populations

18

and

the λ(j)
(j ∈ {1, 2, 3, γ}) orrespond to the �sensitivity� of the small population to the

fator j in the referene population.

19

Therefore, the de�nitions above imply that α
(∆)
x

ontrols the level basis for the sheme, whilst the λ(j)
ontrol the trend basis. Level ba-

sis risk and trend basis risk orrespond to the unertainty in estimating these parameters.

Level basis

Based on the results of Chapter 9, we restrit α
(∆)
x to be of parametri form, i.e.,

α(∆)
x =

N+1
∑

i=1

α(i)f̃ (R,i)(x)

where f̃ (i)(x) is an expanded set of the age funtions present in the referene model plus

an additional linear funtion required for identi�ability.

20

This means that, instead of

estimating separate values of α
(∆)
x at eah age, there are only N + 1 omponents, α(i)

,

18

For example, mortality rates in the sheme at age x might be onsistently 5% lower than those in

the referene population for all times.

19

For example, the sheme may experiene 90% of the hange due to κ
(R,1)
t in the national population.

20

See Appendix 9.B of Chapter 9 for a disussion of why this is neessary.
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for the level basis for the sheme for eah sex, whih makes the model onsiderably more

parsimonious. In Chapter 9, this was found to be neessary to avoid over-parameterising

the model, espeially for small population sizes.

This approah is oneptually similar to the standard atuarial pratie of speifying a

base mortality table by making a series of adjustments (given by α
(∆)
x ) to a standard

mortality table (in this ase, given by the referene models for the national population).

The estimation of α
(∆)
x in this study is onduted on a purely statistial basis, ompara-

ble to performing an analysis of the experiene data of the sheme. In pratie, however,

speifying the base table will also make use of more subjetive adjustments, e.g., to re-

�et the industry sheme members were employed in. Furthermore, the involvement of

a life insurer, with aess to greater volumes of data and more sophistiated modelling

tehniques, is likely to redue the unertainty in speifying the base table (i.e., the level

basis risk) onsiderably from what ould be ahieved by the sheme alone.

To allow for level basis risk, we adopt a similar approah to that used to allow for pa-

rameter unertainty in the referene population, i.e., we use a residual bootstrapping

proedure based on Koissi et al. (2006). To do this, we take the residuals from �tting

the relative model to the data for the sheme and use these to generate random death

ounts for the stylised sheme. To these, we re�t the relative model in Equation 10.4

to generate new estimates of α
(∆)
x .

21

Figure 10.4 shows the 95% on�dene intervals for

α
(∆)
x found using this proedure.

Sine α
(∆)
x is restrited to be a linear ombination of age funtions, the pattern of level

basis risk aross ages depends strongly upon the form of those age funtions. However,

we an see that the unertainty is greatest at the highest and lowest ages in the range,

due to the very low absolute numbers of deaths expeted at these ages. We also see that,

at most ages, α
(∆)
x is unlikely to be more than ±0.1 from its best estimate value. This

orresponds to a relative unertainty in the level of mortality rates of around 10% at

any age. However, there is a onsiderable �tail� to this distribution, whih means that

we are unable to rule out signi�antly higher or lower levels of mortality rates in the

sheme ompared with the national population. Comparing Figure 10.4 with Figure 9.5

in Chapter 9, we note that the basis risk for the sheme is signi�antly greater than for

the full SAPS population, due to its relatively small size. It is interesting to note that,

21

In addition, we use a bias orretion tehnique to ensure onsisteny between this proedure and

the deterministi best estimate assumption, sine otherwise the lower bound of zero deaths at any age

an give anomalous results.
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Figure 10.4: 95% fan harts showing the parameter unertainty in α
(∆)
x (level basis

risk)

while experiene studies onduted to quantify the level basis in pension shemes are be-

oming more ommon, it is less usual to see the unertainty in the level basis quanti�ed.

These results indiate that this unertainty in the level basis may be substantial, even

for a omparatively large pension sheme.

It is also interesting to onsider the tehnique proposed in the Solveny II standard

model for systemati longevity risk (EIOPA (2014)), whih is to redue the level of

mortality in the sheme by 20%. A ommon ritiism (e.g., Nielsen (2010) and Börger

(2010)) of this approah is that it is a poor proxy for systemati longevity risk, whih is

likely to emerge slowly over time rather than immediately as a one-o� shok. However,

the Solveny II standard model for systemati longevity risk ould be onsidered as a

senario for investigating the impat of level basis risk. We see from Figure 10.4 that a

20% redution in mortality rates lies within the 95% on�dene intervals for level basis

risk for most ages. Therefore, the model proposed by EIOPA (2014) an be onsidered

a reasonable proxy for investigating level basis risk in a pension sheme, despite its

shortomings as a proxy for systemati longevity risk.

Trend basis

We now onsider the potential trend basis in the stylised pension sheme. However,

doing so is very di�ult beause quantifying trend basis requires far more data than any

pension sheme is likely to have, as disussed in Chapter 9. Attempting to do so using

the relative model in Equation 10.4 would lead to an over parameterised model, and

parameter estimates whih are not robust (i.e., have very large parameter unertainty).

This would then lead to unfeasibly large estimates of the trend basis risk, whih an be
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ruled out on the grounds of biologial reasonableness.

22

For example, experiments with

this approah have led to senarios where life expetany at age 65 in the stylised sheme

rises rapidly to over 40 years or drops preipitously to almost zero.

For small populations of the same size as our stylised sheme, the relative modelling

approah in Chapter 9 showed a very strong preferene for restriting the model so that

λ(j) = 1 for eah of the age/period and ohort terms for both men and women. This

made the model onsiderably more parsimonious and robust when �tting it to data. For

the purposes of this study, we impose the same restrition, whih is equivalent to as-

suming that there is no trend basis in the sheme. Beause this makes the model more

robust, it also redues the unertainty in the estimation of α
(∆)
x (i.e., the level basis risk)

ompared with using an over-parameterised model.

Imposing λ(j) = 1 is equivalent to imposing a priori that there is no trend basis and

no trend basis risk between the referene and sub-populations. However neessary this

assumption is when obtaining the best estimate set of assumptions, we will need to relax

it and allow λ(j)
to vary when performing stohasti projetions to estimate the trend

basis risk. To do this, we use an informal proedure based on our desire for biologial

reasonableness. Various studies, suh as Lu et al. (2012) (espeially Tables 3 and 4) and

Haberman et al. (2014), have indiated that the magnitude of di�erenes between the

trend rate of improvement in mortality rates between various sub-populations and the

national population is of the order of 0.5% p.a..

23

To generate trend basis risk of around the orret magnitude, we allow λ(1)
to vary using

λ(1) ∼ N(1, σ2
λ)

where σλ ≈ 0.3. This also imposes Eλ(1) = 1, to ensure that the results of this proedure

are onsistent with our deterministi best estimate. Although this proedure is some-

what informal, we are on�dent that we obtain results whih are biologially reasonable

and are onsistent with the �ndings in the studies mentioned above. For simpliity, the

other saling fators in the relative models are not allowed to vary stohastially and so

22

The onept of biologial reasonableness was introdued in Cairns et al. (2006b) and de�ned as �a

method of reasoning used to establish a ausal assoiation (or relationship) between two fators that is

onsistent with existing medial knowledge�

23

In the referene models used in this study, the expeted rates of improvement are around 1.5% p.a.

in the referene population for both sexes, given by the drift of κ
(R,1)
t from the random walk proess in

Equation 10.2.
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are set equal to unity.

10.4.2.3 Individual mortality risks

Going beyond the national and sheme-spei� evolution of mortality, we also need to

onsider individual-spei� features of mortality rates, suh as the spei� mortality rates

for eah individual sheme member and their random time of death, whih we refer to

as mortality risks in the stylised sheme.

Individual inome-related saling fators

Mortality rates are likely to be di�erent for di�erent individuals, sine wealth and lifestyle

fators have an impat on longevity. Some of these fators will already be taken into

aount at the sheme level through the analysis of the basis. However, a pension sheme

is not a homogenous group of individuals, and this may have important onsequenes in

any assessment of the risks faed by the sheme. Of these fators, the orrelation be-

tween inome and life expetany will probably be the most important in modelling the

stylised sheme, sine individuals who are in reeipt of the largest pensions ontribute

most to the total sheme ash�ow.

24

In pratie, these fators are often taken into aount by using mortality rates from stan-

dard tables whih have been estimated on an �amounts� basis. This approah weights

the experiene of eah life under observation by the amount of pension in payment, and

so will give more weight to the highest inome pensioners. This means that tables esti-

mated on an amounts basis tend to give lower mortality rates than tables estimated on

the same data on a �lives� basis, i.e., where all lives under observation are given equal

weight. Suh an approah will give mortality rates that are appropriate for evaluating

liabilities on an aggregate basis (beause the weight eah life reeives in the liabilities is

also proportional to their pension amount). However, mortality rates estimated on an

amounts basis will not be appropriate for any spei� individual, whih may bias the

results of any member-by-member risk assessment for the stylised sheme.

24

We impliitly assume that an individual's pension is their only soure of inome and, therefore, that

inome and pension amount are synonymous.
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Alternatively, the orrelation between inome and longevity an be allowed for on an

individual basis by using mortality tables estimated on a lives basis (suh as given by

the relative modelling approah in Setion 10.4.2.2) and then using individual saling

fators, i.e., introduing fators, Kj for eah individual j, whih sale the mortality rates

experiened by an individual relative to the average sheme mortality

µx,t,j = Kjµ
(S)
x,t (10.5)

It is important to note that these saling fators are relative to the aggregate sheme mor-

tality rates, whih are, themselves, unknown. In some respets, these an be onsidered

as analogous to the �frailty� fators in Vaupel et al. (1979) or the results of performing

a Cox proportional hazard model (Cox (1972)).

Sine we are interested in allowing for the individual mortality risks in our stylised pen-

sion sheme as well as the systemati and sheme spei� risks, we adopt the latter

approah and use individual saling fators to allow for the orrelation between inome

and longevity. In pratie, the individual saling fators are often found by onduting a

�postode analysis�, where information on the address of the individual is used to make

inferenes about their wealth and lifestyle.

However, beause our stylised sheme is purely illustrative, we are not able to perform an

atual postode analysis. Instead, we use an approximate set of saling fators, whih are

broadly onsistent with the magnitudes of the inome-related saling fators in Villegas

and Haberman (2014) and Continuous Mortality Investigation (2012), and are onsistent

with our pratial experiene of the results of atual postode analyses. These saling

fators are based solely on inome, with an assumption that:

• The quintile of sheme members reeiving the largest pensions at retirement (pen-

sions over over ¿9,250 p.a. in our modelling) experiene mortality rates 70% of the

average for the sheme;

• The quintile reeiving the lowest pension amounts (between ¿3,000 and ¿3,500 p.a.

in our modelling) experiene mortality rates 130% of average; and

• The individual saling fator are linearly interpolated between 70% and 130% for

the middle quintiles.

This means that the median inome level (¿4,900 p.a.) orresponds to an individual

saling fator of 100%. This has the onsequene that the individual saling fators do
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not systematially bias the mortality rates that would be observed in the sheme when

all members are given equal weight, i.e., those given by an analysis onduted on a lives

basis. These individual saling fators are shown in Figure 10.5.
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Figure 10.5: Individual inome-related saling fators

To allow for unertainty in the individual saling fators in the stohasti model, we

assume

Kj = Kj,Best Estimate

× exp(Zj)

where Zj ∼ N
(

0, 10%2
)

Sine the saling fators are multipliative, this assumption avoids the possibility that

individual mortality rates ould be negative. It also ensures that the median of our

stohasti simulations orresponds to the best estimate saling fators disussed above.

However, it is important to note that, just as with the best estimate of these inome-

related saling fators, the risk attahed to them is illustrative. Even when a postode

analysis is performed on genuine member data, the unertainty in the saling fators is

rarely (if ever) quanti�ed. However, we believe that our approah is reasonable, sine

an error of 0.1 on the saling fator for an individual is omparable to an error of ten

perentage points of the inome distribution to whih the member belongs.

25

This is

realisti given the multiple soures of inome that pensions sheme reeive in pratie.

25

E.g., a saling fator of 110% as opposed to 100% would plae a member in the 40th perentile of

the inome distribution, rather than the 50th perentile.
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Idiosynrati risk

The models above allow us to estimate the mortality rates experiened by a sheme

member, by looking �rst at the national population, then at the sheme itself and �nally

on an individual basis, along with estimating the unertainty in these estimates arising

at eah stage. However, even if the mortality rates were known with ertainty, the time

of death of any spei� individual (and hene the total bene�ts paid to them) would still

be unertain. We refer to this unertainty as �idiosynrati risk�.

In prinipal, idiosynrati risk an be diversi�ed away and so should not be a signi�ant

risk for a suitably large sheme - see Milevsky et al. (2006). The stylised sheme in this

study has 2,000 members, whih is large by the standards of UK pension shemes. How-

ever, it is still important to allow for idiosynrati risk sine the stylised sheme ontains

a minority of members with large pensions, for whom the exat time of death will still

have an important impat on the projeted bene�ts paid by the sheme.

We allow for idiosynrati risk by onsidering eah member individually, with the ran-

dom future lifetime modelled as an inhomogeneous-Poisson proess subjet to a hazard

rate given by their modelled mortality rates.

10.5 Establishing the best estimate of sheme ash�ows

As disussed at the start of Setion 10.4, the �rst stage in our modelling approah is to

move from the baseline set of assumptions, typial of those used by pension shemes in

the UK for funding purposes, to the best estimate assumptions found from the model.

Quantifying the impat of hanging these assumptions is useful in assessing the potential

for misspei�ation of the �xed leg of the swap. Sine the best estimate assumptions are

those whih give an equal probability of positive and negative mortality shoks impating

the future sheme ash�ows (and hene the �oating leg), potential misspei�ation an

lead to systemati bias the net ash�ows from the swap in favour of either the pension

sheme or the swap provider.

To quantify the impat of this potential bias, we hange eah of the baseline assumptions

in turn and independently, i.e.,
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1. We use the mortality rates �tted by the relative model for the sheme in 2008

instead of those given by the S1PMA and S1PFA mortality tables.

2. We use the best estimate projetions of mortality for the national population with

no trend basis to projet mortality rates, instead of the CMI projetion model.

3. We use the inome-related saling fators to adjust individual mortality rates,

rather than using the sheme mortality rates for all members.

Figure 10.6 and Table 10.2 show the impat of these fators on the present value and

duration of the sheme ash�ows, individually and in aggregate, using a real disount

rate of 1.0% p.a..

PV (¿m) ∆ PV Duration (years) ∆ Duration

Baseline 284.7 - 10.6 -

2008 mortality rates 273.0 -11.7 10.3 -0.3

Projetion model 274.5 -10.2 10.2 -0.4

Individual saling fators 305.5 20.8 11.3 0.7

Best estimate 290.5 5.8 10.9 0.3

Table 10.2: Present values and durations of sheme ash�ows on the baseline and

best estimate sets of assumptions

As an be seen from Table 10.2, the present values of the liabilities are not signi�antly

di�erent under the baseline and best estimate assumptions, with a total di�erene of only

¿5.8m, or 2% of the present value of the liabilities. Looking at the pattern of ash�ows

in Figure 10.6, we see that the biggest di�erenes in the projeted ash�ows under the

baseline and best estimate sets of assumption our after 30 or so years of projetion

(i.e., after 2040), and so are heavily disounted and make relatively little di�erene to

the present value. In many ways, this is reassuring as it implies that the deterministi

assumptions used by shemes for funding purposes are not substantially overestimating

or underestimating the liabilities ompared with what ould be obtained using more so-

phistiated models. However, it is interesting to see that this is only true in aggregate,

and that the spei� mortality assumptions an make sizeable di�erenes to the present

value of the liabilities.

First, we see that the CMI Projetion Model with a long-term rate of improvement of

1.5% p.a. slightly overstates the projeted improvements in mortality ompared with

the referene model desribed in Setion 10.4.2.1, sine it give a present value for the

liabilities ¿10.2 higher than the best estimate assumption. This is beause, whilst the

best estimate assumption also gives improvements in mortality rates of around 1.5% p.a.,
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Figure 10.6: Projeted deterministi ash�ows using di�erent sets of assumptions

the pattern of improvements aross di�erent ages, ohorts and future years an be very

di�erent to that given by the CMI Projetion model. However, sine the CMI Projetion

Model uses a fundamentally di�erent approah to projet mortality from that used by

the referene model, it is reassuring that the di�erene in the liabilities between the two

models is relatively small.

In addition, we see from Table 10.2 that the impat of moving from the baseline assump-

tion for urrent mortality rates - i.e., moving from using mortality tables graduated from

the SAPS data on an amounts basis for all members to mortality rates from the relative

model estimated from the SAPS data on a lives basis with individual adjustments to

re�et the amount of pension in payment - broadly o�set eah other. This implies that,

in aggregate, the ommon pratie of using standard tables graduated on an amounts

basis gives a reasonable estimate of the liabilities ompared with one with individual

saling fators. Conversely, it also implies that the relatively rude method of obtaining

individual saling fators used in Setion 10.4.2.3 (whih was hosen to be onsistent with

our experiene of postode mortality studies in pratie) broadly repliates the observed

relationship between inome and longevity found in the SAPS data in aggregate.
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10.6 Assessing and omparing di�erent soures of risk

We now introdue the di�erent soures of mortality and longevity risk desribed in Se-

tion 10.4 to assess their impat and measure the variability of the ash�ows on the best

estimate set of assumptions shown in Setion 10.5. To quantify this, we estimate the

standard deviation of the present value of sheme ash�ows (i.e., the deviation around

the best estimate value of ¿290.5 shown in Table 10.2). This gives us a broad measure

of the total unertainty in the future ash�ows arising from the di�erent soures.

For a set of pension sheme trustees onsidering a bespoke longevity swap, another key

onsiderations is the insurane value of the swap. Assuming that the distribution of the

projeted ash�ows is roughly symmetrial at any future time, an atuarially fair swap

will have the �xed leg of the swap equal to the best estimate of the future sheme ash-

�ows. This would ensure that there will be an equal probability of the �oating leg being

greater than or less than the �xed leg (i.e., of a positive or negative net ash�ow from

the swap) and, hene, the swap would have zero expeted present value for both parties.

In pratie, the �xed leg ash�ows are set by inreasing the best estimate ash�ows by

the swap premium (whih we have set at 4%, onsistent with our pratial experiene

of swap arrangements), whih means that the swap has positive expeted present value

for the provider and negative expeted present value for the sheme. This re�ets the

premium the sheme is willing to pay to transfer risk to the swap provider.

A onsequene of this is that, in the short term, there is a high probability that the

sheme will make net payments under the swap arrangement (sine the short-term ash-

�ows will be the most ertain and so unlikely to be in exess of the �xed leg). Therefore,

the trustees may �nd it hard to explain the value of the swap as an insurane poliy

over the longer term to the other stakeholders of the pension sheme and, hene, have

di�ulty justifying entering into the swap.

To illustrate the insurane value of the swap, we alulate the probability of the sheme

reeiving a positive net payment from the swap in year t i.e.,

P (t) = P
[

Ct − 1.04CBest Estimate

t ≥ 0
]

(10.6)

where Ct is the projeted ash�ow from the sheme, for t ≤ 20. We onsider the esti-

mated values of P (t) for only the �rst twenty years of the swap arrangement beause
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most of the liabilities are expeted to have run o� by the end of this period and it ap-

proximates the upper limit of the timesales being onsidered by the deision makers

when a swap is being onsidered.

However, it is important to note that the insurane value of a longevity swap does not

solely depend upon the probability of the sheme reeiving a positive net payment. The

swap also has value even if no positive net payments are made, sine it allows the sheme

to �x the e�etive mortality rates experiened for the members overed by the ontrat.

This may be espeially desirable for shemes whih have had to hange their assump-

tions for future mortality rates at suessive funding valuations (almost always ausing

an inrease in the liabilities) and are willing to pay a premium to lok into a spei� set

of assumptions whih will not need revision going forwards and so obtain ertainty over

mortality rates.

We assess the di�erent mortality and longevity risks in the stylised sheme in two stages.

First, eah soure of risk is onsidered in isolation, setting all the other soures of risk

equal to their best estimates, to assess its relative importane.

26

One the risk soures

have been onsidered independently, all of the risks are ombined to fully assess the

potential mortality and longevity risks within the stylised sheme and, hene, the ability

of a longevity swap to transfer them e�etively. It is important to note that, beause

the allowane for many of these risks is quite approximate, our results are subjet to

onsiderable model risk.

27

10.6.1 Systemati longevity risk

In Setion 10.4, we de�ned systemati longevity risk as the risk arising from the stohas-

ti projetion of the period and ohort funtions for the referene UK population using

the time series proesses in Equations 10.2 and 10.3. Figure 10.7a shows the 95% pro-

jetion intervals for the projeted (real) ash�ows of the sheme allowing for this risk,

where the median value is equal to the ash�ows on the best estimate set of deterministi

assumptions shown in Figure 10.6. To highlight the pattern of unertainty in the pro-

jeted ash�ows, Figure 10.7b shows the di�erene between these ash�ows and the best

26

For instane, to allow for systemati longevity risk, we projet the period and ohort parameters for

the referene populations stohastially using Equations 10.2 and 10.3, but do not allow for parameter

unertainty, set the parameters of the relative models equal to their best estimate (without any allowane

for unertainty and, hene, basis risk), use the best estimate individual saling fators and do not allow

for idiosynrati risk.

27

De�ned as the unertainty aused by our model being an approximation to the true underlying

proesses governing the phenomenon in question, as disussed in Cairns (2000).
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Figure 10.7: Impat of systemati longevity risk on projeted sheme ash�ows

estimate (i.e., the net payments from a swap with no premium). Thus, the magnitude of

the unertainty in the projeted ash�ows for any future year an be assessed. Overall,

the standard deviation of the present value of the sheme ash�ows (using a real disount

rate of 1.0%) due to systemati longevity risk is ¿13.6m, or . 4.7% of the best estimate

present value of ¿290.5m shown in Table 10.2.

We see that the main impat of allowing for stohasti mortality projetions is in ash-

�ows due to take plae in around twenty years' time. This is not surprising, given that it

takes time for the unertainty in the projeted mortality rates due to systemati longevity

risk to give a notieable e�et. This is beause it �rst takes time to �rst generate larger

di�erenes in mortality rates, and only then, when these are signi�ant, ompound these

di�erenes in mortality rates into signi�ant di�erenes in the projeted ash�ows.

We also �nd that, looking at systemati longevity risk alone, the probability that the

sheme reeives a positive net ash�ow, P (t) in Equation 10.6, stays relatively low (lose

to zero) for the �rst eleven years of the swap arrangement, but then grows steadily beyond

this. This may be of interest, sine systemati longevity risk is often a major onern to

pension sheme trustees, and so they need to be aware that a longevity swap only has

signi�ant insurane value against this risk after a deade or so. In addition, an index-

based longevity swap (whih would only o�er protetion against systemati longevity

risk) would have similar issues and so ould only be regarded as providing insurane only

over longer time periods.
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Figure 10.8: Impat of level basis risk on projeted sheme ash�ows

10.6.2 Parameter unertainty

Parameter unertainty in the referene population has only a very small impat on the

projeted ash�ows of the sheme, with a standard deviation in the present value of the

ash�ows of ¿0.5m (0.2% of the best estimate present value). This is unsurprising, for

the reasons disussed in Setion 10.4.2.1, namely that the referene population is large

and therefore gives reliable parameter estimates. However, it is important to allow for

parameter unertainty in the referene population due to the hierarhial nature of the

relative model, as disussed previously.

10.6.3 Level basis risk

The impat of level basis risk on the projeted sheme ash�ows is shown in Figure 10.8.

The standard deviation of the ash�ow present value is ¿27.4m, or . 9.4% of the best

estimate value, whih is large relative to the other risks we investigate. This should not

be surprising, given that the high degree of unertainty shown in Figure 10.4 and the

fat the level basis risk will impat the sheme ash�ows immediately, rather than taking

time to develop as maro-longevity risk and trend basis risk do.

One interesting feature in Figure 10.8b is the asymmetry of the on�dene intervals, as

shown by the peak of the �downside� risk from the point of view of the sheme (i.e.,

sheme ash�ows being greater than expeted) is both higher and ours seven years

after the peak of the �upside� risk (in 2043 ompared with 2036). We onjeture that

this is partly beause the ash�ows from the sheme are bounded below by zero, so se-

narios with high mortality rates run the liabilities o� quiker than the senarios with low
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mortality rates.

Furthermore, α
(∆)
x is related to the projeted sheme mortality rate exponentially (i.e.,

µ
(S)
x,t ∝ exp

(

α
(∆)
x

)

). This means that, even if the level basis risk in α
(∆)
x is symmetrial

around its best estimate, the impat on the sheme mortality rates will be asymmetrial.

In addition, the asymmetry will be in�uened by the interation between the basis in

the sheme, the individual saling fators and the amount of pension in payment for

individuals. This undersores the point that it is important to take aount of as many

mortality-related fators as possible when modelling a pension sheme, sine they are

likely to interat in a highly ompliated fashion.

Looking at the probabilities of the sheme reeiving a positive net ash�ow, we �nd that

level basis risk is a shorter term risk fator than systemati longevity risk. Although

P (t) is very small for t ≤ 8, meaning that level basis risk on its own is unlikely to result

in a positive net payment for the sheme, it grows rapidly after eight years (in ontrast

to systemati longevity risk whih only gave signi�ant probabilities of a positive net

payment after around eleven years). This is not surprising, sine unertainty in the level

of mortality rates will a�et the sheme ash�ows immediately, as opposed to needing to

be ompounded as in the ase of systemati longevity risk. Hene, we �nd that more of

the risk transfer provided by a bespoke longevity swap in the short term will be due to

level basis risk than systemati longevity risk, in addition to level basis risk being greater

overall.

However, we note that our estimates of level basis risk have been derived from a statistial

analysis of the sheme itself. In pratie, the involvement of a life insurer in modelling

the best estimate of the ash�ows will give the sheme aess to more data and more

sophistiated tehniques for evaluating the level basis, and this should help redue the

level basis risk from the magnitudes found in this study. This means that the proess of

entering into a longevity swap (or, indeed, a buy-in) an help redue the mortality and

longevity risks the sheme faes in exess of just the insurane value of the ontrat.

10.6.4 Trend basis risk

The impat of trend basis risk on the projeted ash�ows of the sheme is shown in

Figure 10.9, with a standard deviation for the present value of ¿8.0m or approximately

2.8% of the best estimate liability value of ¿290.5m. This suggests that trend basis risk
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Figure 10.9: Impat of trend basis risk on projeted sheme ash�ows

is a moderately sized risk ompared with the other risks modelled in this study.

As disussed in Setion 10.4.2, measuring trend basis risk is very di�ult, due to the fat

that estimation of the trend basis is itself very di�ult. Although we have used a proe-

dure whih we believe gives results that are biologially reasonable and onsistent with

those in other studies, there is substantial model risk in our approah. In addition, trend

basis risk is a key onern for many pension sheme trustees, and anedotally is believed

to be a major limiting fator holding bak the development of a market in index-based

longevity swaps.

However, we believe that the overall impat of trend basis risk we �nd is reasonable. In

partiular, we note that our �ndings are broadly onsistent with the results of Villegas

and Haberman (2014), whih found that allowing for trend di�erenes in di�erent soio-

eonomi groups makes less than a 1% di�erene in the present value of annuity values

at higher ages. Villegas and Haberman (2014) suggested that �assuming the absene

of improvement di�erentials in mortality is in priniple reasonable in the valuation of

annuities�, whih is onsistent with not allowing for trend basis risk in the best estimate

assumption.

We also observe, from looking at P (t), that trend basis risk is a omparatively long-

term risk for the sheme, for similar reasons as systemati longevity risk. Furthermore,

beause trend basis risk is of smaller magnitude than systemati longevity risk, we �nd

that only a small omponent of the insurane value of the swap is in respet to trend

basis risk even in the long term.
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Figure 10.10: Impat of unertainty in individual salings on projeted sheme ash-

�ows

10.6.5 Unertainty in the individual inome-related saling fators

The projeted ash�ows of the sheme and the swap allowing for unertainty in the indi-

vidual inome-related saling fators are shown in Figure 10.10.The standard deviation

in the present value of the ash�ows due to the unertainty in the individual inome-

related saling fators is only ¿0.6m (0.2% of the best estimate present value).

This result may be surprising, given the impat that the individual saling fators made

on the best estimate of the ash�ows in Setion 10.5. This explanation may, in part,

be beause the approah we use to allow for unertainty in the individual saling fa-

tors allows for more unertainty for individuals with high saling fators than for those

with low saling fators, due to the use of the lognormal distribution. Individuals with

high saling fators are those with the smallest amount of pension in payment, and so

this unertainty makes omparatively little impat on the projeted sheme ash�ows.

However, we should be aware that the approah we have used to allow for unertainty in

the inome-related saling fators is quite informal and, while we believe the magnitude

of the impat is reasonable, more researh is required in order to fully understand the

potential unertainty in any method of assigning individual saling fators for mortality.

Despite this proviso, our results indiate that the most important fator in the analysis

is the relationship between higher inome and lower mortality rates: adding unertainty

to the latter redues the strength of the relationship but does not eliminate it. To illus-

trate, it is important to reognise that high-inome pensioners have lower than average

mortality rates, but the amount lower (e.g., whether their mortality rates are 30% or 35%
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Figure 10.11: Impat of idiosynrati risk on projeted sheme ash�ows

lower) is less important when making projetions for the sheme. In other words, it is im-

portant to build into the model the assumption of lower mortality rates for high-inome

pensioners, but the preise quantum of the relationship is less important.

10.6.6 Idiosynrati risk

The projeted ash�ows of the sheme and the swap allowing for idiosynrati risk in the

timings of individual deaths are shown in Figure 10.11. As an be seen, idiosynrati

risk is an important risk in the ontext of the sheme, with a standard deviation for the

present value of ¿6.8m or . 2.3% of the best estimate value. This might be surprising

given that there are 2,000 members of the sheme and the results of Aro (2014) and Don-

nelly (2014) apparently suggest that idiosynrati risk dereases rapidly with sheme size.

However, both of these studies assumed that all members reeived the same amount of

bene�t in payment, and, therefore, weighted all lives equally. We �nd that the diver-

si�ation of idiosynrati risk is less e�etive when the lives are not equally weighted,

espeially in the ase when the amount of pension in payment di�ers greatly between

sheme members, as it does here. This means that diversi�ation and the appliation

of the law of large numbers is less e�etive. This is reinfored by the assumption that

higher-inome pensioners (with greatest weight) have a lower probability of death in any

given year. Aordingly, we believe that most pension shemes are still subjet to onsid-

erable idiosynrati risk, espeially in regard to the members with the largest amounts

of pension in payment.

It is also interesting to note that the pattern of variability due to idiosynrati risk

is unlike that for the other risks, with a on�dene interval for the ash�ows whih is
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relatively large after only a ouple of years and then stays at around this width for

deades. This is beause most of the idiosynrati risk will be assoiated with the timing

of the death of a relatively small number of individuals with large pensions, whih is a

risk that does not grow with time. Therefore, in the short run, this idiosynrati risk is

likely to be the dominant risk a longevity swap provides insurane against.

10.6.7 Summary

Figures 10.7b, 10.8b, 10.9b, 10.10b and 10.11b give some indiation of the relative im-

portane of the di�erent mortality and longevity risks in the sheme. A summary of the

information for eah individual risk fator, along with the total impat all risk fators

have in aggregate for the sheme, is shown in Table 10.3 and Figure 10.13. We note that

these risks are largely independent of eah other and, hene, that the total variane of

the present value of the sheme ash�ows is roughly equal to the sum of the varianes

for eah individual risk fator. Of ourse, this implies that the standard deviations of

the present values are not additive, as shown by the �Diversi�ation� item in Figure 10.13.

Risk

StDev(PV ) P (2022) P (2032)
(¿m)

Systemati longevity risk 13.6 1% 32%

Parameter unertainty 0.5 0% 0%

Level basis risk 27.4 9% 36%

Trend basis risk 6.8 0% 17%

Unertain inome-related saling fators 0.6 0% 0%

Idiosynrati risk 10.8 6% 20%

All risks 32.8 19% 38%

Table 10.3: Impat of di�erent mortality and longevity risks on the present value of

sheme ash�ows and the probability of a positive net payment from the swap

As an be seen, the most important risk fator in terms of the standard deviation of

the present value of the sheme ash�ows is level basis risk, with systemati longevity

risk, trend basis risk and idiosynrati risk as the next most important risks. We also

see that the swap provides signi�ant value as an insurane poliy in the shorter term,

with a 19% probability of the sheme reeiving a positive net ash�ow in the tenth year

sine the ineption of the swap, whih doubles to 38% over a 20-year time horizon. After

ten years, the main ontributors to the probability of a positive net ash�ow are level

basis risk and idiosynrati risk, sine these impat the ash�ows immediately. However,

over the longer term, both systemati longevity risk and trend basis risk also provide

signi�ant ontributions to the insurane value of the swap.
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Figure 10.12: Impat of all mortality and longevity risks on projeted sheme ash-

�ows
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Figure 10.13: Contribution of eah risk fator to total mortality and longevity risks

for the sheme

It is also interesting that these result go a long way to explaining why pension sheme

trustees prefer bespoke to index-based longevity swaps. An index-based swap only hedges

the systemati omponent of the longevity and mortality risks present in the sheme,

whih is a minority of the total risk. Sine these other risks are unrewarded (unlike

investment risk, where pension shemes expet to earn a premium for holding the risk),

it makes sense to transfer them as well as the systemati longevity risk via a bespoke

longevity swap, rather than ontinue to hold and manage these risks internally. This is

disussed further in Setion 10.7.

We also note that level basis risk and idiosynrati risk are both, in theory, redued by
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inreasing the size of the sheme. This would allow the sheme to diversify the idiosyn-

rati risk and obtain more preise parameter estimates for the level basis. This is the

most ommon explanation for why level basis risk and idiosynrati risk are often over-

looked in studies of risk in pension shemes. However, in pratie, inreasing the size of

the sheme would have to be ahieved by either enrolling new members into the sheme

or by merging di�erent oupational sheme together. Enrolling new members into the

sheme would require the support of the orporate sponsor of the pension sheme, and is

unlikely to our, espeially now that most de�ned bene�t pension shemes in the UK are

losed to new members. Furthermore, merging shemes is administratively omplex and

requires the onsent of numerous stakeholders whih may be di�ult to obtain, espeially

as most shemes are in run-o� with a view to being bought out eventually. In pratie,

therefore, a pension sheme's ability to inrease its size is limited and, hene, level ba-

sis risk and idiosynrati risk remain important risks for the majority of pension shemes.
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Figure 10.14: Probability of a positive net ash�ow to the sheme

Figure 10.14 shows P (t), the probability of the sheme reeiving a positive net ash�ow

from the swap (i.e., the stohastially projeted ash�ows of the sheme are greater than

104% of the best estimate ash�ows) in the �rst twenty years after ineption allowing

for all the di�erent risks models. As expeted, this probability grows monotonially with

time. However, a sheme entering into a longevity swap would need to wait around �ve

years before there is a signi�ant probability of reeiving a positive net ash�ow from the

swap. This might make it harder for the trustees of the sheme to justify entering into

the swap to other stakeholders in the pension sheme, suh as the orporate sponsor.

