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Abstract

This research work presents numerical simulations of supercontinuum (SC) generation in optical

waveguides based on Ge11.5As24Se64.5 chalcogenide (ChG) material. Rigorous numerical simulations

were performed using finite-element and split-step Fourier methods in order to optimize the waveg-

uides for wideband SC generation. Through dispersion engineering and by varying dimensions of

the 1.8-cm-long ChG nanowires, we have investigated dispersion curves for a number of nanowire

geometries and identified a promising one which can be used for generating a SC with 1300 nm

bandwidth pumped at 1550 nm with a low peak power of 25 W. It was observed through successive

inclusion of higher-order dispersion coefficients during SC simulations that there is a possibility

of obtaining spurious results if the adequate number of dispersion coefficients is not considered.

We then investigate MIR SC in dispersion-tailored, air-clad, ChG channel waveguide employing

either Ge11.5As24S64.5 or MgF2 glass and ChG rib waveguide employing MgF2 glass for their lower

claddings. We study the effect of waveguide parameters on the bandwidth of the SC at the output

of 1-cm-long waveguides. Our results show that output can vary over a wide range depending on

their design and the pump wavelength employed. At the pump wavelength of 2 µm the SC never

extended beyond 4.5 µm for any of our designs. However, SC could be extended to beyond 5 µm

for a pump wavelength of 3.1 µm. A broadband SC spanning from 2 to 6 µm and extending over

1.5 octave could be generated with a moderate peak power of 500 W at a pump wavelength of 3.1

µm using an air-clad, all-ChG, channel waveguide. We show that SC can be extended even further

covering the wavelength ranges 1.8-7.7 µm and 1.8-8 µm (> 2 octaves) when MgF2 glass is used

for the lower claddings of ChG channel waveguide and rib waveguide, respectively. By employing

the same pump source, we show that SC spectra can cover a wavelength range of 1.8-11 µm (> 2.5

octaves) in a channel waveguide and 1.8-10 µm in a rib waveguide employing MgF2 glass for their

lower claddings with a moderate peak power of 3 kW. Finally we present microstrucured fibre based

design made with same glass to generate SC spectra in the MIR region. Numerical simulations show

that such a 1-cm-long fibre can produce a spectrum extending from 1.3 µm to beyond 11 µm (>

3 octaves) with the same pump and peak power applied before. We consider three fibre structures

with microstrucured air-holes in their cladding and find their optimum designs through dispersion

engineering. Among these, equiangular-spiral microstrucured fibre is found to be the most promising

candidate for generating ultrawide SC in the MIR region.
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Chapter 1

Indroduction

Supercontinuum (SC) generation using nonlinear effects in optical waveg-
uides has been a topic of considerable interest in nonlinear optics over the last
decade as its use provides an optical source with properties such as large band-
width, brightness, high coherence, and potential compactness. When optical
pulses propagate through a highly nonlinear waveguide, their temporal as well
as spectral evolution are affected not only by a multitude of nonlinear effects
but also by the dispersive properties of the waveguide. All nonlinear processes
are capable of generating new frequencies within the pulse spectrum. For
sufficiently intense pulses, the pulse spectrum becomes so broad that it may
extend over a frequency range exceeding 100 THz [1]. Such extreme spectral
broadening is referred to as SC generation, a phenomenon first observed in
bulk BK7 glass by Alfano and Shapiro in 1970 [2, 3]. Later SC generation in
a newly invented photonic crystal fibre (PCF) [4–6] was demonstrated in 2000
by Ranka et al. by which spectral broadening could be obtained more than
one octave [7]. Subsequently, different types of microstructured fibres [8–12],
tapered fibres [13–17], and recently planar waveguides [18–22] have shown
immense potential as SC light sources in the mid-infrared (MIR) region and
considerable effort has been channelled into making the processes that lead
to the broadening of an injected pulse more efficient.
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Broadband SC sources have found many applications in the field of
telecommunication, molecular fingerprint spectroscopy, bio-imaging, pulse
compression, optical coherence tomography, high precision frequency metrol-
ogy, and optical sensing [23]. There is a strong motivation to fabricate
waveguide operating in the molecular fingerprint region of the optical spec-
trum in the range 2-20 µm both for sensing illicit or dangerous materials via
their spectroscopic signatures and for applications such as MIR astronomy.
Highly nonlinear waveguides in combination with a mode-locked laser are
used to produce such a source through the process called SC generation. The
physics behind the process of SC in optical waveguides has been studied
since the results of Ranka et al. and several attempts have been made to
explain generated broad bandwidth [24–26]. SC generation relies on the inter-
play of various nonlinear effects such as self-phase modulation, cross-phase
modulation, soliton dynamics, Raman scattering, and four-wave mixing, and
it requires an optical waveguide with suitably designed group velocity dis-
persion (GVD), including a zero-dispersion wavelength (ZDW) close to the
central wavelength of the pump sources.

To generate a SC with a large bandwidth ranging from ultra-violet to
mid-infrared region with high brightness, numerous efforts have focused
on fused silica fibres. However, the intrinsic transmission window of fused
silica makes SC expansion beyond 2.2 µm a challenging task [27] which
caused a gradual shift towards other types of glasses that have transmission
windows transparent in the long wavelength region. In particular silicon
(Si), ZBLAN, tellurite, and chalcogenide were investigated as nonlinear
mediums for SC generation. Silicon offers a high Kerr nonlinearity and is
attractive for generating SC using silicon-on-insulator (SOI) nanowires [28–
30]. Although Si has low losses in the near infrared, it has some disadvantages
in the telecommunication band centred at 1550 nm where it is affected by
two-photon absorption (TPA) and free-carrier absorption (FCA), both of
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which clamp spectral broadening of SC and limit the achievable bandwidth.
The nonlinear properties of ZBLAN are approximately same as silica while
tellurite is roughly 30 times and chalcogenide can be as much as a factor of
thousand times more nonlinear than silica.

In recent years chalcogenide glasses have emerged as promising nonlin-
ear materials in the mid-infrared region extending from 1 to 20 µm. Such
glasses have a number of unique properties which make them attractive for
fabricating optical waveguides, including low nonlinear absorption, low TPA,
no FCA, and fast response time because of the absence of free-carrier effects
[31–34]. Chalcogenide glasses contain one or more of the chalcogen ele-
ments from group 16 of the periodic table (S, Se, Te but excluding Oxygen)
covalently bonded to networks formers such as As, Sb, Ge, Ga, Si and P etc.
They are, therefore, composed of relatively weakly bonded heavy elements
and this leads to many of their most important optical and physical proper-
ties. Relatively low bond energies results in optical gaps in the visible or
near infrared (IR) as well as low to moderate glass transition temperatures
(Tg ≈ 100-400◦C). The low vibrational energies of the bonds extends optical
transparency to around 8 µm for sulphides, beyond 14 µm for selenides and
beyond 20 µm for tellurites. Their high refractive index (2-3) and broad in-
frared transparency (1-20 µm) make them attractive for waveguide fabrication
in the field of telecommunications, optical sensing, and MIR sciences [35, 36].
A major advantage of the chalcogenide glasses is their large ultrafast third-
order nonlinearity. These materials are highly suitable not only for nonlinear
applications but also for making compact active and passive devices in the
MIR region [37, 38]. A few of these ChG materials such as As2S3, As2Se3,
Ge11.5As24S64.5 and Ge11.5As24Se64.5 glasses are highly suitable for making
these type of devices in the MIR region. Amongst them Ge11.5As24Se64.5

glass has excellent film-forming properties with high thermal and optical
stability under intense illumination [39]. Motivated by such useful properties,
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recently interest has grown in designing and optimizing planar waveguides
and fibres made from Ge11.5As24Se64.5 chalcogenide glass for broadband
MIR SC generation by tailoring GVD of the waveguide close to its ZDW
which should be located near to the central wavelength of the pump sources.