This is beause in the early years, the sheme is making signi�ant net payments to
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the swap provider but reeiving little protetion against mortality and longevity risks in

return.

Nevertheless, the bespoke longevity swap still has substantial value as an insurane poliy,

however, sine the probability of the sheme reeiving a positive net ash�ow from it rises

rapidly to around 40% after around twenty years. However, many of the shemes entering

into longevity swaps have a phased de-risking plan, of whih longevity risk transfer is just

one stage and the last step is a full buy-out. Depending on the timesales of the plan, it

may not make sense to purhase stand-alone insurane against mortality and longevity

risks that ould take deades to materialise. Therefore, the timesales of the trustees'

plans regarding the de-risking of the sheme will in�uene whether or not they onsider

a bespoke longevity swap to o�er su�ient value as a long-term insurane poliy to be

justi�able.

10.7 Conlusions

The market for bespoke longevity swaps has grown rapidly in the UK and shows no signs

of slowing down in the near future. In this study, we investigate the impat of various

mortality and longevity risks in the ontext of a stylised pension sheme, in order to

assess the potential for a longevity swap to transfer these risks from the sheme.

On balane, we believe that bespoke longevity swaps are valuable risk management tools

for pension shemes, sine the risks that they transfer are large relative to the size of

the projeted ash�ows. However, we �nd that the risk fators whih are often given as

the main reasons for entering into a longevity swap, suh as systemati longevity risk or

trend basis risk, do not represent the majority of the risk being transferred. In ontrast,

other major risks transferred, suh as level basis risk and idiosynrati mortality risk, are

not often given by pension sheme trustees as motivations for entering into a longevity

swap. This may be beause it is assumed that, for a large sheme, these fators an be

either be measured aurately or diversi�ed away. Sine the stylised sheme investigated

in this study is omparatively large by UK standards, it may appear surprising that we

still �nd that idiosynrati risk and level basis risk are still the largest risk fators present

in the sheme. However, there are several reasons why they remain more signi�ant than

might be expeted, even for a omparatively large pension sheme.
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In respet of idiosynrati risk, the heterogeneity of the membership in most pension

shemes means that the idiosynrati risk is not diversi�ed away as e�etively as might

be believed. A typial pension sheme will have a few members with large pensions who

ontribute most to the liabilities. A great deal of risk attahes to these individuals, whih

is not signi�antly diversi�ed by inreasing the number of sheme members with rela-

tively low amounts of pension in payment. In addition, sine these individuals are likely

to live longest (due to the positive relationship between inome and life expetany), this

risk is magni�ed.

In respet of level basis risk, we note that although the level basis itself is frequently

estimated for pension shemes via an experiene study or by onsidering the oupation

of sheme members, there has usually been less attention paid to quantifying the uner-

tainty in this estimate. Performing an experiene study but not adequately measuring

the unertainty in its �ndings gives an illusion of ertainty, yet the unertainty in the

estimate of the basis is likely to be highly signi�ant. This is due to the relatively small

number of members in most pension shemes and the often short periods of observation

used for a typial experiene study. Failing to quantify the unertainty in the estimate

of the basis has the e�et of substantially underestimating the level basis risk, and hene

the total risk, in the sheme. As disussed in Setion 10.6.3, the involvement of a life

insurer an help redue level basis risk simply by using more data and more sophisti-

ated tehniques to estimate the level basis. However, the unertainty in these estimates

should still be quanti�ed in order to aurately measure and manage the mortality and

longevity risks in the sheme.

In ontrast, systemati longevity risk and trend basis risk, whih are often given as the

major risk fators pension sheme trustees are trying to transfer in a longevity swap,

are smaller than might be expeted. This is mostly beause these risks take substantial

time to emerge and dominate the unertainties in urrent mortality rates, by whih time

many of the sheme members will have died. These risks are, therefore, likely to be

more important when onsidering the deferred members of a pension sheme. However,

deferred members are usually not overed by a bespoke longevity swap, partly due to the

additional longevity risk for these members but also beause they often retain options as

to what bene�ts they will reeive after retirement (reating additional and unquanti�able

unertainty).
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These results also have signi�ant impliations for the emergene of a market in index-

based longevity swaps, whih would only transfer the systemati longevity risk. Index-

based swaps would, therefore, appear to o�er omparatively poor risk transfer in the

majority of realisti situations for pension shemes and so it is not surprising that none

have been transated with pension shemes to date.

28

However, index-based swaps an

still provide e�ient transfer of systemati longevity risk for the very largest pension

shemes to life insurers, between life insurers or between life insurers and the apital

markets. In these situations, an index-based transation ould be onduted at lower

ost than a bespoke swap, and life insurers or very large pension shemes are better

able to diversify and manage the remaining mortality and longevity risks present in the

provision of annuities and pension bene�ts.

Furthermore, we �nd that the ontribution of trend basis risk to the total risk for the

sheme is relative modest, in ontrast to level basis risk. This result should be treated

with some aution, sine we also �nd that it is very di�ult to quantify trend basis

risk objetively, whih is also onsistent with the �ndings of Haberman et al. (2014),

i.e., that assessing trend basis risk in a pension sheme is not pratial for shemes with

fewer than 25,000 members or less than eight years of reliable experiene data. However,

we are on�dent that the magnitude of the risk we �nd is reasonable. The di�ulty

in measuring the importane of trend basis risk may be one reason that it is of greater

onern for many trustees of pension shemes than many of the better understood risks,

sine it is an �unknown unknown�. Nevertheless, our results should provide some omfort

that trend basis risk is manageable for most shemes.

We also �nd that allowing for individual saling fators to aount for inome-related

mortality e�ets is very important in projeting the best estimate of the sheme ash-

�ows. However, while making a broad allowane for the relationship between inome

and mortality is important, we �nd that the preise quantum of the relationship is less

important. In pratie, this means that results obtained using publily available data

soures on the relationship between mortality rates, inome and loation are not too

dissimilar from those obtained from more expensive postode analyses whih make use

of proprietary data. We, therefore, hope that this enables smaller shemes to allow for

this relationship without inurring the additional osts assoiated with a full postode

analysis.

28

We note, however, that the transation between Pall (UK) and JP Morgan in 2011 used standardised

q-forwards to hedge longevity risk for deferred members, see Blake et al. (2013).
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Our �ndings indiate that entering into a bespoke longevity swap is more advantageous

for smaller pension shemes, sine the largest mortality and longevity risks are those

whih ould, in priniple, be diversi�ed. This on�its with the fat that most of the

deals to date have involved omparatively large shemes (larger than the stylised sheme

used in this study). In addition, to provide a greater transfer of risk, smaller longevity

swap transations would also give greater sope for individual underwriting of sheme

members, whih has only ourred in buy-out and buy-in deals to date (see Blake and

Harrison (2013)). The use of individual underwriting would redue the potential un-

ertainty in the individual saling fators and the overall level basis for the sheme.

However, individual underwriting is less pratial for very large shemes and so has not

been a feature of the longevity swaps transated to date.

If the market for bespoke longevity swaps moves to targeting smaller oupational pen-

sion shemes in future, we believe that longevity swaps (as well as buy-ins and buy-outs)

will be largely bene�ial in managing longer-term longevity risks in the eonomy. The

reasons for this are twofold. First, it will help with the transfer of longevity risk from the

lightly regulated oupational pension sheme setor to the better apitalised insurane

setor. The reent �nanial risis undersored the importane to the stability of the

eonomy of adequate apital being provided to support risks. Hene, transferring risks

from underfunded oupational pension shemes to well-apitalised insurane ompanies

is likely to improve overall eonomi stability in respet of unforeseen longevity shoks.

Seond, buy-outs, but-ins and longevity swaps perform an important role in the aggrega-

tion of longevity risk, sine an insurer transferring risk from many di�erent shemes will

be able ahieve the sale needed to diversify idiosynrati risk and obtain more ertain

estimates of any level basis. Furthermore, most insurers have aess to better tools to

measure the sheme-spei� and individual-spei� mortality fators than a typial pen-

sion sheme, meaning that these risks an potentially be better managed in the insurane

setor.

However, this aggregation proess will still leave the insurer exposed to undiversi�able

systemati longevity risk. Aordingly, we see the management of longevity risk our-

ring in a two-stage proess, with the full range of mortality and longevity risks �rst being

transferred to the insurane setor, and then the systemati longevity risk being trans-

ferred onwards to investors in the apital markets who would otherwise not be exposed

to it. In order to ahieve this seond step, it is important that longevity-linked seuri-

ties indexed to national population data, suh as index-based longevity swaps, exist to

enable them to manage this undiversi�able risk, whilst the insurer retains those risks it
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an diversify and manage.

In summary, we believe that, for many UK pension shemes, it is worth buying a longevity

swap. However, it is important to fully assess the mortality and longevity risks in the

pension sheme in order to determine whih risks being transferred are the most impor-

tant, as they may not be those typially given as reasons for entering into a swap.

10.A Sheme data generating proess

To generate data for the stylised pension sheme, we start by speifying the total number

of sheme members drawing pensions. We set this as 2,000, whih represents a sheme

in the largest 20% pension shemes in the UK aording to The Pensions Regulator

(2013b). This number was hosen as it would typially be expeted to give total pen-

sioner liabilities of . ¿250m, whih is at the lower end of the range of shemes whih

has been targeted for longevity swaps to date.

We then populate the sheme with members aording to ertain riteria, in order to

give a realisti membership pro�le. First, we assume that eah member being popu-

lated has an equal probability of being male or female. Next, we assign the member a

retirement date randomly, with these dates distributed between zero and 25 years ago.

The probability density of this distribution is assumed to derease linearly to be zero for

retirement beginning 25 years previously, i.e., members are more likely to have retired

reently, onsistent with a sheme whih is maturing. From this, member ages an be

alulated based on a retirement age of 65, whih is typial for many shemes in the UK.

This gives pensioner ages between 65 and 90, where 90 is the maximum age in the SAPS

data used in our analysis and so makes a suitable hoie for the ut o� in retirement dates.

This proedure populates a large number of members who would have retired from the

sheme. Clearly, not all members who retired would have survived to the present day.

To allow for this, we need to allow approximately for mortality between retirement and

the urrent date. To do this, we use mortality rates for the UK national population in

2011 to estimate the survival probability of the member from retirement to the present.

29

The survivorship of an individual is then modelled as a Bernoulli random variable with

29

This impliitly assumes that mortality rates have remained onstant over this period for simpliity.

This assumption overstates the survivorship of individuals as it will not re�et the mortality improve-

ments over the retirement period experiened by real pensioners, and so result in our stylised sheme

being slightly older than is typial.
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the estimated survival probability. Only members who are urrently alive are inluded

in the data, and we ease generating new members when we have 2,000 living individuals.

For eah living member, we then alloate them to an inome perentile at retirement.

This is determined by a uniform random variable between zero and one, whih we then

use to assign an individual saling fator in the manner desribed in Setion 10.4.2. From

this inome perentile, we generate a pension amount for the member based on an as-

sumed distribution for inome at retirement today. Pension amounts are assumed to be

distributed aording to the Pareto distribution, whih has often been used to model the

distribution of inome within a population. This distribution is apable of repliating

the observed levels of inequality in inome between individuals, due to the long tail of

the observed inome distribution where a small number of members (typially former di-

retors of the sponsoring employer) have extremely large pensions relative to the median.

We assume that the Pareto distribution used to generate the pension amount has a

threshold of ¿3,000 and a sale fator of 1.43. This threshold was hosen to re�et

the typial amount of pension below whih members an trivially ommute their entire

pension bene�ts to ash at retirement, and therefore leave no residual liability with the

sheme. The sale fator has been hosen based on the �10/50� rule disussed in footnote

9, i.e., that 10% of the sheme members reeive 50% of the pension in payment. The

Pareto distribution an be alibrated to produe distributions of pensions onsistent

with any rule in the form �X% of the sheme membership reeive Y% of the pension in

payment� by hoosing a sale fator suh that

α =
lnX

lnX − lnY

This inome distribution is expressed as an amount of pension if they retired in 2011.

However, pensioners who retired before this date are likely to have lower pensions in

payment today beause they would have had lower salaries (in real terms) when they

retired and would have reeived pension inreases linked to prie in�ation rather than

salary in�ation (whih is usually higher). Therefore, the pension amount if the member

retired today is onverted to a pension amount urrently in payment by adjusting for

real salary inreases, whih are assumed to be equal to 0.5% p.a., i.e.,

Pension in payment = Pension if retired today× 1.005Age−65
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Together, these four variables - sex, age, saling fator and pension in payment - are

alloated to eah surviving member of the sheme for use in the projetions in this

study, and are summarised in Figures 10.2 and 10.3 in Setion 10.3.
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Chapter 11

Forward Mortality Rates in Disrete

Time I: Calibration and Seurities

Priing

11.1 Introdution

Many users of mortality models are interested in using them to plae values on longevity-

linked liabilities and seurities. Modern regulatory regimes require that the values of

liabilities and reserves are onsistent with market pries (if available), whilst the gradual

emergene of a traded market in longevity risk needs methods for priing new types of

longevity-linked seurities quikly and e�iently. These needs have spurred the develop-

ment of inreasingly sophistiated models of mortality rates.

Cairns et al. (2006b) pointed out that the majority of mortality models that have been

proposed are models of the mortality hazard rate, whih is analogous to the short rate of

interest. By analogy with interest rate models, Cairns et al. (2006b) developed formally

the onept of �mortality forward rates�, whih was extended in Miltersen and Persson

(2005). However, the idea of forward mortality rates has a long history, indeed Milevsky

and Promislow (2001) pointed out that �the traditional rates used by atuaries are re-

ally `forward rates' exatly analogous to a forward interest rate implied by existing bond

pries�.

Suh forward mortality rates ould be used to prie longevity-linked seurities, in the

same fashion as forward interest rates are used to value ash�ows dependent on future
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interest rates. Therefore, a number of models for forward mortality rates have been

proposed to date whih build upon the theory of forward interest rates. These have in-

luded the models of Barbarin (2008), Bauer et al. (2008) and Tappe and Weber (2013),

whih adopted the Heath-Jarrow-Morton framework used for interest rates in ontinuous

time, and the model of Zhu and Bauer (2011a,b, 2014) whih adopted a semi-parametri

fator approah in disrete time. An alternative approah, developed in Olivier and

Je�rey (2004), Smith (2005) and Cairns (2007), also works in disrete time but uses

gamma-distributed random variables to update a forward mortality surfae that is ini-

tially assumed.

However, it is important not to over-extend the analogy between interest rates and mor-

tality rates, as the two are fundamentally di�erent proesses. Most obviously, the forward

interest rate urve at any instant depends only upon term, whilst forward mortality rates

will exist aross a surfae of ages and years. Mortality rates typially also inrease expo-

nentially with age, unlike interest rates whih are typially bounded as term inreases.

More fundamentally, the analogy between survivorship under a fore of mortality and

disounting under a fore of interest, whilst mathematially appealing, is not exat, sine

mortality will a�et the atual amount of any ash�ow payable (say, in an annuity or life

assurane ontrat) in a way that disounting does not. We therefore do not believe that

simply taking existing models whih work well for forward interest rates and applying

them diretly to mortality rates is appropriate.

In addition, we must be able to alibrate a model of forward mortality rates to the small

number of longevity-linked seurities in existene. This means that models whih start

by assuming the existene of su�ient market pries to de�ne a forward mortality surfae

(suh as those based on the Heath-Jarrow-Morton framework) and then de�ne the dy-

namis of this surfae are not pratial. This approah is inherited from the interest rate

markets, where liquid markets in bonds aross the whole of the relevant term struture

an provide suh information. Unfortunately, this simply does not hold for the market

in longevity-linked seurities, and will not hold for the foreseeable future.

Instead, we propose a new approah, whih is desribed in two studies, of whih this

is the �rst. Our approah starts from the historial data on the observed mortality

rates, i.e., the observed fore of mortality whih is analogous to the short rate of in-

terest. Building on the dynamis of models of the observed fore of mortality, we an

reast them in the form of models of forward mortality rates and then use a hange of

measure to inorporate whatever market information is available. This approah ensures
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that the dynamis of the forward mortality surfae are onsistent with those observed

for the fore of mortality, inluding features suh as �ohort e�ets� whih are unique to

mortality rate models, and whih helps to ensure demographi signi�ane.

1

We begin our analysis in this paper in Setion 11.2.1 with models of fore of mortality

from the age/period/ohort (APC) family, whih have been spei�ally onstruted in

order to apture the dynamis of mortality parsimoniously and with demographi sig-

ni�ane. APC mortality models are onsidered in detail in Chapters 2, 3 and 4 and

enompass a broad lass of existing and popular models of the fore of mortality, suh

as the Lee-Carter (Lee and Carter (1992)), Cairns-Blake-Dowd (Cairns et al. (2006a))

and lassi APC (Hobraft et al. (1982)) models, as well as many of the extensions of

these models (see Chapter 5 for examples). We then develop the mathematial frame-

work required to onvert any APC model of the fore of mortality into a model of the

forward mortality surfae in Setion 11.2.2 and Setion 11.2.3. In Setion 11.2.4, we

use the dynamis of the period and ohort parameters observed in the historial data

to de�ne a forward surfae of mortality rate. This enables onsistent modelling of both

the short and forward mortality rates, and so avoids any inonsistenies between the two.

Setion 11.3 then builds on this by transforming the forward mortality rate surfae, using

the Essher transform, from a measure onsistent with the �real-world� proess observed

in the historial data to one onsistent with market pries. These �market-onsistent�

forward mortality rates are then used to prie various longevity-linked seurities. Finally,

Setion 11.4 onludes.

The approah established in this hapter is extended in our seond study, Chapter 12,

whih analyses how the forward surfae of mortality an be updated dynamially. This

enables the forward mortality rate framework developed in this study to be used for

managing longevity risk in a life assurane book or in a portfolio of longevity-linked

seurities.

1

Demographi signi�ane is de�ned in Chapter 2 as the interpretation of the omponents of a model

in terms of the underlying biologial, medial or soio-eonomi auses of hanges in mortality rates

whih generate them.
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11.2 Forward mortality rates in disrete time

11.2.1 Age/period/ohort models of the fore of mortality

In Chapter 2, we disussed disrete-time mortality models of the form

ηx,t = αx +
N
∑

i=1

β(i)
x κ

(i)
t + γt−x (11.1)

where

• we have historial data for ages, x, in the range [1,X] and periods, t, in the

range [1, τ ] and therefore observations of ohorts born in years, y, in the range

[1−X, τ − 1];

• ηx,t = ln(µx,t) is the log-link funtion whih onnets the Poisson distributed death

ounts, Dx,t, to the proposed preditor struture;

• αx is a stati funtion of age;

• κ
(i)
t are period funtions governing the evolution of mortality with time;

• β
(i)
x are age funtions modulating the impat of the period funtion dynamis over

the age range;

2

and

• γy is a ohort funtion desribing mortality e�ets whih depend upon a ohort's

year of birth and follow that ohort through life as it ages.

De�ning βx =
(

β
(i)
x , . . . β

(N)
x

)⊤
and κt =

(

κ
(i)
t , . . . κ

(N)
t

)⊤
, we an re-write Equa-

tion 11.1 as

ηx,t = αx + β⊤
x κt + γt−x (11.2)

In this study, we will use the log-link funtion ηx,t = ln(µx,t). In Chapter 2, we dis-

ussed how this is appropriate if the death ount at age x and time t is a (onditionally

independent) Poisson random variable, Dx,t ∼ Po(µx,tE
c
x,t), where E

c
x,t are entral expo-

sures to risk. This is preferred over the alternative hoie of the logit-link funtion and

binomially distributed death ounts due to the distributional properties of the forward

2

These an be non-parametri in the sense of being one �tted without imposing any a priori shape

for the funtion aross ages, or be parametri in the sense of having a spei� funtional form, β
(i)
x =

f (i)(x; θ(i)) seleted a priori. Potentially, parametri age funtions an have free parameters θ(i) whih

are set with referene to the data.
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mortality rates, as disussed in Setion 11.2.3.

This struture de�nes the lass of age/period/ohort (APC) mortality models and is very

�exible. Many of the most ommon mortality models �t into this struture, for instane,

the benhmark Lee-Carter (LC) model of Lee and Carter (1992), the ohort extension

to this denoted H1 in Haberman and Renshaw (2009), the Cairns-Blake-Dowd (CBD)

model of Cairns et al. (2006a) and many of its extensions in Cairns et al. (2009), the Plat

model of Plat (2009a) and the model of Börger et al. (2013). In Chapter 5, we desribe a

�general proedure� for onstruting bespoke models within this lass whih are tailored

to the struture within a given dataset.

3

It is, therefore, appropriate to use this lass of

models of the fore of mortality as the starting point for de�ning the forward mortality

surfae, as disussed below.

11.2.2 De�ning forward mortality rates

In a disrete-time framework, the fore of mortality, µx,t, at age x and time t is assumed

to be onstant over eah age and year, i.e.,

µx+ξ,t+τ = µx,t (11.3)

x, t ∈ N

ξ, τ ∈ [0, 1)

Therefore, the one-year survival probability from age x at time t to age x + 1 at time

t+1, px,t,
4

is equal to px,t = exp(−µx,t). If we further assume that survival in eah year

is onditionally independent, this implies

tpx,τ =
t
∏

u=1

px+u,τ+u = exp

(

−
t
∑

u=1

µx+u,τ+u

)

(11.4)

where tpx,τ is the survival probability of an individual from age x at time τ to age x+ t

at time τ + t.5 If τ + t lies in the future, tpx,τ will be a random variable, as future values

of the fore of mortality will be subjet to systemati mortality risk.

3

The forward mortality framework desribed in this study is not signi�antly a�eted if the ohort

parameters are modulated by an age funtion, β
(0)
x , as in the model of Renshaw and Haberman (2006).

However, for simpliity and the reasons disussed in Chapter 2, we do not onsider suh models in this

study.

4px,t = 1− qx,t, the one-year probability of death.

5

0px,τ = 1 trivially.
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To de�ne the struture of forward mortality rates, we assume that the fundamental

longevity-linked seurity

6

of interest, from whih all other longevity-linked seurities an

be onstruted, is the �longevity zero�.

7

A longevity zero is de�ned in Blake et al. (2006)

as a zero-oupon bond whih pays out a prinipal at a future time, dependent on the

survivorship of a suitably large ohort (to redue the idiosynrati risk in the estimation

of survival rates) over the term of the bond.

8

Therefore, a t-year longevity zero at time

τ would have prie

Prie(t, τ) = B(τ, τ + t)EQ
τ tpx,τ

where B(τ, τ + t) is the time τ prie of a t-year zero oupon bond paying one unit at

maturity, and where the expetation is de�ned under some �market-onsistent� measure,

Q (to be disussed in Setion 11.3).

9

In doing so, we have impliitly assumed that the longevity risk is independent of the

other �nanial risks in the market, suh as interest rates and in�ation, in both the real-

world measure, P, and the market-onsistent measure, Q. This is in ommon with the

majority of studies, suh as Cairns et al. (2006b) and Bauer et al. (2008) and with the

available evidene to date, as disussed in Loeys et al. (2007). Although there may be

some situations where longevity risk is not independent of other �nanial risks in the

real-world measure, as in the examples of Miltersen and Persson (2005), we believe that

these situations are relatively extreme and are better onsidered by senario analysis

rather than through a stohasti model. Furthermore, Dhaene et al. (2013) show that

independene between longevity risk and �nanial risks in the real-world measure does

not automatially ensure independene in the market-onsistent measure. However, more

ompliated models are required in order to allow for any dependene between longevity

and investment risks, whih require more market information for alibration. Therefore,

we believe that the assumption of independene between longevity risk and other �nan-

ial risks is neessary and justi�able at this early stage of development of the longevity

risk market.

6

In this paper, we use the term �seurity� to refer to any tradable �nanial ontrat, and so also

inlude derivative seurities suh as forwards and options in this de�nition.

7

Longevity zeros were also used to de�ne forward mortality rates in Barbarin (2008) for use in a

Heath-Jarrow-Morton framework and in Cairns (2007) and Alai et al. (2013) to develop extensions of

the Olivier-Smith model.

8

It is important that the seurity used to de�ne the forward mortality rates depends purely on the

systemati longevity risk, rather than the idiosynrati time of death of any individual lives, in order to

avoid the potential for on�iting de�nitions of the forward rates desribed in Norberg (2010).

9

We adopt the onvention that the subsript on operators Eτ (.), Varτ (.) or Covτ (.) denotes ondi-
tioning on the information available at time τ , i.e., Fτ .
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We de�ne

tP
Q
x,τ (τ) = EQ

τ tpx,τ (11.5)

= EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

In this, tP
Q
x,τ (τ) are the market-onsistent forward survival probabilities, i.e., the �mar-

ket's best view� (in the words of Miltersen and Persson (2005)) at τ of the probability of

an individual aged x at τ surviving a further t years. Mathematially, we an see that

these fators are analogous to disount fators based on the pries of zero-oupon bonds.

It is this analogy whih has motivated muh of the development of forward mortality

rate models to date, whih have been mainly adapted from widely used interest rate

models. In ontinuous-time forward rate models, suh as in Bauer et al. (2008), forward

mortality rates are de�ned from Equation 11.5 as

ν
Q
x,t(τ) ≡ − ∂

∂t
ln
(

tP
Q
x−t,τ (τ)

)

via the analogy with forward interest rates. In a disrete time model, we modify this to

de�ne forward mortality rates as

νQx,t(τ) ≡ − ln

(

t−τ+1P
Q
x−t+τ,τ (τ)

t−τP
Q
x−t+τ,τ (τ)

)

(11.6)

Existing forward mortality models, suh as those in Cairns (2007) and Zhu and Bauer

(2011b, 2014) use similar de�nitions, but these studies are interested in the dynamis of

the forward surfae of mortality and so are interested in the behaviour of νx,t(τ + 1)/νx,t(τ) ,

rather than the forward mortality rates at τ themselves (whih are assumed a priori in

these studies). We disuss these dynamis in Chapter 12. In ontrast, this hapter is

interested in the onnetion between the fore of mortality and forward mortality rates,

and so we use the de�nition above to give

tP
Q
x,τ (τ) = exp

(

−
t
∑

u=1

νQx+u,τ+u(τ)

)

(11.7)

Comparing Equations 11.4 and 11.7, we see

exp

(

−
t
∑

u=1

νQx+u,τ+u

)

= EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

(11.8)
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whih shows the onnetion between the market-onsistent forward rates and the expe-

tations of the fore of mortality in the market-onsistent measure.

By Jensen's inequality

EQ
τ exp

(

−
t
∑

u=1

µx+u,τ+u

)

≥ exp

(

−
t
∑

u=1

EQ
τ µx+u,τ+u

)

(11.9)

In pratie, the variation in µx,t is su�iently small that Equation 11.9 holds approxi-

mately as an equality over almost all ages and years.

10

We therefore make the assumption

that

exp

(

−
t
∑

u=1

νQx+u,τ+u(τ)

)

= exp

(

−
t
∑

u=1

EQ
τ µx+u,t+u

)

(11.10)

and de�ne the forward mortality rates as

νQx,t(τ) = EQ
τ µx,t (11.11)

Thus, the forward mortality rate at age x and year t is assumed to be equal to the

expetation under the market-onsistent measure of the fore of mortality at the same

age and year, onditional on information observed at time τ . Thus, if we an speify

the dynamis of the fore of mortality (in the market-onsistent measure), we are able

to �nd the forward mortality rates diretly.

We de�ne the �forward mortality surfae� as the olletion of forward mortality rates,

ν
Q
x,t(τ) over all ages, x, and future years, t, at a given point in time, τ . In most ases,

it is more natural to onsider the forward mortality surfae as a single objet, sine the

individual forward mortality rates are expeted to vary smoothly aross ages and aross

future years. However, it is important to realise that the forward mortality surfae is

three-dimensional, de�ned by x, t and τ . In this study we shall onsider its struture

aross the dimensions of x and t and how this an be determined at the observation time,

τ , whih is assumed to be onstant. This ontrasts with Chapter 12, where we disuss

how the surfae varies dynamially with τ .

In de�ning the forward mortality surfae, we assume that all longevity-linked seurities

an be onstruted from a portfolio of longevity zeros. We shall see in Setion 11.3.3 that

10

This approximation is tested numerially in Appendix 11.B.
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this is trivially true in the ase of longevity swaps.

11

We extend this by assuming that

the value of any other longevity-linked seurity at time τ an be repliated as a portfolio

of longevity zeros and, therefore, written as a funtion of the νQx,t(τ). Hene, the forward

surfae of mortality an be used to give onsistent pries for all longevity-linked liabilities

and seurities.

Unfortunately, however, it is urrently impossible to reliably speify the dynamis of

short or forward mortality rates in the market-onsistent measure, sine an atively-

traded market in longevity-linked seurities does not urrently exist. Indeed, the absene

of genuine market information on the pries for any longevity-linked seurities is a rit-

ial problem for all studies that seek to value the few longevity-linked seurities whih

do exist. There have been a number of di�erent methods proposed to overome this

and alibrate the market-onsistent measure. For instane, Bauer et al. (2008) proposed

using generational life tables (i.e., those whih allow mortality rates to depend upon an

individual's year of birth) in order to provide a forward mortality surfae. However, these

are updated infrequently and are not based on market information (and when used to

prie �nanial ontrats, typially have margins for risk aversion added to them). Alter-

natively, Miltersen and Persson (2005) and Bayraktar and Young (2007) have suggested

using the market for endowment assuranes for alibration purposes, sine these have a

similar prie struture to longevity zeros. Unfortunately, Norberg (2010) showed how us-

ing seurities dependent on the idiosynrati risk of individual lives, suh as endowment

assuranes, an lead to inonsistent de�nitions of the forward mortality rates and so this

approah is not feasible.

Instead, we propose to use the historial data to model the dynamis of the fore of

mortality in the �historial� or �real-world� measure, P, using relatively simple APC

mortality models, as desribed in Setion 11.2.1. These real-world dynamis of the fore

of mortality an then be used to generate the forward surfae of mortality in the real-

world measure by using Equation 11.11. Then, in Setion 11.3.1, we show how to hange

from the real-world to a market-onsistent measure, Q, using the Essher transform whih

is alibrated using whatever (limited) market information for longevity risk is available.

Thus, real-world data on historial mortality rates is used to supplement the limited

market data we have, and inreasing volumes of market information an be inorporated

into the forward mortality surfae as the market for longevity-linked seurities develops.

11

It is also true for the valuation of annuities for reserving purposes, sine idiosynrati risk is not

allowed for in this ontext.
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11.2.3 Forward APC mortality models

Combining Equations 11.2 and 11.11, we de�ne forward mortality rates in the real-world

measure, P, as

νPx,t(τ) = EP
τ exp

(

αx + β⊤
x κt + γt−x

)

(11.12)

We assume that the age funtions are known with ertainty at time τ and therefore the

unertainty in future mortality rates omes from the projetion of κt andγt−x, i.e., the

forward mortality surfae only allows for proess risk from the projetion of the period

and ohort funtions, in the terminology of Cairns (2000), but not parameter unertainty

or model risk. In the real-world measure, we �rst obtain �tted values of κt and γy by

�tting the APC model to the historial data. We then estimate the dynamis of the time

series proesses for κt and γy from these �tted values.

If we further assume that our projeted κt and γy are normally distributed, then ηx,t

is also normally distributed and onsequently µx,t follows a log-normal distribution.

12

Therefore

νPx,t(τ) = exp

(

αx + β⊤
x E

P
τκt +

1

2
β⊤
xVar

P
τ (κt)βx + EP

τγt−x +
1

2
VarPτ (γt−x)

)

(11.13)

The assumption that projeted period and ohort parameters are normally distributed is

in line with the majority of studies, whih use standard ARIMA methods to projet these

parameters. If the projeted period and ohort parameters are not normally distributed,

however, it is unlikely that the resulting forward mortality framework would be analyti-

ally tratable. This is beause the distribution of µx,t would not have the �nite moments

required. A number of studies have used alternative methods and distributions to make

projetions. These inlude models whih allow for regime hanges (Milidonis et al. (2011)

and Lemoine (2014)) or trend hanges (Sweeting (2011) and Chapter 6) in the proesses

used to projet the parameters. Another approah has been to use other distributions

for the innovations in the time series proesses for the period or ohort funtions (suh

as the t-distribution, the variane-gamma and the normal-inverse-gamma, whih were

used to model the innovations for κt in the Lee-Carter model in Wang et al. (2011)). In

some of these ases, it may be possible to extend the forward mortality rate framework

12

Note that, if we were using ηx,t = logit(qx,t) in onjuntion with a binomial model for the death

ount, then qx,t would follow a �logit-normal� distribution (see Frederi and Lad (2008)). Unfortunately,

this is not analytially tratable and does not possess losed form expressions for the expetation.

Therefore, we are unable to de�ne a forward mortality framework in the logit-link funtion / binomial

death ount model as we an in the log-link funtion / Poisson death ount model.
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to allow for the non-Gaussian distributions. However, we do not onsider alternative

distributions for the projeted period or ohort funtions further within this study.

11.2.4 Projeting the APC model

11.2.4.1 Period funtions

Sine Lee and Carter (1992), the most ommon method used to projet the period fun-

tions in an APC mortality model has been the random walk with drift. This was also

used for the CBD model in Cairns et al. (2006a), the period funtions in various mor-

tality models in Cairns et al. (2011a) and Haberman and Renshaw (2011), and the �rst

(dominant) period funtion in Plat (2009a).

The random walk model is attrative as it allows the period funtions to be non-stationary

with a variability that inreases with time, giving biologially reasonable

13

projetions

of the fore of mortality.

In Chapters 3 and 4, we disuss how projeted mortality rates should not depend upon

the identi�ability onstraints used when �tting the model to data, and therefore that we

should use �well-identi�ed� projetion methods whih ahieve this. In the ontext of the

random walk with drift model, this means we should projet the period funtions using

κt = µXt + κt−1 + ǫt (11.14)

where Xt is a set of deterministi funtions (�trends�) hosen to ensure identi�ability

and µ are the orresponding �drifts�.

14

For example, the lassi random walk with drift

proess has a onstant trend, Xt = 1, with the �drift�, µ, found be regressing ∆κt on

this trend. Similarly, the random walk with linear drift introdued in Chapters 4 and 6

has onstant and linear trends, Xt =
(

1, t

)⊤
, with the drifts found by regressing ∆κt

against Xt in a similar fashion.

13

Introdued in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a ausal

assoiation (or relationship) between two fators that is onsistent with existing medial knowledge�.

14

Note, we assume that the drifts µ are known at time τ and will not be re-estimated on the basis

of new information arising in the future. Therefore, the forward mortality framework desribed in this

hapter and in Chapter 12 does not allow for �realibration� risk as de�ned in Cairns (2013), i.e., the

risk aused by the unertainty in the drift. This risk is potentially substantial, as disussed in Li et al.