The work described in this thesis was motivated by the need to explore
theoretically the design and optimization of optical planar waveguides and
microstructured fibres for SC generation in the MIR regime by utilizing the
dispersive and nonlinear properties of the waveguide. To analyse as well
as optimize the optical waveguides for such works, a rigorous full-vectorial
finite-element (FE) method was used for numerical modeling. To study the
formation of SC inside the waveguide, simulations were carried out by solving
a generalized nonlinear Schrödinger equation (GNLSE) for an optical pulse
evolution along the length of the waveguide by split-step Fourier method. It
was thoroughly investigated with rigorous numerical simulations how the SC
spectrum can be varied between near-infrared and mid-infrared region through
dispersion tailoring of the waveguide and shifting the pump wavelength from
near-IR to MIR with low to moderate peak power.

The thesis has been structured as follows:

Chapter 2 reviews the theory of nonlinear optics and introduces the various
linear and nonlinear spectral broadening mechanisms that responsible for the
generation of SC spectra. For understanding the evolution of optical signal
inside the waveguide it is necessary to consider the Maxwell’s equations and
the generalized nonlinear Schrödinger equation (GNLSE) for modelling the
pulse propagation along the length of the waveguide with brief derivation of
them. The linear effects including waveguide propagation loss and dispersion
and nonlinear phenomena such as self-phase modulation, soliton dynamics,
cross-phase modulation, four-wave mixing, stimulated Raman scattering, and
dispersive waves generation are discussed briefly.
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Chapter 3 presents the numerical methods consists of mainly two parts.
First part reviews the light guidance mechanisms of optical waveguides
briefly following the details discussion on the full-vectorial finite-element
(FE) method used in this work. To study the SC generation by numerical
simulation, GNLSE equation has been solved using split-step Fourier method
(SSFM) in second part of this chapter.

Chapter 4 presents the brief overview of SC generation. The developments
of SC sources employing different types of optical fibres and waveguides
made using different nonlinear materials have been presented through review-
ing the several literatures published in this exciting research field. Different
possibilities raised by the availability of different kinds of optical fibres,
waveguides and materials and the diverse applications also have been dis-
cussed.

Chapter 5 introduces the results of SC generation in chalcogenide planar
waveguides. It has been shown here the FE simulation results of design
and optimization of different ChG planar waveguides/nanowires that able to
operate between near-IR and MIR SC generation. Accuracy of the results
obtained by FE method tested before using those results in SC simulation
also shown. A set of ChG nanowires were designed by varying the waveguide
transverse dimensions to tailor the GVD close to the ZDW of the nanowires
and carried out the SC simulations for all nanowires optimized at a pump
wavelength of 1550 nm. From several nanowire geometries shown, one
optimized nanowire structure is proposed which is suitable for producing
large SC bandwidth. It is shown here that there is a possibility to obtain
spurious results if the adequate number of higher-order dispersion coefficients
is not considered during numerical simulation and also investigate the role of
two ZDWs on SC dynamics.

Chapter 6 presents detailed procedure for design and optimization of
ChG planar waveguides for mid-infrared SC generation. To realize sufficient
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bandwidth extension in the MIR region, a rectangular channel waveguide and
a rib waveguide were designed and optimized at pump wavelengths employed
by using air on top and two different types of materials used for their lower
claddings. To investigate the effect of pump wavelength on SC extension in
the long wavelength edge, simulations have been carried out in ChG channel
waveguides at two different pump wavelengths separately. Between the pump
wavelengths it was observed sufficient SC bandwidth extension far into the
MIR owing to longer pump wavelength employed.

Chapter 7 presents the results of investigation of the SC generation in
chalcogenide microstructured fibres (MoFs). After investigating three ChG
MoF geometries around the chosen pump wavelength, it is shown the results
obtained after dispersion optimization of ChG MoFs with the variation of
their structural parameters by FE method. A number of dispersion curves
were obtained for ChG triangular core fibre, ChG hexagonal photonic crystal
fibre and ChG equiangular spiral photonic crystal fibre by varying their base
length, pitch and air-hole diameter and all dispersion curves optimized near
the pump wavelength employed. SC simulations were performed including
higher-order dispersion coefficients along with other pulse parameters for
each microstructured fibre proposed in this chapter separately from which
it is demonstrated that the SC bandwidth can be improved with sufficient
extension of spectrum in the MIR region by using equiangular spiral PCF
than conventional microstructured fibres.

The thesis concludes with Chapter 8 in which it has been summarised the
results and discuss the possible directions of future work.



Chapter 2

Nonlinear optics in optical waveguides

The propagation of an electromagnetic (EM) wave or pulse, depends entirely
on the medium in which it propagates. In vacuum the pulse can propagate
unchanged. When propagating in a medium the EM field interacts with the
atoms of the medium. This generally means that the pulse experiences loss
and dispersion, where the latter effect occurs because the different wavelength
components of the pulse travel at different velocities due to the wavelength
dependence of the refractive index. These effects are termed as the linear
response of the medium. If the intensity of a pulse is high enough, the medium
also responds in a nonlinear way. Most notably the refractive index becomes
intensity dependent (Kerr effect) and photons can interact with phonons
(molecular vibrations) of the medium (Raman effect). In linear optics, signals
are only amplified or attenuated but frequencies remain unchanged, while
in nonlinear optics, new frequencies can be generated, and a spectrum of a
laser pulse can change drastically during propagation. Such extreme spectral
change is referred to as supercontinuum (SC) generation, a phenomenon first
observed in bulk BK7 glass by Alfano and Shapiro in 1970 [2]. These effects
are the basis for the many spectral broadening mechanisms which will be
investigated further in this chapter.

This chapter reviews the basic theory needed to understand results pre-
sented in this thesis. Section 2.1 starts with the brief overview of Maxwell’s
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equations and generalized nonlinear Schrödinger equation (GNLSE) for mod-
elling pulse propagation in optical waveguides. Section 2.2 introduces a
few linear effects that occur during pulse propagation inside the optical
waveguides. Section 2.3 reviews the various spectral broadening mechanisms
responsible for SC generation in the waveguide output.

2.1 Light propagation in optical waveguides

In order to study nonlinear effects related to supercontinuum generation, it
is necessary to consider the theory of electromagnetic wave propagation in
optical waveguides. A brief overview of the derivation of wave equation
starting from Maxwell’s equations as well as the derivation of nonlinear pulse
propagation equation will be presented in this section.

2.1.1 Maxwell’s equations

The evolution of electromagnetic fields inside the optical waveguides can be
described by Maxwell’s equations. These equations describe the interaction
between the electric and magnetic fields that vary in space in a time-dependent
manner. The general differential form of Maxwell’s equations in homoge-
neous, lossless dielectric medium is [40]

∇×E =−∂B
∂ t

(2.1)

∇×H =
∂D
∂ t

+J f (2.2)

∇.D = ρ (2.3)
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∇.B = 0 (2.4)

where E is the electric field, H is the magnetic field, J f is the current density,
D is the electric displacement field, B is the magnetic flux density, and ρ

is the free charge density. The fields in the above equations are valid for
arbitrary media and connected by the following macroscopic relations

D = ε0E+P (2.5)

B = µ0H+M (2.6)

where ε0 is the vacuum permittivity, P is the electric polarization, µ0 is the
vacuum permeability, and M is the magnetization.

Boundary conditions

To solve the Equations (2.1)-(2.4) for optical waveguides that have usually
more than one material medium with several boundaries between the different
media, boundary conditions have to be incorporated for continuity of the
electric and magnetic fields inside the waveguides. In case of a dielectric
medium, one can assume surface charges, ρ = 0, M = J = 0 because optical
waveguidess are dielectric that do not become magnetized nor do they conduct
current.

1. The tangential component of the electric field must be continuous.

n× (E1 −E2) = 0 ∴ Et1 = Et2 (2.7)

2. The tangential component of the magnetic field must be continuous.

n× (H1 −H2) = 0 ∴ Ht1 = Ht2 (2.8)
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3. The normal component of the electric flux density must be continuous.

n.(D1 −D2) = 0 ∴ Dn1 = Dn2 (2.9)

∴ ε1En1 = ε2En2 ⇒ En1 ̸= En2 (2.10)

where ε1 and ε2 are the permittivity in medium 1 amd 2, respectively. At the
medium interface ε1 ̸= ε2.

4. The normal component of the magnetic flux density must be continuous.

n.(B1 −B2) = 0 ∴ Bn1 = Bn2 ∴ µ1Hn1 = µ2Hn2 (2.11)

where µ1 and µ2 are the relative permeability in medium 1 and 2, respectively
and for most nonmagnetic media, µ1 = µ2 = 1.

∴ Hn1 = Hn2 (2.12)

Equation (2.12) implies the equality of the normal component of the
magnetic field vectors at the boundary.

In certain cases, one of the two media can be considered, either as a perfect
electric conductor (PEC)/electric wall (EW) or a perfect magnetic conductor
(PMC)/magnetic wall (MW). When one of the two media becomes a PEC, an
electric wall boundary condition is imposed as

n×E = 0 or n.H = 0 (2.13)

This condition ensures the continuity of the electric field vector, E while
the magnetic field vector, H vanishes at the boundary.

When one of the two media becomes a PMC, a magnetic wall boundary
condition is imposed as

n×H = 0 or n.E = 0 (2.14)
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This condition ensures the continuity of the magnetic field vector, H while
the electric field vector, E vanishes at the boundary.

In the case of a closed surface, such as the boundary of an optical waveg-
uide, additional boundary conditions are considered. These boundary condi-
tions can be natural, in case where the field decays at the boundary, therefore
they can be left free. In some other cases they can be forced, in order to
take advantage of the symmetry of the waveguide, to reduce the number of
elements in finite-element method (and the order of the matrices). The above
boundary conditions can be classified as follows [40, 67]

Homogenous Dirichlet φ = 0 (2.15)

Inhomogenous Dirichlet φ = k (2.16)

Homogenous Neumann ∂φ/∂n = 0 (2.17)

where φ is a specific component of the vector electric or magnetic field, k is
prescribed constant value, and n is the unit vector normal to the surface.

The Neumann boundary conditions represents the rate of change of the
field when it is directed out of the surface and it can be used in the finite-
element method to impose the field decay along finite-elements, adjacent to
the boundary elements of a waveguide structure.

By applying curl operator on both side of the Equations (2.1) and (2.2)
and by inserting Equations (2.5) and (2.6) into the result, the following wave
equations can be obtained

∇
2E = ε0µ

∂ 2E
∂ t2 +µ

∂ 2P
∂ t2 (2.18)
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∇
2H = εµ

∂ 2H
∂ t2 (2.19)

where the induced electric polarization P is related to the electric field E
with dominant linear susceptibility, χ(1) neglecting all higher-order nonlinear
susceptibility given by [1]

P = ε0

(
χ
(1).E

)
(2.20)

To analyse the Equations (2.18) and (2.19) in frequency domain, replac-
ing the time derivative ∂/∂ t by jω , the phasor representation of the wave
equations are

∇
2E+ω

2
εµE = 0 (2.21)

∇
2H+ω

2
εµH = 0 (2.22)

Equations (2.21) and (2.22) are homogeneous and represent the scalar
wave equations for the electric and magnetic fields. The field components
in the solution of these equations are decoupled from each other and are
transverse; thus, the longitudinal components are negligible. Each transverse
component of the field now satisfies the scalar wave equation independently
and it is sufficient to study the evolution of one component alone. The
numerical method for obtaining modal solution either of these equations will
be discussed in Chapter 3.

2.1.2 Nonlinear pulse propagation equation

To observe different nonlinear effects that are produced with interaction
of linear effects during the propagation of optical signal inside the optical
waveguides, it is necessary to model the pulse propagation equation which
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originates from the wave equation in this chapter and the numerical modelling
of this equation for using SC simulation will be presented in Chapter 3.

The electric field of a pulse linearly polarised along the x-axis and prop-
agating in the fundamental mode of an optical waveguide can be written as
[1]

EA(r, t) = x̂F(x,y)A(z, t)exp[ j(β0z−ω0t)], (2.23)

where r = (x,y,z), x̂ is the polarisation unit vector, F(x,y) describes the
transverse field distribution, A(z, t) is the pulse envelope, and β0 is the mode
propagation constant of β (ω) at the centre angular frequency ω0 of the pulse.

EA is scaled to the actual electric field E [V/m] according to EA =
√

1
2ε0cnE

where ε0 is the vacuum permittivity, c is the speed of light in vacuum, and
n is the refractive index. This ensures that the instantaneous optical power
can be calculated as |A|2 which is the power of normalized electrical pulse
amplitude A. The change in pulse envelope A as the pulse propagates along
the fibre axis z is described by the generalised nonlinear Schrödinger equation
(GNLSE) [1]

∂ Ã
∂ z

=−α(ω)

2
Ã+ ∑

m≥2

βm

m!
[ω −ω0]

mÃ+ jγ(ω)

(
1+

ω −ω0

ω0

)
×F

(
A(z,T )

∫
∞

−∞

R(T ) | A(z,T −T ′) |2 dT ′
)
, (2.24)

where F denotes the Fourier transform and Ã(z,ω) is the Fourier transform
of A(z, t),

F{A(z, t)}= Ã(z,ω) =
∫

∞

−∞

A(z, t)exp[ j(ω −ω0)t]dt (2.25)

and the pulse envelope A(z,T ) is considered in a retarded time frame T =

t −β1z moving with the group velocity 1/β1 at the carrier frequency. The
dispersion coefficients β2, β3, ..., are defined from the Taylor series expansion
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of the mode propagation constant β (ω) [1]

β (ω) = β0 +β1(ω −ω0)+
1
2

β2(ω −ω0)
2 +

1
6

β3(ω −ω0)
3 + ... (2.26)

where

βm(ω0) =

(
dmβ

dωm

)
ω=ω0

m = 0,1,2,3, ... (2.27)

α(ω) is the linear propagation loss. γ(ω)= n2ω0/[cAeff(ω)] is the waveguide
nonlinear parameter, and Aeff is the mode effective area which is defined as
[1]

Aeff(ω) =

[∫ ∫
∞

−∞
|F(x,y,ω)|2dxdy

]2

∫ ∫
∞

−∞
|F(x,y,ω)|4dxdy

(2.28)

Smaller values of Aeff enhance the nonlinearity of the waveguide and
significantly increase γ , by the strong confinement of field in the core region.

The factor [1+ ω−ω0
ω0

] in Equation (2.24) is responsible for self-steepening
and is due to the intensity dependence of the group velocity [1].

The propagation Equation (2.24) is often written in the time domain
by neglecting the frequency dependence of nonlinear parameter and linear
propagation loss [1]

∂

∂ z
A(z,T ) =−α

2
A+ ∑

m≥2

jm+1

m!
βm

∂ mA
∂T m + j

(
γ + j

α2

2Aeff

)(
1+

j
ω0

∂

∂T

)
×
(

A(z,T )
∫

∞

−∞

R(T ) | A(z,T −T ′) |2 dT ′
)

(2.29)

where α2 is taken as 9.3×10−14 m/W is the two-photon absorption (TPA)
coefficient of chalcogenide material [35]. Finally the material response
function includes both the instantaneous electronic response (Kerr type) and
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the delayed Raman response and has the form

R(t) = (1− fR)δ (t)+ fRhR(t), (2.30)

hR(t) =
τ2

1 + τ2
2

τ1τ2
2

exp
(
− t

τ2

)
sin
(

t
τ1

)
. (2.31)

where fR = 0.031, τ1 = 15.5 fs, and τ2 = 230.5 fs are taken as for chalco-
genide material [134, 137, 139].

2.2 Linear effects in optical waveguides

Here we briefly explain different physical linear effects that occur during light
propagation inside the optical waveguides.

2.2.1 Losses

Loss/attenuation is an important waveguide parameter which provides a mea-
sure of power loss during propagation of optical signals inside the waveguide
given by

α[dB/m] =−10
L

log10

(
PT

P0

)
(2.32)

where P0 is the power launched at the input of a waveguide of length L and
PT is the transmitted power.