(2004) and Li (2014). However, we leave the inlusion of realibration risk to future work.
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The random drift model in Equation 11.14 is solved to give

κt = κτ + µχτ,t +

t
∑

s=τ+1

ǫs (11.15)

where χτ,t =
∑t

s=τ+1Xs. Note that, in the simplest ase where we use a lassi random

walk with drift to projet the period funtions, Xt = 1 and hene χτ,t = t − τ . We

assume

Eτǫt = 0

Covτ (ǫt, ǫs) = ΣIt−s

where It−s is an indiator variable taking a value of unity if t = s and zero otherwise.

This means that the innovations have zero mean and are independent aross di�erent

periods, i.e., they are white noise. In addition, we assume that the innovations are

normally distributed for the reasons disussed above. From Equation 11.15, we �nd

EP
τ κt = κτ + µχτ,t (11.16)

VarPτ (κt) = (t− τ)Σ (11.17)

In an age/period mortality model without a ohort term, suh as the Lee-Carter or CBD

model, allowing for the unertainty in the period funtions is su�ient in onjuntion

with Equation 11.13, to de�ne forward mortality rates in the real-world measure. How-

ever, more sophistiated mortality models often inlude ohort terms, whose analysis is

onsiderably more ompliated, as we now see.

11.2.4.2 Cohort funtion

Most ommon tehniques for projeting the ohort funtion use standard ARIMA pro-

esses, whih assume that there is a lear distintion between those ohort parameters

whih are estimated from historial data, whih are assumed to be known, and those

ohort parameters whih are projeted using some time series proess. In the forward

mortality rate framework, we an see that this would lead to a sharp disontinuity in the

forward mortality surfae. For many purposes, suh as the valuation of longevity-linked

seurities and liabilities, suh a disontinuity is learly undesirable.
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To illustrate this problem, onsider the ase where a (well-identi�ed) AR(1) proess is

used to projet the ohort parameters

γy − βX̃y = ρ(γy−1 − βX̃y−1) + εy

where X̃y are deterministi funtions orresponding to the unidenti�able trends in the

ohort parameters,

15

and β are the orresponding regression oe�ients (see Chapter 4).

Suh a proess would be solved to give

γy = ρy−Y (γY − βX̃Y ) + βX̃y +

y
∑

s=Y+1

ρy−sεs

for y ≥ Y , the year of birth of the last �tted ohort parameter.

16

The variane of this

proess is

VarPτ (γy) =







0 if y ≤ Y

1−ρ2(y−Y )

1−ρ2
σ2

if y > Y

From Equation 11.13, we see that this would give a disontinuity in the forward mor-

tality surfae at the interfae between the �tted and projeted ohort parameters. Suh

a disontinuity would give rise to priing anomalies and therefore annot be permitted

in a well-designed forward mortality framework. Consequently, we must use alternative

proesses to projet the ohort parameters for use with forward mortality models.

In Chapter 6, we developed a Bayesian approah to overome this issue. This assumes

that all ohort parameters, γy, are random variables that are not fully observed until

ohort y is fully extint at time y+X. For observation times τ < y+X, we have partial

information based on observations of the ohort to date. This information is summarised

in the estimated ohort parameters, γy(τ), found by �tting the APC mortality model to

data to time τ . From the analysis in Chapter 6, we have

γy|Fτ ∼ N(M(y, τ), V (y, τ)) (11.18)

15

In general, these have a similar form to the deterministi funtions for the period parameters, Xt,

in Setion 11.2.4.1.

16

Typially, ohort parameters for the last few years of birth are not estimated due to the lak of data,

for instane, see Renshaw and Haberman (2006).
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where

Þτ−y,s ≡
s−1
∏

r=0

(1−Dτ−y+r) (11.19)

EP
τγy ≡ M(y, τ)

=
∞
∑

s=0

Þτ−y,sρ
s
[

Dτ−yγy(τ) + (1−Dτ−y+s)β(X̃y−s − ρX̃y−s−1)
]

(11.20)

VarPτ (γy) ≡ V (y, τ)

=

∞
∑

s=0

Þ

2
τ−y,s(1−Dτ−y+s)ρ

2sσ2
(11.21)

for y ≤ Y , where

M(y, τ) = ρy−Y
(

M(Y, τ)− βX̃Y

)

+ βX̃y (11.22)

V (y, τ) =
1− ρ2(y−Y )

1− ρ2
σ2 + ρ2(y−Y )V (Y, τ) (11.23)

for y > Y . In this,

• Dx is the proportion of a ohort assumed to still be alive by age x;

• ρ and σ2
are the autoorrelation and variane of the AR(1) proess assumed to be

driving the evolution of the ohort parameters;

• X̃y and β are the trends and drifts for the ohort parameters as de�ned above;

17

• γy(τ) are the estimates of the ohort parameters, �tted by the mortality model at

time τ ; and

• Fτ is the total information available at time τ , inluding observations of the ohort

parameters up to year of birth y, i.e., {γυ(τ) υ ≤ y}.

In Chapter 6, it was shown that this framework allows the historial and projeted

ohort parameters to be treated onsistently, without any sharp disontinuities in the

unertainty between them. It was also shown that these projetions are well-identi�ed,

in the sense that they do not depend upon the arbitrary identi�ability onstraints made

when �tting the model. In addition, it is shown in Chapter 12 that the Bayesian frame-

work allows us to update estimates of the ohort parameters over a one-year period to

proxy for the impat that new data would have on our parameter estimates, whih is es-

sential for risk management purposes. The Bayesian framework is therefore well adapted

17

Note that the drifts, β, depend upon the arbitrary identi�ability onstraints hosen. In pratie, we

therefore impose a set of identi�ability onstraints suh that β = 0 to simplify matters onsiderably.
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for use in a forward mortality ontext, and we will use it for all APC mortality models

whih inlude ohort parameters.

11.2.5 Estimation and projetion

The framework desribed in Setions 11.2.3 and 11.2.4 is very general and an be used

in onjuntion with any APC mortality model for the fore of mortality. To see this in

pratie, we onsider estimating the forward mortality rates on male data for the UK for

the period 1950 to 2011 and ages 50 to 100 from the Human Mortality Database (2014)

for �ve di�erent APC models:

1. the Lee-Carter (�LC�) model of Lee and Carter (1992);

2. the �CBDX� model disussed in Chapter 3, whih extends the Cairns-Blake-Dowd

model of Cairns et al. (2006a) with a stati age funtion and uses a log-link funtion;

3. the �lassi APC� model of Hobraft et al. (1982) and others;

4. the �redued Plat� (�RP�) model of Plat (2009a) disussed in Chapter 4;

18

and

5. the model produed by the �general proedure� (�GP�) in Chapter 9 for the data

desribed above.

These models have the forms

ln(µx,t) = α(LC)
x + β(LC)

x κ
(LC)
t (11.24)

ln(µx,t) = α(CBDX)
x + κ

(CBDX,1)
t + (x− x̄)κ

(CBDX,2)
t (11.25)

ln(µx,t) = α(APC)
x + κ

(APC)
t + γ

(APC)
t−x (11.26)

ln(µx,t) = α(RP )
x + κ

(RP,1)
t + (x− x̄)κ

(RP,2)
t + γ

(RP )
t−x (11.27)

ln(µx,t) = α(GP )
x +

3
∑

i=1

f (GP,i)(x)κ
(GP,i)
t + γ

(GP )
t−x (11.28)

where f (GP,1)(x) = 1, f (GP,2)(x) = (x− x2)
+
and f (GP,3)(x) = (x3 − x)+.19 The param-

eters in these models have been estimated by �tting the model to the UK population

data desribed above. These �tted parameters have, in turn, been used to estimate the

18

That is, the simpli�ation of the main model disussed in Plat (2009a) without the third, high-age

term or, equivalently, an extension of the CBDX model with a ohort term.

19

In this, the ages x2 and x3 in f (GP,2)(x) and f (GP,3)(x) are free parameters found by maximising

the �t to data, whih take the values x2 = 73 and x3 = 84 for the data in question. We also selet

age funtions whih are normalised so that

∑

x |βx| =
∑

x |f(x)| = 1. This involves either inluding

normalisation onstants or hoosing age funtions whih are �self-normalising� in the sense of Chapter 3.

However, for larity, these are not shown, although they are taken into aount in the �tting algorithms.
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parameters of the time series proesses disussed in Setions 11.2.4.1 and 11.2.4.2 for

κt and γy (if appliable). Using these parameter estimates, we an alulate forward

mortality rate surfaes in the real-world measure using Equation 11.12.

These models have been hosen to give a reasonable ross setion of the di�erent APC

mortality models whih ould be used in pratie. It should be noted that for most of

these models, we an use a onstant drift funtion in Equation 11.14 and the projetions

will be well-identi�ed. The exeption to this is the redued Plat model, where the ran-

dom walk for κ
(RP,1)
t requires a linear drift in order to be well-identi�ed, as disussed in

Chapter 4.

One of the advantages of the forward mortality rate framework desribed in this paper

is that it allows for onsisteny between the model of the fore of mortality and the

forward mortality surfae. Consequently, as a hek, we ompare these forward surfaes

of mortality for eah model to the mean mortality rates alulated using Monte Carlo

simulations (shown in Figure 11.1 for the GP model) and �nd that the small di�erene

between the two is explained by sampling error in the simulations.
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Figure 11.1: Di�erene between forward mortality rates and those obtained from

Monte Carlo simulations using the GP model
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11.3 Priing seurities and the market prie of longevity

risk

11.3.1 The market-onsistent measure

In Setion 11.2.4, we alulated mortality forward rates using the time series proesses

estimated from the �tted parameters. This means that the expetations in Equation

11.13 were alulated in the historial, real-world measure, P.

It is obviously important that longevity-linked seurities pries are onsistent aross dif-

ferent types of seurity in order to limit the potential for priing anomalies and arbitrage

opportunities in the market. In addition, modern solveny regimes require that liability

values and tehnial provisions for pension shemes and insurers must also be onsistent

with market pries. Identifying a suitable market-onsistent measure, Q, is therefore a

ritial omponent of the forward mortality framework.

The starting point of modern �nanial theory is to assume that the �nanial markets

are �omplete� in the sense that every �nanial laim in them an be hedged perfetly

using tradable assets. In omplete markets, the market-onsistent measure exists and

is unique. Derivative seurities in omplete markets an be perfetly repliated using

these underlying seurities without risk (and hene these measures are also referred to as

�risk-neutral�) and the osts of these hedging strategies give the derivatives their unique

pries. Complete markets are also free from arbitrage, sine all pries an be derived

using these underlying hedging strategies and any deviation from these pries will be

arbitraged away by informed investors. The assumption of market ompleteness is a

reasonable one in many ontexts, suh as developed markets for equities and interest

rates in large and advaned eonomies.

However, the market for longevity risk is not omplete. Not only are there insu�ient

tradable longevity-linked seurities to fully repliate all �nanial laims, there are al-

most no longevity-linked seurities being atively traded, full stop. Therefore, de�ning a

market-onsistent measure for longevity risk is a major problem for all mortality models

whih seek to prie longevity-linked seurities.

429



Forward Mortality Models I: Calibration and Seurities Priing

Some studies, for instane Shrager (2006), assume a priori that any market will be

risk-neutral with respet to longevity risk and therefore that the historial and market-

onsistent measures are equal. We believe this is unlikely, given that any market in

longevity risk is likely to be dominated by parties whih su�er �nanially from rising life

expetany (see Loeys et al. (2007)) and therefore will be generally seeking to hedge the

risk of future improvements in mortality rates.

In light of this absene of information, Barrieu et al. (2012, p. 224) suggested that

the real-world measure must play a key role in the de�nition of any market-onsistent

measure:

What will be a good priing measure for longevity? It is expeted that the

historial probability measure will play a key role, due to the reliable data

assoiated with it. Therefore, it seems natural to look for a priing probability

measure equivalent to the historial probability measure. Important fators

to onsider are that a relevant priing measure must be: robust with respet

to the statistial data, and also ompatible with the pries of the liquid assets

quoted in the market. Therefore, a relevant probability measure should make

the link between the historial vision and the market vision. One the subsets

of all suh probability measures that apture the desired information are

spei�ed, a searh an ommene for the optimal example by maximising the

likelihood or the entropi riterion.

We agree with this analysis, and use the Essher transform to de�ne a market-onsistent

measure that is equivalent to the real-world measure and that satis�es many of these

desirable properties. This transformation is relatively parsimonious, with a small num-

ber of free parameters whih an be alibrated using any market information we possess.

Below, we further show that the Essher transform gives us losed form expressions for

the market-onsistent forward mortality rates as shown below, and therefore is relatively

straightforward to implement and robust to alibrate to data.

The Essher transform has often been used in seurities priing in imperfet markets

sine the work of Gerber and Shiu (1994). As disussed in Kijima (2005), it is related to

other widely used distortion methods for adjusting to a risk-neutral measure, suh as the

the Wang transform (developed in Wang (2000, 2002) and Cox et al. (2006), and used in

Denuit et al. (2007) for example), and the Sharpe ratio in modern �nanial theory (used

in Milevsky et al. (2005) and Loeys et al. (2007)). It is also onsistent with priing in the

real-world measure for an individual with an exponential utility funtion, as disussed in
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Milidonis et al. (2011).

For a risk Xx,t in the P measure, the general Essher transform to the Q measure an be

de�ned by

EQXx,t =
EP [Xx,t exp(−Zx,t)]

EP exp(−Zx,t)
(11.29)

where Zx,t is a random variable ontaining the parameters de�ning the market-onsistent

measure.

In the ontext of mortality forward rates, we hoose Xx,t = µx,t = exp(ηx,t) and orre-

spondingly de�ne

Zx,t = λ⊤κt + λγγt−x (11.30)

where λ is an (N ×1) olumn vetor. Hene, there are N +1 parameters (whih we refer

to olletively as λ(j), j ∈ {1, . . . N, γ}), whih orrespond to the N age/period terms

(in the vetor λ), and the ohort term (with single parameter λ(γ)
) in the general APC

mortality model in Equation 11.2. It is important to note that the values found for

these parameters will depend upon the spei�s of the underlying model, and so are not

omparable between di�erent models.

Due to the pauity of genuine market information to prie longevity risk, one might have

a natural inlination to prefer simpler models, suh as the LC model (whih has only

one free parameter for the Essher transform). Suh models ould be felt to be more

parsimonious, having fewer market pries for longevity risk and therefore requiring fewer

market pries for longevity-linked seurities in order to alibrate the market-onsistent

measure. For example, alibrating the LC model would require only one market prie

in order to alibrate the market-onsistent measure, whilst alibrating the GP model in

Setion 11.2.5 requires four market pries. Using overly simple models, however, would

be a mistake whih an lead to unreasonable pries for other longevity-linked seurities

as shown in Setion 11.3.3.

431



Forward Mortality Models I: Calibration and Seurities Priing

Using the Essher transform with Equation 11.11 and this de�nition for Zx,t gives

ν
Q
x,t(τ) = EQ

τ µx,t

= EQ
τ exp(ηx,t)

=
EP

τ exp(−Zx,tηx,t)

EP
τ exp(−Zx,t)

=
EP

τ exp(αx + (βx − λ)⊤ κt + (1− λγ)γt−x)

EP
τ exp(−λ⊤κt − λγγt−x)

= exp

(

αx + β⊤
x E

P
τ κt +

1

2
β⊤
xVar

P
τ (κt)βx + EP

τ γt−x

+
1

2
VarPτ (γt−x)−

1

2
β⊤
xVar

P
τ (κt)λ− 1

2
λ⊤VarPτ (κt)βx − λγVarPτ (γt−x)

)

= exp
(

−β⊤
xVar

P
τ (κt)λ− λγVarPτ (γt−x)

)

νPx,t(τ) (11.31)

due to the symmetry of VarPτ (κt).

This gives us losed-form expressions whih allow us to adjust the forward mortality rates

in the real-world measure to a market-onsistent measure. The existene of losed-form

expressions is why we argued that the Essher transform neatly omplements the forward

mortality framework: these results ould not have been ahieved with alternative trans-

formations to the market-onsistent measure. Sine we have already found expressions

for VarPτ (κt) and VarPτ (γy), transforming the forward mortality surfae in the real-world

measure into a market-onsistent measure is simply a matter of �nding the values of free

parameters of the Essher transform. This an be done if we have su�ient pries for

longevity-linked seurities, as disussed in Setion 11.3.2 below.

Through the analogy with utility priing and the Sharpe ratio, we refer to the parameters

of the Essher transform as the �market pries of longevity risk� assoiated with eah of

the age/period and ohort terms. For this analogy to be reasonable, we would antiipate

that the parameters, λ(j)
, should be positive. However, this is not neessarily the ase

in the forward mortality framework, for the following reasons.

As disussed in Loeys et al. (2007), we antiipate that the marginal partiipant in the

market for longevity-linked seurities will be a life insurer seeking to hedge longevity risk.

Suh a life insurer will be averse to longevity risk, and so, we would expet the market-

onsistent forward mortality rates to be lower than those in the real-world measure

ν
Q
x,t(τ) ≤ νPx,t(τ)
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In order for this to be true,

exp
(

−β⊤
xVar

P
τ (κt)λ− λγVarPτ (γt−x)

)

≤ 1

⇒ β⊤
xVar

P
τ (κt)λ+ λγVarPτ (γt−x) ≥ 0

Sine VarPτ (κt) is a positive de�nite matrix and VarPτ (γy) ≥ 0, this will ertainly be true

if λγ > 0 and the elements of λ are also positive. However, individual market pries

of longevity risk an be negative, whilst still ensuring that hedgers pay a positive prie

to transfer longevity risk overall. Sine some market pries an be negative, the term

�market pries� might be onsidered misleading. Although we shall refer to these pa-

rameters as market pries in this hapter and in Chapter 12, it should be borne in mind

that they are probably best thought of as simply parameters in the Essher transform

in Equation 11.29 rather than true market pries of longevity risk based on an expeted

utility approah (suh as that disussed in Zhou et al. (2015)).

The Essher transform approah has some other pratial advantages, beyond the exis-

tene of losed-form expressions for the forward mortality rates. The forward mortality

surfae in the real-world measure will be updated only infrequently, typially one ev-

ery year when new mortality data is released. However, market information will need

to be updated far more frequently, espeially as the market for longevity-linked seuri-

ties develops. It is desirable in pratie to be able to take the (infrequently hanging)

P-measure forward mortality surfae and make relatively simple adjustments to this to

re�et hanging market information, rather than having to re-estimate the model om-

pletely every time the priing information hanges.

However, a limitation of the forward mortality framework outlined in this study is that

it is urrently unable to prie longevity-linked seurities with optionality, for example,

a all option on mortality rates. In order to do this, the dynamis of mortality rates

in the market-onsistent measure would need to be spei�ed, in addition to simply the

expetation, EQ
τ µx,t. We leave the extension of the forward mortality framework to the

inlusion of longevity-linked options to future work.

We also note that, looking solely at the age/period terms, Equations 11.16 and 11.17

imply

β⊤
x E

P
τκt + β⊤

xVarτ (κt)λ = β⊤
x [κτ + µχτ,t + (t− τ)Σλ]

= β⊤
x [κτ + µ̂χτ,t]
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sine t − τ is always one of the deterministi funtions in χτ,t. Hene, we see that for

an age/period model suh as the LC and CBDX models, the Essher transform to the

market-onsistent measure is equivalent to making an adjustment to the drift of the

random walk in Equation 11.14. In this form, the use of the Essher transform an

be ompared with some of the other approahes that have been suggested in previous

studies. For instane, Loeys et al. (2007) suggested that the prie of a q-forward should

be alulated as

qf = (1− (t− τ)λ̃σ2)qe

where σ2
is de�ned as the annual volatility of the mortality rate, i.e., σ2 = VarP(ln q).

We an ompare this priing formula to what our forward mortality framework would

give were we to use the LC model as the underlying mortality model. This has one period

funtion, κt, with one assoiated market prie of risk, λ. From Equation 11.31 applied

to the LC model, we �nd

ν
Q
x,t(τ) = exp (−(t− τ)βxΣλ) ν

P
x,t(τ)

We an therefore see that the priing formula in Loeys et al. (2007) is similar in form

to Equation 11.31, although based on forward ontrats on probabilities of death, qx,t,

rather than the longevity-zeros whih are used as the underlying seurities in this study.

Cairns et al. (2006a) adjusted the drift of the random walk used to projet the pe-

riod funtions diretly, in order to inorporate market pries for longevity risk without

reourse to the Essher transform

µQ = µP − Cλ̃

where CC⊤ = Σ and λ is a vetor of the market pries of risk. If suh an approah were

to be used for the CBDX model in a forward mortality rates framework suh as above,

we would �nd market-onsistent forward mortality rates

νQx,t(τ) = exp
(

−(t− τ)β⊤
x Cλ̃

)

νPx,t(τ)

Therefore, we see that the approah used in Cairns et al. (2006a) is equivalent to that

used in this study, exept using Cλ̃ instead of Σλ. Equating these gives

Cλ̃ = Σλ

λ̃ = C⊤λ
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Hene, the more rigorous forward mortality framework de�ned in this study ahieves

results whih are onsistent with those of Cairns et al. (2006a), but is also able to justify

the otherwise ad ho adjustments to the drift made in that study.

11.3.2 Calibration of the market-onsistent measure

As has been mentioned previously, a major problem with forward mortality models is

the lak of market information to speify the market-onsistent measure. An advantage

of using the forward mortality framework desribed in this study is that, rather than

requiring su�ient market pries to de�ne the full forward mortality surfae, we require

only N + 1 pries to uniquely speify the market pries of longevity risk used in the

Essher transform. This substantially redues the market information required.

However, even this simpli�ation is unlikely to be adequate at present, given the pauity

of traded longevity-linked seurities. Many of those whih do exist, suh as the extreme

mortality bonds listed in Lane (2011), are not suitable as they involve options on mor-

tality rates whih annot be pried using the forward mortality framework in its urrent

state of development. For illustrative purposes, we will demonstrate how the forward

mortality rate framework ould be alibrated with respet to the sort of information

whih is available urrently or is likely to be available in the foreseeable future, and how

this �external� market in longevity risk ould be supplemented by use of an �internal�

market for longevity risk based on the assumptions used to value and reserve for longevity

risk within a life insurer.

20

11.3.2.1 External market

A number of �external� markets exist for produts whih depend upon longevity, for in-

stane the markets for endowment assuranes and individual annuities. These were used

to provide market information for priing longevity risk in Bayraktar and Young (2007)

and Bauer et al. (2008). However, both of these produts are sold to individuals, and

therefore are subjet to idiosynrati mortality risk as well as systemati longevity risk,

whih makes them unsuitable for use in a forward mortality rate framework, as disussed

by Norberg (2010). Furthermore, insurers will inlude loadings for expenses and other

risks, in addition to longevity risk when priing these produts, whih makes using them

20

In a sense, the di�erene between the external and internal markets for longevity risk ould be

ompared to the di�erene between using mark-to-market and mark-to-model valuation methods when

valuing seurities in ompany aounts, depending upon whether deep and liquid markets exist for them.
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to alibrate a forward mortality model problemati.

Instead, any forward mortality model will need to be alibrated using seurities depen-

dent on aggregate mortality rates (preferably from national populations) rather than

those that are sold to individuals. Suh seurities are also more likely to be traded,

thereby giving informed and responsive market pries. The problem remains, however,

that there is urrently no atively-traded market in suh seurities whih an be used to

provide the priing information required to alibrate the market-onsistent measure.

To date, probably the most ative market in longevity-linked seurities has been that for

bespoke longevity swaps (see Chapter 10). A longevity swap is an agreement between

two parties to swap a series of ash�ows - a �xed leg based on the best estimate of the

survivorship of a ohort but then inreased by a onstant perentage (the swap margin)

and a �oating leg based on the atual survivorship observed for the ohort. A bespoke

longevity swap is one whih is tailored to the harateristis of a spei� population

suh as a pension sheme. As suh, bespoke longevity swaps are unlikely to be widely

traded, and at more as ustomised reinsurane ontrats than standardised longevity-

linked seurities whih ould form the basis for a market in longevity risk. In ontrast,

an index-based swap, suh as that desribed in Dowd et al. (2006b), is one where the

ohort in question is from a national population. Although index-based longevity swaps

have not yet been widely traded, the development of the bespoke longevity swap market

to date implies that, if a market in longevity risk does develop in the near future, it is

likely that index-based swaps will form a key omponent of it.

For illustrative purposes, we therefore assume the existene of a single index-based

longevity swap, whih we believe might be typial of the sort of seurity whih may

be traded during the early stages of the development of an external market in longevity-

linked seurities. We assume that this index-based longevity swap has been written on a

standard ohort of men in the UK aged 65 in 2011 and has a term of 35 years (i.e., until

the ohort is aged 100). The �oating leg of this swap will therefore have the value

35
∑

t=1

tP
Q
65,τ (τ)B(τ, τ + t)

i.e., the same prie as a series of the longevity zeros disussed in Setion 11.2.2. The

�xed-leg ash�ows will re�et a typial �best estimate� agreed between the ontrating

parties when the swap is initiated. For illustrative purposes, we assume these ash�ows

are set by alulating the survivorship of the referene ohort using the �tted mortality
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rates in τ = 2011 projeted using the �CMI Projetion Model� (Continuous Mortality

Investigation (2009a,b, 2013)) with a �long-term rate of improvement� assumption of

1.5% p.a..

21

We denote the survival probabilities of the referene ohort from time τ

to τ + t using this assumption as tP̃65,τ (τ). While there is urrently no ative market

in index-based swaps, this assumption is typial of those used to de�ne the �xed leg of

bespoke longevity swaps in our experiene. These ash�ows are then inreased by a swap

premium of 4%, whih is a typial level on bespoke swaps in our experiene.

The prie of the swap is therefore

35
∑

t=1

(

tP
Q
65,τ (τ)− 1.04 tP̃65,τ (τ)

)

B(τ, τ + t) (11.32)

and will be zero at time τ . We therefore alibrate the market pries of risk to impose

this using standard numerial optimisation algorithms. In these alulations, we assume

a �at real yield of 1.0% p.a. for the zero-oupon bond pries, B(τ, τ + t)

For models with only one soure of risk (for instane, the LC model), this single, external

prie is su�ient to speify the single market prie of longevity risk uniquely. For more

ompliated models, with multiple risk soures, we require additional pries in order to

speify the market pries of longevity risk.

11.3.2.2 Internal market

We observe that, while genuine market information is in sare supply, many insurane

ompanies will e�etively have an internal market for longevity risk due to the ross-

subsidies between di�erent lines of business with di�erent exposures to longevity risk.

For instane, an insurer whih writes both annuity and life assurane lines of business

has, de fato, established an internal market for longevity risk due to the presene of

natural hedging between the two lines of business, as disussed in Cox and Lin (2007).

The �prie� of longevity risk in this internal market will �nd expression in the mortality

improvement assumptions used in the priing and reserving for these di�erent lines of

business. It is therefore natural to use these �internal� market signals to supplement

21

The use of the CMI Projetion Model in this ontext is purely illustrative and should not imply that

we believe that this is the best model to use for priing longevity-linked seurities, although it is typial

of what has been used in pratie in our experiene.
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those oming from the genuine external market if there are insu�ient traded longevity-

linked seurities to de�ne the market-onsistent measure.

Alternatively, an insurer may develop an �internal� prie for longevity risk by analysing

the ost of longevity reinsurane via bespoke longevity swaps. Although these ontrats

do not solely transfer longevity risk, sine they also transfer basis and idiosynrati risks,

they ould still give some indiation of a prie for the systemati longevity risk present,

and so be used to alibrate the market-onsistent measure.

For example, we assume that the forward mortality framework is being used by an organ-

isation with an internal, deterministi assumption that onstitutes their �house view� of

mortality improvements. This house view would then feed through into the assumptions

used in priing and reserving, and inform those assumptions that are used for aounting

and regulatory purposes if there is su�ient �exibility in how these are set. The existene

of suh a house view would therefore determine the organisation's appetite for longevity

risk aross multiple lines of business and so underpin the �internal� market for longevity

risk.

To illustrate the sort of internal market that might be onsidered typial, we assume

a house view that mortality rates improve in line with the projetions from the CMI

Projetion Model with a long-term rate of improvement of 1.75%.

22

Again, this is in line

with the sort of assumptions used to reserve for and prie annuity business in the UK in

our experiene. In order to translate this house view into the market pries of longevity

risk in our forward mortality framework, we try to minimise the (weighted) relative

distane between the surfae of probabilities of dying given by the internal assumption,

q̃x,t, and those given the forward mortality surfae in the Q-measure

Qx,t(τ) = 1− exp
(

−νQx,t(τ)
)

22

This value of 1.75% an be ompared with the assumption of a long-term rate of improvement of

1.5% used for the �xed leg of the index-based longevity swap above. The long term rate of improvement

is likely to be higher on an annuity reserving basis than for valuing a longevity swap, sine it is ommon

pratie, in our experienes, for annuity providers to inlude an impliit margin for prudene in their

mortality projetion. In ontrast, the assumption used in a longevity swap typially re�ets a best

estimate of future mortality improvements and risk is expliitly allow for via the swap premium rather

than an impliit margin in the mortality assumption.
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at ertain key ages, subjet to the swap also being pried fairly at time, τ , i.e.,

min
λ

∑

t,x∈X
B(τ, τ + t)

(q̃x,t −Qx,t)
2

q̃x,t

subjet to Equation 11.32 = 0

where X = {50, 55, 60, 65, 70, 75, 80}. This proedure is equivalent to determining the

market-onsistent measure by referene to an external market in q-forwards, as proposed

in Coughlan et al. (2007b) and disussed in Setion 11.3.3.2 below, if suh as market

existed. We onsider these key ages partly to ensure that the forward mortality surfae

in the market-onsistent measure is biologially reasonable over a wide age range and

beause, if a market in q-forwards does emerge, it is at these ages where the market

is likely to be most liquid (see Li and Luo (2012)). Therefore, the use of the internal

market for longevity risk is simply a proxy for information from an external market for

longevity risk, and will be supplanted should a genuine external market develop.

We use these assumptions for the external and internal markets for longevity risk in

order to alibrate the parameters of the Essher transform for all �ve models desribed

in Setion 11.2.5. These parameters, along with the forward mortality surfaes obtained

in Setion 11.2.5, allow us to onstrut the forward mortality surfae in the market-

onsistent measure, whih an then be used to value other longevity-linked liabilities

and seurities in a market-onsistent fashion.

11.3.3 Priing longevity-linked seurities

The forward mortality framework desribed above provides a single surfae of forward

mortality rates, alibrated from all the available information on longevity-linked seu-

rities. It an, therefore, be used to value any other longevity-linked seurities and give

pries onsistent with those observed. We demonstrate this for a range of di�erent

longevity-linked seurities below.

11.3.3.1 Survivor derivatives

Longevity zeros and s-forwards

In Setion 11.2.2, we de�ned the forward mortality rates assuming the existene of a

market in longevity zeros. These were used as they are the fundamental seurities de-

pendent upon the survivorship of a ohort of individuals, and an be used to onstrut
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more ompliated survivor seurities suh as annuities and longevity swaps, as disussed

below. Related to longevity zeros are �s-forwards�, as proposed in Dowd (2003), Blake

et al. (2006) and the Life and Longevity Markets Assoiation,

23

whih are forward on-

trats de�ned on a longevity zero (and hene are more apital e�ient).

From Equation 11.7, we an see that

Sx,t(τ) = tP
Q
x,τ = exp

(

−
t
∑

u=1

ν
Q
x+u,τ+u(τ)

)

where Sx,t(τ) is the forward prie of an s-forward at time τ , de�ned on a ohort aged x

at τ , with a maturity of t years. Figure 11.2 shows s-forward pries de�ned on the ohort

of individuals aged 65 in 2011 with di�erent maturities.
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Figure 11.2: S-forward pries for �ve di�erent mortality models

As an be seen, most of the models give broadly omparable s-forward pries, espeially

those alibrated using the internal market information. We note that the LC model gives

s-forward pries whih are slightly di�erent from these models, with higher probabilities

23

http://www.llma.org/
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of survival over the �rst few deades followed by a period of higher mortality rates (and

hene a steeper gradient for the urve), but these are still biologially reasonable.

Annuities

The most relevant longevity-linked instruments for many life insurane ompanies are

annuities. For the reasons disussed in Setion 11.3.1 and Norberg (2010), individual an-

nuities annot be used to alibrate the forward mortality surfae in the market-onsistent

measure, sine the ash�ows of these instruments are expliitly linked to the survivor-

ship of a named individual and, hene, their pries inlude an allowane for individual

mortality risk. In addition, they are not traded, and, therefore, annot provide timely

information on their values. However, when a life insurer reserves for a book of annuities,

the idiosynrati mortality risks are diversi�able and so are not inluded in the value of

any spei� annuity but through the additional apital required for the book.

24

In ad-

dition, modern solveny regimes, suh as Solveny II, require the best estimate of the

liabilities in respet of annuity poliies to be alulated using market-onsistent assump-

tions. Therefore, the market-onsistent forward framework ould, potentially, be used

as the basis for an insurer's �internal model� under Solveny II, as disussed in EIOPA

(2014).

25

The value of an annuity an be diretly onstruted from a portfolio of longevity zeros

using

ax(τ) =

∞
∑

t=0

tP
Q
x,τ (τ)B(τ, τ + t) (11.33)

To alulate the values of longevity zeros beyond the maximum age in our data, we use

the topping out proedure of Denuit and Goderniaux (2005). We therefore see that annu-

ity values are very losely related to the swap prie given in Equation 11.32.We alulate

annuity pries

26

for men at di�erent ages in 2011 using the �ve di�erent models, and the

results are shown in Figure 11.3.

24

There will therefore be a distintion between the prie an annuity is sold to the publi for and the

amount it is reserved for by the life insurer, with the additional margin for idiosynrati mortality risk

harged to the individual forming part of the pro�t margin of the produt.

25

This is disussed further in Chapter 12.

26

Annuities are valued using a real disount rate of 1% p.a..
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Figure 11.3: Annuity values for �ve di�erent mortality models

We an see from this that the di�erent models give broadly similar annuity values. This

is not surprising given that they all use the same external market information (i.e., the

swap prie) in order to alibrate the market-onsistent measure. Indeed, all the mod-

els give exatly the same value for an annuity at age 65, sine this is determined by the

swap prie we have assumed and an annuity is equivalent to the �oating leg of a longevity

swap. However, the annuity values given by di�erent models diverge slightly as we move

away from this �xed referene point, with the LC model giving lower annuity values at

higher ages than the other models.