Factors that contribute to the loss spectra of a standard waveguide are
material absorption and Rayleigh scattering contributing dominantly [1]. In
microstructured fibre based waveguides, two more attenuation mechanisms
are occurred such as confinement loss and bend loss [41, 42]. Confinement
losses or leakage losses are present in microstructured fibres due to the fact
that there are a finite number of air-holes that can be made in the cross-section
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of the cladding which results in the PCF guided modes to be leaky [43].
The diameter to pitch ratio in a particular design of microstructured fibre
determines how much light leaks from the core into the cladding. The lower
the ratio, the more leakage is expected into the cladding. The confinement
loss is determined by the waveguide geometry and it has been shown that
increasing number of rings in the small core fibre can reduce the fibre loss
by improving the confinement of the mode. Typically, including one extra
ring of holes during micro-structured fibre design, leads to the reduction of
the confinement loss. By careful design, the confinement loss can be made as
low as required. Bend loss is caused by bending of the fibre. This is because
internal light paths exceeding the critical angle for total internal reflection
which mainly depends on wavelength [44]. Theoretically, when the fibre is
bent, light propagates outside the bend faster than the inner radius. This is not
possible practically and the light is radiated away [43, 45, 46]. Two types of
bending occur in micro-structured fibres: macro bending and micro bending.
Macro bending is a large scale bending that is visible in which the bend is
imposed on optical fibre. The bend region strain affects the refractive index
and acceptance angle of the light ray. Micro bending is a small scale bend
that is not visible which occurs due to the pressure on the fibre that can be as
a result of temperature, tensile stress of force and so forth. It affects refractive
index and refracts out the ray of light and thus loss occurs.

2.2.2 Dispersion

When an electromagnetic wave interacts with the bound electrons of a dielec-
tric, the medium response, in general, depends on the optical frequency. This
property, referred to as chromatic dispersion, manifests through the frequency
dependence of the refractive index. On a fundamental level, the origin of
chromatic dispersion is related to the characteristic resonance frequencies at
which the medium absorbs the electromagnetic radiation through oscillations
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of bound electrons. Far from the medium resonances, the refractive index is
well approximated by the Sellmeier equation.

Dispersion plays a critical role in the propagation of short optical pulses
because different spectral components associated with the pulse travel at dif-
ferent speeds. Even when the nonlinear effects are not important, dispersion
induced pulse broadening can be detrimental for optical communication sys-
tems. In the nonlinear regime, the combination of dispersion and nonlinearity
can result in a qualitatively different behaviour. By expanding the mode
propagation constant β in a Taylor series expansion with respect to the pulse
center frequency ω0, the effects of dispersion are realized mathematically as

β (ω) = neff
ω

c
= β0 +β1(ω −ω0)+

1
2

β2(ω −ω0)
2 +

1
6

β3(ω −ω0)
3 + ...

(2.33)

and

βm =

(
dmβ

dωm

)
ω=ω0

m = 0,1,2,3, ... (2.34)

where β1 = 1/vg implying that the envelope of the pulse moves at group veloc-
ity vg, β2 represents the group velocity dispersion (GVD) and is responsible
for pulse broadening while β3 is the third-order dispersion (TOD) coefficient.
Since it is more common to work in wavelength than in the frequency domain,
the group velocity dispersion (GVD), β2 , is often defined as the dispersion
parameter D by the equation

D[ps/nm/km] =
dβ1

dλ
=−2πc

λ
β2 =−λ

c
d2n
dλ 2 (2.35)

Nonlinear effects in optical wavegiudes can manifest qualitatively different
behaviours depending on the sign of the GVD parameter. If parameter D

is negative (β2 > 0), this is the normal dispersion regime where the red
components of the pulse travel faster than the blue components, i.e. positive
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chirp. Similarly, if D is positive (β2 < 0), i.e. anomalous dispersion regime,
where the red components of the pulse travel slower than the blue components,
i.e. negative chirp. When D = 0, which corresponds to the zero-dispersion
wavelength (ZDW), all frequency components of the pulse travel at the same
speed (to lowest order) and the pulse maintains its original shape. The
anomalous dispersion regime is of considerable interest for the study of
nonlinear effects because it is the regime that optical waveguides support
solitons through a balance between the dispersive and nonlinear effects.

The waveguide dispersion is strongly dependent on the waveguide geome-
try particularly when its dimension is small compared to the wavelength. In
microstructured fibres the waveguide contribution to the chromatic dispersion
can be large and is determined by the choice of air-hole diameter (d) and
pitch (Λ). For example, by increasing the pitch value, Λ, and decreasing the
relative hole size d/Λ, the ZDW can be shifted up to mid-infrared region [27].
By carefully controlling the structural parameters of the microstructured fibre,
different dispersion characteristics can be obtained, signifying the unique
property of microstructured fibres in tailoring the dispersion characteristics.

2.3 Nonlinearity in optical waveguides

The response of any dielectric to light becomes nonlinear for intense electro-
magnetic fields, and optical waveguides/fibres are no exception. The origin
of nonlinear response is related to the anharmonic motion of bound electrons
under the influence of an applied field. As a result, the total polarization P
induced in related to the electric field E given by Equation (2.9) including
higher-order nonlinear susceptibility expressed as [1]

P = ε0

(
χ
(1).E+χ

(2) : EE+χ
(3)...EEE+ ...

)
(2.36)
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where ε0 is the vacuum permittivity and χ( j) is jth order susceptibility. In
general, χ( j) is a tensor of rank j+1. The linear susceptibility χ(1) represents
the dominant contribution to P and its effects are taken into account through
the refractive index n and the attenuation coefficient α . χ(2) is the second
order nonlinear optical susceptibility which is zero in a material with inversion
symmetry (such as silica), so that P2 is zero. χ(3) is the third order nonlinear
optical susceptibility.

The lowest order nonlinear effects in optical waveguides originate from
the third order susceptibility, such as: nonlinear refraction, third-harmonic
generation (THG), four-wave mixing (FWM). Processes such as THG and
FWM require phase matching, otherwise they are not efficient and so can in
general be ignored. Nonlinear refraction arises from the intensity dependence
of refractive index and is given as

ñ(ω, I) = n(ω)+n2I = n+n2|E|2 (2.37)

where n(ω) is the linear part which is well approximated by the Sellmeier
equation, I is the optical intensity related with the electromagnetic field E,
and n2 is the nonlinear index coefficient related to χ(3) by the relation

n2 =
3
8n

Re
(

χ
(3)
χχχχ

)
(2.38)

where the optical field is assumed to be linearly polarized so that only one
component χ

(3)
χχχχ of the fourth-rank tensor contributes to the refractive index.

Note that nonlinear refraction is always phase matched and so most nonlinear
effects originate from nonlinear refraction.

The nonlinear refraction leads to nonlinear effects such as self-phase
modulation (SPM) and cross-phase modulation (XPM). These nonlinear
effects are elastic which implies that no energy is exchanged between the
electromagnetic field and the dielectric medium. Nonlinear effects that result
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from inelastic interchange of energy between the electromagnetic field and
the medium are stimulated Raman scattering (SRS) and stimulated Brillouin
scattering (SBS). The main difference between the two is that optical phonons
participate in SRS while acoustic phonons participate in SBS.

2.3.1 Self-phase modulation

The simplest effect due to nonlinear refraction is self-phase modulation (SPM)
in which the optical field modulates its own phase. It is due to the intensity
dependence of the refractive index in a nonlinear optical medium (Kerr effect),
in accordance to Equation 2.37. For the electric field given by its complex
amplitude

A(t) = A0 exp(− jφ(t)) (2.39)

where A0 is the peak intensity.

The phase of an optical field changes by

φ = (n+n2|A|2)k0L (2.40)

The intensity dependence leads to nonlinear phase shift φNL(t) given by

φNL(t) =
2π

λ
n2|A|2L (2.41)

where L is the propagation distance. SPM creates new frequencies and can
lead to the spectral broadening of optical pulses which arises due to the time
dependence of the nonlinear phase shift φNL i.e. the instantaneous optical
frequency changes across the pulse.



2.3 Nonlinearity in optical waveguides 21

The nonlinear pulse propagation equation (NLSE) with including only
SPM by neglecting all other nonlinear effects can be written as [1]

∂A
∂ z

= jγ|A|2A (2.42)

where dispersive effects are neglected. This equation is obtained by assuming
the frequency dependence of neff and Aeff can be ignored by assuming a
purely instantaneous material response, ignoring the optical shock effect and
ignoring loss.

By multiplication of the complex conjugate A∗ and adding the complex
conjugate of the obtained result, it can be shown that the power P = |A|2 is a
constant with regards to z, and one can derive that the electric field envelope
solution is

A(z,T ) = A(0,T )exp( jγ|A(0,T )|2z) = A(0,T )exp[ jφ(z,T )] (2.43)

from which it is seen that the temporal pulse shape |A|2 is unchanged during
propagation. The time dependent phase shift φ(z,T ) gives the pulse a fre-
quency chirp δω(T ) =−∂φ/∂T which is negative near the leading edge of
the pulse and positive near the trailing edge of the pulse [1] which correspond
to a red shift and a blue shift, respectively. SPM is typically observed in the
early stages of SC generation.

2.3.2 Solitons

In the previous subsection it was mentioned that SPM alone red-shifts the
leading edge of the pulse, while blue-shifting the trailing edge of the pulse.
In the additional presence of normal dispersion the red-shifted part of the
pulse will propagate faster than the blue-shifted part [1]. This means that the
pulse broadens more quickly in time than if only dispersion was present. On
the other hand, anomalous dispersion leads to a delay of red-shifted pulse
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components and faster propagation of the blue-shifted part of the pulse. SPM
thus acts to delay the broadening of a pulse propagating in the anomalous
dispersion regime.

It turns out that it is possible for SPM and group-velocity dispersion (GVD)
to exactly balance each other so that a pulse can propagate without changing
its shape. Adding GVD in SPM Equation (2.42), the unperturbed NLSE can
be expressed as

∂A
∂ z

=− j
β2

2
∂ 2A
∂T 2 + jγ|A|2A (2.44)

There is a solution to this equation corresponding to a pulse that does not
change its shape upon propagation. It is called the fundamental soliton and
can be found directly by assuming a shape preserving solution of the form
A(z,T ) = V (T )exp[ jφ(z,T )] and inserting it into Equation (2.44) [1] then
one of its possible solution is

A(z,T ) =
√

P0 sech
(

T
T0

)
exp

[
j|β2|
2T 2

0
z

]
(2.45)

where the peak power P0 and pulse width T0 is adjusted so that P0 = |β2|/(γT 2
0 ),

and β2 < 0 (or D > 0), so dispersion is anomalous. The solution of Equation
(2.45) is called a fundamental soliton and it has the property that the power
distribution |A(T )|2 does not change during propagation, physically because
GVD and SPM counteract each other.

The fundamental soliton is one out of an infinite amount of solutions of
Equation (2.24) [1] characterized by the soliton number

N =

√
LD

LNL
=

√
γP0T 2

0
|β2|

(2.46)
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where LD = T 2
0 /|β2| is the dispersion length and LNL = 1/(γP0) is the non-

linear length. If LD ≫ LNL nonlinear effects will dominate the propagation,
while if LNL ≫ LD linear dispersive effects dominate. For the fundamental
soliton, the peak power and pulse width is adjusted so that N = 1, while
if they are adjusted so N ⩾ 2, then a higher order soliton is excited in the
waveguide. Higher order solitons do not propagate without changing shape
as the fundamental soliton does, but under idealized conditions, as described
by Equation (2.24), they change shape in a periodic manner, thereby recover-
ing their initial shape once each period. During SC generation though, the
governing equation is the full GNLSE, and the periodic dynamics is lost. An
energetic seed laser in the anomalous dispersion regime, can result in a large
initial soliton number, and subsequently, the spectrum typically develops
through pulse breakup, into a number of fundamental solitons that are often
individually distinguishable in a well developed SC spectrum [23, 47].

2.3.3 Cross-phase modulation

The cross-phase modulation (XPM) is another result of Kerr nonlinearity
in optical waveguides, which arises from the intensity dependence of the
refractive index n = n0 +n2(|E1|2 + |E2|2). Two optical pulses at different
wavelengths can couple in the process of XPM without any energy transfer
between them. XPM is similar to SPM but the origin of spectral broadening
is in mutual interaction of the different optical fields of different wavelengths.
XPM initiate different nonlinear effects in optical waveguides. For example,
in case of normally dispersive fibre with the specially designed dispersion
profile (dispersion flattened fibre), the modulation instability occurs as the
consequence of XPM. The beneficial applications of XPM modulation include
XPM-induced pulse compression, optical switching etc.[1].

XPM plays an important role during the formation of SC spectrum inside
the highly nonlinear waveguides. To understand its effects, one has to realize
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that, even though the Raman solitons and dispersive waves have widely
separated optical spectra, they may still overlap in the time domain. Any
temporal overlapping of a Raman soliton with a dispersive wave results in
their mutual interaction through XPM. Such a nonlinear interaction can create
new spectral components and broaden the spectrum of dispersive waves in an
asymmetric fashion which in turn broadens the SC in the short wavelength
(anti-stokes) side of the input spectrum [1].

2.3.4 Four-wave mixing

Four wave mixing (FWM) describes a nonlinear process in which four op-
tical waves interact with each other as the consequence of the third order
susceptibility χ(3). Such process is characterized as a parametric effect as it
modulates refractive index. The origin of FWM is in the nonlinear response
of bound electrons of a material to an electromagnetic field [1].

FWM process involve nonlinear interaction between four optical waves
oscillating at frequencies ω1, ω2, ω3, and ω4. Generally, there are two types
of FWM process. First corresponds to the case in which three photons
transfer their energy to a single photon at the frequency ω4 = ω1 + ω2 +
ω3. Second corresponds to the case in which two photons at frequency ω1

and ω2 are annihilated, while two photons at frequencies ω3 and ω4 are
created simultaneously, so that ω3 +ω4 = ω1 + ω2. The efficiency of FWM
depends strongly on the phase matching of the frequency components and
consequently relies on dispersion properties of the optical waveguide. The
phase matching condition requires matching of the wave vectors, i.e. △k = 0.
The particularly interesting is degenerate case, in which ω1 = ω2 , so that a
single input beam can be used to initiate FWM i.e. to generate a stokes and
anti-stokes photon

2ωp = ωs +ωas (2.47)
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where ωp, ωs and ωas are the pump frequency, stoke wave frequency and
anti-stoke wave frequency, respectively.

In this case, the phase-matching condition is expressed as

△k = (2npωp −nsωs −nasωas)/c = 0 (2.48)

where n is the effective mode index at the frequency ω and c is the speed
of light. Note that due to dispersion np ̸= ns and so FWM is in general not
phase-matched.

Similarly to stimulated Raman scattering (SRS), the process of FWM
can be used to convert the input light into light at one or more different
frequencies [48]. In comparison with SRS, parametric frequency conversion
is more useful as the range of frequencies is broader and both frequency
up-conversion as well as down-conversion is possible. The gain coefficient
for FWM is larger than for SRS [1] and it can be expected that FWM always
dominate over SRS when it is phasematched.

A typical feature of degenerate FWM is that when the pump is in the
anomalous dispersion regime, the gain bands are wide and continuously
connected across the pump and the gain bands are narrow and separated from
the pump when it is in the normal dispersion regime [23]. In the time domain,
FWM manifests itself as an instability of the power distribution amplitude as
the pulse develops. The term modulation instability (MI) is used for this time
domain analogue to FWM.

2.3.5 Self-steepening

Self steepening is a higher order nonlinear effect which results from the
intensity dependence of the group velocity. It causes an asymmetry in the
SPM broadened spectra of ultrashort pulses as the pulse moves at a lower
speed than the wings of the pulse [1]. Therefore, as the pulse propagates
inside the waveguide, the peak shifts towards the trailing edge and the trailing
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edge becomes steeper with increasing distance. Self steepening of the pulse
creates an optical shock and is only important for short pulses.