Index-based longevity swaps

We an also use these results to investigate the potential priing of index-based longevity

swaps at di�erent ages. Extending the de�nition of the swap value in Equation 11.32 for

di�erent ages to

0 =

35
∑

t=1

(

tP
Q
x,τ (τ)− (1 + π) tP̃x,τ (τ)

)

B(τ, τ + t) (11.34)
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we an use the same �best estimate� assumption based on the CMI Projetion Model for

the �xed legs of the swaps, to alulate the implied swap premium, π, on index-based

longevity swaps at di�erent ages. The implied swap premiums are shown in Figure 11.4.
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Figure 11.4: Swap premiums for �ve di�erent mortality models

As an be seen, the behaviour of the swap premium depends strongly upon the model

being used. For the lassi APC, RP and GP models, whih inlude a ohort term,

the swap premium slightly inreases with age, from around 3% at age 60 to around 6%

between ages 75 and 80 (note that a value of 4% was assumed at age 65). Swap premi-

ums in the CBDX model are relatively high at the youngest ages (5.5% at age 60) and

derease slowly with age, to around 3% at age 75. However, for all of these models, the

swap premium remains positive and do not appear unreasonable at any age.

In ontrast, the LC model gives swap premiums whih derease rapidly with age, giving

negative swap premiums at higher ages (i.e., a premium would be paid to reeive the

�oating payments on the swap) whih does not appear reasonable. This is beause the

LC model gives relatively low values for annuities at higher ages - lower than would be

found using the deterministi CMI Projetion Model. We therefore see that there is a

trade-o�. On the one hand, we would like to use simple models whih have relatively
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few free parameters and so are simple to alibrate from sparse data (and, in partiular,

would avoid the use of an internal market for longevity risk). On the other hand, we also

need to obtain plausible pries for di�erent longevity-linked liabilities and seurities and

aross a wide range of ages.

11.3.3.2 Other longevity-linked seurities

A number of other longevity-derivatives not based on the survivorship of a ohort have

been proposed, and these an also be valued using the forward mortality framework pro-

posed here. A number of these are illustrated below. However, the important point to

note is that any seurity whih does not have a non-linear payo� (i.e., whih is not an

option) an be valued using the forward mortality framework proposed in this study.

q-forwards

Forward ontrats on future probabilities of death, known as �q-forwards�, were in-

trodued in Coughlan et al. (2007b) represent another, distint, family of potential

longevity-linked seurities. There have been a number of hedging transations using

q-forwards, as disussed in Blake et al. (2013), and so q-forwards are one of the major

ontenders to form the basis of a traded market for longevity risk if it develops. In

addition, the internal market assumption, used in Setion 11.3.2 to alibrate all of the

models other than the LC model, impliitly makes use of a market for q-forwards, albeit

one that is internal to the life insurer rather than an externally traded market.

Values for q-forwards at age 75 and di�erent maturities, alulated using the forward

mortality models, are shown in Figure 11.5, along with the qx,t values projeted using

the CMI Projetion Model. For the models whih used the internal market assumption

to alibrate the market-onsistent measure, we see that the q-forward values are broadly

onsistent with those from the CMI Projetion Model. However, they are not idential,

sine the alibration proess also has to math the swap prie exatly and minimise the

di�erene in q-forward pries at ages other than 75. However, beause the GP model

has more market pries of risk to alibrate, it ahieves a slightly loser �t to the internal

market assumption than the other models, inluding the ohort e�et observed around

2025 (i.e., for ohorts born around 1950).
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Figure 11.5: q-forward pries at age 75 for �ve di�erent mortality models

In ontrast, the LC model gives q-forward values whih are very di�erent from those

of the other models, with implausibly rapid dereases in q-forward values. Again, this

is beause, with a single market prie for longevity risk, the LC model has to severely

distort the forward mortality surfae in the real-world P-measure in order to prie the

longevity swap. It annot ensure that mortality rates aross a wide range of other ages

and years behave in a plausible fashion in the market-onsistent measure. We therefore

see that more sophistiated underlying APC mortality models, as well as being able to

inorporate priing information from a wider range of soures, will also tend to give more

biologially-reasonable forward surfaes for mortality in the market-onsistent measure.

e-forwards

Period life expetany is a very ommonly used aggregate measure of mortality rates,

sine it an be alulated easily from observed data and an be ompared aross di�erent

populations. It is, therefore, natural to onsider its use as an index for longevity risk

transfer, based on the suggestion of Denuit (2009). In partiular, we onsider a market
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in forwards on period life expetany, whih we refer to as �e-forwards� (from the demo-

graphi symbol for period life expetany). Using the forward mortality framework, we

alulate forward period life expetanies as

E65,t(τ) = 0.5 +

∞
∑

u=1

exp

(

−
u
∑

v=1

ν
Q
65+v,t(τ)

)

Figure 11.6 shows the forward period life expetanies at age 65 from eah of the �ve

models in the market-onsistent measure.
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Figure 11.6: Period life expetanies at age 65 for �ve di�erent mortality models

We note that all of the models give forward period life expetanies whih an be on-

sidered biologially reasonable and onsistent with the �ndings of Oeppen and Vaupel

(2002), i.e., that they inrease roughly linearly. Life expetanies from the LC model

inrease slightly faster than the other models, whih otherwise give broadly onsistent

forward values. This is beause of the use of the internal market to alibrate these other

models, ensuring greater onsisteny between their forward mortality surfaes.

k-forwards
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In Chapter 8, we disussed how the indies based on the observed rates of improvement

in mortality rates, suh as the indies whih were de�ned in the onstrution of the

Swiss Re Kortis bond, ould potentially form the basis for a market in longevity risk.

Improvement rates may be a natural basis for a market in longevity, as they are often

used by atuaries to express long term assumptions regarding the evolution of mortality

rates. Building on this, we also onsider the forward value of the index for men in the

UK de�ned by

Kt(τ) =
1

11

85
∑

x=75



1−
[

ν
Q
x,t(τ)

νQx,t−8(τ)

]
1
8





This index was onstruted to measure the average rate of improvement in mortality

rates between ages 75 and 85 for men in the UK and so ould be used for hedging or

transferring longevity risk in a portfolio of annuities. Unlike the Kortis bond, however,

we only onsider an index onstruted for a single population (i.e., men in the UK) rather

than the di�erene between two populations, and only onsider priing the index rather

than an option on the index.

27

In Chapter 8 it was suggested that forward ontrats based on this Kortis index ould

form the basis of a market in longevity risk. We refer to suh ontrats as �k-forwards�

in the same manner at q-, s- and e-forwards disussed above. Figure 11.7 shows the

projeted k-forward values in the market-onsistent measure. As disussed in Chapter 8,

the Kortis index is designed to be very sensitive to the rates of improvement in longevity,

whih are determined by the drift, µ, of the random walk used for the period parame-

ters. Indeed, for models whih lak a ohort term, the drift in the random walk exatly

determines the projeted index values, and hene they are onstant beyond 2020.

28

For

the models whih inlude ohort parameters, the value of the index in the short term de-

pends strongly upon the ohort parameters �tted by the model, as disussed in Chapter

8, resulting in a distintive urved pattern. In general, the models ontaining a ohort

term give market-onsistent assumptions for the rate of improvement in longevity whih

derease from its urrently observed level of around 3.5% to around 2% in 20 years' time.

This is not surprising given this is broadly in line with the assumptions used to alibrate

the market-onsistent measure, i.e., the CMI Mortality Projetion Model with a long

term rate of improvement of either 1.5% or 1.75%.

27

See Chapter 8 for a further disussion of the Swiss Re Kortis bond and its onstrution.

28

Before 2020, the Kortis index is based partly on projeted and partly on observed mortality rates,

and hene exhibits more variability than after 2020.
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Figure 11.7: Kortis index values for �ve di�erent mortality models
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As in the ase of the q-forwards, the index values for the LC model show a very di�erent

evolution due to the limited ability of this model to both prie the market information

and give a biologially reasonable forward surfae of mortality. However, the alternative

models appear to give index values whih are biologially reasonable and onsistent with

the historial, realised values for the k-forwards, whih potentially means that forwards

on the index ould form a viable basis for a market in longevity risk.

Other longevity-linked seurities

The forward mortality surfae ould also be used to value life assurane poliies in the

same manner. In onjuntion with the results of Chapter 12, the forward mortality

framework ould therefore be used as a standard model for both the valuation of a life

insurer's tehnial provisions and the assessment of longevity risk within them, in aor-

dane with the Solveny II regulatory regime desribed in EIOPA (2014). In addition,

for life insurers writing both annuity and assurane poliies, it may be desirable to value
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these onsistently in the tehnial provisions, in order to ahieve the bene�ts from nat-

ural hedging disussed in Cox and Lin (2007).

Beyond the examples disussed above, the forward mortality framework ould be used to

value any longevity-linked seurity with a linear payo� in the underlying index. Hene,

although the market for longevity-linked seurities is in the early stage of development

urrently and it is unlear whih form of seurities will ultimately ome to be traded, we

believe that the framework desribed in this study is �exible enough to be able to prie

any of them in a manner onsistent with any other pries for longevity-linked liabilities

and seurities whih are available.

As disussed previously, one disadvantage of any forward mortality rate framework is

that it annot urrently be used to value longevity-linked options, sine it only looks at

the expeted mortality rates in the market-onsistent measure. For example, it ould

not be used diretly to value mortality atastrophe bonds, suh as the Swiss Re Vita

bond (disussed in Bauer and Kramer (2007)), Longevity Experiene Options (desribed

in Fetiveau and Jia (2014)), bespoke index-based solutions (desribed in Mihaelson

and Mulholland (2014)), a guaranteed annuity option (disussed in Pelsser (2003) and

Ballotta and Haberman (2006)) or a bond similar to the Kortis bond with the prinipal

being a non-linear funtion of the index value. At the present time, we do not think

that this is a fatal limitation of the forward mortality rate framework disussed here, as

urrently the market for longevity-linked seurities is not su�iently developed to allow a

full alibration of the forward mortality rate surfae, let alone the dynamis of the fore

of mortality in the market-onsistent measure, whih is required to model longevity-

linked options. However, we believe it is possible to extend the forward mortality rate

framework, whih would enable the priing of mortality options, although we leave this

for future work.

11.4 Conlusion

The valuation of longevity-linked liabilities and seurities requires us to predit future

rates of mortality. Modern solveny regulations and the gradual emergene of a market

in longevity-linked seurities require these preditions to inorporate market information,

in order to give pries for di�erent seurities whih are onsistent with those observed in

the marketplae. As many previous studies have shown, forward mortality models are

ideally plaed to ahieve this.
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We therefore believe that the answer to the titular question raised in Norberg (2010) - are

forward mortality rates the way forward? - is yes. Nevertheless, it is important to take on

board the ritiisms of Norberg (2010) and to develop a framework spei�ally to model

mortality rates, rather than borrow a pre-existing framework developed for interest rates

and to de�ne this framework using seurities whih do not depend on the idiosynrati

timing of individual deaths. This is beause, with a properly developed framework,

we an derive a model whih is apable of apturing the omplex dynamis of mortality

rates, and so obtain onsisteny between models of the short and forward mortality rates.

In this study, we have developed suh a framework for forward mortality rates whih is

based upon the dynamis of the fore of mortality given by the lass of age/period/ohort

mortality models. This framework has the advantage of being easier to estimate from

historial data than existing models, with market information being inorporated via a

relatively parsimonious transformation of the forward mortality rates in the real-world

measure. The framework is also very �exible, as it an be used in onjuntion with many

of the most popular models of the fore of mortality, suh as those proposed in Lee and

Carter (1992) and Cairns et al. (2006a).

We have shown how market information an be inorporated into the model and used the

resulting forward mortality surfae to value a range of existing and proposed longevity-

linked seurities. All of the pries alulated from the same model are onsistent with

eah other, as they are derived from the same forward surfae of mortality. This allows

for a uni�ed approah to the valuation of a wide range of liabilities and longevity-linked

seurities.

Finally, we note that the main virtue of forward mortality models is their ability to spe-

ify the dynamis of the forward mortality surfae and, hene, their appliability to the

assessment and management of longevity risk. We develop these themes in the seond

part of this study, in Chapter 12. Together, these two studies show that the framework

proposed an provide an integrated solution to many of the valuation and risk manage-

ment problems in respet of longevity risk that are faed by life insurane ompanies.
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11.A Identi�ability and mortality forward rates

In Chapters 3 and 4, we disuss the identi�ability issues in AP and APC mortality mod-

els, respetively. In partiular, we �nd that almost all APC mortality models possess

�invariant� transformations, i.e., transformations of the parameters of the model whih

leave the �tted mortality rates unhanged. In order to �nd a unique set of parameters,

we impose a set of identi�ability onstraints on them. Typially, these are hosen to give

a partiular demographi signi�ane to eah term in the model. However, sine any

interpretation of demographi signi�ane is subjetive, it is important that our hoie

of identi�ability onstraints does not have any impat on any onlusions we draw about

historial or projeted mortality rates. For instane, we disuss in Chapters 3 and 4 how

to ensure that projeted fore of mortality is independent of the hoie of identi�ability

onstraint.

It is also important that the forward mortality rate framework desribed in this study is

independent of the hoie of identi�ability onstraints used when �tting the underlying

APC model to historial data. However, due to our de�nitions of the forward mortality

rates in Equation 11.11, we see that νPx,t(τ) in the real-world measure is automatially

independent of the identi�ability onstraints if the distribution of µx,τ is also indepen-

dent of the identi�ability onstraints. We therefore do not need to do any additional

work to ensure identi�ability in the forward rates one the methods used to projet the

fore of mortality are well-identi�ed.

We also need to ensure that the forward mortality surfae in the market-onsistent mea-

sure is also independent of the hoie of arbitrary identi�ability onstraints. This is

mostly straightforward, as we see that Equation 11.31 depends upon the forward mor-

tality rates in the real-world measure (whih should be independent of the identi�ability

onstraints for the reasons disussed above), the varianes of the period and ohort

funtions (whih are independent of the alloation of any levels and linear trends if the

projetion methods are well-identi�ed, as disussed in Chapter 4) and the market pries

of longevity risk. However, we note that if the model transformed using

{β̂x, κ̂t} = {
(

A−1
)⊤

βx, Aκt}

then the market pries of risk are also transformed in the model to λ̂ =
(

A−1
)⊤

λ.

Hene we see that, not only are the values of the market pries of risk dependent upon

the underlying APC model used for the fore of mortality, they will also depend upon
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the normalisation sheme and spei�ation of the age funtion in the model, and so are

not the same aross all models whih give the same �tted mortality rates.

11.B Impat of Jensen's inequality

In Setion 11.2.2, it was argued that

tPx,τ = Eτ

[

exp

(

−
t
∑

u=1

µx+u,τ+u

)]

≈ exp

(

−
t
∑

u=1

Eτµx+u,τ+u

)

(11.35)

due to the relatively low degree of variability in µx,t, and hene it was shown in Setion

11.2.2 that

νx,t(τ) ≈ Eτµx,t

This assumption an be tested numerially, as follows.

For simpliity, we onsider Px,t = Eτ exp(−µx,t). Therefore

Px,t = Eτ exp (− exp (ηx,t))

In Setion 11.2.3, we assume that

ηx,t ∼ N(Mx,t,Vx,t)

and therefore

Eτ exp(−µx,t) ≈ exp (−Eτµx,t) = exp (− exp (Mx,t + 0.5Vx,t)) (11.36)

Holland and Ahsanullah (1989) disussed the log-log distribution, where X is suh that

ln(− ln(X)) ∼ N(M,V)

We therefore see that Px,τ (τ) is given by the mean of the log-log distribution if ηx,t is

normally distributed. However, the moments of this distribution do not have a losed

form solution. Holland and Ahsanullah (1989) showed that the rth raw moment of the
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distribution is given by

EXr =
1√
2π

∫ ∞

−∞
exp

(

−0.5x2 − r exp[M+ x
√
V]
)

dx

whih an be omputed numerially.

From Setion 11.2.3, we see

Mx,t = αx + β⊤
x Eτκt + Eτγt−x

Vx,t = β⊤
xVarτ (κt)βx + Varτ (γt−x)

Hene we an use the results of Holland and Ahsanullah (1989) to ompute Px,t numeri-

ally, without reourse to the approximation in Equation 11.36. Using this, we alulate

Px,t = Eτ exp(−µx,t)

=
1√
2π

∫ ∞

−∞
exp

(

−0.5z2 − exp[Mx,t + x
√

Vx,t]
)

dz (11.37)

numerially and ompare it with the values assumed in Equation 11.36. This gives us

a hek on the auray of the approximation in Equation 11.36, whih underpins the

forward mortality framework.

Figure 11.8 shows the ratio of the numerial value of Px,t alulated using Equation 11.37

and the approximate value alulated using Equation 11.36 for the �ve mortality models

onsidered in this paper (in the real-world measure). We an that in the vast majority

of ases, the di�erene that the assumption makes is less than 0.2% (i.e., ratios less than

1.002) and for no ages and years does the approximation make more than a 1.5% dif-

ferene to the forward mortality rates. This is onsistent with the projeted mortality

rates found in Figure 11.1, whih also showed that forward mortality rates (using the

approximation) were very lose to those alulated using Monte Carlo simulations.

The mortality rates whih are most a�eted by the approximation are those at the highest

ages and the years of projetion furthest into the future, whih makes sense as these are

the mortality rates with the greatest levels of unertainty attahed to them. However,

they are also the least eonomially important, sine any ash�ows that would be a�eted

by these mortality rates would be in respet of individuals who are very old (and so there

is very little survivorship to these ages) and far into the future (whih means that the

present value of the a�eted ash�ows would be very small due to disounting). This gives
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Figure 11.8: Impat of Jensen's inequality
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(e) General proedure model

us reassurane that the approximation in Equation 11.35 does not systematially distort

the results found using the forward mortality framework derived in this study, ompared

with those whih ould be found using an exat but onsiderably more ompliated

framework whih does not make this assumption.
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Chapter 12

Forward Mortality Rates in Disrete

Time II: Longevity Risk

Measurement and Management

12.1 Introdution

The �rst deade of the 21st entury has witnessed the realisation of the importane of

longevity risk in the provision of retirement bene�ts and the emergene of new seurities

and derivatives, suh as the longevity swaps and pension buy-ins disussed in Blake et al.

(2013), to manage this risk. It has also witnessed a �nanial risis and resulting rees-

sion, aused, in part, by new forms of �nanial seurities and the faulty measurement

and management of risk surrounding them. It is, therefore, of paramount importane

that we do not make the same mistakes with the growing market for longevity risk that

were made in the market for mortgage-baked seurities. Consequently, it is vital to be

able to measure and manage the risk in longevity-linked liabilities seurities reliably and

onsistently.

Longevity risk is often de�ned as the risk that life expetany inreases at a faster rate

than antiipated, or onversely, that mortality rates derease faster than expeted. How-

ever, in the ontext of liability-linked liabilities and seurities, the major �nanial impat

of longevity risk is not the di�erene between antiipated and atual mortality rates. In-

stead, it is the impat of hanges in the expetations of future mortality rates that has

the greatest impat on the valuation of these liabilities and seurities.
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Sine the expetations of future mortality rates are forward-looking by de�nition, what

is required for the measurement of longevity risk is a forward model for mortality rates.

In Chapter 11, we developed suh a forward mortality framework, based on the dynamis

of the fore of mortality given by age/period/ohort (APC) models in disrete time. We

then demonstrated how suh a model an be alibrated to market information, in order

to prie a range of longevity-linked liabilities and seurities onsistently, both with the

market information we possess and with eah other. Beause market-onsistent values

are required for the liabilities under the Solveny II regulatory regime, as desribed in

EIOPA (2014), suh a forward mortality framework ould also form the basis of an in-

surer's internal model for longevity risk.

In this hapter, we go beyond de�ning the surfae of forward mortality rates at a single

point in time to onsider how this surfae will hange in future. These hanges are driven

by the dynamis for the parameters of the underlying APC mortality model and so are

onsistent with how the forward mortality surfae was de�ned initially. Changes in the

forward mortality rates then feed through into hanges in the values of longevity-linked

liabilities and seurities, and so form the basis of the measurement of longevity risk. This

is espeially important in the ontext of modern regulatory regimes, suh as Solveny II,

where an aurate determination of the apital required to support di�erent life insur-

ane liabilities is a ritial business issue. Sine the forward mortality framework gives

onsistent values for both longevity-linked liabilities and seurities, we an also use it to

measure the impat of hedging strategies whih attempt to manage longevity risk.

The struture of this hapter is as follows. We �rst onsider how the forward surfae

of mortality will evolve over a one year period in Setion 12.2 by examining the pro-

esses assumed to be generating the observed period and ohort parameters. This is

then applied in Setion 12.3 to examine the riskiness of annuity values using di�erent

risk measures and the impat of hedging liability values using simple longevity-linked

seurities. In Setion 12.4, this analysis is extended to the measurement of longevity risk

over multiple years, with a partiular appliation to alulating the �risk margin� under

the proposed Solveny II regulations and the numerial issues aused by this alulation.

Finally, Setion 12.5 onludes.
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12.2 One-year updates of the forward mortality surfae

The mortality forward rate framework disussed in Chapter 11 enables us to value

longevity-linked liabilities and seurities values in a market-onsistent fashion. How-

ever, for many risk measurement purposes we are also interested in how these values

hange with time. There will be three omponents to suh hanges:

1. Changes in value due to hanging onditions in �nanial markets not linked to

longevity, for instane, due to hanges in interest or in�ation rate expetations.

Changes in these quantities have been widely studied and a range of models have

been developed for interest rates and in�ation that ould be used to deal with

the impat of these hanges on longevity-linked liabilities and seurities values.

Aordingly, we do not study the impat of these hanges in this hapter.

1

2. Changes due to new mortality data. Mortality data is released relatively infre-

quently, typially annually, and would be used to re�t the underlying APC mor-

tality model. Suh hanges will be onsidered further in this study.

3. Changes due to hanging market longevity-risk preferenes. These would result in

hanges in the values of traded seurities not explainable in terms of new mortality

data or hanges in other non-demographi market indiators, and would be inor-

porated into the forward mortality rate model as time-dependent market pries

of longevity risk, λ(j)(τ). With the traded market in longevity-linked seurities

in a very early stage of development, there is no reliable information available to

determine how these hanges should be modelled. As Blake et al. (2006) said �so-

phistiated assumptions about the dynamis of the market prie of longevity risk

are pointless�, given the absene of market data to alibrate them. We therefore

assume that the market pries for longevity risk are onstant and do not onsider

them further.

1

We also impliitly assume that proesses governing the evolution of mortality rates are independent

of other �nanial risks. This is in ommon with the majority of studies, suh as Cairns et al. (2006b) and

Bauer et al. (2008) and with the available evidene to date, as disussed in Loeys et al. (2007). Although

there may be some situations where longevity risk is not independent of other �nanial risks in the real-

world measure, as in the examples of Miltersen and Persson (2005), we believe that these situations

are relatively extreme and are better onsidered by senario analysis rather than through a stohasti

model. Furthermore, Dhaene et al. (2013) show that independene between longevity risk and �nanial

risks in the real-world measure does not automatially ensure independene in the market-onsistent

measure. However, more ompliated models are required in order to allow for any dependene between

longevity and investment risks, whih require more market information for alibration. Therefore, we

believe that the assumption of independene between longevity risk and other �nanial risks is neessary

and justi�able at this early stage of development of the longevity risk market.
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To investigate the seond omponent of these hanges, we are, therefore, interested in

the random variables

ν
Q
x,t(τ + 1)|Fτ

i.e., the distribution of the forward mortality rates at τ + 1 onditional on information

at time τ . This is equivalent to studying the �updating fators�

ν
Q
x,t(τ + 1)

νQx,t(τ)

whih underpins the models of Cairns (2007) and Zhu and Bauer (2011b).

In reality, the proess of determining the forward surfae of mortality would involve

aquiring death ounts and exposures to risk aross all ages for year τ +1, re-estimating

the hosen mortality model with a revised dataset whih inluded this new information

to obtain new estimates of the various age, period and ohort parameters and then using

these revised estimates within the framework of Chapter 11. However, this proess is not

pratial for risk management purposes, as the proess of generating new death ounts

and exposures to risk and re�tting the model an be su�iently time onsuming that it

is not viable to perform it thousands of times. Instead, we note the key new information

whih the additional data gives us:

2

1. We an use the new data to estimate for the �rst time the value of κτ+1.

2. We an use the new data to re-estimate the ohort parameters, and so revise the old

�tted ohort parameters, γy(τ), to a new set of �tted ohort parameters, γy(τ +1).

Aordingly, to avoid the need to simulate death ounts and exposures for τ + 1 and

re�t the model, we instead generate new �observations� of κτ+1 and γy(τ + 1) based on

the assumed time series dynamis whih underlie the forward mortality framework. The

proedures for doing this are disussed in Setions 12.2.1 and 12.2.2 for the period and

the ohort funtions, respetively.

In following this proedure, it is important to ensure that our updated forward mortal-

ity surfae is �self-onsistent�, as de�ned in Zhu and Bauer (2011b), namely that �that

expeted values of future foreasts should align with the urrent foreasts�. This means

that forward mortality rates should be martingales. Suh a ondition is similar to �no

2

A similar line of reasoning an be found in Tan et al. (2014), whih used the �time invariant� property

of the period funtions in some mortality models to investigate the hedging of longevity risk.
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arbitrage� onditions in forward interest rate models. However, beause the markets for

longevity risk are not omplete and are likely to involve a more diverse range of potential

underlying seurities,

3

we annot rule out the possibility of arbitrage opportunities even

in a self-onsistent framework. Given the de�nition of the forward mortality rates in

Equation 11.11, we note that

4

EP
τ νPx,t(τ + 1) = EP

τE
P
τ+1 µx,t

= EP
τ µx,t

= νPx,t(τ) (12.1)

by the tower property of onditional expetations. This means that real-world measure

forward mortality rates are self-onsistent in the real-world measure. We an verify this

by onsidering the period and ohort funtions separately, whih is done in Setion 12.2.1

for the period parameters and Appendix 12.A.1 for the ohort parameters.

A similar line of reasoning leads to

EQ
τ ν

Q
x,t(τ + 1) = ν

Q
x,t(τ)

i.e., market-onsistent forward mortality rates are self-onsistent in the market-onsistent

measure. This result is veri�ed algebraially in Appendix 12.A.2 and provides a useful

and important hek on the validity of the modelling approah and ensures that there

are no internal ontraditions.

For most of the pratial risk management purposes in Setion 12.3, what is of interest is

how values of liabilities and seurities hange in the real-world measure (e.g., to �nd the

one-in-200 real-world senario under Solveny II). Sine these values are alulated using

market-onsistent forward mortality rates, the value of liabilities and seurities are not

self-onsistent in the real-world measure. However, this is not surprising and is similar to

other results in �nane.

5

Nevertheless, it will have a number of onsequenes for the be-

haviour of longevity-linked liabilities and seurities, as disussed in the following setions.

3

Suh as longevity zeros (based on survivorship), q-forwards (based on probabilities of death), e-

forwards (based on period life expetany) and other seurities based on bespoke indies.

4

We adopt the onvention that the subsript on operators Eτ (.), Varτ (.) or Covτ (.) denotes ondi-
tioning on the information available at time τ , i.e., Fτ .

5

For example, the Blak-Sholes stok option prie is a martingale in the risk-neutral measure by

onstrution. When performing risk management on stok options in the real-world measure, the options

pries will not be martingales (in general, we would expet to see the value of a all option inrease with

time, sine the share prie is expeted to grow faster than the risk-free rate).
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In Chapter 11, we used the forward mortality framework with a number of di�erent

APC models, inluding the Lee-Carter model (Lee and Carter (1992)), the lassi APC

model of Hobraft et al. (1982) and the model developed in Chapter 9 using the �general

proedure� (GP) of Chapter 5. In this hapter, we only use the GP model as it provides

a good �t to the historial data and possesses most of the features of more ompliated

mortality models suh as multiple age/period terms and a ohort term. However, it is

important to note that the tehniques we propose ould be used in ombination with any

mortality model within the lass of APC models disussed in Chapter 2.

12.2.1 Period parameters

Consider �rst the period funtions. From Equation 11.16 and 11.17, we have

EP
τ+1κt = κτ+1 + µ

t
∑

s=τ+2

Xs

VarPτ+1 (κt) = (t− τ − 1)Σ

Therefore, by generating a value of κτ+1 using the random walk with drift proess

underlying the projetions, we an update the means and varianes of the future pe-

riod funtions (and hene the forward surfae of mortality) from those found at τ to a

(stohasti) update at τ + 1:

κτ+1 = κτ + µXτ+1 + ǫτ+1

EP
τ+1κt = κτ+1 + µ

t
∑

s=τ+2

Xs

= κτ + µXτ+1 + ǫτ+1 + µ

t
∑

s=τ+2

Xs

= κτ + µ

t
∑

s=τ+1

Xs + ǫτ+1

= EP
τκt + ǫτ+1

VarPτ+1 (κt) = (t− τ)Σ− Σ

= VarPτ (κt)− Σ

Hene we see that the expetation of future period parameters hanges by the innovation

ǫτ+1 for all future times, whilst the variane of the future period parameters redues to
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re�et that, at τ + 1, they will be projeted for one fewer year than at τ .
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Figure 12.1: 95% predition interval for Eτ+1κ
(1)
t |Fτ

Figure 12.1 shows the 95% predition interval for EP
τ+1 κ

(1)
t |Fτ from the GP model. As

an be seen, it is the value of κ
(1)
τ+1 whih generates the unertainty in the later period

funtions, whih shift in parallel as a result of this new information.

6

To demonstrate the impat of this update of the period funtions on the forward mortality

rates, we see that

νPx,t(τ + 1)|Fτ = exp

(

αx + β⊤
x Eτ+1κt +

1

2
βxVarτ+1(κt)β

⊤
x

)

|Fτ

= exp

(

αx + β⊤
x

(

Eτκ
⊤
t + ǫτ+1

)

+
1

2
β⊤
x (Varτ (κt)− Σ)βx

)

|Fτ

= exp

(

β⊤
x ǫτ+1 −

1

2
β⊤
xΣβx

)

νPx,t(τ)

6

Note that, as the drift of the random walk proess, µ, is assumed to be known, the forward mortality

framework does not allow for what was termed �realibration� risk in Cairns et al. (2013), i.e., the risk

that one year's new information will ause a reappraisal of the drift term. We leave the inlusion of

realibration risk in the framework as future work. This may understate the risk in long-term projetions

of mortality rates and forms a key di�erene between our results and those of Rihards et al. (2014).
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if the underlying mortality model of the mortality short rate does not possess a ohort

term. Hene, generating random values of ǫτ+1 (the time-series innovations for the period

parameters) an therefore be used to update stohastially the forward mortality surfae

at τ +1, onditional on information to time τ in a relatively straightforward fashion. In

addition, we see that

EP
τ νPx,t(τ + 1) = exp

(

β⊤
x E

Pτǫτ+1 +
1

2
β⊤
xVarτ (ǫτ+1)βx −

1

2
β⊤
xΣβx

)

νPx,t(τ)

= νPx,t(τ)

and, hene, the real-world forward mortality rates are martingales in the P-measure as

expeted.

12.2.2 Cohort parameters

As disussed above, the impat of new data for year τ +1 has a fundamentally di�erent

impat on the ohort parameters ompared with the period parameters in a mortality

model. For the period parameters, new data would allow us to estimate a value for κτ+1.

To approximate this, we use the time series dynamis of the period funtions to projet

κτ+1 stohastially, and use this to update the forward surfae of mortality.

In ontrast, new death ount and exposure to risk data allows us to:

1. update the ohort parameters estimated by the model to allow for one additional

observation on eah ohort whih is alive at τ + 1;

γy(τ) → γy(τ + 1) for τ + 1−X ≤ y ≤ Y

2. estimate for the �rst time the ohort parameter for year of birth Y +1, i.e., γY+1(τ+

1), whih we did not have su�ient information to do the year before.

Unlike for the period funtions, the new data does not give us a omplete observation of

any new, single year of birth. It is this fundamental di�erene in the information that

new data provides that means that we need to adopt a fundamentally di�erent approah

when updating the ohort parameters in the forward mortality framework.

To explain why this is important, we need to �rst onsider the problems with using more

lassial approahes to projeting the ohort parameters. In Chapter 11, we found that
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lassial approahes, suh as those using ARIMA models, are not suitable in a forward

mortality framework. This was beause there is a disontinuity in the variane of the

parameters when we move from the estimated parameters based on historial data to the

projeted parameters. This disontinuity would give rise to priing anomalies. In the

ontext of updating the forward mortality surfae, we also �nd that using these lassial

approahes will lead to irregularities, as we now show.

Classial time series proesses assume that the ohort parameters for whih we have

observations at time τ (up to and inluding γY , say) are known with ertainty and will

not be revised and updated to re�et the new information reeived at τ + 1. Instead,

new information at τ + 1 is assumed to be su�ient to estimate γY+1. Thus, the use of

lassial approahes would give results analogous to the updating of the period param-

eters above, i.e., that we only need to projet γY+1 stohastially to re�et the impat

of new data. The pattern of updated ohort parameters whih would be observed using

suh as model is shown in Figure 12.2.

1850 1900 1950 2000
−0.4

−0.2

0

0.2

Year of Birth

Figure 12.2: 95% predition interval for the one-year update of projeted γy using an

AR(1) proess

However, this is inonsistent with the impat new data would be expeted to have, as

disussed above. In addition, using these lassial approahes generates unfeasible pat-

terns of unertainty in the forward mortality surfae, with a sharp disontinuity between

ohort parameters whih are estimated from historial data and those whih are pro-

jeted, as disussed previously in Chapter 11.

In order to update the ohort parameters in a manner whih is onsistent with how they

would atually update in response to new data, we instead need to use an approah whih

ombines the time series dynamis of the ohort parameters with the partial observations

we have of them to date. With suh an approah, we an model the updating of this
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partial information to re�et the impat of new data, and then ombine this updated set

of observations with the time series dynamis to revise our foreast ohort parameters.

In Chapter 6, we developed a Bayesian modelling approah whih an be used for this

purpose. In partiular, we assumed that we had two soures of information for estimating

the �ultimate� ohort parameter, γy, whih would only be known fully one all members

of the ohort had died. These were the underlying time series dynamis for the ohort

parameters, whih ated as a prior assumption for their distribution, and the �interim�

ohort parameters estimated by the mortality model, γy(τ), whih were based on partial

information to time τ . Hene, the impat of new data on the ohort parameters an be

modelled by generating updates of the estimated ohort parameters, γy(τ + 1), whih

re�et new observations of the relevant ohorts.

In Chapter 6, we assumed that the ultimate ohort parameters were generated by inde-

pendent disrete pakets, γxy , for eah age of observation for the ohort, i.e.,

γy =
X
∑

x=1

dxγ
x
y (12.2)

where dx is the proportion of the total ohort whih dies at age x (assumed to be the

same for all ohorts). However, at any spei� time, we would only have reeived an

inomplete set of observations of any ohort where members of that ohort were still

alive, i.e., we would have reeived pakets of information γxy for x ∈ [1, τ − y] by time

τ . These partial observations are ombined to give us the estimated ohort parameters

�tted by a mortality model based on data to time τ :

γ
y
(τ) =

τ−y
∑

x=1

dxγ
x
y (12.3)

γy(τ) =
1

Dτ−y
γ
y
(τ) (12.4)

where Dx =
∑x

ξ=1 dx, i.e., the proportion of a ohort expeted to die before age, x, as

de�ned in Chapter 6.