2.3.6 Stimulated Raman scattering

Raman scattering is a phenomenon that results from stimulated inelastic
scattering. On a fundamental level it is related to the scattering of one photon
by one of the molecules to a lower frequency photon, while the molecule
makes the transition to a higher energy vibrational state. A photon of the
incident field (pump) is annihilated to create a photon at a lower frequency
(Stokes wave) and a phonon with the right energy and momentum to conserve
the energy and the momentum [1]. Stimulated Raman scattering (SRS) is a
combination of Raman scattering with stimulated emission, which leads to
Raman amplification. The SRS can occur in both directions of a single mode
optical waveguide. The initial growth of the stokes wave can be described by
the equation

dIs

dz
= gRIpIs (2.49)

Fig. 2.1 Normalized Raman gain for fused silica when pump and stokes wave are copolarized
(After [1])

.
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where gR is the Raman gain coefficient, Is is the stokes intensity, while Ip is
the pump intensity.

The Raman gain spectrum for silica, gR(Ω), where Ω is the frequency
difference between the pump and stokes waves, shown in Fig. 2.1, is found
to be very broad, extending up to 40 THz with a peak located near 13 THz
[48]. As long as the frequency difference Ω lies within the bandwidth of the
Raman gain spectrum, the beam launched at the fibre input will be amplified
because of the Raman gain. The maximum gain in silica is achieved for
the frequency component downshifted by about 13 THz from the pump
frequency. SRS exhibits a threshold like behaviour, implying that significant
conversion of pump energy to stokes energy occurs when the pump intensity
exceeds a threshold level. For a single mode fibre, assuming Lorentzian
shape approximation for the Raman gain spectrum, the SRS threshold pump
intensity is given by

Ith
P ≈ 16

Aeff

gRLeff
(2.50)

The threshold pump intensity is inversely proportional to the effective
fibre length. Note that the Raman effect in optical waveguides can be used
to amplify a weak signal if that signal is launched together with a strong
pump such that their frequency difference lies within the bandwidth of Raman
gain spectrum [49]. The Raman response time of fused silica is extremely
short, it occurs over a time scale of 60-70 fs. When ultrashort pulses are used
(≤ 1 ps), which have a wide spectrum, the Raman effect can amplify low
frequency pulse components by transferring energy from the high frequency
components of the same pulse. Consequently, the spectrum shifts towards
the low frequency side as the pulse propagates inside the waveguide (Raman
induced frequency shift) [1]. The frequency shift increases linearly along the
waveguide and it becomes very large for short pulses.
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2.3.7 Dispersive waves

The emission of fundamental solitons is accompanied by a low amplitude
temporal pedestal that propagates in a linear regime [50]. Fundamental
solitons are susceptible to perturbations such as higher order dispersion and
the resultant instability manifests as a nonsolitonic radiation (NSR) at a
particular frequency [51]. Essentially, a resonance condition involving higher
order dispersion terms comes into play and leads to a coherent enhancement
of the NSR at a narrow band of frequencies as predicted by the appropriate
phasematching condition. This enhanced spectral component (which occurs
in the normal dispersion regime of the waveguide) is sometimes also referred
to as a Cherenkov radiation or soliton induced resonant emission. Cherenkov
radiation is a terminology borrowed from particle physics and it appears when
a particle travels faster than the phase velocity of light in the medium [52].
The analog of this effect in optical waveguides is the resonance that occurs
between the pulse, which travels at its group velocity, and the dispersive wave
resulting in an energy transfer from the soliton to the dispersive wave at a
frequency dictated by the appropriate phasematching condition.

The frequency of the dispersive wave that grows because of radiation
emitted by the perturbed soliton can be obtained by a simple phasematching
argument requiring that the dispersive wave propagate with the same phase
velocity as that of the soliton. If ω and ωs are frequencies of the dispersive
wave and of the soliton, respectively, the two phases at a distance z after a
delay t = z/vg are given by [1]

φ(ω) = β (ω)z−ω(z/vg) (2.51)

φ(ωs) = β (ωs)z−ωs(z/vg)+
1
2

γPsz (2.52)
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where vg is the group velocity of the soliton. The last term in Equation (2.52)
is due to the nonlinear phase shift occurring only for solitons. The two phases
are equal when the following phasematching condition is satisfied

β (ω) = β (ωs)+β1(ω −ωs)+
1
2

γPs (2.53)

where the relation vg = 1/β1 is used for the solutions of this equation which
determine the frequency ω of one or more dispersive waves generated because
of soliton perturbation.

The generation of dispersive waves during soliton fission is sensitive to
minute details of the dispersion relation β (ω) of the waveguide, and it may
be necessary in some situations to include dispersion terms even higher than
the fourth order. A numerical approach with multiple higher-order dispersion
terms shows that all odd-order terms generate a single NSR peak on the blue
or the red side of the carrier frequency of the pulse, depending on the sign of
the corresponding dispersion parameter [1]. In contrast, even-order dispersion
terms with positive signs always create two NSR peaks on opposite sides of
the carrier frequency [1]. It will be shown in details how two NSR produced
in a two ZDW waveguide later in Chapter 5.

2.4 Summary

This Chapter gives a theoretical overview of the physics related to the gen-
eration of SC that is needed to understand the work presented in this thesis.
For an understanding of the linear and nonlinear phenomena as well as their
effects during propagation of optical signal inside the waveguide it is neces-
sary to introduce the Maxwell’s equations and the GNLSE that governs the
propagation of optical field in the waveguide. Brief derivation procedures of
the wave equations and the GNLSE equation are also shown. Finally, a few of
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the most relevant nonlinear effects and concepts responsible for propagation
dynamics of SC generation have been reviewed.



Chapter 3

Numerical Methods

This chapter presents the numerical methods for analyzing the properties of
optical waveguides based on the Maxwell’s equations and the generalized
nonlinear Schrödinger equation (GNLSE) introduced in Chapter 2. Section
3.1 reviews the light guidance mechanisms of optical waveguides briefly. The
finite-element (FE) method is used for yielding the linear properties of the
optical waveguides in Section 3.2. Finally, Section 3.3 describes split-step
Fourier method (SSFM) to solve GNLSE for observing propagation dynamics
of optical signal through SC generation in waveguide output.

3.1 Optical waveguides

Before starting with numerical methods, we need to look into the guiding
properties of optical waveguides with some examples in brief. There are
several kinds of optical waveguides available for different applications, and
they are generally divided into two classes depending on the physical guiding
mechanism. One class is the index guiding waveguides while the other is pho-
tonic bandgap guiding (PBG) waveguides. Among index guiding waveguides,
standard step-index fibre (SIF) [53] and photonic cystal fibre (PCF) [5, 7, 54]
are prominent. Examples of other waveguides are cobweb lattice [55] and
suspended core/wagon-wheel [56, 57] type geometries. Recently, planar ge-
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Fig. 3.1 Schematics of (a) planar (channel) waveguide and (b) PCF with hexagonal symmetry
cladding containing air-holes.

ometries (rib/channel) are being considered as index guiding waveguides for
SC sources owing to scalable, low cost fabrication and the potential for inte-
grated optical chip solutions [21]. An example of PBG guiding waveguides
is the hollow core fibres [58].

Standard step-index fibres consist of a cylindrical glass core surrounded
by a cladding, with the cladding having a slightly lower index than the
core [1]. Planar channel/rib waveguides consist of a square or rectangular
core surrounded by a cladding with lower refractive index than that of the
core shown in Fig. 3.1(a). Light can be confined in the core due to total
internal reflection at the interface between core and cladding in index guiding
waveguides [53]. PCF relies on an effective index difference between the
solid core and the surrounding cladding containing air-holes for a modified
total internal reflection guiding mechanism [54] shown in Fig. 3.1(b). PBG
guiding waveguide offers a fundamentally different way of guiding the light
in it. The photonic band gap effect makes it possible to guide the light in a
hollow air-core, surrounded by a cladding containing air-holes [59, 60].

Optical waveguides analyses imply the process of finding the propagation
constants and the field profiles of all the modes that a waveguide can support.
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To be able to calculate these propagation characteristics, solutions of the
well-known Maxwell’s equations are obtained along with the satisfaction
of the necessary boundary conditions. Applying the Maxwell’s equations
may not be an easy task and precise analyses of optical waveguides is gen-
erally considered to be a difficult task because of some major reasons such
as the optical waveguides may have complex structures, arbitrary refractive
index distribution (graded-index optical waveguides or photonic crystal fi-
bres), anisotropic and nonlinear optical materials as well as materials with
complex refractive index such as semiconductors and metals. These diffi-
culties are surmounted using various methods of optical waveguide analyses
developed. These methods can be broadly classified into two groups, namely
the analytical approximation solutions and the numerical solutions. An exact
analytical solution can be obtained for step-index two-dimensional optical
waveguides (planar waveguides) and step-index fibre (SIF). However, if the
waveguide has an arbitrary refractive index distribution such as PCFs and
graded-index fibres, then the exact solutions may not be possible. Since we
also consider here PCFs that do not have analytical solution, a finite-element
based numerical method (FE mode-solver) is used for analyzing all optical
waveguides proposed.

Initially the wave equation deduced from Maxwell’s equations in Chapter
2 will be solved by finite-element (FE) method for analyzing the transverse
field distribution of the optical waveguides. This determines the linear guiding
properties of the medium due to the electromagnetic field developed inside
the waveguides. Later the dynamical part of the propagation problem will
be solved by using the generalized nonlinear Schrödinger equation through
split-step Fourier method for the complex electric field envelope development
inside the waveguides. Numerical methods used to analyze the properties
and modelling of nonlinear medium of interest here are GeAsSe based planar
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(rib/channel) waveguides and microstructured fibres (MoFs) for designing
broadband mid-infrared SC laser sources.

3.2 Finite-element method

The rapid growth in the millimetre-wave, optical fibre and integrated optics
fields has included the use of arbitrarily shaped dielectric waveguides, which
in many cases also happened to be arbitrary inhomogeneous and/or arbitrar-
ily anisotropic which do not easily lend themselves to analytical solutions.
Therefore many scientists have given their attention to the development of
numerical methods to solve such waveguides. Numerical methods may be
used to solve Maxwell’s equations exactly and the results they provide are
accurate enough for the characterisation of most of the devices. Since the ad-
vent of computers with large memories, considerable attention has been paid
to methods of obtaining numerical solutions of the boundary and initial value
problems. These methods are usually evaluated in terms of their generality,
accuracy, efficiency and complexity. It is evident from the review articles [61]
that every method represents some sort of compromise between these aspects,
implying that no method is superior to the others in all aspects. The optimal
method should be the one that can solve the problem with acceptable accuracy
but requires the minimum effort to implement and run in terms of manpower
and computer capacity. The FE method has been the dominant and arguably
the most powerful numerical method in computational mechanics for many
decades. It has been successfully applied to solve problems encountered
in many engineering disciplines such as fluid dynamics, heat conduction,
aeronautical, biomechanical and electromagnetics.

The finite-element method is a well established numerical method for the
solution of a wide range of guided wave problems. It can be very easily
applied not only to optical waveguides of any shape but also to optical waveg-
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uides with any refractive index distribution and to those with any anisotropic
materials or nonlinear materials. This method is based upon dividing the
problem region into a non-overlapping patchwork of polygons, usually tri-
angular elements. The field over each element is then expressed in terms
of polynomials weighted by the fields over each element. By applying the
variational principle to the system functional, and thereby differentiating the
functional with respect to each nodal value, the problem reduces to a standard
eigenvalue matrix equation. This is solved using iterative techniques to obtain
the propagation constants and the field profiles [64, 68]. The accuracy of the
finite element method can be increased by using finer mesh. A number of for-
mulations have been proposed, however, the full vectorial H-field formulation
is the most commonly used and versatile method in modelling optical waveg-
uides due to much easier treatment of the boundary conditions. This method
can accurately solve the open type waveguide problems near cut-off region
and much better results were obtained by introducing infinite elements to ex-
tend the region of explicit field representation to infinity [63]. One drawback
associated with this powerful vector formulation is the appearance of spurious
or non-physical solutions. Suppression of these spurious solutions can be
achieved by introducing a penalty term into the variational expression [65].
In order to eliminate the spurious solutions completely, another approach
is employed using the edge elements [62, 68]. In modelling more complex
structures, the finite element method is considered to be more flexible than
the finite difference method due to the ability of employing irregular mesh.
Since this method is used in this work, a more detailed description of the
finite element method will be presented next.

Mathematically, the FE method is a numerical technique for obtaining
approximate solutions to boundary-value problems and it is the extension of
the two classical methods, the Raleigh-Ritz variational formulation and the
Galerkin method of weighted residuals. A boundary value problem can be
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defined by a governing differential equation in a domain, together with the
boundary conditions on the boundary that encloses the domain. In the varia-
tional approach the boundary-problem is formulated in terms of variational
expressions, referred to as functionals, whose minimum corresponds to the
governing differential equations. The approximate solution is obtained by
minimising the functional with respect to its variables [66]. The Galerkin
method is based on the method of weighted residuals [67] in which the domain
of the differential equation is discretized and the solution is approximated
by the summation of the unknown solutions of each subdomain weighted
by known functionals, relating them to the domain. The overall solution is
obtained by minimising the error residual of the differential equation. Varia-
tional Formulation, while much less intuitive, is more advantageous as the
underlying theory is more involved. Therefore, Variational Formulation is an
ideal technique to solve a wide range of electromagnetic problems, which is
used in FE method in this thesis.

3.2.1 The variational approach

There are several variational formulations for implementing FE method have
been proposed for the analysis of the optical waveguide problem. These can
be a scalar form [69], where the electric or magnetic field is expressed only
in terms of one component, according to the predominant field component or
can be in the vector form, where the electric or magnetic field is expressed in
terms of at least two of the constituent field components.

It should be noted that most of the formulations applied in the FE method,
yield to a standard eigenvalue equation

[A]{x}−λ [B]{x}= 0 (3.1)

where [A] and [B] are real symmetric sparse and B is also positive definite.
The eigenvalue, λ can be chosen as β 2 or k2, depending on the formulation
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and the eigenvalues represent the nodal field values of the finite elements.
It is desirable for the above matrix equation to be of this canonical form to
allow an efficient solution. The scalar field approximation [72] and the vector
field [78] both types of variational formulations are described next.

The scalar formulation

The scalar approximation can be applied in situations where the field can be
described as predominantly TE or TM and it can be expressed in terms of the
longitudinal components of the above modes. It has been used for the solution
of homogeneous waveguide problems [70], open boundary problems [71],
and for the analysis of the anisotropic waveguides [73]. For the quasi-TE
modes over a domain, Ω where the dominant field component is Ex, the
formulation can be written as

L =
∫ ∫

Ω

[(
∂Ex

∂x

)2

+

(
∂Ex

∂y

)2

− k0n2E2
x +β

2E2
x

]
dΩ (3.2)

where β is the propagation constant, n is the refractive index, and k0 is the
free-space wavenumber.

For the quasi-TM modes, where Hx is the dominant field, the formulation
can be written as [69]

L =
∫ ∫

Ω

[
1
n2

(
∂Hx

∂x

)2

+
1
n2

(
∂Hx

∂y

)2

− k0n2H2
x +

1
n2 β

2H2
x

]
dΩ (3.3)

where β , n, and k0 have their usual meanings defined above.

The vector formulation

For accurate characterization of waveguides where the modes are hybrid in
nature and both longitudinal and transverse component exist, vector formula-
tions have to be used. There are various FE method vector formulations using
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• The longitudinal electromagnetic (E and H) field components;
• The transverse electromagnetic field components;
• The transverse electric field components;
• The transverse magnetic field components;
• The three electric field components;
• The three magnetic field components;
• The six electromagnetic field components;

A vector E-field formulation based on the three electric field components
has been applied in the literature to analyse cylindrical waveguides [80]
and optical fibres [76, 81]. This formulation is valid for general anisotropic
lossless waveguide problems. However, one must ensure the continuity of
the tangential electric field components at the dielectric interface. Further,
the natural boundary conditions correspond to a magnetic wall (n×H =

0 or n.E = 0) in the vector E-field formulation and therefore it is essential
to enforce the electric wall (n×E = 0) as a boundary condition which is
difficult to implement for irregular-shaped structures.