Hene, the proess of updating the ohort parameters to re�et new information for

year τ + 1 is equivalent to generating new pakets of information to represent the new

observations of eah of the still living ohorts at time τ +1, and inorporating these into
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the existing estimates of the ohort parameters at time τ

γ
y
(τ + 1) = γ

y
(τ) + dτ+1−yγ

τ+1−y
y (12.5)

γy(τ + 1) =
1

Dτ+1−y
γ
y
(τ + 1)

=
1

Dτ+1−y

[

γ
y
(τ) + dτ+1−yγ

τ+1−y
y

]

=
1

Dτ+1−y

[

Dτ−yγy(τ) + dτ+1−yγ
τ+1−y
y

]

(12.6)

This an be ompared to the results of a redibility analysis, as desribed in in Chapter

7 of Kaas et al. (2001), sine the updated estimate of the ohort parameter is a weighted

average of the previous estimate and the new observation of the ohort. Beause of this,

our ability to update the forward mortality surfae for new ohort information rests on

our ability to simulate new pakets of information, γ
τ+1−y
y . To do this, we know from

Chapter 6 and the well-identi�ed AR(1) proess underlying the ohort parameters that

γxy |γy−1, β, ρ, σ
2 ∼ N

(

βX̃y + ρ(γy−1 − βX̃y−1),
σ2

dx

)

where β, X̃y, ρ and σ2
are de�ned in Chapters 6 and 11. However, the ultimate ohort

parameter for year of birth y − 1, γy−1, will not, in general, be known at time τ (as

individuals born in year y − 1 will still be alive), but we do know the distribution of

γy−1 at τ from Equations 11.20 and 11.21. Therefore, in order to �nd the distribution

of γ
τ+1−y
y |Fτ , we use Bayes Theorem and the distribution of γy−1 to give

γτ+1−y
y |Fτ , β, ρ, σ

2 ∼ N

(

βXy + ρ(M(y − 1, τ) − βXy−1), ρ
2V (y − 1, τ) +

σ2

dτ+1−y

)

(12.7)

In addition, we assume

Covτ (γ
τ+1−y
y , γ

τ+1−y+s
y−s ) = ρs

[

s−1
∏

r=0

(1−Dτ+1−y+r)

]

σ2

dτ+1−y+s
(12.8)

in order for the forward mortality rates to be self-onsistent in the P-measure, whih is

demonstrated in Appendix 12.A.1.

Hene, by generating new pakets of information, γxy , in respet of the ohorts that we

would have observed in the new data for year τ + 1, we an update the values of γy(τ)

onsistent with how they would update in response to atual new data.
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(a) 95% predition interval for the one-year up-

date of interim ohort parameters, γy(τ + 1)
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(b) 95% predition interval for the one-year up-

date of the mean of the ultimate ohort param-

eters, M(y, τ + 1)

Figure 12.3: Updating the ohort parameters

To summarise, the proess for updating the ohort parameters is:

1. generate new ohort information pakets, γ
τ+1−y
y for y ∈ [τ+1−X,Y +1], randomly

using the distribution in Equations 12.7 and 12.8;

2. update partial sums using Equation 12.6 without re�tting the APC mortality

model, to give γy(τ) → γy(τ + 1);

3. use Equation 11.20 to �nd M(y, τ + 1) (the updated estimate of the mean of the

ultimate ohort parameters);

4. use Equation 11.21 to �nd V (y, τ +1) (the updated estimate of the variane of the

ultimate ohort parameters);

5. use these to alulate νPx,t(τ+1) in onjuntion with the updated period parameters;

6. use Equation 11.31 to transform the real-world-measure forward mortality rates to

the market-onsistent measure, for use in valuing liabilities and seurities.

The 95% predition interval of the �interim� ohort parameters, γy(τ +1)|Fτ is shown in

Figure 12.3a, and the 95%predition interval of the updated expetation of the ultimate

ohort parameters, M(y, τ + 1)|Fτ is shown in Figure 12.3b.

7

We observe the following:

• New data for τ + 1 does not update the ohort parameters for ohorts where we

have assumed all members have died by time τ + 1, i.e., for y ≤ τ −X.

7

Note that, in M(y, τ ) we use indiator variables to remove the large outliers due to the ohort

anomalies in 1919/20 and 1946/47. This is beause we believe them to be artefats of the data olletion

proess (see Rihards (2008) and Cairns et al. (2014)), rather than genuine features of mortality for

these ohorts.
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• For years of birth τ + 1 − X ≤ y ≤ Y , the new information would allow us to

update the interim ohort parameter, γy(τ), and hene the expetation of the

ultimate ohort parameter, M(y, τ). The importane of this new information for

the estimated ohort parameters is greater for more reent years of birth. This is

reasonable, sine the information reeived for year τ+1 represents a greater share of

the partial information reeived to this data for these years of birth. However, the

Bayesian approah implies that the ultimate ohort parameters an be thought of

as weighted averages of the prior distribution (given by the time series dynamis)

and the partial information reeived by observing the ohorts to date, whih is

represented by γy. For more reent years of birth, this approah gives greater

weight to the prior distribution and less to the observations to date. Therefore, for

reent years of birth, the impat of the new data updating the partial observations

of the ohort (i.e., updating γy(τ) to γy(τ + 1)) has only a limited impat on the

distribution of the ultimate ohort parameters.

• We make our �rst estimate of the ohort parameters for year of birth Y + 1. This

gives a very high variability for the estimated ohort parameter, γY+1(τ + 1), as

this is based on very little information. However, sine the Bayesian approah gives

most weight to the time series dynamis for this ohort, this variability does not

result in large hanges in the expetation of the ultimate ohort parameter.

• For y ≥ Y +2, we still would not have su�ient observations to estimate γy(τ +1).

Hene the Bayesian approah gives no weight to the observations of the ohort (if

any) to date and so the distribution of the ultimate ohort parameters for these

ohorts is given entirely by the prior distribution, i.e., the time series dynamis.

However, this prior distribution will have hanged slightly beause of the updated

distributions of the ultimate ohort parameters for y ≤ Y + 1. Sine we have

assumed that the ohort parameters follow an well-identi�ed AR(1) proess, up-

dating the distribution of these parameters updates the prior distribution for the

ultimate ohort parameters for y ≥ Y + 2. However, these hanges do not persist

inde�nitely and, instead, the impat of the new information dereases exponen-

tially. This is reasonable, sine we would not expet to update our estimates for

the lifelong mortality features in respet of the ohort born in 2050 (say), based on

observations of their parents and grandparents.

In these respets, the Bayesian framework has repliated what we would expet to see

if we atually had new death ounts and exposures for τ + 1 and used them to re�t the

model. In addition, in Appendix 12.A.1, we hek to ensure that the Bayesian framework

for the ohort parameters gives self-onsistent forward mortality rates in the real-world
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measure.

Cohort e�ets are a feature of many of the more reent mortality models in use, and their

robust estimation is of vital importane in the alulation of liabilities, suh as annuities,

and many of the longevity-linked seurities whih have been proposed. However, as

disussed in Chapter 6, the projetion of ohort parameters is di�ult, and made more

ompliated by the nature of the partial information we have regarding them at any

spei� date. In part beause of this, the forward mortality models proposed to date,

suh as those in the Heath-Jarrow-Morton framework in Barbarin (2008), Bauer et al.

(2008) and Tappe and Weber (2013), the semi-parametri fator model of Zhu and Bauer

(2011a,b, 2014), or the Olivier-Smith model developed in Olivier and Je�rey (2004),

Smith (2005), Cairns (2007) and Alai et al. (2013), have not been able to inorporate

ohort e�ets. We believe that a key advantage of the forward mortality framework

developed in Chapter 11 and in this study is that it an give biologially reasonable

8

dynamis for the forward surfae of mortality, as it is based on the dynamis of APC

models of the mortality hazard rate, whih are well understood and easy to estimate

from historial data. Sine ohort parameters are an important feature of suh models,

we believe that the suessful appliation of the forward mortality framework proposed

in Chapter 11 and whih will be used in the present study for risk management purposes

is, ultimately, dependent upon using the Bayesian approah of Chapter 6.

12.3 One-year risk measurement and management

Based on the results of Setion 12.2, we are able to generate random realisations of the

forward mortality surfae, whih an then be used to value longevity-linked liabilities and

seurities. Doing so enables us to model how these values might hange, whih forms a

key omponent in the measurement and management of longevity risk.

12.3.1 Annuity values

We begin by investigating the impat of the hange in the forward mortality surfae

on the value of an annuity over a one-year period. Annuity values at eah age, x, are

8

Introdued in Cairns et al. (2006b) and de�ned as �a method of reasoning used to establish a ausal

assoiation (or relationship) between two fators that is onsistent with existing medial knowledge�.
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alulated as

ax(τ) =

∞
∑

t=0

tP
Q
x,τ (τ)B(τ, τ + t) (12.9)

where tP
Q
x,τ (τ) is the market-onsistent forward survival probability from time τ to time

τ + t (as evaluated at time τ), as de�ned in Chapter 11 and used in Equation 11.6,

and B(τ, τ + t) is the prie at time τ of a risk-free zero oupon bond maturing at time

τ + t.9 For these and all future alulations, we assume a onstant risk free real rate of

interest of 1% p.a. and extrapolate forward mortality rates beyond the maximum age

in the data, X = 100, using the topping out proedure of Denuit and Goderniaux (2005).

This assumes that the lives on whih the annuities are written are not systematially

di�erent from the national population, data for whih was used to alibrate the forward

mortality surfae. Aordingly, we do not allow for potential basis risk in our annuity

portfolio. We leave to future work the extension of the forward mortality framework to

inlude basis risk, for example, using the relative modelling approahes of Villegas and

Haberman (2014) or Chapter 9. However, the results of Chapter 9 indiate that the

impat of basis risk on systemati longevity risk may be limited in many situations.

In order to assess the longevity risk in annuities over a one-year period, we �rst need to

update the forward surfae of mortality to time τ + 1 using the tehniques of Setion

12.2 and then use this updated surfae to alulate updated annuity values. These are

given by

ax(τ + 1) =
∞
∑

t=0

tP
Q
x,τ+1(τ + 1)B(τ + 1, τ + 1 + t) (12.10)

However, a diret omparison between these updated annuity values and those in Equa-

tion 12.9 is not valid. ax(τ +1) is not diretly omparable to ax(τ), sine it relates to the

ohort born in τ +1− x as opposed to the ohort born in τ − x. If, instead, one tries to

ompare ax+1(τ + 1) with ax(τ) (whih do relate to the same ohort), we note that this

omparison is also not valid, sine the former inludes one fewer year of bene�ts and is

disounted to a di�erent point in time ompared with the latter. Consequently, we must

9

We therefore see that an annuity is equal to a portfolio of longevity zeros, as de�ned in Blake et al.

(2006) and used in Chapter 11.
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be very areful in any omparisons that we make and ompare ax(τ) with
10

B(τ, τ + 1)1px,τ (1 + ax+1(τ + 1)) (12.11)

Doing so values the same set of ash�ows for the same ohort, disounted to the same

point in time and therefore ensures that the two quantities are omparable. The di�erene

between them arises from:

1. replaing the time τ market-onsistent forward mortality rates in year τ + 1 with

simulated �observed� rates for that year; and

2. replaing the time τ market-onsistent forward mortality rates in years t ≥ τ + 2

with the time τ + 1 market-onsistent forward mortality rates for the same years.

Hene the only di�erenes arise from hanges arising from the hanging forward surfae

of mortality and, therefore, they solely re�et longevity risk.
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Figure 12.4: Projeted annuity values at di�erent ages at τ + 1

10

In Equation 12.11 and subsequently, tpx,τ is the realised probability that an individual aged x at τ

has survived to age x+ t at τ + t
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Figure 12.4 shows the 95% fan hart of simulated annuity values at di�erent ages in one

year's time. The oe�ients of variation

11

of the projeted annuity values inrease with

age, from around 1.4% of the urrent annuity value at age 60 to approximately 2.6% at

age 80.

Figure 12.4 also shows the time τ annuity values, ax(τ), as a dashed white line. It,

therefore, illustrates that EP
τ ax(τ + 1) ≈ ax(τ). However, it is important to note,

however, that EP
τ ax(τ + 1) 6= ax(τ), i.e., the annuity values are not martingales in

the real-world measure. The reason for this is that ax(τ +1) is alulated using market-

onsistent forward mortality rates at time τ + 1, whih are themselves not martingales

in the real-world measure, as disussed in Setion 12.2.

In Chapter 11, we said that the marginal partiipant in the market for longevity-linked

seurities would probably be a life insurer seeking to hedge longevity risk. Suh a life

insurer would be averse to longevity risk, and so, we expeted that the market-onsistent

forward mortality rates would be lower than those in the real-world measure

νQx,t(τ) ≤ νPx,t(τ)

Thus, we expet to replae the expeted survival probabilities for the period [τ, τ +

1) under the market-onsistent measure with their projeted values in the real-world

measure, whih are lower on average, i.e.,

EP
τ 1px,τ = EP

τ exp (−µx,τ+1)

= exp
(

−νPx,τ+1(τ)
)

< exp
(

−νQx,τ+1(τ)
)

= 1P
Q
x,τ (τ)

Therefore, we �nd EP
τ ax(τ + 1) < ax(τ) aross ages, indiating that annuity values

would be expeted to fall. In simulations, we �nd this has an impat of around 1% of the

value of an annuity. In an insurane ontext, this would give an �expeted return� due

to the �release of reserves� in respet of the annuity, aused by having held reserves for

the poliy higher than the expeted value of the bene�ts in the real-world measure. This

expeted return on longevity-linked liabilities and seurities has important onsequenes,

whih will impat the measurement of risk in liabilities and longevity-linked seurities,

11

The standard deviation of the annuity value divided by its expetation.
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as disussed in the following setions.
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Figure 12.5: Correlations between annuity values at di�erent ages at τ + 1

In addition to looking at the annuity values at di�erent ages in isolation, we also need

to assess their dependene upon eah other in order to ahieve a full assessment of the

longevity risk in our illustrative annuity book. To do this, Figure 12.5 shows the orrela-

tions between annuity values at di�erent ages. From this, we see that there is substantial

orrelation between annuity values at di�erent ages, typially between 95% and 100%.

This is due to the struture of the underlying APC mortality model, sine the evolu-

tion of the forward surfae of mortality over the year is driven by the same few fators,

namely the three age/period terms with a limited ontribution from the ohort term.

This leads, in turn, to relatively low diversi�ation of longevity risk aross di�erent ages.

In ontrast, there ould be apparently large bene�ts in risk redution due to �natural

hedging�, i.e., writing life assurane poliies as the value of these would be expeted to

be negatively orrelated with annuity values under longevity risk, as disussed in Cox

and Lin (2007). However, as argued in Zhu and Bauer (2014), these bene�ts are largely

model dependent, although these ritiisms an be partly assuaged by using APC mor-

tality models with a su�ient number of terms to fully apture the dynamis of mortality.
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However, for many risk measurement purposes, it is not su�ient to simply look at

expetations, standard deviations and orrelations of the annuity values. Instead, we

need to use more sophistiated risk measures.

12.3.2 Risk measures

Numerous di�erent risk measures are used in pratie to quantify the riskiness of liabilities

and portfolio values, many of whih are disussed in Denuit et al. (2005) and Dowd et al.

(2006b). Amongst these, some of the most ommonly used risk measures are the �value

at risk� (VaR) and the �tail value at risk� (TVaR). For a risk, X1, ourring at time one,

these are de�ned as

VaR(X1;α) = F−1
X (1− α) (12.12)

TVaR(X1;α) = EP [X1|X1 ≥ VaR(X1;α)] (12.13)

where α is the signi�ane level of the risk measure and FX is the umulative distri-

bution funtion for X1 in the real-world measure, P.12 The value at risk an therefore

be thought of as the loss observed 100α% of the time, whilst the tail value at risk an

be interpreted as the expeted value of the worst 100α% of the loss distribution (and

hene it is also alled the expeted shortfall). Whilst the value at risk has numerous

drawbaks as a risk measure, suh as not being �oherent� as disussed in Denuit et al.

(2005) and Dowd et al. (2006b), it remains widely used in pratie as a benhmark for

risk management, and is widely inorporated into regulations. The tail value at risk is

oherent in the sense of Denuit et al. (2005), and also an be felt to give a more reasonable

measure of the tail risk in a portfolio as it takes into onsideration the distribution of the

risk in the tail of the distribution, rather than merely the αth
quantile of this distribution.

For omparison purposes, rather than use VaR and TVaR diretly, we de�ne the �eo-

nomi apital� as in Denuit et al. (2005) by

EC̺(X1;α) = ̺(X1;α) − EPX1 (12.14)

where ̺ is the risk measure being used (i.e., VaR or TVaR). The eonomi apital there-

fore represents the apital required by an insurer to over unexpeted losses on risk X1.

This de�nition, using the value at risk forms the basis of the Solveny Capital Require-

ment (SCR) under the Solveny II regulatory apital regime, as disussed in EIOPA

12

We assume that inreasing X1 orresponds to larger losses. In addition, as we will only deal with

ontinuous X1, the tail value at risk is equivalent to the onditional tail expetation. See Chapter 2 of

Denuit et al. (2005) for more disussion of risk measures.
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Figure 12.6: Eonomi apital ratios for annuity values at di�erent ages

(2014) and below.

In this ontext, for omparison purposes, it is useful to go beyond this de�nition and

ompare �eonomi apital ratios� (ECRs) de�ned as follows

ECR̺(X1;α) =
EC̺(X1;α)

X0

=
̺(X1;α)− EP

τX1

X0
(12.15)

where X0 is the value of the risk at time zero. In the ontext of an insurer, the ECR an

generally be thought of as referring to the amount of eonomi apital required per unit

of �best-estimate� liability.

12.3.3 Risk measurement and management

12.3.3.1 Liabilities

Previously, we used the forward mortality framework to �nd the distribution of annu-

ity values (ontrolling for the impat of bene�ts being paid, et) updated to re�et an

additional year of information. Consequently, we an use this distribution with the risk

measures disussed in Setion 12.3.2 to give a more detailed measurement of the longevity

risk in annuity poliies.

Figure 12.6a shows the ECR

VaR

for annuity values at di�erent ages at the 95%, 99% and

99.5% levels (i.e., orresponding to one-in-20, one-in-100 and one-in-200 year events),
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whilst Figure 12.6b shows ECR

TVaR

for the annuities at the same levels. It is interest-

ing to see that more apital (as a perentage of the best estimate liability) is required

in respet of longevity risk for annuities for older individuals. This is despite the fat

that annuities for these individuals are of shorter duration and therefore less subjet to

longevity risk. However, this is o�set by the fat that annuities for older individuals have

lower expeted value, so the total eonomi apital will be lower than for younger-age

annuities.

We believe this is beause the primary impat of new data in our forward mortality model

is to update the mortality rates observed in year τ+1, whih gives a broad impat aross

most ages. It is therefore interesting to ompare these results with those presented in

Rihards et al. (2014), whih showed smaller eonomi apital ratios for annuities at

higher ages from a model that fouses primarily on extreme hanges in the trend rate of

improvement in mortality rates. This longevity trend risk was also alled realibration

risk in Cairns et al. (2013), and we leave its inlusion in our forward mortality framework

to future work.

The 99.5% VaR for longevity-linked liabilities is of partiular interest to life insurane

ompanies as it is used in the de�nition of the Solveny Capital Ratio (SCR) in the

Solveny II regulatory requirements. These are set by the European Insurane and

Oupational Pensions Authority (EIOPA) and are due to be implemented in 2016 for

all insurane ompanies based in the EU (see also Stevens et al. (2010) and Bauer et al.

(2012)). The liabilities side of the Solveny II balane sheet, desribed in EIOPA (2014),

an be onsidered of onsisting of two elements:

1. the �Tehnial Provisions�, orresponding �to the urrent amount undertakings

would have to pay if they were to transfer their (re)insurane obligations imme-

diately to another undertaking� (EIOPA (2014, TP.1.1.)); and

2. the �Solveny Capital Ratio� (SCR) re�eting the additional apital required to

protet against unantiipated risks, alulated as �the Value-at-Risk of the basi

own funds

13

of an insurane or reinsurane undertaking subjet to a on�dene

level of 99.5% over a one-year period� (EIOPA (2014, SCR.1.9.)).

In Chapter 11, we argued that the forward mortality framework ould be used by a life

insurer as an internal model to value its liabilities in a market-onsistent fashion, and

hene provide a valuation of the tehnial provisions desribed above. Together with the

13

De�ned as the di�erene between the assets and the liabilities in EIOPA (2014, SCR.1.6.).
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results above, we therefore see that the forward mortality framework ould be used to

alulate both parts of the Solveny II balane sheet and, hene, at as an internal model

for a life insurer with respet to its longevity risk.

To illustrate, we onsider a stylised annuity book, onsisting of annuities written on male

lives equally distributed aross ages 60 to 80. This liability pro�le has also been heavily

simpli�ed, as real annuity books are likely to inlude poliyholders of both sexes

14

and

di�erent soio-eonomi bakgrounds.

15

Nevertheless, it is su�ient to illustrate many

of the advantages of the forward mortality framework and we will form the basis for our

valuation of the omponents of the Solveny II balane sheet.

Tehnial provisions

Beause there is no atively-traded market in longevity risk, it is impossible to aurately

determine the tehnial provisions in a genuinely market-onsistent fashion. There are

two potential ways around this:

1. Construt a market-onsistent measure that is somewhat subjetive, perhaps via

the inlusion of �internal� market information in the manner desribed in Chapter

11. The future bene�t payments an then be valued in this measure to give a value

for the tehnial provisions whih is broadly market-onsistent.

2. Use the real-world measure to value the future bene�ts payments, sine this gives

an objetive value for them. However, EIOPA (2014) requires that, under this

approah, the tehnial provisions would onsist of this real-world value plus a

�risk margin� to proxy for the additional ost of transferring the liabilities to a

third-party. The alulation of the risk margin is ompliated, and is disussed

further in Setion 12.4.2.

Using the market-onsistent approah, the value of the future bene�ts (and hene the

tehnial provisions) at time τ is alulated as

L(τ) =
80
∑

x=60

ax(τ) (12.16)

14

Neessitating a multi-population model for the evolution of mortality, suh as the one disussed in

Chapter 8.

15

As disussed in Villegas and Haberman (2014) whih neessitates some form of individual risk saling

of the sort used in Chapter 10.
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and the value at time τ + 1 is

L(τ + 1) =

80
∑

x=60

B(τ, τ + 1)1px,τ (1 + ax+1(τ + 1)) (12.17)

(both in notional urreny units). Using this de�nition for the liabilities at τ + 1 makes

omparing L(τ) and L(τ + 1) more straightforward, in the same manner as was done

above for the annuity values.

In ontrast, using the real-world plus risk margin approah gives annuity values at age

x and time τ of

aPx(τ) =
∞
∑

t=0

tP
P
x,τ (τ)B(τ, τ + t) (12.18)

=

∞
∑

t=0

exp

(

−
t
∑

s=1

νPx+s,τ+s(τ)

)

B(τ, τ + t)

(ompared to Equation 12.9), with similar modi�ations to Equations 12.16 and 12.17.

Using these approahes, we �nd values for the future liabilities of 331.4 for the market-

onsistent approah and 314.2 (both in notional urreny units) using the real-world

approah - a di�erene of 5.2%. This di�erene should be ompensated for by the risk

margin, as disussed in Setion 12.4.2.

Solveny Capital Ratios

The di�erene in approah used for the valuation of the tehnial provisions also has

onsequenes for the alulation of the SCR, sine the �basi own funds� of the insurer

depends upon the value of the tehnial provisions. However, the de�nition of the SCR

is not preise, and there exist multiple potential interpretations of �basi own funds�

whih lead to subtly di�erent values of the SCR for any given set of tehnial provisions

- see Christiansen and Niemeyer (2014) for a more omplete disussion of this issue. For

instane, it is ommon to interpret basi own funds as the value of net assets (i.e., assets

minus liabilities), as used in Stevens et al. (2010), and denoted as N (τ) at time τ . Using

this de�nition gives the following expression for the SCR

SCR(τ) = VaR(N (τ) −B(τ, τ + 1)N (τ + 1)|Fτ ; 99.5%) (12.19)
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L(τ + 1)L(τ)EτL(τ + 1) VaR(L)

SCR(τ )

EC

VaR

(L)

Release of Reserves

Figure 12.7: Deomposition of the SCR

In this study, we are interested only in the longevity risk in the liabilities, and thus

assume that the assets are invested in riskless seurities and so investment risk does not

ontribute to the SCR. Therefore, using the de�nition of the liabilities (alulated using

either a market-onsistent or real-world approah) in onjuntion with Equation 12.21

gives

SCR(τ) = VaR(L(τ + 1)− L(τ)|Fτ ; 99.5%) (12.20)

This an be deomposed as

SCR(τ) = VaR(L(τ + 1)|Fτ ; 99.5%) − L(τ)

=
(

VaR(L(τ + 1)|Fτ ; 99.5%) − EP [L(τ + 1)|Fτ ]
)

−
(

L(τ)− EP [L(τ + 1)|Fτ ]
)

= EC

VaR

(L(τ + 1)|Fτ ; 99.5%) −
(

L(τ)− EP [L(τ + 1)|Fτ ]
)

Consequently, we see that the ommon de�nition of the SCR onsists of two parts:

1. the eonomi apital required to protet against unexpeted longevity shoks at

the one-in-200 level less

2. the expeted release of reserves for the year, L(τ)− EP [L(τ + 1)|Fτ ].

This is illustrated in Figure 12.7.

We expet the release of reserves to be positive sine the market-onsistent measure is

antiipated to projet higher mortality rates than expeted in the real-world measure, as

disussed in Setion 12.3.1 and, therefore, it will tend to o�set the eonomi apital re-

quired to protet against risk. The magnitude of this release of reserves depends strongly

on the spei�ation of the market-onsistent measure. Sine the market-onsistent mea-

sure, Q, used in both Chapter 11 and this hapter is largely illustrative, due to the
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absene of genuine market information on the pries of longevity-linked seurities, we do

not wish the details of its onstrution to bias our results. Consequently, we hoose to

de�ne the SCR as

SCR(τ) = ECV aR(L(τ + 1)|Fτ ; 99.5%) (12.21)

i.e., the eonomi apital alone. Using the market-onsistent approah to alulate the

liability value, we �nd an SCR of 12.8, i.e., 3.9% of the value of the tehnial provisions.

In ontrast, if a real-world approah is used to value the liabilities, we see that there is

no release of reserves sine

EP
τLP(τ + 1) ≈ LP(τ)

i.e., the liability value in the real-world measure is almost a martingale, beause the

forward mortality rates are martingales in the real-world measure.

16

Using the real-world approah to alulate the liability value, we �nd an SCR of 12.6,

i.e., 4.0% of the best-estimate liability value. It is interesting to note that the nominal

value of the SCR using the best-estimate liabilities is not signi�antly di�erent from the

value alulated using the market-onsistent liabilities. This is beause the hange of

measure does not introdue any additional unertainty into the liabilities, and hene the

nominal magnitude of their riskiness is the same.

In the ontext of using the forward mortality framework as an internal model under

Solveny II, it is also interesting to ompare the 99.5% eonomi apital ratios derived

from the forward mortality framework with the �standard model� approah under Sol-

veny II. This proposes that the SCR for longevity risk should be valued by assuming

the probability of death at eah age and for all time periods is redued by 20% from

what is expeted under a best-estimate senario. These stressed mortality rates are then

used to value the liabilities EIOPA (2014, SCR.7.25). Figure 12.8 shows the SCRs found

by suh an approah and ompares them with those found using the forward mortality

framework (using the liabilities on a real-world basis).

16

The di�erene between EP
τL

P(τ +1) and LP(τ ) arises due to Jensen's inequality in a similar fashion

to the approximation used in the de�nition of the forward mortality rates themselves in Chapter 11.

However, the results of Chapter 11 show that this is likely to be negligible aross all ages and years of

interest.
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Figure 12.8: SCRs for annuities at di�erent ages using the forward mortality frame-

work and the Solveny II standard model

As an be seen, the Solveny II standard model for longevity risk overstates the required

apital signi�antly ompared with using the forward mortality framework - more than

doubling the SCR for an annuity at most ages. This is omparable to the results found

by other authors, suh as Börger (2010), Nielsen (2010) and Rihards et al. (2014) using a

range of di�erent models. In addition, the approah adopted by the Solveny II standard

model, i.e., a one o� redution in mortality rates ourring immediately and remaining

onstant in time, is inonsistent with the nature of longevity risk, whih is a long-term

risk whih inreases over time.

These three approahes to alulating the tehnial provisions and SCR (using the

market-onsistent approah, the real-world approah and the standard model) are om-

pared in Table 12.1. However, it is important to note that the relatively low value of the

liability value found using the real-world and standard model approahes will be om-

pensated for by the risk margin, whih is onsidered in greater detail in Setion 12.4.2.
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Approah Liability value SCR(τ) SCR as % of Liabilities

Market-onsistent 331.4 12.8 3.9%

Real-world 314.2 12.6 4.0%

Standard model 314.2 31.6 10.0%

Table 12.1: Liability values and SCRs using di�erene approahes

12.3.3.2 Longevity-linked seurities

In Chapter 11, the forward mortality framework was used to value a number of potential

longevity-linked seurities. For apital e�ieny, most of these have taken the form

of forward ontrats, written on various indies of mortality. A number of di�erent

mortality indies for use in forward ontrats have been proposed to date:

• q-forwards: as disussed in Coughlan et al. (2007b), these are forward ontrats on

future probabilities of death, qx,t (see also Li and Luo (2012)).

• s-forwards: as proposed in Dowd (2003), Blake et al. (2006) and by the Life and

Longevity Markets Assoiation,

17

these are forward ontrats on the probability of

survival of a ohort from ineption at time t0 to maturity.

• e-forwards: as disussed in Denuit (2009), period life expetany is a natural index

to use for summarising the evolution of mortality rates in a population, and there-

fore we onsider the potential of a forward market in period life expetany (whih

we refer to as �e-forwards� from the demographi symbol for period life expetany)

at age x in future year t for hedging purposes.

In eah of these ases, we assume that the referene population for the index is the

national population used to estimate the APC model underpinning the forward mortality

model. Hene, the value of the mortality index at time τ is alulated as:

18

q-forward: Qx,t(τ) = 1− exp
(

−νQx,t(τ)
)

(12.22)

s-forward: Sx,t0,t(τ) = τ−t0px,t0 × t−τP
Q
x+τ−t0,τ (12.23)

e-forward: Ex,t(τ) = 0.5 +
∞
∑

u=0

exp

(

−
u
∑

v=0

νQx+v,t(τ)

)

(12.24)

Thus, we an see that these mortality measures are qualitatively di�erent from eah

other, and range from q-forwards whih are very simple seurities based on only one

17

http://www.llma.org/

18

Note that the s-forward is de�ned on a referene ohort aged x at the ineption data, t0 ≤ τ , and

therefore the survivorship of this ohort is a produt of the observed survivorship from t0 to τ , given

by τ−t0px,t0 , and the antiipated survivorship from τ to maturity, t, given by t−τP
Q
x+τ−t0,τ

. For the

purposes of this study, we shall assume that t0 = τ .
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forward mortality rate, to more omplex seurities whih look at forward mortality rates

aross a number of di�erent ages and years.

For a general forward ontrat, linked to mortality index Ix,t, the forward prie spei�ed

by the ontrat must be equal to the time τ value of the mortality measure, i.e., Ix,t(τ),
in order for the ontrat to have zero value at ineption. We assume that the buyer of

the ontrat will reeive a �oating payment and pay a �xed amount at time t. Hene,

the value of the forward ontrat at time τ + 1 will be

B(τ + 1, t) [Ix,t(τ + 1) − Ix,t(τ)]

and, therefore, we are interested in the distribution of the hange in the index of mortality

over time

[Ix,t(τ + 1)|Fτ ]− Ix,t(τ)

Although longevity risk is a long-term risk whih will materialise over a number of

deades, it is likely that longevity-linked seurities will need to be onsiderably shorter-

term ontrats in order to appeal to speulators. Hene, we only onsider forward on-

trats with maturities of 5, 10 and 15 years, i.e. t = 5, 10, 15. Spei�ally, we investigate

the time τ + 1 values of the following forward ontrats entered into at time τ :

• a q-forward at age 65 and maturity τ + t, i.e., Q65,τ+t;

• an s-forward with maturity date τ + t, spei�ed on a referene ohort aged 65 at

time τ , i.e., S65,τ,τ+t; and

• an e-forward at age 65 with maturity τ + t, i.e., E65,τ+t.

Boxplots showing the time τ + 1 distribution of these forward ontrats per £100 of

nominal value are shown in Figure 12.9.

As disussed earlier in the ontext of annuity values, we note that

EP
τ [I(τ + 1)|Fτ ]− I(τ) 6= 0

i.e., the expeted value of the forward ontrat at time τ + 1 is not equal to zero, the

value at ineption. This is, again, due to the pries of seurities in the market-onsistent

measure not being martingales under one-year updates of the forward mortality surfae

in the real-world measure. Hene, there will be an expeted return from trading in

482



F
o
r
w
a
r
d
M
o
r
t
a
l
i
t
y
M
o
d
e
l
s
I
I
:
L
o
n
g
e
v
i
t
y
R
i
s
k
A
s
s
e
s
s
m
e
n
t
a
n
d
M
a
n
a
g
e
m
e
n
t

5-year 10-year 15-year

-10

-5

0

5

10

15

q-forward value (per £100 nominal)

(a) q-Forward

5-year 10-year 15-year

-5

-4

-3

-2

-1

0

1

2

3

4
s-forward value (per £100 nominal)

(b) s-Forward

5-year 10-year 15-year

-6

-4

-2

0

2

4

e-forward value (per £100 nominal)

() e-Forward

Figure 12.9: Boxplots showing the distribution of the values of di�erent longevity-linked seurities at time τ + 1

4
8
3



Forward Mortality Models II: Longevity Risk Assessment and Management

longevity-linked forwards, whih arises for the same reasons as the expeted release of

reserves in annuities, as disussed in Setion 12.3.1.

We also see that for q-forwards and e-forwards, the one-year riskiness of the ontrat

does not hange signi�antly with its term. In ontrast, the riskiness of an s-forward

inreases rapidly with the term of the ontrat. The reason for this is that the nomi-

nal value of the mortality index for q-forwards and e-forwards (probability of dying and

period life expetany) does not hange muh with term, whilst that of the s-forward

(survivorship of a ohort) dereases rapidly. This means that longer term q-forward and

e-forward ontrats ould, potentially, be written, with the risk in them managed by

annually rebalaning the portfolio. However, this may be more di�ult for long-term

s-forward ontrats and it may be di�ult to attrat speulators to trade (and hene

reate liquidity) in the longer-term ontrats.

Figure 12.9 also shows that the q-forward ontrats are signi�antly riskier per ¿100

nominal than the alternatives. This is beause the nominal value of the mortality mea-

sure is relatively small,

19

and hene the value of the ontrat is proportionally more

a�eted by new information. In addition, the q-forward is spei�ed on mortality rates

at one spei� age and time (rather than aross a range of ages and years, as in the ase

of the s-forward and e-forward) whih is likely to be more volatile.

When writing forward ontrats, it is also neessary to onsider the amount required

in order to ollateralise the ontrat (whih is highly desirable to redue redit risk in

the ontrat). If the ontrats were exhange traded, this amount would also form the

basis of the margin aount. Assuming the ollateral aount is readjusted on an annual

basis, a sensible method of determining the amount required in the aount would be to

�nd the apital needed to protet against a 95% loss on the forward ontrat, i.e., the

eonomi apital of the ontrat.

20

The 95% eonomi apitals for the three ten-year

forward ontrats per ¿100 nominal are shown in Figure 12.10.

We see that the 95% eonomi apital is substantially higher for the q-forward (around

5% to 6% per ¿100 nominal) than for the s-forward and e-forward. This is onsistent

with the results shown in Figure 12.9, whih indiated that q-forwards over a range of

terms were substantially riskier than the alternative ontrats. In the other two ases, we

19

Typially, qx,t will be in the range [0.005, 0.05] for most ages of interest, whilst t−t0px,t0 will be in

the range [0.1, 0.9] and ex,t will be in the range [10, 30].
20

For Equation 12.15, we see that we are unable to de�ne eonomi apital ratios for the ontrats as

they have zero value initially, i.e., X0 = 0.
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Figure 12.10: Eonomi apital for di�erent longevity-linked seurities

�nd ollateral requirements of a few perent of the nominal value. However, for all three

ontrats, we �nd that the amount of ollateral needed for the ontrat is fairly typial

of other traded forward ontrats, suh as the standard �nanial and ommodity futures

traded on the London International Finanial Futures and Options Exhange (LIFFE).

12.3.3.3 Hedging longevity risk

Having measured the longevity risk in annuity values in Setion 12.3.3, it is natural to

onsider how this risk ould be managed and redued. In pratie, this an be ahieved

through reinsurane, seuritisation (e.g., Cowley and Cummins (2005)) or natural hedg-

ing (e.g., Cox and Lin (2007)). Another method whih has been proposed (but not yet

widely implemented) is to hedge the longevity risk in a liability portfolio using standard-

ised, tradable longevity-linked seurities.

21

21

We draw a slight distintion between suh a strategy and purhasing a single, ustomised asset

without the intention of rebalaning the hedge in future. Examples of these ustomised assets inlude

bespoke longevity swaps, as onsidered in Chapter 10, and highly ustomised bespoke options on mortal-

ity, suh as those disussed in Mihaelson and Mulholland (2014). However, we feel that this alternative

strategy has more in ommon with a reinsurane poliy than truly hedging risk using apital market

seurities.
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To illustrate the potential e�etiveness of hedging these illustrative liabilities, we onsider

using eah of the di�erent seurities disussed in Setion 12.3.3.2 in turn. We adopt a

simple mean-variane hedging strategy and selet the portfolio whose value at time τ +1

has smallest variane, i.e., we �nd the hedged portfolio

L∗ = L − θ̃Ix,t

where θ̃ is hosen by minimising the variane

θ̃ = argminθVar
P
τ (L(τ + 1)− θIx,t(τ + 1))

⇒ θ̃ =
CovPτ (L(τ + 1),Ix,t(τ + 1))

VarPτ (Ix,t(τ + 1))

Varτ (L∗(τ + 1)) =
(

1− ρ2L,I
)

Varτ (L(τ + 1))

Hene we see that suh a strategy depends ritially upon the orrelation between the

liabilities and the hedging instrument, ρL,I , at time τ +1, with orrelations loser to ±1

giving more e�etive hedges. The measured orrelations for the four seurities onsidered

are shown in Table 12.2. Beause we wish to minimise the variability of the value of the

portfolio at time τ + 1, this approah investigates �value� hedging strategies as opposed

to �ash�ow� hedging strategies, whih seek to minimise the unertainty in the realised

ash�ows.

Seurity q-forward s-forward e-forward

Term

5 -93.9% 87.8% 99.5%

10 -93.9% 89.8% 99.6%

15 -93.7% 93.9% 99.6%

Table 12.2: Correlation between L(τ + 1) and seurity values with di�erent terms

As an be seen from Table 12.2, most of the seurities being onsidered give very high

orrelations with the liabilities. In the ase of q-forwards, this orrelation is negative,

sine higher than antiipated redutions in mortality rates have the e�et of inreasing

liability values, but triggering net payments from the buyer to the seller of the q-forward,

giving a negative value under the onvention adopted in Setion 12.3.3.2. This means

that a holder of longevity risk will want to reeive the �oating leg of a q-forward, as

opposed to wanting to reeive the �xed legs of the other forward ontrats.

The high orrelations shown in Table 12.2 arise from the same reasons that we observed

high orrelations between annuity values at di�erent ages in Setion 12.3.1. This was

beause relatively few fators (i.e., the age/period terms in the model, and mainly κ
(1)
t )
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drive the hanges in mortality rates. These results are therefore model dependent, as

autioned against by Zhu and Bauer (2014). However, we note that the three age/period

term model onstruted by the general proedure will give more ompliated dynam-

is for mortality (and hene, lower orrelations) than most other widely used mortality

models, suh as the other APC models onsidered in Chapter 11.

We also note that, for q-forwards and e-forwards, the orrelation between the forward

ontrat and the liabilities is roughly independent of the term of the ontrat. In on-

trast, the s-forward value beomes more highly orrelated with the liability value as the

term of the ontrat inreases. This in unsurprising, sine longer term s-forward on-

trats are more exposed to the umulative e�ets of longevity risk and will behave more

like annuity ontrats by their nature. However, as disussed in Setion 12.3.3.2 and

shown in Figure 12.9, longer term s-forwards are also more risky. This may limit the

development of the market in long-term s-forwards whih, unfortunately, are amongst

the ontrats whih are most useful for hedging longevity risk.

Figure 12.11 shows the empirial distributions of the value of the unhedged and hedged

liabilities (using the three di�erent hedging seurities with maturities of ten years) based

on 50,000 Monte Carlo simulations. As expeted, all the hedging strategies onsidered

appear to substantially redue the variability of the portfolio value at time τ + 1. This

is shown by the eonomi apital ratios using the VaR and TVaR risk measures (at the

95% level) and the orresponding redutions in risk from the unhedged liability value in

Table 12.3.

ECRV aR
% Redution of

ECRTV aR
% Redution of

ECR ECR

Unhedged 2.44% - 3.06% -

q-forward 0.84% 65% 1.07% 66%

s-forward 1.08% 55% 1.37% 55%

e-forward 0.21% 91% 0.27% 91%

Table 12.3: Impat of hedging strategies on longevity risk

It is notieable from Figure 12.11 and Table 12.3 that the strategy based on an e-forward

is signi�antly more e�etive at reduing risk than the other two. This is beause the

values of the period life expetany at the maturity date is alulated in a similar manner

to the alulation of an annuity but over a range of di�erent ohorts, and therefore this

seurity is sensitive to the same risk fators as the annuities we are trying to hedge. In

ontrast, the q-forward is sensitive to mortality rates at a single seleted age, whilst the

s-forward onsiders only a single ohort, and onsequently both are poorer at hedging
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Figure 12.11: Empirial distribution of liability values under di�erent hedging strate-

gies

risk.

As an be seen, the redution in longevity risk with even relatively simple hedging strate-

gies over a one-year period is very high. These are �value hedges�, in the sense that the

strategy has been hosen to minimise the variane of the total portfolio value, as opposed

to �ash�ow� hedges that minimise the variability of the net ash�ows from the port-

folio.

22

Longer term hedges ould potentially be ahieved by rebalaning the portfolio

at least annually to re�et the atual experiene of the annuity book. However, suh a

strategy is dependent upon the existene of a relatively liquid market in the underlying

longevity-linked seurities.

One potential ritiism is that these results are all model dependent. It does not seem

likely that the high orrelations shown in Table 12.2 ould be ahieved in pratie and,

therefore, suh large redutions in risk may not be feasible. In partiular, the use of

relatively simple APC mortality models to underpin the forward mortality framework

might be felt to give orrelation strutures for future mortality rates whih are overly

22

Examples of ash�ow hedging solutions for longevity risk inlude bespoke longevity swaps.
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simplisti, and so overstate the e�etiveness of any hedging strategy. However, we note

that our underlying model for the fore of mortality has three age/period terms and a

ohort term, making it relatively omplex ompared with many more ommonly used

mortality models, and so it is unlikely that using a more ompliated model for the short

rate would materially a�et our results.

23

In addition, the impat of hedging would be

lower if the market pries of risk hange during the year. However, sine the market

for longevity risk is just emerging, assuming onstant market pries of risk is unavoid-

able at present, for the reasons disussed in Setion 12.2, and, aordingly, all liability

and seurities values will be model-dependent for the foreseeable future. Furthermore,

high orrelations between the liabilities and hedging instruments are required in order to

reognise the hedge under some aounting standards. Therefore, we argue that redu-

tions in risk, even if they are only mark-to-model, are still bene�ial for many purposes.

In addition, the results presented above do not allow for potential basis risk between

populations or for idiosynrati risk in the number of deaths observed in an atual annuity

book, and so will overstate the potential e�etiveness of hedging strategies whih ould

be obtained in pratie. We leave the addition of both of these soures of risk to future

work.

12.4 Multi-year risk measurement and the Solveny II risk

margin

12.4.1 Projeting the liabilities

In Setion 12.3, we onsidered the possible hanges in the values of a portfolio of annu-

ities over a one-year period. However, it should be lear that we an also use the forward

mortality rate framework to measure longevity risk in the liabilities over a longer time

horizon than just one year. This is espeially valuable as longevity risk is a long-term

risk whih may take years or deades to fully emerge.

23

We have tested the hedging strategies using the simpler models of the short rate of mortality dis-

ussed in Chapter 11 and obtain even higher redutions in risk. In partiular, we observed perfet

orretion between the liabilities and seurities, and therefore perfet hedges, when using the Lee-Carter

model as the underlying mortality model, sine this model only possesses one age/period term and hene

only one soure of risk.
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To do this, we start by extending the de�nition of the liabilities in Equation 12.17 to

allow for multiple years, i.e., the liability at time t is equal to

L(t) =
80
∑

x=60

[(

t
∑

s=τ+1

B(τ, s)s−τpx,τ

)

+B(τ, t)t−τpx,τax+t−τ (t)

]

(12.25)

Similar to Equation 12.17, using this form for the liabilities allows for the impat of

bene�ts paid and interest, and therefore ensures that L(t) is omparable to L(τ).
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Figure 12.12: Distribution of future market-onsistent liability values

Projeted market-onsistent liability values are shown in Figure 12.12. The �rst thing

to note about these is that the variability in the liabilities inreases rapidly in the �rst

year, but then grows more slowly over the remaining term of the bene�ts. This is be-

ause hanges in the estimation of future mortality rates have a greater impat while the

liabilities are relatively immature than when most of the bene�ts have already run o�.

This an be onsidered analogous to the interest-rate risk in a portfolio of bonds, whih

dereases with time as the bonds mature and the duration of the portfolio dereases.

In addition, we note that median of the liabilities dereases with time, from the initial

value of 331.4 (in notional urreny units) to 316.4, i.e., a derease of approximately
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4.5% over the lifetime of the liabilities. This is due to the release of reserves over the

period, as disussed previously in the single-year ontext in Setion 12.3. This is aused

by the market-onsistent liability value being greater than a true �best estimate� of the

present value of the future bene�ts, i.e., the real-world liability value.
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Figure 12.13: Distribution of future real-world liability values

Correspondingly, Figure 12.13 shows the projeted liabilities if they are valued using

the real-world approah, as opposed to the market-onsistent approah above. Here,

we observe very similar levels of riskiness in the liabilities, but no release of reserves,

whih is onsistent with the results of Setion 12.3.3.1 over a single year. Indeed, the

distribution of the real-world and market-onsistent liabilities ultimately onverge to the

same distribution, sine this is given by the projeted bene�ts paid during run-o�, whih

is determined in the real-world measure. However, sine the liabilities are systematially

lower in the P-measure ompared with the Q-measure, using these liabilities values alone

as the tehnial provisions under Solveny II would be inonsistent with the desire to

ahieve a market-onsistent approah for reserving for life insurane liabilities.
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12.4.2 The Solveny II risk margin

To allow for the di�erene between the real-world and the market-onsistent valuation

of the liabilities, EIOPA (2014) requires insurers to add a �risk margin� to the real-world

liability value as a proxy for the additional ost required to transfer the liabilities to a

third party. Spei�ally, �The risk margin is a part of tehnial provisions in order to

ensure that the value of tehnial provisions is equivalent to the amount that insurane

and reinsurane undertakings would be expeted to require in order to take over and meet

the insurane and reinsurane obligations� (EIOPA (2014, T.P.5.2.)). In order to proxy

for this, EIOPA assumes that a reinsurer would require an additional amount equal to

the future osts of holding su�ient apital to insure the risk, i.e., the present value of

future SCRs. Therefore, the risk margin is de�ned in EIOPA (2014) as

Risk Margin(τ) = CoC×
∞
∑

t=τ

SCR(t)B(τ, t) (12.26)

where the SCR is de�ned as in Setion 12.3.3.1 and CoC is the ost of apital for the

annuity business.

24

To avoid having a irular de�nition, the SCR is de�ned as the value

at risk of hanges in the real-world liability value, not the tehnial provisions (whih

would also inlude the risk margin, and hene depend upon the value of the SCR). In

addition, the SCR at time t is a random variable sine it is onditional on Ft and so will

depend upon the evolution of mortality rates and the liabilities between time τ and t.

This is disussed further in Christiansen and Niemeyer (2014). In order to alulate the

risk margin, we use the modi�ed de�nition

Risk Margin(τ) = CoC×
∞
∑

t=τ

EP
τSCR(t)B(τ, t) (12.27)

where we have taken expetations of the SCR onditional on the initial information at

time τ .

However, alulating the risk margin is problemati as �nested� simulations (i.e., sim-

ulations within simulations) are required, as disussed in Bauer et al. (2012). This is

beause:

1. Monte Carlo simulations are required to projet the liabilities from time τ to time

t stohastially. In order to obtain a fair sample of the distribution of the liabilities

at t, a large number (say, N) of Monte Carlo simulations are required for this.

24

In line with EIOPA (2014, TP.5.21), we use a ost of apital of 6% p.a..
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2. For eah projeted liability at time t, Monte Carlo simulations are required to

alulate SCR(t), whih requires the the stohasti development of the forward

mortality surfae from time t to time t + 1. Sine the SCR is the value at risk

at a very high signi�ane level, a large number (say, M ≥ N) of Monte Carlo

simulations are also needed.

τ τ + 1 τ + 2

L(τ)

L(τ + 1)

L(τ + 2)

Figure 12.14: �Nested simulations� approah for alulating the risk margin, N = 5
simulations used to projet the liabilities and M = 10 simulations (dashed) to alulate

the SCR at eah future time for eah liability value

This is illustrated in Figure 12.14, showing N = 5 simulations for projeting the liabili-

ties and M = 10 simulations in order to alulate the one-year update of the liabilities

at eah future time in order to alulate the SCR. Using this �nested� approah with

N = 1, 000 and M = 20, 000, we alulate a risk margin of 10.3 notional urreny units,

equivalent to 3.3% of the real-world liability values. As shown in Table 12.4, this would

give total tehnial provisions of 324.5 (in notional urreny units), ompared with 331.4

if the tehnial provisions are alulated using the market-onsistent valuation of the

liabilities and so would not fully ompensate for the di�erene between the real-world

and our illustrative market-onsistent measure.

Approah

Liability Risk Tehnial

SCR(τ)
Total

Value Margin Provisions Liabilities

Market-onsistent 331.4 - 331.4 12.8 344.2

Real-world 314.2 10.3 324.5 12.6 336.4

Table 12.4: Tehnial provisions and SCRs using di�erent approahes

In addition, Figure 12.15 shows the projeted SCRs in future years as the liabilities are

run o�. We see from this that the SCR is expeted to derease rapidly as the bene�ts

are run-o� and so derease in riskiness.
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Figure 12.15: Future SCR values alulated using nested simulations

However, this nested approah is omputationally intensive, as it requires N ×M Monte

Carlo simulations. To alulate the risk margin above took a several days of omputing

time on a single desktop omputer. Although using more powerful omputers running

in parallel ould, potentially, redue this time, the alulation of the risk margin for an

insurer would be onsiderably more ompliated, sine more risks, other than longevity

risk, would need to be inluded.

12.4.3 Approximate alulation of the risk margin

Sine the full alulation of the risk margin is omputationally intensive, there have

been a number of di�erent methods suggested in order to alulate it approximately by

simplifying the alulation. These have, broadly speaking, taken two approahes:

1. Projeting the liabilities from time τ to time t stohastially, but then approximat-

ing the alulation of SCR(t). This redues the omputational burden from N×M

to N . Examples of these tehniques are disussed in Setion 12.4.3.1.
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2. Projeting the liabilities from time τ to time t deterministially, but then alu-

lating SCR(t) exatly. This redues the omputational burden from N ×M to M .

Examples of these tehniques are disussed in Setion 12.4.3.2.

One of the simplest pratial methods for simplifying the alulation of the risk margin

was proposed in EIOPA (2014, TP.5.60) and uses both of these approahes simulta-

neously to alulate the risk margin deterministially, not based on any Monte Carlo

simulations. This approah alulates the risk margin using the modi�ed duration of the

liabilities

Risk Margin = B(τ, τ + 1)× CoC×Durτ × SCR(τ)

This �duration� approah avoids the need either to do stohasti simulations to projet

the liabilities, or for additional estimates of the SCR in future years (just an initial value

at time τ). It is therefore unlikely to fully apture the unertainty in the future liabil-

ities and so will provide a relatively rude estimate of the apital required. Using this

tehnique, we estimate a risk margin of 2.5% of the liabilities, based on a duration of

10.5 years and the SCR(τ) from the forward mortality framework. This is signi�antly

below the value obtained from using nested simulations, and indiates that the duration

approah may understate the tehnial provisions if used for the alulation of the risk

margin.

12.4.3.1 Approximating the SCR

A number of tehniques are available to approximate the SCR at time t without the need

to estimate it via Monte Carlo simulations and, therefore, redue the alulation burden

of omputing the risk margin. This is illustrated in Figure 12.16, showing the N = 5

simulations required to projet the liability values, but no nested simulations required

to alulate the SCR for eah of them.

The �rst of these tehniques was proposed in EIOPA (2014, SCR.7.29) and alulates

the SCR for eah simulation using the standard model, i.e., by stressing the mortality

rates by 20% in eah simulation and for eah future time to alulate liability values.

However, this �standard model� approah su�ers from the same disadvantages as were

disussed in Börger (2010) and Setion 12.3.3 for alulating the initial SCR at time

τ . Most importantly, it will systematially result in a large over estimate of the atual

apital requirement. However, we an modify this approah by resaling the standard
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Figure 12.16: Approximate approah for alulating the risk margin, using N = 5
simulations to projet the liabilities but approximating the SCR at eah future time for

eah liability value

model SCR at time t, i.e.,

SCR(t) ≈ SCRStandardModel(t)×
SCRForwardRates(τ)

SCRStandardModel(τ)

= SCRStandardModel(t)×
4.0%

10.0%
from Setion 12.3.3.1

so as not to systematially overestimate the future values of the SCR.

When we do this, we �nd a risk margin equal to 5.3% of the best-estimate value of the

liabilities using N = 1, 000, whih is higher that that found using the nested simulations

approah disussed above. Figure 12.17 shows the projeted EP
τ SCR(t) values using

this modi�ed �standard model� approah. This shows that the standard model approah

results in an unusual pattern as the liabilities are run o�, with the SCR dereasing more

slowly at �rst than in Figure 12.15 using the nested simulations, and then falling rapidly

after around 30 years. We regard this as highly unusual, espeially onsidering we would

expet the unertainty in the liabilities to derease rapidly as they mature. Therefore,

we believe that the standard model approah does not provide a good approximation for

the full alulation of the risk margin using nested simulations.

A seond approah, disussed in EIOPA (2014, TP.5.52), assumes that SCR(t) is pro-

portional to the prospetive liability value, i.e., SCR(t) = SCR(τ) × L̃(t)
L(τ) .

25

Using this

tehnique and N = 1, 000, we alulate a value for the risk margin of 4.0% of the best-

estimate liability value, whih is higher than that given by the nested simulations. Values

of the projeted EP
τ SCR(t) using this �proportional� approah (whih takes the SCR

25

This uses the prospetive liabilities, L̃(t), as opposed to the liabilities L(t) de�ned in Equation 12.25,
i.e., the value of the bene�ts paid beyond time t, disounted to t.
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Figure 12.17: Projeted SCRs using the standard model and proportional approahes

alulated at time τ from the forward mortality rate framework) are also shown in Figure

12.17.

The pattern of future SCRs alulated using the proportional approah is more similar

to that shown in Figure 12.15 as the liabilities mature. However, the liabilities at time

t+ 1, onditional on time t, will not have the same distribution as the liabilities at time

τ + 1, onditional on time τ , due to their inreasing maturity. This has the potential

to distort the estimate of the SCR, and, as the level of longevity risk in more mature

annuity portfolios will generally be lower than less mature portfolios, may bias the SCR

upwards. However, for the relatively simple illustrative annuity portfolio used in this

study, this e�et does not appear to be signi�ant and the proportional approah gives

a reasonable approximation to the full nested simulations approah.

Both of the approahes disussed above alulate SCR(t) as a relatively simple funtion

of L(t), the liability value at time t. More ompliated funtions ould also be used to

estimate SCR(t), for instane, using the tehniques of Denuit (2008) in the ontext of

using the Lee-Carter model as the underlying mortality model, or through the use of
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extreme value theory, as mentioned in passing by Bauer et al. (2009). However, these

approahes have been developed in relatively simple and spei� ontexts, and so are

unlikely to be feasible for omplex liabilities or when using more sophistiated mortality

models.

A oneptually similar approah, proposed in Bauer et al. (2009) and based on tehniques

that are popular in option priing, is the use of least-squares Monte Carlo methods. This

approah uses a number of deterministi senarios to regress the SCR at time τ as a fun-

tion of the underlying latent variables of the model (i.e., the period and ohort funtions

κτ and γτ−x). This approah is also oneptually similar to those suggested in Cairns

(2011) and Dowd et al. (2011a).

However, ompliated mortality models (espeially those with ohort parameters) will

have a large number of latent variables, e.g., the GP model using in this study has 54

latent variables orresponding to the three period funtions and the 51 ohort parameters

for years of birth with members whih are urrently alive. Therefore, it is unlear how

pratial least squares Monte Carlo methods are for more ompliated annuity portfo-

lios and sophistiated mortality models. Least squares Monte Carlo methods are also

most suitable for proesses whose distributions do not hange signi�antly with time,

and therefore may not be appropriate for modelling liabilities in run-o�.

12.4.3.2 Approximating the liabilities

A fundamentally di�erent approah is to alulate the SCR at time t aurately using

Monte Carlo simulations, but to use only a redued number of senarios to model the

evolution of the liabilities from τ to t. Börger (2010) and Stevens et al. (2010) suggest

using the best estimate (i.e., median) senario to projet the liability value. To do this,

we alulate LMed(t) deterministially, but then use Monte Carlo simulations to projet

one year ahead and estimate the distribution of L(t+1)|LMed(t). From this distribution,

SCRMed(t) an be estimated as

SCRMed(t) = ECV aR(L(t+ 1)|LMed(t); 99.5%)

This �median� approah is illustrated in Figure 12.18, showing M = 10 simulations in

grey to alulate the SCR at eah future time.
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Figure 12.18: �Median� approah for alulating the risk margin, using M = 10
simulations to estimate the SCR for the median liability value at eah future time

The median approah aptures the impat of the inreasing maturity of the liabilities

on the distribution of the one-year projetion of the liabilities and hene the estimation

of the SCR. Using the median approah with M = 20, 000, we estimate a risk margin

of 3.5% of the real-world value of the liabilities, whih is not very di�erent from that

alulated using nested simulations.

One potential ritiism of this approah is that it does not alulate the SCR for senarios

where the liabilities are already signi�antly higher or lower than the median estimate

at time t. For instane, although at time t, we onsider highly adverse senarios for how

mortality might evolve to t + 1 in the alulation of SCR(t), we only use the median

senario to alulate L(t+ 1) and, hene, ignore the potential for adverse experiene to

atually be realised. As the SCR is a phenomenon relating to the tail of the distribution

of the liabilities, it may have a di�erent distribution if the starting liabilities at time t

are already in a stressed senario ompared with the best estimate senario.

26

However, this approah an be extended to deal with this ritiism. We do this by reog-

nising that the median senario is just one representative senario (or �model point�) of

the distribution of liabilities at time t. As we have to �nd the distribution of the liabilities

at time t in order to alulate SCR(t− 1), we ould instead take multiple model points

(say, p) from this distribution. For eah of these representative senarios, we would then

alulate SCR(t), with the estimated total SCR at time t being a probability-weighted

average of the estimates for eah model point. This approah is illustrated in Figure

12.19, using p = 3 model points and M = 10 simulations to alulate the SCR for eah

26

For example, we may believe that our liabilities will behave di�erently if we have already observed

rapid redutions in mortality rates ompared to a best estimate senario.
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model point.

τ τ + 1 τ + 2

L(τ)

L(τ + 1)

L(τ + 2)

Figure 12.19: �Model point� approah for alulating the risk margin, using p = 3
model points and M = 10 simulations to estimate the SCR for eah model point at

eah future time

Hene, the model point approah is able to investigate the behaviour of the SCR un-

der adverse senarios for the evolution of the liabilities. This may be important for

ompliated bene�t strutures, whose distribution ould, potentially, be strongly path-

dependent. This �model point� approah requires ∼ p×M simulations, whih, although

still omputationally intensive, is a signi�ant redution from the N × M simulations

required for the nested approah.

The hoie of model points is left to the model user. For illustrative purposes, in our al-

ulations, we have hosen model points at regular quantiles of the liability distribution,

namely p model points at the

1
2
100
p

th
,

3
2
100
p

th
, . . . 2p−1

2
100
p

th
perentiles of the distribution,

whih are all given the same weight. However, other hoies might be more appropriate

if a greater number of model points in the tails of the distribution is desired, although

the weights would have to be adjusted appropriately.

Nevertheless, there is, still a trade-o� between the number of model points and the num-

ber of simulations to alulate the SCR at eah model point for a �xed omputational

budget. Using more model points, therefore, means reduing the number of simulations

used to alulate the SCR for eah, in order to keep the same total number of simula-

tions. To illustrate this, we alulate the SCR during run o� and the risk margin for

di�erent values of p with �xed p×M = 20, 000.27

27

Note that the ase p = 1 orresponds to the median approah disussed above.
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Figure 12.20: Projeted SCRs for di�erent numbers of model points

Figure 12.20 shows the estimated SCRs at di�erent times and di�erent numbers of model

points. As an be seen, the number of model points does not appear to signi�antly af-

fet the projeted values of the SCR, and therefore will give similar estimates of the risk

margin. The is beause the liability values are driven hie�y by the period parameters,

κt, whih are projeted using a random walk with drift. This means that the period

funtions are not path-dependent, e.g., observing larger than antiipated hanges in κt

between τ and t merely hanges the starting point for where we expet the proess to

go in future, but does not ause us to revise our expetation of the drift of the proess.

Allowing for experiene to feed through into an adjusted assumption for the drift of the

proess (i.e., allowing for realibration risk) in the forward mortality framework would

hange this assumption and, potentially, our results. However, the struture of our illus-

trative liabilities is relatively simple, whih may limit the extent to whih SCR(t) would

be a�eted by adverse experiene between τ and t. There might be more ompliated

situations where a greater number of model points are needed in order to apture the

behaviour of the SCR in the tail of the liability distribution, suh as if the liabilities

inluded longevity-linked options, suh as guaranteed annuity rates.

28

28

However, as disussed in Chapter 11, the forward mortality rate framework annot urrently be used

to value options on measures of mortality. We leave the modelling of longevity-linked options to future

work.
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12.4.3.3 Comparing the approahes

Values of the SCR and risk margin at time τ (as perentages of the time τ liability value)

are shown in Table 12.5 for the various methods onsidered above for alulating the risk

margin. As an be seen, the standard model approah overestimates the amount of ap-

ital required, both ompared with the approah based on nested simulations and the

other approximate approahes disussed. Thus, an insurer using the standard model ap-

proah may experiene a lower return on apital from their annuity book and �nd writing

annuities less pro�table than ompetitors adopting a more sophistiated approah. In

ontrast, we �nd that the duration approah underestimates the risk margin and, hene,

the total apital required, whih might prompt further investigation from the regulator

regarding the apital adequay of an insurer using this approah. The other methods

�nd broadly omparable amounts of risk apital in order to support the annuity book.

However, our results are based on a very simple, illustrative annuity book and therefore

may not be diretly appliable for the more realisti annuity books.

Approah SCR(τ) Risk Margin Total

Nested 4.0% 3.3% 7.3%

Duration 4.0% 2.5% 6.5%

Standard model 4.0% 5.3% 9.3%

Proportional 4.0% 4.0% 8.0%

Median 4.0% 3.5% 7.5%

Model point (p = 10) 4.0% 3.5% 7.5%

Table 12.5: SCRs and risk margins using di�erent approahes

In pratie, any measurement of the SCR and risk margin would also need to take

into aount other risks, suh as unertain investment returns, interest rates, in�ation,

poliyholder behaviour and operational risks, all of whih might add substantially to these

requirements. It is important that any model used for longevity risk an be integrated

into the wider framework of measuring and managing the full range of risks faed by a

life insurer. We believe that approahes whih provide greater detail about the potential

evolution of the liabilities, suh as the model point approah, an do this more e�etively

and, hene, provide a more holisti approah to risk management within the annuity

book, than some of the other simpler approahes disussed above.
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12.5 Conlusions

In Chapter 11, we de�ned a stati forward surfae of mortality for the purpose of valuing

longevity-linked liabilities and seurities. In this study, we extend this framework by

investigating the dynamis of the forward mortality surfae to show how these values

might hange over time. This involves understanding the proesses we use to projet

the underlying parameters in the mortality model and how these update to re�et new

information. In partiular, an understanding of how the ohort parameters in the model

update in response to new information is ritial in measuring the dynamis of the for-

ward mortality surfae. We use this understanding to show that forward mortality rates

are martingales in both the real-world and market-onsistent measures, and are, there-

fore, �self-onsistent� in the terminology of Zhu and Bauer (2011b).

We then apply this dynami framework to investigate some of the most important ur-

rent issues in the measurement and management of longevity risk. In partiular, we

demonstrate how the forward mortality framework ould be used as an internal model as

part of the Solveny II regulations being implemented aross the EU. We also ompare

it with the standard model proposed in EIOPA (2014), whih we have demonstrated

signi�antly overstates the amount of apital an insurer would need to hold in respet

of longevity risk. We also investigate the alulation of the Solveny II risk margin

and ompare a variety of approahes for simplifying this. In addition, we use the for-

ward mortality framework to investigate the e�etiveness of longevity-linked seurities

in hedging longevity risk in an annuity portfolio, and �nd that relatively simple hedg-

ing strategies an signi�antly mitigate the longevity risk in a set of illustrative liabilities.

However, the forward mortality framework desribed here and in Chapter 11 ontains

some notable omissions, namely that it annot urrently allow for revisions to the trend

rate of mortality improvement (realibration risk in the terminology of Cairns (2013)),

does not allow for potential basis risk between populations and annot be used to value

options on mortality rates and other instruments with non-linear longevity-linked payo�s.

We leave eah of these problems for future work, but are on�dent that they are solvable.

In Chapter 11, we stated our belief that the forward mortality rates are the way forward

in answer to the question posed in Norberg (2010). This study rea�rms this onlusion

and demonstrates the many pratial uses a forward mortality framework an have in

ompleting the framework for measuring and managing longevity risk.
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12.A Self onsisteny

In Setion 12.2, we disussed the self-onsisteny property of Zhu and Bauer (2011b)

and argued that P-measure forward mortality rates should be self-onsistent in the real-

world measure and Q-measure forward mortality rates should be self-onsistent in the

market-onsistent measure sine they are de�ned as onditional expetations. However,

it is helpful to on�rm this expliitly in order to ensure that there are no inonsistenies

in the modelling framework. This was done for age/period models of the short rate

in Setion 12.2.1, where the time series proess updating the period parameters was

relatively simple. In this Appendix, we �rst verify the martingale property for models

that inlude a ohort term and then verify that forward mortality rates are self-onsistent

in the market onsistent Q-measure.

12.A.1 Self onsisteny of the ohort parameters

For simpliity, onsider a model of the short mortality rate with no age/period terms,

i.e.,

lnµx,t = αx + γt−x

In this ase

νPx,t(τ) = exp

(

αx +M(t− x, τ) +
1

2
V (t− x, τ)

)

and trivially therefore

νPx,t(τ + 1) = exp

(

αx +M(t− x, τ + 1) +
1

2
V (t− x, τ + 1)

)

First, we observe that

V (y, τ + 1) = V (y − 1, τ) (12.28)

from the de�nition of the variane funtion in Equation 11.21. The, using Equation 12.28

and dropping the supersript P (sine all expetations and varianes are in the real-world

measure), we see that self-onsisteny implies

exp

(

αx +M(t− x, τ) +
1

2
V (t− x, τ)

)

= Eτ exp

(

αx +M(t− x, τ + 1) +
1

2
V (t− x, τ + 1)

)

= exp

(

αx + EτM(t− x, τ + 1) +
1

2
(Varτ (M(t− x, τ + 1)) + V (t− x− 1, τ))

)
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Therefore, we require

EτM(y, τ + 1) = M(y, τ) (12.29)

Varτ (M(y, τ + 1)) = V (y, τ) − V (y − 1, τ) (12.30)

It is important to note that these are diret onsequenes of the laws of onditional

expetation and variane, i.e., Equations 12.29 and 12.30 an be rewritten as

EτEτ+1γy = Eτγy

Varτ (Eτ+1γy) + EτVarτ+1(γy) = Varτ (γy)

and therefore that the following is merely a hek on whether the Bayesian proess un-

derpinning the ohort parameter is internally onsistent.

For simpliity, we assume that we have hosen a set of identi�ability onstraints suh that

β = 0. From Chapter 6, we have the following reursive relationships whih de�ne the

mean and variane funtions (and whih were solved to give the losed forms of M(y, τ)

and V (y, τ) in Equations 11.20 and 11.21)

M(y, t) = γ
y
(t) + (1−Dt−y)ρM(y − 1, t) (12.31)

V (y, t) = (1−Dt−y)σ
2 + (1−Dt−y)

2ρ2V (y − 1, t)) (12.32)

Starting with Equation 12.29

EτM(y, τ + 1) = Eτ

∞
∑

s=0

[

s−1
∏

r=0

(1−Dτ+1−y+r)

]

ρsγ
y−s

(τ + 1)

=

∞
∑

s=0

Þτ+1−y,sρ
sEτγy−s

(τ + 1)

where we have de�ned

Þτ−y,s =

s−1
∏

r=0

(1−Dτ−y+r)

and Þτ−y,0 = 1 by de�nition, as per Chapter 6. From this de�nition, we note the following

Þτ−y,s+1 = (1−Dτ−y+s)Þτ−y,s

Þτ−y+1,s =
(1−Dτ−y+s)

(1−Dτ−y)
Þτ−y,s
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From Equation 12.7 we have

Eτγ
τ+1−y
y = ρM(y − 1, τ)

Varτ (γ
τ+1−y
y ) = ρ2V (y − 1, τ) +

σ2

dτ+1−y

Using this with Equation 12.5 gives us

Eτγy(τ + 1) = γ
y
(τ) + dτ−y+1Eτ [γ

τ−y+1
y ]

= γ
y
(τ) + dτ−y+1ρM(y − 1, τ)

= M(y, τ) − (1−Dτ−y)ρM(y − 1, τ) + dτ−y+1EτρM(y − 1, τ)

= M(y, τ) − (1−Dτ−y+1)ρM(y − 1, τ)

where we have used Equation 12.31 to remove the dependene on γ
y
(τ).

It therefore follows that

EτM(y, τ + 1) =

∞
∑

s=0

Þτ+1−y,sρ
s (M(y − s, τ)− (1−Dτ−y+1)ρM(y − s− 1, τ))

=
∞
∑

s=0

Þτ+1−y,sρ
sM(y − s, τ)−

∞
∑

s=0

(1−Dτ−y+1)Þτ+1−y,sρ
s+1M(y − s− 1, τ)

=

∞
∑

s=0

Þτ+1−y,sρ
sM(y − s, τ)−

∞
∑

s=0

Þτ+1−y,s+1ρ
s+1M(y − s− 1, τ)

= Þτ+1−y,0ρ
0M(y, τ)

= M(y, τ)

as required.

Perhaps unsurprisingly, demonstrating Equation 12.30 is trikier. We start by showing

that it is true when y = τ +1−X, i.e., the ohort is one year away from being fully run

o�. Trivially V (τ + 1 −X, τ + 1) = 0, sine at time τ + 1, everyone in the ohort born

at τ + 1 −X has died and so the ohort parameter γτ+1−X = γ
τ+1−X

(τ + 1) is known
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with ertainty. Therefore

Varτ (M(τ + 1−X, τ + 1)) = Varτ (γτ+1−X
(τ + 1))

= Varτ (γτ+1−x
(τ) + dXγXτ+1−X)

= d2X
σ2

dX

= dXσ2 = (1−DX−1)σ
2 = V (τ + 1−X, τ)

using Equations 12.7 and 11.21. This is the �rst step in an indution argument, enabling

us to work forwards in y to prove that Equation 12.30 holds true

Varτ (M(y, τ + 1)) = Varτ

(

γ
y
(τ + 1) + (1−Dτ−y+1)ρM(y − 1, τ + 1)

)

= Varτ (γy(τ + 1)) + (1−Dτ−y+1)
2ρ2Varτ (M(y − 1, τ + 1))

+ 2(1 −Dτ−y+1)ρCovτ (γy(τ + 1),M(y − 1, τ + 1))

using Equation 12.31 and expanding the variane. Looking at the �rst of these parts, we

see

Varτ (γy
(τ + 1)) = Varτ (γy(τ) + dτ−y+1γ

τ−y+1
y )

= d2τ−y+1Varτ (γ
τ−y+1
y )

= dτ−y+1σ
2 + ρ2d2τ−y+1V (y − 1, τ)

from Equation 12.7. For the seond part, we assume that Equation 12.30 holds for y−1,

using the indutive argument, and therefore

Varτ (M(y − 1, τ + 1)) = V (y − 1, τ) − V (y − 2, τ)

Consequently

Varτ (γy(τ + 1)) + (1−Dτ−y+1)
2ρ2Varτ (M(y − 1, τ + 1))

= dτ−y+1σ
2 + ρ2

(

d2τ−y+1 + (1−Dτ−y+1)
2
)

V (y − 1, τ)

− (1−Dτ−y+1)
2ρ2V (y − 2, τ)

= dτ−y+1σ
2 + ρ2

(

(1−Dτ−y+1 + dτ−y+1)
2 − 2(1−Dτ−y+1)dτ−y+1

)

V (y − 1, τ)

− (1−Dτ−y+1)σ
2 − V (y − 1, τ) using Equation 12.32 on V (y − 2, τ)

= (1−Dτ−y)σ
2 + ρ2(1−Dτ−y)

2V (y − 1, τ) − V (y − 1, τ)

− 2ρ2(1−Dτ−y+1)dτ−y+1V (y − 1, τ)

= V (y, τ)− V (y − 1, τ) − 2ρ2(1−Dτ−y+1)dτ−y+1V (y − 1, τ)
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Therefore

Varτ (M(y, τ + 1)) = V (y, τ)− V (y − 1, τ)

+2(1 −Dτ−y+1)ρ
(

Covτ (γy(τ + 1),M(y − 1, τ + 1))− ρdτ−y+1V (y − 1, τ)
)

and so Equation 12.30 will hold if and only if

Covτ (γy
(τ + 1),M(y − 1, τ + 1)) = ρdτ−y+1V (y − 1, τ)

To show that this alulation holds, we deompose the ovariane as

Covτ (γy
(τ + 1),M(y − 1,τ + 1)) = dτ+1−yCovτ (γ

τ+1−y
y ,M(y − 1, τ + 1))

= dτ+1−y

∞
∑

s=0

Þτ−y+2,sρ
sCovτ (γ

τ+1−y
y , γ

y−1−s
(τ + 1))

= dτ+1−y

∞
∑

s=0

Þτ−y+2,sρ
sdτ+2−y+2Covτ (γ

τ+1−y
y , γ

τ+2−y+s
y−s−1 )

= dτ+1−y

∞
∑

s=0

Þτ−y+2,sρ
sdτ+2−y+sρ

s+1
Þτ+1−y,s+1

σ2

dτ+2−y+s

from Equation 12.8

= ρdτ+1−y

∞
∑

s=0

(1−Dτ+1−y+s)Þ
2
τ+1−y,s+1ρ

2sσ2

= ρdτ+1−yV (y − 1, τ)

from the de�nition of V (y, τ) in Equation 11.21. Therefore, Equation 12.30 does indeed

hold and models involving a set of ohort parameters are self-onsistent in the real-world

P-measure.

12.A.2 Self-onsisteny in the market-onsistent measure

Together, the results of Setion 12.2.1 and Appendix 12.A.1 show that the forward mor-

tality rates are self-onsistent in the real-world P-measure, as expeted. We now demon-

strate that they are self-onsistent in the market-onsistent Q-measure, i.e.,

EQ
τ νQx,t(τ + 1) = νQx,t(τ)
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From Equation 11.31, we have

ν
Q
x,t(τ + 1) = exp

(

β⊤
xVar

P
τ+1(κt)λ+ λγVarPτ+1(γt−x)

)

× νPx,t(τ + 1)

= exp

(

αx + β⊤
x E

P
τ+1κt +

1

2
β⊤
x Var

P
τ+1(κt)βx + EP

τ+1γt−x

+
1

2
VarPτ+1(γt−x) + β⊤

xVar
P
τ+1(κt)λ+ λγVarPτ+1(γt−x)

)

and also from Equation 11.29

EQ
τ νQx,t(τ + 1) =

EP
τ

[

exp
(

−λ⊤κt − λγγt−x

)

ν
Q
x,t(τ + 1)

]

EP exp
(

−λ⊤κt − λγγt−x

)

Looking �rst at the denominator

[

EP exp
(

−λ⊤κt − λγγt−x

)]−1
=

exp

(

λ⊤EP
τκt −

1

2
λ⊤VarPτ (κt)λ+ λγEP

τγt−x −
1

2
λγ 2VarPτ (γt−x)

)

Next, let us onsider the numerator

EP
τ

[

exp
(

−λ⊤κt − λγγt−x

)

ν
Q
x,t(τ + 1)

]

=

exp

(

αx + β⊤
x E

P
τ+1κt +

1

2
β⊤
xVar

P
τ+1(κt)βx + EP

τ+1γt−x

+
1

2
VarPτ+1(γt−x) + β⊤

xVar
P
τ+1(κt)λ+ λγVarPτ+1(γt−x)− λ⊤κt − λγγt−x

)

= exp

(

αx +
1

2
β⊤
xVar

P
τ+1(κt)βx +

1

2
VarPτ+1(γt−x) + β⊤

xVar
P
τ+1(κt)λ+ λγVarPτ+1(γt−x)

)

× EP
τ exp

(

βxE
P
τ+1κt − λ⊤κt + EP

τ+1γt−x − λγγt−x

)

Sine all expetations and varianes are under the measure P (unless stated otherwise),

we drop the supersripts for simpliity. Considering only the expetation

Eτ exp
(

βxEτ+1κt − λ⊤κt + Eτ+1γt−x − λγγt−x

)

=

exp

(

βxEτκt − λ⊤Eτκt + Eτγt−x − λγEτγt−x +
1

2
β⊤
xVarτ (Eτ+1κt)βx +

1

2
λ⊤Varτ (κt)λ

+β⊤
xCovτ (Eτ+1κt,κt)λ+

1

2
Varτ (Eτ+1γt−x) +

1

2
λγ 2Varτ (γt−x)− λγCovτ (Eτ+1γt−x, γt−x)

)
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Looking at eah of the variane terms, we use the results

Varτ (Eτ+1X) = Varτ (X)− Varτ+1(X)

Covτ (X,Eτ+1X) = EτCovτ+1(X,Eτ+1X) + Covτ (Eτ+1X,Eτ+1X)

= 0 + Varτ (Eτ+1X)

= Varτ (X)− Varτ+1(X)

to give

Eτ exp
(

βxEτ+1κt − λ⊤κt + Eτ+1γt−x − λγγt−x

)

=

exp

(

βxEτκt − λ⊤Eτκt + Eτγt−x − λγEτγt−x +
1

2
β⊤
x [Varτ (κt)− Varτ+1(κt)]βx

+
1

2
λ⊤Varτ (κt)λ+ β⊤

x [Varτ (κt)− Varτ+1(κt)]λ+
1

2
Varτ (γt−x)−

1

2
Varτ+1(γt−x)

+
1

2
λγ 2Varτ (γt−x)− λγVarτ (γt−x) + λγVarτ+1(γt−x)

)

Putting all three parts together and anelling terms, we �nd

EQ
τ ν

Q
x,t(τ + 1) = exp

(

αx + β⊤
x Eτκt +

1

2
β⊤
xVarτ (κt)βx + Eτγt−x +

1

2
Varτ (γt−x)

+β⊤
xVarτ (κt)λ+ λγVarτ (γt−x)

)

= exp
(

β⊤
x ΛVarτ (κt)βx + λγVarτ (γt−x)

)

νPx,t(τ)

= ν
Q
x,t(τ)

i.e., that forward mortality rates are self-onsistent martingales under the market-onsistent

Q-measure. From this, we also see that

EP
τν

Q
x,t(τ + 1) = EP

τ exp
(

β⊤Varτ+1(κt)λ+ λγVarτ+1(γt−x)
)

νPx,t(τ + 1)

= exp
(

β⊤Varτ+1(κt)λ+ λγVarτ+1(γt−x)
)

νPx,t(τ)

= exp
(

β⊤ [Varτ+1(κt)− Varτ (κt)]λ+ λγ [Varτ+1(γt−x)− Varτ (γt−x)]
)

νQx,t(τ)

i.e., the hange of measure introdues a distortion whih prevents market onsistent

forward rates being self-onsistent in the real-world P-measure.

510



Bibliography

Alai, D. H., Ignatieva, K., Sherris, M., 2013. Modelling longevity risk: Generalizations

of the Olivier-Smith Model. Teh. rep., University of New South Wales.

Alai, D. H., Sherris, M., 2012. Rethinking age-period-ohort mortality trend models.

Sandinavian Atuarial Journal 18 (2), 452�466.

Andreev, K. F., Vaupel, J., 2006. Foreasts of ohort mortality after age 50. Teh. rep.,

Max Plank Institute for Demographi Researh.

Antolin, P., 2007. Longevity risk and private pensions. OECD Working Papers.

Arnold (-Gaille), S., Sherris, M., 2013. Foreasting mortality trends allowing for ause-

of-death mortality dependene. North Amerian Atuarial Journal 17 (4), 273�282.

Aro, H., 2014. Systemati and nonsystemati mortality risk in pension portfolios. North

Amerian Atuarial Journal 18 (1), 59�67.

Aro, H., Pennanen, T., 2011. A user-friendly approah to stohasti mortality modelling.

European Atuarial Journal 1 (S2), 151�167.

Bai, J., Perron, P., 1998. Estimating and testing linear models with multiple strutural

hanges. Eonometria 66 (1), 47�78.

Bai, J., Perron, P., 2003. Computation and analysis of multiple strutural hange models.

Journal of Applied Eonometris 18 (1), 1�22.

Ballotta, L., Haberman, S., 2006. The fair valuation problem of guaranteed annuity op-

tions: The stohasti mortality environment ase. Insurane: Mathematis and Eo-

nomis 38 (1), 195�214.

Barbarin, J., 2008. Heath-Jarrow-Morton modelling of longevity bonds and the risk min-

imization of life insurane portfolios. Insurane: Mathematis and Eonomis 43 (1),

41�55.

511



Bibliography

Barrieu, P. M., Bensusan, H., Karoui, N. E., Hillairet, C., Loisel, S., Ravanelli, C.,

2012. Understanding, modelling and managing longevity risk: Key issues and main

hallenges. Sandinavian Atuarial Journal 3, 203�231.

Bauer, D., Bergmann, D., Reuÿ, A., 2009. Solveny II and nested simulations - A least-

squares Monte Carlo approah. Teh. rep., University of Ulm.

Bauer, D., Börger, M., Ruÿ, J., Zwiesler, H., 2008. The volatility of mortality. Asia-

Pai� Journal of Risk and Insurane 3 (10), 2153�3792.

Bauer, D., Kramer, F., 2007. Risk and valuation of mortality ontingent atastrophe

bonds. Teh. rep., University of Ulm.

Bauer, D., Reuÿ, A., Singer, D., 2012. On the alulation of the solveny apital require-

ment based on nested simulations. ASTIN Bulletin 42 (2), 453�499.

Bayraktar, E., Young, V. R., 2007. Hedging life insurane with pure endowments. Insur-

ane: Mathematis and Eonomis 40 (3), 435�444.

Beelders, O., Colarossi, D., 2004. Modelling mortality risk with extreme value theory:

The ase of Swiss Re's mortality-indexed bonds. Global Assoiation of Risk Profes-

sionals, 26�30.

Bi�s, E., Blake, D., Pitotti, L., Sun, A., 2014. The ost of ounterparty risk and ollat-

eralization in longevity swaps. Journal of Risk and Insurane, Forthoming.

Blake, D., Burrows, W., 2001. Survivor bonds: Helping to hedge mortality risk. Journal

of Risk and Insurane 68 (2), 339�348.

Blake, D., Cairns, A. J. G., Coughlan, G. D., Dowd, K., MaMinn, R., 2013. The new

life market. Journal of Risk and Insurane 80 (3), 501�558.

Blake, D., Cairns, A. J. G., Dowd, K., 2006. Living with mortality: Longevity bonds

and other mortality-linked seurities. British Atuarial Journal 12 (1), 153�197.

Blake, D., Harrison, D., 2013. A healthier way to de-risk: The introdution of medial

underwriting to the de�ned bene�t de-risking market. Teh. rep., Pensions Institute,

Cass Business Shool, City University London.

Booth, H., 2006. Demographi foreasting: 1980 to 2005 in review. International Journal

of Foreasting 22 (3), 547�581.

Booth, H., Maindonald, J., Smith, L., 2002. Applying Lee-Carter under onditions of

variable mortality deline. Population Studies 56 (3), 325�36.

512



Bibliography

Börger, M., 2010. Deterministi shok vs. stohasti value-at-risk - An analysis of the

Solveny II standard model approah to longevity risk. Blätter der DGVFM 31 (2),

225�259.

Börger, M., Fleisher, D., Kuksin, N., 2013. Modeling the mortality trend under modern

solveny regimes. ASTIN Bulletin 44 (1), 1�38.

Börger, M., Ruÿ, J., 2012. It takes two: Why mortality trend modeling is more than

modeling one mortality trend. Teh. rep., University of Ulm.

Brouhns, N., Denuit, M. M., Van Keilegom, I., 2005. Bootstrapping the Poisson log-

bilinear model for mortality foreasting. Sandinavian Atuarial Journal 2005 (3), 212�

224.

Brouhns, N., Denuit, M. M., Vermunt, J., 2002a. A Poisson log-bilinear regression ap-

proah to the onstrution of projeted lifetables. Insurane: Mathematis and Eo-

nomis 31 (3), 373�393.

Brouhns, N., Denuit, M. M., Vermunt, J., 2002b. Measuring the longevity risk in mor-

tality projetions. Bulletin of the Swiss Assoiation of Atuaries 2, 105�130.

Cairns, A. J. G., 2000. A disussion of parameter and model unertainty in insurane.

Insurane: Mathematis and Eonomis 27 (3), 313�330.

Cairns, A. J. G., 2007. A multifator generalisation of the Olivier-Smith model for

stohasti mortality. Teh. rep., Heriot-Watt University, Edinburgh.

Cairns, A. J. G., 2011. Modelling and management of longevity risk: Approximations

to survivor funtions and dynami hedging. Insurane: Mathematis and Eonomis

49 (3), 438�453.

Cairns, A. J. G., 2013. Robust hedging of longevity risk. Journal of Risk and Insurane

80 (3), 621�648.

Cairns, A. J. G., Blake, D., Dowd, K., 2006a. A two-fator model for stohasti mortality

with parameter unertainty: Theory and alibration. Journal of Risk and Insurane

73 (4), 687�718.

Cairns, A. J. G., Blake, D., Dowd, K., 2006b. Priing death: Frameworks for the valua-

tion and seuritization of mortality risk. ASTIN Bulletin 36 (1), 79�120.

Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Khalaf-Allah,

M., 2011a. Mortality density foreasts: An analysis of six stohasti mortality models.

Insurane: Mathematis and Eonomis 48 (3), 355�367.

513



Bibliography

Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., Balevih,

I., 2009. A quantitative omparison of stohasti mortality models using data from

England and Wales and the United States. North Amerian Atuarial Journal 13 (1),

1�35.

Cairns, A. J. G., Blake, D., Dowd, K., Coughlan, G. D., Khalaf-Allah, M., 2011b.

Bayesian stohasti mortality modelling for two populations. ASTIN Bulletin 41 (1),

29�59.

Cairns, A. J. G., Blake, D., Dowd, K., Kessler, A., 2014. Phantoms never die: Living

with unreliable mortality data. Teh. rep., Herriot Watt University, Edinburgh.

Cairns, A. J. G., Dowd, K., Blake, D., Coughlan, G. D., 2013. Longevity hedge e�etive-

ness: A deomposition. Quantitative Finane 14 (2), 217�235.

Callot, L., Haldrup, N., Lamb, M. K., 2014. Deterministi and stohasti trends in the

Lee-Carter mortality model. Teh. rep., Aarhus University.

Campos, J., Erisson, N. R., Hendry, D. F., 2005. General-to-spei� modeling: An

overview and seleted bibliography. Federal Reserve Disussion Papers.

Carstensen, B., 2007. Age-period-ohort models for the Lexis diagram. Statistis in

Mediine 26, 3018�3045.

Carter, L. R., Prskawetz, A., 2001. Examining strutural shifts in mortality using the

Lee-Carter method. Teh. rep., Max Plank Institute for Demographi Researh.

Carter, R., Lee, D., 1992. Modeling and foreasting US sex di�erentials. International

Journal of Foreasting 8, 393�411.

Chen, H., Cox, S. H., 2009. Modeling mortality with jumps: Appliations to mortality

seuritization. Journal of Risk and Insurane 76 (3), 727�751.

Christiansen, M., Niemeyer, A., 2014. Fundamental de�nition of the Solveny Capital

Requirement in Solveny II. ASTIN Bulletin 44 (03), 501�533.

Clayton, D., Shi�ers, E., 1987. Models for temporal variation in aner rates. II: Age-

period-ohort models. Statistis in Mediine 6 (4), 469�81.

Coelho, E., Nunes, L. C., 2011. Foreasting mortality in the event of a strutural hange.

Journal of the Royal Statistial Soiety: Series A (Statistis in Soiety) 174 (3), 713�

736.

Continuous Mortality Investigation, 2002. Working Paper 1 - An interim basis for

adjusting the �92" series mortality projetions for ohort e�ets.

URL http://www.atuaries.org.uk/researh-and-resoures/pages/mi-working-paper-1

514

http://www.actuaries.org.uk/research-and-resources/ pages/cmi-working-paper-1


Bibliography

Continuous Mortality Investigation, 2004. Working Paper 3 - Projeting future mortal-

ity: A disussion paper.

URL http://www.atuaries.org.uk/researh-and-resoures/douments/mi-working-paper-3-projeting-future-mortality-disussion-paper

Continuous Mortality Investigation, 2007. Working Paper 25 - Stohasti projetion

methodologies: Lee-Carter model features, example results and impliations.

URL http://www.atuaries.org.uk/researh-and-resoures/pages/mi-working-paper-25

Continuous Mortality Investigation, 2008. Working Paper 35 - The graduations of the

CMI self-administered pension shemes 2000-2006 mortality experiene: Final �S1�

series of mortality tables.

URL http://www.atuaries.org.uk/researh-and-resoures/pages/mi-working-papers-34-and-35

Continuous Mortality Investigation, 2009a. Working Paper 38 - A prototype mortality

projetion model: Part one - an outline of the proposed approah.

URL http://www.atuaries.org.uk/researh-and-resoures/pages/mi-working-papers-38-and-39

Continuous Mortality Investigation, 2009b. Working Paper 39 - A prototype mortality

projetions model: Part two - detailed analysis.

URL http://www.atuaries.org.uk/researh-and-resoures/pages/mi-working-papers-38-and-39

Continuous Mortality Investigation, 2011. Working Paper 53 - An initial investigation

into rates of mortality improvement for pensioners of self-administered pension

shemes.

URL http://www.atuaries.org.uk/researh-and-resoures/pages/mi-working-paper-53

Continuous Mortality Investigation, 2012. Working Paper 61 - An investigation into the

mortality experiene by industry lassi�ation of pensioners.

URL http://www.atuaries.org.uk/researh-and-resoures/pages/mi-working-paper-61

Continuous Mortality Investigation, 2013. Working Paper 69 - The CMI mortal-

ity projetions model, CMI_2013, and feedbak on the onsultation on the future

of the CMI Library of Mortality Projetions and the CMI Mortality Projetions Model.

URL http://www.atuaries.org.uk/researh-and-resoures/pages/mi-working-paper-69

Continuous Mortality Investigation, 2014a. Working Paper 71 - Graduations of the CMI

SAPS 2004-2011 mortality experiene based on data olleted by 30 June 2012: Final

�S2� series of mortality tables.

URL http://www.atuaries.org.uk/researh-and-resoures/pages/mi-working-paper-71

Continuous Mortality Investigation, 2014b. Working Paper 73 - Analysis of the mortality

experiene of pensioners of self-administered pension shemes for the period 2005 to

2012.

URL http://www.atuaries.org.uk/researh-and-resoures/pages/mi-working-paper-73

515

http://www.actuaries.org.uk/research-and-resources/ documents/cmi-working-paper-3- projecting-future-mortality-discussion-paper
http://www.actuaries.org.uk/research-and-resources/ pages/cmi-working-paper-25
http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-papers-34-and-35
http://www.actuaries.org.uk/research-and-resources/ pages/cmi-working-papers-38-and-39
http://www.actuaries.org.uk/research-and-resources/ pages/cmi-working-papers-38-and-39
http://www.actuaries.org.uk/research-and-resources/ pages/cmi-working-paper-53
http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-paper-61
http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-paper-69
http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-paper-71
http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-paper-73


Bibliography

Continuous Mortality Investigation, 2014. Working Paper 76 - Analysis of the mortality

experiene of pensioners of self-administered pension shemes for the period 2006 to

2013.

URL http://www.atuaries.org.uk/researh-and-resoures/pages/mi-working-paper-76

Cossette, H., Delwarde, A., Denuit, M. M., Guillot, F., Mareau, E., 2007. Pension plan

valuation and mortality projetion: A ase study with mortality data. North Amerian

Atuarial Journal 11 (2), 1�34.

Coughlan, G. D., Epstein, D., Ong, A., Sinha, A., 2007a. LifeMetris: A toolkit for mea-

suring and managing longevity and mortality risks. Tehnial doument. JPMorgan

Pension Advisory Group.

Coughlan, G. D., Epstein, D., Sinha, A., Honig, P., 2007b. q-forwards: Derivatives for

transferring longevity and mortality risks. JPMorgan Pension Advisory Group.

Coughlan, G. D., Khalaf-Allah, M., Ye, Y., Kumar, S., Cairns, A. J. G., Blake, D.,

Dowd, K., 2011. Longevity hedging 101: A framework for longevity basis risk analysis

and hedge e�etiveness. North Amerian Atuarial Journal 15 (2), 150�176.

Cowley, A., Cummins, J., 2005. Seuritization of life insurane assets and liabilities.

Journal of Risk and Insurane 72 (2), 193�226.

Cox, D. R., 1972. Regression models and life tables. Journal of the Royal Statistial

Soiety: Series B (Statistial Methodology) 34, 187�202.

Cox, S. H., Lin, Y., 2007. Natural hedging of life and annuity mortality risks. North

Amerian Atuarial Journal 11 (3), 1�15.

Cox, S. H., Lin, Y., Wang, S., 2006. Multivariate exponential tilting and priing impli-

ations for mortality seuritization. Journal of Risk and Insurane 73 (4), 719�736.

Currie, I. D., 2014. On �tting generalized linear and non-linear models of mortality.

Sandinavian Atuarial Journal, Forthoming.

Currie, I. D., Durbán, M., Eilers, P., 2004. Smoothing and foreasting mortality rates.

Statistial Modelling 4 (4), 279�298.

Czado, C., Delwarde, A., Denuit, M. M., 2005. Bayesian Poisson log-bilinear mortality

projetions. Insurane: Mathematis and Eonomis 36 (3), 260�284.

D'Amato, V., Lorenzo, E. D., Haberman, S., Russolillo, M., Sibillo, M., 2011. The

Poisson log-bilinear Lee-Carter model: Appliations of e�ient bootstrap methods to

annuity analyses. North Amerian Atuarial Journal 15 (2), 315�333.

516

http://www.actuaries.org.uk/research-and-resources/pages/cmi-working-paper-76


Bibliography

Darkiewiz, G., Hoedemakers, T., 2004. How the o-integration analysis an help in

mortality foreasting. Teh. rep., Catholi University of Leuven.

Dawson, P., Dowd, K., Cairns, A. J. G., Blake, D., 2010. Survivor derivatives: A onsis-

tent priing framework. Journal of Risk and Insurane 77 (3), 579�596.

de Grey, A. D. N. J., 2006. Extrapolaholis anonymous: Why demographers' rejetions

of a huge rise in ohort life expetany in this entury are overon�dent. Annals of the

New York Aademy of Sienes 1067, 83�93.

Debón, A., Martinez-Ruiz, F., Montes, F., Martínez-Ruiz, F., Montes, F., 2010. A geosta-

tistial approah for dynami life tables: The e�et of mortality on remaining lifetime

and annuities. Insurane: Mathematis and Eonomis 47 (3), 327�336.

Debón, A., Montes, F., Mateu, J., Poru, E., Bevilaqua, M., 2008. Modelling residuals

dependene in dynami life tables: A geostatistial approah. Computational Statistis

& Data Analysis 52 (6), 3128�3147.

Delwarde, A., Denuit, M. M., Eilers, P., 2007a. Smoothing the Lee-Carter and Poisson

log-bilinear models for mortality foreasting: A penalized log-likelihood approah.

Statistial Modelling 7 (1), 29�48.

Delwarde, A., Denuit, M. M., Guillén, M., Vidiella-i Anguera, A., 2006. Appliation

of the Poisson log-bilinear projetion model to the G5 mortality experiene. Belgian

Atuarial Bulletin 6 (1), 54�68.

Delwarde, A., Denuit, M. M., Partrat, C., 2007b. Negative binomial version of the Lee-

Carter model for mortality foreasting. Applied Stohasti Models in Business and

Industry 23 (5), 385�401.

Denuit, M. M., 2008. Comonotoni approximations to quantiles of life annuity onditional

expeted present values. Insurane: Mathematis and Eonomis 42 (1), 831�838.

Denuit, M. M., 2009. An index for longevity risk transfer. Journal of Computational and

Applied Mathematis 230 (2), 411�417.

Denuit, M. M., Devolder, P., Goderniaux, A.-M., 2007. Seuritization of longevity risk:

Priing survivor bonds with Wang transform in the Lee-Carter framework. Journal of

Risk and Insurane 74 (1), 87�113.

Denuit, M. M., Dhaene, J., Goovaerts, M., Kaas, R., 2005. Atuarial theory for dependent

risks: Measures, orders and models. Wiley.

Denuit, M. M., Goderniaux, A.-M., 2005. Closing and projeting life tables using log-

linear models. Bulletin of the Swiss Assoiation of Atuaries 1, 29�49.

517



Bibliography

Dhaene, J., Kukush, A., Luiano, E., Shoutens, W., Stassen, B., 2013. On the (in-

)dependene between �nanial and atuarial risks. Insurane: Mathematis and Eo-

nomis 52 (3), 522�531.

Donnelly, C., 2014. Quantifying mortality risk in small de�ned-bene�t pension shemes.

Sandinavian Atuarial Journal (1), 41�57.

Dowd, K., 2003. Survivor bonds: A omment on Blake and Burrows. Journal of Risk

and Insurane 70 (2), 339�348.

Dowd, K., Blake, D., Cairns, A. J. G., 2010a. Faing up to unertain life expetany:

The longevity fan harts. Demography 47, 67�78.

Dowd, K., Blake, D., Cairns, A. J. G., 2011a. A omputationally e�ient algorithm for

estimating the distribution of future annuity values under interest-rate and longevity

risks. North Amerian Atuarial Journal 15 (2), 237�247.

Dowd, K., Blake, D., Cairns, A. J. G., Dawson, P., 2006a. Survivor swaps. Journal of

Risk and Insurane 73 (1), 1�17.

Dowd, K., Cairns, A. J. G., Blake, D., 2006b. Mortality-dependent �nanial risk mea-

sures. Insurane: Mathematis and Eonomis 38 (3), 427�440.

Dowd, K., Cairns, A. J. G., Blake, D., Coughlan, G. D., 2011b. A gravity model of

mortality rates for two related populations. North Amerian Atuarial Journal 15 (2),

334�356.

Dowd, K., Cairns, A. J. G., Blake, D., Coughlan, G. D., Epstein, D., Khalaf-Allah, M.,

2010b. Baktesting stohasti mortality models: An ex post evaluation of multiperiod-

ahead density foreasts. North Amerian Atuarial Journal 13 (3), 281�298.

Dowd, K., Cairns, A. J. G., Blake, D., Coughlan, G. D., Epstein, D., Khalaf-Allah,

M., 2010. Evaluating the goodness of �t of stohasti mortality models. Insurane:

Mathematis and Eonomis 47 (3), 255�265.

Durbin, J., Watson, G. S., 1951. Testing for serial orrelations in least squares regression.

Biometrika 38 (1/2), 159�177.

EIOPA, 2014. Tehnial spei�ation for the preparatory phase (Part I). Teh. rep.,

European Insurane and Oupational Pensions Authority, Frankfurt.

Fetiveau, C., Jia, C., 2014. Longevity risk hedging with population based index solution

- A study of basis risk based on England & Wales population. Teh. rep., Deutshe

Bank.

518



Bibliography

Fienberg, S. E., Mason, W. M., 1979. Identi�ation and estimation of age-period-ohort

models in the analysis of disrete arhival data. Soiologial Methodology 10, 1�67.

Finkelstein, M., 2012. Disussing the Strehler-Mildvan model of mortality. Demographi

Researh 26, 191�206.

Frederi, P., Lad, F., 2008. Two moments of the logitnormal distribution. Communia-

tions in Statistis - Simulation and Computation 37 (7), 1263�1269.

Frenh, D., 2014. International mortality modelling - An eonomi perspetive. Eo-

nomis Letters 122 (2), 182�186.

Gaille, S., Sherris, M., 2011. Modelling mortality with ommon stohasti long-run

trends. The Geneva Papers on Risk and Insurane Issues and Pratie 36 (4), 595�621.

Gavrilov, L. A., Gavrilova, N. S., 2011. Mortality measurement at advaned ages: A

study of the soial seurity administration death master �le. North Amerian Atuarial

Journal 15 (3), 432�447.

Gerber, H., Shiu, E., 1994. Option priing by Essher transforms. Transations of the

Soiety of Atuaries 46, 99�191.

Glenn, N., 1976. Cohort analysts' futile quest: Statistial attempts to separate age,

period and ohort e�ets. Amerian Soiologial Review 41 (5), 900�904.

Gneiting, T., Raftery, A. E., 2007. Stritly proper soring rules, predition, and estima-

tion. Journal of the Amerian Statistial Assoiation 102 (477), 359�378.

Gutterman, S., Vanderhoof, I. T., 1998. Foreasting hanges in mortality. North Ameri-

an Atuarial Journal 2 (4), 135�138.

Haberman, S., Kaishev, V. K., Millossovih, P., Villegas, A. M., Baxter, S. D., Gahes,

A. T., Gunnlaugsson, S., Sison, M., 2014. Longevity basis risk: A methodology for

assessing basis risk. Teh. rep., Cass Business Shool, City University London and

Hymans Robertson LLP.

Haberman, S., Renshaw, A., 2009. On age-period-ohort parametri mortality rate pro-

jetions. Insurane: Mathematis and Eonomis 45 (2), 255�270.

Haberman, S., Renshaw, A., 2011. A omparative study of parametri mortality proje-

tion models. Insurane: Mathematis and Eonomis 48 (1), 35�55.

Haberman, S., Renshaw, A., 2012. Parametri mortality improvement rate modelling

and projeting. Insurane: Mathematis and Eonomis 50 (3), 309�333.

519



Bibliography

Haberman, S., Renshaw, A., 2013. Modelling and projeting mortality improvement rates

using a ohort perspetive. Insurane: Mathematis and Eonomis 53 (1), 150�168.

Hainaut, D., 2012. Multidimensional Lee-Carter model with swithing mortality pro-

esses. Insurane: Mathematis and Eonomis 50 (2), 236�246.

Hanewald, K., 2011. Explaining mortality dynamis: The role of maroeonomi �utu-

ations and ause of deaths trends. North Amerian Atuarial Journal 15 (2), 290�314.

Harper, S., Lynh, J., Burris, S., Davey Smith, G., 2007. Trends in the blak-white life

expetany gap in the United States, 1983-2003. The Journal of the Amerian Medial

Assoiation 297 (11), 1224�32.

Harris, D., Harvey, D. I., Leybourne, S. J., Taylor, A. R., 2009. Testing for a unit root

in the presene of a possible break in trend. Eonometri Theory 25 (06), 1545.

Hatzopoulos, P., Haberman, S., 2009. A parameterized approah to modeling and fore-

asting mortality. Insurane: Mathematis and Eonomis 44 (1), 103�123.

Hatzopoulos, P., Haberman, S., 2011. A dynami parameterization modeling for the

age-period-ohort mortality. Insurane: Mathematis and Eonomis 49 (2), 155�174.

Heligman, L., Pollard, J., 1980. The age pattern of mortality. Journal of the Institute of

Atuaries 107 (1), 49�80.

Hendry, D. F., Massmann, M., 2005. Co-breaking: Reent advanes and a synopsis of

the literature. Teh. Rep. 1978, University of Oxford.

Hobraft, J., Menken, J., Preston, S. H., 1982. Age, period and ohort e�ets in demog-

raphy: A review. Population Index 48 (1), 4�43.

Holford, T. R., 1983. The estimation of age, period and ohort e�ets for vital rates.

Biometris 39 (2), 311�24.

Holland, B., Ahsanullah, M., 1989. Further results on a distribution of Meinhold and

Singpurwalla. Amerian Statistial Assoiation 43 (4), 216�219.

Huang, J. Z., Shen, H., Buja, A., 2009. The analysis of two-way funtional data using

two-way regularized singular value deompositions. Journal of the Amerian Statistial

Assoiation 104 (448), 1609�1620.

Human Mortality Database, 2014. Human Mortality Database. Teh. rep., University of

California, Berkeley and Max Plank Institute for Demographi Researh.

URL www.mortality.org

520

www.mortality.org


Bibliography

Hunt, A., Villegas, A. M., 2015. Robustness and onvergene in the Lee-Carter model

with ohort e�ets. Insurane: Mathematis and Eonomis 64, 186�202.

Hymans Robertson, 2015. Buy-outs, buy-ins and longevity hedging Q4 2014. Teh. rep.,

Hymans Robertson LLP.

URL http://www.hymans.o.uk/media/591924/150317-managing-pension-sheme-risk-q4-2014.pdf

Hyndman, R., Ullah, M., 2007. Robust foreasting of mortality and fertility rates: A

funtional data approah. Computational Statistis & Data Analysis 51 (10), 4942�

4956.

Hyndman, R. J., Booth, H., Yasmeen, F., 2013. Coherent mortality foreasting: The

produt-ratio method with funtional time series models. Demography 50, 261�283.

Institute for Fisal Studies, 2014. Living standards, poverty and inequality in the UK:

2013. Teh. rep., Institute for Fisal Studies.

URL http://www.ifs.org.uk/omms/r81.pdf

Jarner, S. F., Kryger, E. M., 2011. Modelling mortality in small populations: The SAINT

model. ASTIN Bulletin 41 (2), 377�418.

Johansen, S., 1991. Estimation and hypothesis testing of ointegration vetors in Gaus-

sian vetor autoregressive models. Eonometria 59 (6), 1551�1580.

Juselius, K., 2006. The ointegrated VAR model: Methodology and appliations. Oxford

University Press.

Kaas, R., Goovaerts, M., Dhaene, J., Denuit, M. M., 2001. Modern atuarial risk theory.

Kluwer Aademi Publishers.

Kessler, A., 2014. Longevity risk and reinsurane: Strategies for managing annuity

bloks. Teh. rep., Prudential Retirement.

URL http://www.ass.ity.a.uk/__data/assets/pdf_file/0018/232614/Longevity-10-Longevity-Risk-and-Reinsurane-KESSLER-Amy.pdf

Key�tz, N., 1985. Applied mathematial demography. Springer-Verlag.

Kijima, M., 2005. A multivariate extension of equilibrium priing transforms: The mul-

tivariate Essher and Wang transforms for priing �nanial and insurane risks. Teh.

rep., Kyoto University.

Kleinow, T., Cairns, A. J. G., 2013. Mortality and smoking prevalene: An empirial

investigation in ten developed ountries. British Atuarial Journal 18 (2), 452�466.

Koissi, M., Shapiro, A., Hognas, G., 2006. Evaluating and extending the Lee-Carter

model for mortality foreasting: Bootstrap on�dene interval. Insurane: Mathemat-

is and Eonomis 38 (1), 1�20.

521

http://www.hymans.co.uk/media/591924/150317-managing-pension-scheme-risk-q4-2014.pdf
http://www.ifs.org.uk/comms/r81.pdf
http://www.cass.city.ac.uk/__data/assets/pdf_file/0018/232614/Longevity-10-Longevity-Risk-and-Reinsurance-KESSLER-Amy.pdf


Bibliography

Kuang, D., Nielsen, B., Nielsen, J. P., 2008a. Foreasting with the age-period-ohort

model and the extended hain-ladder model. Biometrika 95 (4), 987�991.

Kuang, D., Nielsen, B., Nielsen, J. P., 2008b. Identi�ation of the age-period-ohort

model and the extended hain-ladder model. Biometrika 95 (4), 979�986.

Lane, M., 2011. Longevity risk from the perspetive of the ILS markets. The Geneva

Papers on Risk and Insurane Issues and Pratie 36 (4), 501�515.

Lane, M. N., Bekwith, R., 2011. Prague Spring or Louisiana morning? Annual review

for the four quarters, Q2 2010 to Q1 2011. Teh. rep., Lane Finaial LLC.

Lane, M. N., Bekwith, R., 2012. More return; More risk: Annual review for the four

quarters, Q2 2011 to Q1 2012. Teh. rep., Lane Finanial LLC.

Lane, M. N., Bekwith, R., 2013. Soft markets ahead!? Annual review for the four

quarters, Q2 2012 to Q1 2013. Teh. rep., Lane Finanial LLC.

Lane, M. N., Bekwith, R., 2014. Straw hats in winter: Annual review for the four

quarters, Q2 2013 to Q1 2014. Teh. rep., Lane Finanial LLC.

Lazar, D., Denuit, M. M., 2009. A multivariate time series approah to projeted life

tables. Applied Stohasti Models in Business and Industry 25 (6), 806�823.

Lee, R. D., 2000. The Lee-Carter method for foreasting mortality, with various exten-

sions and appliations. North Amerian Atuarial Journal 4 (1), 80�93.

Lee, R. D., Carter, L. R., 1992. Modeling and foreasting U.S. mortality. Journal of the

Amerian Statistial Assoiation 87 (419), 659� 671.

Lemoine, K., 2014. Mortality regimes and longevity risk in a life annuity portfolio. San-

dinavian Atuarial Journal, Forthoming.

Li, J., 2014. A quantitative omparison of simulation strategies for mortality projetion.

Annals of Atuarial Siene 8 (02), 281�297.

Li, J. S.-H., Chan, W., 2005. Outlier analysis and mortality foreasting: The United

Kingdom and Sandinavian ountries. Sandinavian Atuarial Journal 2005 (3), 187�

211.

Li, J. S.-H., Chan, W., Cheung, S., 2011. Strutural hanges in the Lee-Carter mortality

indexes: Detetion and impliations. North Amerian Atuarial Journal 15 (1), 13�31.

Li, J. S.-H., Hardy, M. R., 2011. Measuring basis risk in longevity hedges. North Amerian

Atuarial Journal 15 (2), 177�200.

522



Bibliography

Li, J. S.-H., Hardy, M. R., Tan, K. S., 2009. Unertainty in mortality foreasting: An

extension to the lassial Lee-Carter approah. ASTIN Bulletin 39 (1), 137�164.

Li, J. S.-H., Luo, A., 2012. Key Q-duration: A framework for hedging longveity risk.

ASTIN Bulletin 42 (2), 413�452.

Li, J. S.-h., Zhou, R., Hardy, M. R., 2015. A step-by-step guide to building two-

population stohasti mortality models. Insurane: Mathematis and Eonomis 63,

121�134.

Li, N., Lee, R. D., 2005. Coherent mortality foreasts for a group of populations: An

extension of the Lee-Carter method. Demography 42 (3), 575�594.

Li, N., Lee, R. D., Tuljapurkar, S., 2004. Using the Lee-Carter method to foreast mor-

tality for populations with limited data. International Statistial Review 72 (1), 19�36.

Lin, Y., Cox, S. H., 2005. Seuritization of mortality risks in life annuities. Journal of

Risk and Insurane 72 (2), 227�252.

Lin, Y., Cox, S. H., 2008. Seuritization of atastrophe mortality risks. Insurane: Math-

ematis and Eonomis 42 (2), 628�637.

Liu, X., Braun, W. J., 2010. Investigating mortality unertainty using the blok boot-

strap. Journal of Probability and Statistis, Artile ID 813583.

Liu, Y., Li, J. S.-H., 2015. The age pattern of transitory mortality jumps and its impat

on the priing of atastrophi mortality bonds. Insurane: Mathematis and Eonomis

64, 135�150.

Loeys, J., Panigirtzoglou, N., Ribeiro, R., 2007. Longevity: A market in the making.

JPMorgan Pension Advisory Group.

Lu, J. L. C., Wong, W., Bajekal, M., 2012. Mortality improvement by soio-eonomi

irumstanes in England (1982 to 2006). British Atuarial Journal 19 (1), 1�35.

Manton, K. G., Patrik, C., Stallard, E., 1980. Mortality model based on delays in

progression of hroni diseases: Alternative to ause elimination model. Publi Health

Reports 95, 580�588.

Mavros, G., Cairns, A. J. G., Kleinow, T., Streftaris, G., 2014. A parsimonious approah

to stohasti mortality modelling with dependent residuals. Teh. rep., Heriot-Watt

University, Edinburgh.

MCullagh, P., Nelder, J., 1983. Generalized linear models. Chapman and Hall.

523



Bibliography

Mihaelson, A., Mulholland, J., 2014. Strategy for inreasing the global apaity for

longevity risk transfer: Developing transations that attrat apital markets investors.

Journal of Alternative Investments 17 (1), 18�27.

Milevsky, M., Promislow, S., 2001. Mortality derivatives and the option to annuitise.

Insurane: Mathematis and Eonomis 29, 299�318.

Milevsky, M., Promislow, S., Young, V. R., 2006. Killing the law of large numbers:

Mortality risk premiums and the Sharpe ratio. Journal of Risk and Insurane 73 (4),

673�686.

Milevsky, M., Promislow, S., Young, V. R., Bayraktar, E., 2005. Finanial valuation of

mortality risk via the instantaneous Sharpe ratio. Journal of Eonomi Dynamis and

Control 33 (3), 676�691.

Milidonis, A., Lin, Y., Cox, S. H., 2011. Mortality regimes and priing. North Amerian

Atuarial Journal 15 (2), 266�289.

Miltersen, K. R., Persson, S.-A., 2005. Is mortality dead? Stohasti forward fore of

mortality rate determined by no arbitrage. Teh. rep., University of Ulm.

Mithell, D., Brokett, P. L., Mendoza-Arriaga, R., Muthuraman, K., 2013. Modeling

and foreasting mortality rates. Insurane: Mathematis and Eonomis 52 (2), 275�

285.

Murphy, K. M., Topel, R. H., 2002. Estimation and inferene in two-step eonometir

models. Journal of Business & Eonomi Statistis 20 (1), 88�97.

Murphy, M., 2009. The �golden generations� in historial ontext. British Atuarial Jour-

nal 15 (S1), 151�184.

Murphy, M., 2010. Re-examining the dominane of birth ohort e�ets on mortality.

Population and Development Review 36 (2), 365�90.

Nielsen, B., Nielsen, J. P., 2014. Identi�ation and foreasting in mortality models. The

Sienti� World Journal, Artile ID 347043.

Nielsen, L., 2010. Assessment of the VaR (99.5%) for longevity risk. Teh. rep., SamP-

ension.

Norberg, R., 2010. Forward mortality and other vital rates - Are they the way forward?

Insurane: Mathematis and Eonomis 47 (2), 105�112.

O'Brien, R. M., 2000. Age period ohort harateristi models. Soial Siene Researh

29 (1), 123�139.

524



Bibliography

O'Brien, R. M., 2011. Constrained estimators and age-period-ohort models. Soiologial

Methods & Researh 40 (3), 419�452.

Oeppen, J., Vaupel, J., 2002. Broken limits to life expetany. Siene 296 (5570), 1029�

1031.

O'Hare, C., Li, Y., 2012a. Explaining young mortality. Insurane: Mathematis and

Eonomis 50 (1), 12�25.

O'Hare, C., Li, Y., 2012b. Identifying strutural breaks in stohasti mortality models.

Teh. rep., Monash University, Melbourne.

Olivier, P., Je�rey, T., 2004. Stohasti mortality models.

URL http://www.atuaries.ie/EventsandPapers/Events2004/2004-06-01_PensionerMortality/2004-10-20_StohastiMortalityModelling/2004-10-20_StohastiMortalityModel.pdf

Olshansky, S., Carnes, B. A., Grahn, D., 1998. Confronting the boundaries of human

longevity. Amerian Sientist 86 (1), 52�61.

Olshansky, S., Douglas, J., Hershow, R., Layden, J., Carnes, B. A., Brody, J., Hay�ik,

L., Butler, R. N., Allison, D. B., Ludwig, D. S., 2005. A potential deline in life

expetany in the United States in the 21st entury. New England Journal of Mediine,

1138�1145.

Oppers, S. E., Chikada, K., Eih, F., Imam, P., Ki�, J., Kisser, M., Soto, M., Kim, Y. S.,

2012. The �nanial impat of longevity risk. Teh. rep., International Monetary Fund.

Osmond, C., 1985. Using age, period and ohort models to estimate future mortality

rates. International Journal of Epidemiology 14 (1), 124�9.

Pedroza, C., 2006. A Bayesian foreasting model: Prediting US male mortality. Bio-

statistis 7 (4), 530�550.

Pelsser, A., 2003. Priing and hedging guaranteed annuity options via stati option repli-

ation. Insurane: Mathematis and Eonomis 33 (2), 283�296.

Pitao, E., Denuit, M. M., Haberman, S., Olivieri, A., 2009. Modelling longevity dy-

namis for pensions and annuity business. Oxford University Press.

Plat, R., 2009a. On stohasti mortality modeling. Insurane: Mathematis and Eo-

nomis 45 (3), 393�404.

Plat, R., 2009b. Stohasti portfolio spei� mortality and the quanti�ation of mortality

basis risk. Insurane: Mathematis and Eonomis 45 (1), 123�132.

Plat, R., 2011. One-year value-at-risk for longevity and mortality. Insurane: Mathemat-

is and Eonomis 49 (3), 462�470.

525

http://www.actuaries.ie/Events and Papers/Events 2004/2004-06-01_PensionerMortality/2004-10-20_Stochastic MortalityModelling/2004-10-20_Stochastic Mortality Model.pdf


Bibliography

Reihmuth, W., Sarferaz, S., 2008. Bayesian demographi modeling and foreasting: An

appliation to U.S. mortality. Teh. rep., Humbolt University, Berlin.

Renshaw, A., Haberman, S., 2003a. Lee-Carter mortality foreasting: A parallel general-

ized linear modelling approah for England and Wales mortality projetions. Journal

of the Royal Statistial Soiety: Series C (Applied Statistis) 52 (1), 119�137.

Renshaw, A., Haberman, S., 2003b. Lee-Carter mortality foreasting with age-spei�

enhanement. Insurane: Mathematis and Eonomis 33 (2), 255�272.

Renshaw, A., Haberman, S., 2003. On the foreasting of mortality redution fators.

Insurane: Mathematis and Eonomis 32 (3), 379�401.

Renshaw, A., Haberman, S., 2006. A ohort-based extension to the Lee-Carter model for

mortality redution fators. Insurane: Mathematis and Eonomis 38 (3), 556�570.

Renshaw, A., Haberman, S., 2008. On simulation-based approahes to risk measure-

ment in mortality with spei� referene to Poisson Lee-Carter modelling. Insurane:

Mathematis and Eonomis 42 (2), 797�816.

Renshaw, A., Haberman, S., Hatzopoulos, P., 1996. The modelling of reent mortality

trends in United Kingdom male assured lives. British Atuarial Journal 2 (2), 449�477.

Rihards, S. J., 2008. Deteting year-of-birth mortality patterns with limited data. Jour-

nal of the Royal Statistial Soiety: Series A (Statistis in Soiety) 171 (1), 279�298.

Rihards, S. J., Currie, I. D., Rithie, G. P., 2014. A value-at-risk framework for longevity

trend risk. British Atuarial Journal 19 (1), 116�139.

Rihards, S. J., Kaufhold, K., Rosenbush, S., 2013. Creating portfolio-spei� mortality

tables: A ase study. European Atuarial Journal 3 (2), 295�319.

Riebler, A., Held, L., Rue, H. v., 2012. Estimation and extrapolation of time trends in

registry data - Borrowing strength from related populations. The Annals of Applied

Statistis 6 (1), 304�333.

Rodgers, W., 1982. Estimable funtions of age, period, and ohort e�ets. Amerian

Soiologial Review 47 (6), 774�787.

Ruhm, C., 2000. Are reessions good for your health? The Quarterly Journal of Eo-

nomis 115 (2), 617�650.

Ruhm, C., 2004. Maroeonomi onditions, health and mortality. NBER Working Pa-

pers.

526



Bibliography

Russolillo, M., Giordano, G., Haberman, S., 2011. Extending the Lee-Carter model: A

three-way deomposition. Sandinavian Atuarial Journal 2011 (2), 96�117.

Salhi, Y., Loisel, S., 2009. Longevity basis risk modeling: A o-integration based ap-

proah. Teh. rep., University of Lyon.

Shrager, D., 2006. A�ne stohasti mortality. Insurane: Mathematis and Eonomis

38 (1), 81�97.

Shkolnikov, V., Andreev, E., Begun, A. Z., 2003. Gini oe�ient as a life table funtion.

Demographi Researh 8, 305�358.

Siegel, J. S., 2005. The great debate on the outlook for human longevity: Exposition and

evaluation of two divergent views. Teh. rep., Soiety of Atuaries.

Sithole, T., Haberman, S., Verrall, R., 2000. An investigation into parametri models

for mortality projetions, with appliations to immediate annuitants' and life o�e

pensioners' data. Insurane: Mathematis and Eonomis 27 (3), 285�312.

Sithole, T., Haberman, S., Verrall, R., 2012. Seond international omparative study

of mortality tables for pension fund retirees: A disussion paper. British Atuarial

Journal 7 (3), 650�671.

Smith, A., 2005. Stohasti mortality modelling.

URL http://www.ims.org.uk/arhive/meetings/2005/quantfinane/si_prog.html

Standard and Poor's, 2010. Presale information: Kortis Capital Ltd. Teh. rep., Standard

and Poors.

Stevens, R., De Waegenaere, A., Melenberg, B., 2010. Calulating apital requirements

for longevity risk in life insurane produts using an internal model in line with Sol-

veny II. Teh. rep., University of Tilburg.

Sweeting, P. J., 2011. A trend-hange extension of the Cairns-Blake-Dowd model. Annals

of Atuarial Siene 5 (02), 143�162.

Tan, C. I., Li, J., Li, J. S.-H., Balasooriya, U., 2014. Parametri mortality indexes: From

index onstrution to hedging strategies. Insurane: Mathematis and Eonomis 59,

285�299.

Tappe, S., Weber, S., 2013. Stohasti mortality models: An in�nite-dimensional ap-

proah. Finane and Stohastis 18 (1), 209�248.

The Pensions Regulator, 2013a. Sheme funding. Teh. rep.

URL http://www.thepensionsregulator.gov.uk/odes/ode-funding-defined-benefits.aspx

527

http://www.icms.org.uk/archive/meetings/2005/quant finance/sci_prog.html
http://www.thepensionsregulator.gov.uk/codes/code-funding-defined-benefits.aspx


Bibliography

The Pensions Regulator, 2013b. The Purple Book. Teh. rep.

URL http://www.thepensionsregulator.gov.uk/do-library/researh-analysis.aspx

Tuljapurkar, S., Edwards, R., 2009. Variane in death and its impliations for modeling

and foreasting mortality. NBER Working Papers.

Tuljapurkar, S., Li, N., Boe, C., 2000. A universal pattern of mortality deline in the G7

ountries. Nature 405 (6788), 789�792.

van Berkum, F., Antonio, K., Vellekoop, M. H., 2014. The impat of multiple strutural

hanges on mortality preditions. Sandinavian Atuarial Journal, Forthoming.

Vaupel, J., Manton, K. G., Stallard, E., 1979. The impat of heterogeneity in individual

frailty on the dynamis of mortality. Demography 16 (3), 439�454.

Villegas, A. M., Haberman, S., 2014. On the modeling and foreasting of soioeonomi

mortality di�erentials: An appliation to deprivation and mortality in England. North

Amerian Atuarial Journal 18 (1), 168�193.

Wan, C., Bertshi, L., 2015. Swiss oherent mortality model as a basis for developing

longevity de-risking solutions for Swiss pension funds: A pratial approah. Insurane:

Mathematis and Eonomis 63, 66�75.

Wang, C.-W., Huang, H., Liu, I.-C., 2011. A quantitative omparison of the Lee-Carter

model under di�erent types of non-Gaussian innovations. The Geneva Papers on Risk

and Insurane Issues and Pratie 36 (4), 675�696.

Wang, H., Preston, S. H., 2009. Foreasting United States mortality using ohort smoking

histories. Proeedings of the National Aademy of Sienes of the United States of

Ameria 106 (2), 393�8.

Wang, J. L., Huang, H., Yang, S. S., Tsai, J. T., 2009. An optimal produt mix for hedging

longevity risk in life insurane ompanies: The immunization theory approah. Journal

of Risk and Insurane 77 (2), 473�497.

Wang, S., 2000. A lass of distortion operators for priing �nanial and insurane risks.

Journal of Risk and Insurane 67 (1), 15�36.

Wang, S., 2002. A univeral framework for priing �nanial and insurane risks. ASTIN

Bulletin 32 (2), 213�234.

Willets, R., 1999. Mortality in the next millennium. Staple Inn Atuarial Soiety.

Willets, R., 2004. The ohort e�et: Insights and explanations. British Atuarial Journal

10 (4), 833�877.

528

http://www.thepensionsregulator.gov.uk/doc-library/research-analysis.aspx


Bibliography

Wilmoth, J. R., 1990. Variation in vital rates by age, period and ohort. Soiologial

Methodology 20, 295�335.

Wilmoth, J. R., 1998. The future of human longevity: A demographer's perspetive.

Siene 280 (5362), 395�397.

Yang, S. S., Wang, C.-W., 2013. Priing and seuritization of multi-ountry longevity risk

with mortality dependene. Insurane: Mathematis and Eonomis 52 (2), 157�169.

Yang, S. S., Yue, J. C., Huang, H., 2010. Modeling longevity risks using a prinipal om-

ponent approah: A omparison with existing stohasti mortality models. Insurane:

Mathematis and Eonomis 46 (1), 254�270.

Yang, Y., Fu, W. J., Land, K. C., 2004. A methodologial omparison of age-period-

ohort models: The intrinsi estimator and onventional generalized linear models.

Soiologial Methodology 34, 75�110.

Zhou, R., Li, J. S.-H., Tan, K. S., 2015. Eonomi priing of mortality-linked seurities:

A tatonnement approah. Journal of Risk and Insurane 82 (1), 65�95.

Zhou, R., Wang, Y., Kaufhold, K., Li, J. S.-H., Tan, K. S., 2014. Modeling period e�ets

in multi-population mortality models: Appliations to Solveny II. North Amerian

Atuarial Journal 18 (1), 150�167.

Zhu, N., Bauer, D., 2011a. Appliations of forward mortality fator models in life insur-

ane pratie. Geneva Papers on Risk and Insurane Issues and Pratie 36, 567�594.

Zhu, N., Bauer, D., 2011b. Coherent modeling of the risk in mortality projetions: A

semi parametri approah. Teh. rep., Georgia State University.

Zhu, N., Bauer, D., 2014. A autionary note on natural hedging of longevity risk. North

Amerian Atuarial Journal 18 (1), 104�115.

529


	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Declaration of Authorship
	Abstract
	1 Introduction
	1.1 Structure, Identifiability and Construction of Age/Period/Cohort Mortality Models
	1.1.1 Structure and Classification of Mortality Models
	1.1.2 Identifiability in Age/Period Mortality Models
	1.1.3 Identifiability in Age/Period/Cohort Mortality Models
	1.1.4 A General Procedure for Constructing Mortality Models

	1.2 Projection of Mortality Rates for Single or Multiple Populations
	1.2.1 Consistent Mortality Projections Allowing for Trend Changes and Cohort Effects
	1.2.2 Identifiability, Cointegration and the Gravity Model
	1.2.3 Modelling Longevity Bonds: The Swiss Re Kortis Bond

	1.3 Modelling Mortality for Pension Schemes
	1.3.1 Basis Risk and Pension Schemes: A Relative Modelling Approach
	1.3.2 Transferring Risk in Pension Schemes via Bespoke Longevity Swaps

	1.4 Forward Mortality Models
	1.4.1 Forward Mortality Rates in Discrete Time I: Calibration and Securities Pricing
	1.4.2 Forward Mortality Rates in Discrete Time II: Longevity Risk Measurement and Management


	I Structure, Identifiability and Construction of Age/Period/Cohort Mortality Models
	2 On the Structure and Classification of Mortality Models
	2.1 Introduction
	2.2 Age/period/cohort structure
	2.3 Response variable and link function
	2.4 Static age function
	2.5 Age/period terms
	2.5.1 Non-parametric age functions
	2.5.2 Parametric age functions

	2.6 Cohort effects
	2.7 Classification of APC mortality models
	2.8 Conclusions

	3 Identifiability in Age/Period Mortality Models
	3.1 Introduction
	3.2 Structure and identifiability in age/period mortality models
	3.2.1 Structure of age/period mortality models
	3.2.2 Identifiability in age/period models

	3.3 Identifiability in the Lee-Carter model
	3.4 Identifiability in models with non-parametric age functions
	3.5 Identifiability in the LC2 model
	3.5.1 Location
	3.5.2 Scale
	3.5.3 Rotation

	3.6 Identifiability in models with parametric age functions
	3.6.1 Location
	3.6.2 Scale
	3.6.3 Rotation

	3.7 Identifiability in mixed models
	3.8 Parameter uncertainty and hypothesis testing
	3.8.1 Parameter uncertainty
	3.8.2 Hypothesis testing

	3.9 Projection
	3.9.1 Models with non-parametric age functions
	3.9.2 Projecting the LC2 model
	3.9.3 Models with parametric age functions
	3.9.4 Summary

	3.10 Conclusions
	3.A Models without a static age function
	3.B Maximal invariants

	4 Identifiability in Age/Period/Cohort Mortality Models
	4.1 Introduction
	4.2 Structure of age/period/cohort models
	4.3 Identifiability in the classic APC model
	4.4 Identifiability in APC models with parametric age functions
	4.4.1 Polynomial age functions
	4.4.1.1 The Plat models

	4.4.2 Exponential and trigonometric age functions
	4.4.3 Other age functions
	4.4.4 Summary

	4.5 Projection
	4.5.1 Projecting general APC models
	4.5.2 Projecting the classic APC model
	4.5.3 Projecting general APC mortality models: Revisited
	4.5.4 Projecting the classic APC model: Revisited
	4.5.5 Projecting the Plat model
	4.5.6 Summary

	4.6 Conclusions
	4.A Identifiability in APC models with non-parametric age functions
	4.B Models without a static age function
	4.C Maximal invariants

	5 A General Procedure for Constructing Mortality Models
	5.1 Introduction
	5.2 The structural form of mortality models
	5.3 A general procedure for constructing mortality models
	5.4 Application of procedure to male UK data
	5.4.1 Stage 0 - Static age function
	5.4.2 Stage 1 - First age/period term
	5.4.3 Stage 2 - Second age/period term
	5.4.4 Stage 3 - Third age/period term
	5.4.5 Stage 4 onwards - Additional age/period terms
	5.4.6 Stage 8 - Cohort term

	5.5 Testing the final model
	5.6 Comparison with alternative models
	5.6.1 Results

	5.7 Conclusions
	5.A Appendix: Algorithms and toolkit of function


	II Projection of Mortality Rates for Single or Multiple Populations
	6 Consistent Mortality Projections Allowing for Trend Changes and Cohort Effects
	6.1 Introduction
	6.2 The extrapolative approach to projecting mortality rates
	6.3 Fitting the past and identifying the model
	6.4 Period functions
	6.4.1 Identifiability of projections
	6.4.1.1 First period function
	6.4.1.2 Other period functions

	6.4.2 Historical trend changes
	6.4.3 Projecting trend changes
	6.4.3.1 Dependence between period functions
	6.4.3.2 Frequency of trend changes
	6.4.3.3 Direction of trend changes
	6.4.3.4 Magnitude of trend changes
	6.4.3.5 Impact of trend changes on projected period functions


	6.5 Cohort parameters
	6.5.1 The classical time series approach
	6.5.2 Identifiability in projections
	6.5.3 A Bayesian approach for projecting the cohort parameters
	6.5.3.1 The data generating process
	6.5.3.2 Time series dynamics


	6.6 Testing the projected mortality rates
	6.6.1 Backtesting the ``consistent'' and ``naïve'' approaches
	6.6.2 ``Consistent'' and ``naïve'' mortality density forecasts
	6.6.3 Risk management

	6.7 Conclusions
	6.A Forecast projection interval widths

	7 Identifiability, Cointegration and the Gravity Model
	7.1 Introduction
	7.2 Identifiability in the classic APC model
	7.3 The gravity model
	7.4 Identifiability in the gravity model
	7.4.1 Period functions
	7.4.2 Cohort parameters
	7.4.3 Application to England & Wales and CMI Assured Lives data
	7.4.4 Coherence

	7.5 Identifiability in the cointegrated Lee-Carter model
	7.6 Extending the cointegration model
	7.7 Conclusions

	8 Modelling Longevity Bonds: Analysing the Swiss Re Kortis Bond
	8.1 Introduction
	8.2 The Swiss Re Kortis bond
	8.3 Mortality models for England & Wales and the US
	8.3.1 Fitting mortality models for each population
	8.3.2 Multi-population projections of the period functions
	8.3.2.1 Coherence in projections
	8.3.2.2 A cointegration process for the period functions

	8.3.3 Projecting the cohort parameters using a Bayesian framework

	8.4 Projecting the LDIV
	8.5 Analysis of the projected LDIV
	8.5.1 Age/period/cohort analysis of the Kortis bond
	8.5.2 Decomposition of sources of risk

	8.6 Developing the market for longevity bonds
	8.6.1 Developing the Kortis structure
	8.6.2 Limitations of the Kortis structure

	8.7 Conclusions
	8.A Models constructed by the ``general procedure''


	III Modelling Mortality for Pension Schemes
	9 Basis Risk and Pension Schemes: A Relative Modelling Approach
	9.1 Introduction
	9.2 The Self-Administered Pension Scheme study
	9.3 Relative mortality modelling
	9.3.1 The reference model
	9.3.2 The relative model
	9.3.3 Comparison with ``three-way Lee-Carter''

	9.4 Applying the relative model to SAPS data
	9.4.1 The reference models for UK data
	9.4.2 The relative models for the SAPS data
	9.4.3 Parameter uncertainty and model risk
	9.4.3.1 Parameter uncertainty
	9.4.3.2 Model risk


	9.5 Basis risk and projecting mortality for the SAPS population
	9.6 Applying the relative model to small populations
	9.7 Discussion: Basis risk in pension schemes
	9.8 Conclusions
	9.A Summary of SAPS data
	9.B Identifiability in the relative model
	9.C Models constructed by the ``general procedure'' for the UK

	10 Transferring Risk in Pension Schemes via Bespoke Longevity Swaps
	10.1 Introduction
	10.2 Longevity swaps
	10.3 The stylised pension scheme
	10.4 Modelling approach
	10.4.1 The baseline set of assumptions
	10.4.2 Modelling mortality and longevity risks
	10.4.2.1 The reference models for the national population
	Systematic longevity risk
	Parameter uncertainty

	10.4.2.2 The relative models for the scheme
	Level basis
	Trend basis

	10.4.2.3 Individual mortality risks
	Individual income-related scaling factors
	Idiosyncratic risk



	10.5 Establishing the best estimate of scheme cashflows
	10.6 Assessing and comparing different sources of risk
	10.6.1 Systematic longevity risk
	10.6.2 Parameter uncertainty
	10.6.3 Level basis risk
	10.6.4 Trend basis risk
	10.6.5 Uncertainty in the individual income-related scaling factors
	10.6.6 Idiosyncratic risk
	10.6.7 Summary

	10.7 Conclusions
	10.A Scheme data generating process


	IV Forward Mortality Models
	11 Forward Mortality Rates in Discrete Time I: Calibration and Securities Pricing
	11.1 Introduction
	11.2 Forward mortality rates in discrete time
	11.2.1 Age/period/cohort models of the force of mortality
	11.2.2 Defining forward mortality rates
	11.2.3 Forward APC mortality models
	11.2.4 Projecting the APC model
	11.2.4.1 Period functions
	11.2.4.2 Cohort function

	11.2.5 Estimation and projection

	11.3 Pricing securities and the market price of longevity risk
	11.3.1 The market-consistent measure
	11.3.2 Calibration of the market-consistent measure
	11.3.2.1 External market
	11.3.2.2 Internal market

	11.3.3 Pricing longevity-linked securities
	11.3.3.1 Survivor derivatives
	Longevity zeros and s-forwards
	Annuities
	Index-based longevity swaps

	11.3.3.2 Other longevity-linked securities
	q-forwards
	e-forwards
	k-forwards
	Other longevity-linked securities



	11.4 Conclusion
	11.A Identifiability and mortality forward rates
	11.B Impact of Jensen's inequality

	12 Forward Mortality Rates in Discrete Time II: Longevity Risk Measurement and Management
	12.1 Introduction
	12.2 One-year updates of the forward mortality surface
	12.2.1 Period parameters
	12.2.2 Cohort parameters

	12.3 One-year risk measurement and management
	12.3.1 Annuity values
	12.3.2 Risk measures
	12.3.3 Risk measurement and management
	12.3.3.1 Liabilities
	Technical provisions
	Solvency Capital Ratios

	12.3.3.2 Longevity-linked securities
	12.3.3.3 Hedging longevity risk


	12.4 Multi-year risk measurement and the Solvency II risk margin
	12.4.1 Projecting the liabilities
	12.4.2 The Solvency II risk margin
	12.4.3 Approximate calculation of the risk margin
	12.4.3.1 Approximating the SCR
	12.4.3.2 Approximating the liabilities
	12.4.3.3 Comparing the approaches


	12.5 Conclusions
	12.A Self consistency
	12.A.1 Self consistency of the cohort parameters
	12.A.2 Self-consistency in the market-consistent measure


	Bibliography