The vector H-field formulation involves terms of all three magnetic field
components, which gives an advantage over all other formulations. This
formulation is valid for general anisotropic problems with a non-diagonal per-
mittivity tensor [78, 79]. The natural boundary conditions correspond to those
of the electric wall (n×E = 0 or n.H = 0); therefore, boundary conditions do
not require to be enforced at the boundaries. Further, in dielectric waveguides,
the permeability is always assumed to be that of free space; hence, all the
components of are continuous across the dielectric interface which means the
variation of the refractive index does not need to impose interface boundary
conditions.

The vector H-field formulation can be written as [40, 78]

ω
2 =

∫
(∇×H)∗.ε̂−1.(∇×H)dΩ∫

H∗.µ̂H dΩ
(3.4)
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where ω , is the angular frequency, Ω is the waveguide cross-section ε̂ and
µ̂ are the permittivity and permeability tensors respectively. To obtain the
stationary solution of the functional Equation (3.4) this is minimised with
respect to each of the variables, which are the unknown nodal field compo-
nents Hx, Hy and Hz. This minimisation leads to a matrix eigenvalue equation
as stated in Equation (3.1), where [A] is a complex Hermitian matrix and [B]

is a real symmetric and positive-definite matrix. Because of the general 90◦

phase difference between the axial and transverse components of H-field [77],
the Hermitian matrix [A] can be transformed to a real symmetric matrix for a
lossless problem. In general, the matrices [A] and [B] are quite sparse. The
eigenvectors x represents the unknown field components at the nodal points
for different modes with λ as their corresponding eigenvalues and also λ is
proportional to ω2. In order to obtain a solution for a given wavelength, the
propagation constant, β value has to be changed iteratively until the output
eigenvalue corresponds to that wavelength. By varying β over the wavelength
range of interest, it is possible to calculate the dispersion characteristics for
the various modes.

However, the above formulation (as well as the E-field) yields spurious
solutions because the divergence condition, ∇.H = 0 is not satisfied automati-
cally, therefore alternative approaches, such as the penalty coefficient method
[63, 75] have been proposed to eliminate those non-physical solutions. This
method will be discussed in a later section of this chapter.

Natural boundary condition

The natural boundary condition which is automatically satisfied in the vari-
ational formulation is called the natural boundary condition. In variational
formulations these can be automatically satisfied, if left free. The scalar func-
tional defined earlier in Equation (3.2) has the continuity of ∂Ex/∂n as the
natural boundary condition and the functional defined in Equation (3.3) has
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the continuity of (1/n2)(∂Hx/∂n) as the natural boundary condition, where
n is the outward normal unit vector.

The vector H-field formulation described in Equation (3.4) has the natural
boundary condition of an electric wall, i.e. n.H = 0. Therefore, there is
no need to force any boundary condition on conducting guide walls. But
for regular shaped waveguides and at the symmetric walls (if applicable)
the natural boundary condition can be imposed to reduce the matrix size.
However, it may be necessary to analyse the structure with complementary
symmetry conditions to obtain all the modes, although the exploitation of the
symmetry greatly reduces the computational cost.

Spurious solution

As mentioned earlier, solutions to the vector field formulation of Equation
(3.4) described can contain some nonphysical or spurious solutions owing to
the diverdence condition ∇.H = 0 is not satisfied automatically.

The identification of spurious modes among the physical modes can be dif-
ficult. When a set of eigenmodes is computed, sometimes spurious modes can
be spotted by their eigenvectors, where the field varies in a random way along
the cross-section of the waveguide. The penalty function method, introduced
by Rahman and Davies [79], facilitates a way to formally distinguish between
physical and spurious modes. The scheme works as follows. The value of
∇.H for each eigenvector of interest is calculated over the cross-section and
only solutions with a low value of ∇.H will be considered as a real modes
as an eigenvector of physical mode should satisfy. In order to eliminate
the spurious modes, an additional integral is added by introducing penalty
coefficient, α , a dimensionless number to the original functional Equation
(3.4) which satisfies ∇.H = 0. The resulting variational expression Equation
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(3.4) can be rewritten as

ω
2 =

∫∫ [
(∇×H)∗.ε̂−1(∇×H)+

(
α

ε

)
(∇.H)∗(∇.H)

]
dΩ∫∫

H∗.µ̂H dΩ
, (3.5)

where H is the full-vectorial magnetic field, * denotes a complex conjugate
and transpose, ω2 is the eigenvalue (ω being the angular frequency), α is the
penalty term to eliminate spurious modes and ε̂ and µ̂ are the permittivity
and permeability tensors, respectively.

3.2.2 FE method implementation

The main steps in the FE method implementation is representing the structure
with smaller elements. Therefore, it is necessary to analyse the discretisation
of the system domain, the behaviour of the field in each element by using the
shape functions and the application of the element and global matrices.

Triangle Rectangle

Parallelogram Quadrilateral

node 2

node 4node 1

node 3node 2

node 4node 1

node 2 node 3

node 4node 1

node 3node 2

node 3node 1

Fig. 3.2 Two dimensional elements.



42 Numerical Methods

Domain discretisation

The discretisation of the domain into sub-regions (finite elements) is con-
sidered as the initial step in the FE method. The shapes, sizes, number and
configurations of the elements have to be chosen carefully such that the origi-
nal body or domain is simulated as closely as possible without increasing the
computational effort needed for the solution. Each element is essentially a
simple unit within which the unknown can be described in a simpler manner.
There are various types of elements available for use in FE formulations.
These elements can be satisfied as one, two and three dimensional elements.
When the geometry and material properties can be described in terms of two
independent spatial coordinates, the two-dimensional elements shown in Fig.
3.2 can be used. The simplest and indeed the most basic element typically

Fig. 3.3 Finite element discretisation of an irregular waveguide cross-section.
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considered for two-dimensional analysis is the triangular element. The size
of the element also dictates the accuracy of the final solution as higher order
elements tend to provide more accurate solutions. A typical representation of
an arbitrary waveguide structure using triangular elements is shown in Fig.
3.3.

By dividing the waveguide cross section into triangular elements, the
unknown H is also considered as to be discretised into corresponding sub-
regions. These elements are easier to analyse rather than analysing the
distribution over the whole cross section. As shown in Fig. 3.3, the transverse
plane is covered with a grid of discrete nodes which are the vertices of
each triangular element. The values of H at these nodal points are the basic
unknowns. The intersections of the sides of the triangular elements are called
the nodal lines.

Fig. 3.4 Pascal’s triangle for complete polynomials in two dimensions.
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Shape function

In two-dimensional problems, the element assumes a linear interpolation
between the field values at the vertices of the triangle. Within each element
the unknown field H, is approximated by means of suitably chosen set of
polynomials. These functions are called shape functions. For a simple
triangular element the interpolation polynomial should include a constant
term and both the x and y terms rather than only one of them. The field variable
representation within an element should not alter the local co-ordinate system.
In order to achieve this geometric isotropy the polynomial should be complete
according to Pascal’s triangle as shown in Fig. 3.4.

x

y

c

a

b
(x2,y2)

(x3,y3)

(x1,y1) p(x,y)

ϕm( x , y )

ϕm( x , y )

ϕ3

ϕ1

ϕ2

Fig. 3.5 Typical two dimensional first order triangular element.

The final consideration in selecting the order of the interpolation poly-
nomial is to make the total number of terms in the polynomial equal to the
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number of nodal degrees of freedom of the element. For example, the first de-
gree polynomial involves three coefficients and so can be expressed in terms
of three nodal values at the triangle vertices as shown in Fig. 3.5. The second
degree polynomial needs six coefficients and can similarly be expressed in
terms of values of six nodes.

The continuous field function φ(x,y) in the problem domain may be
replaced by a set of discrete values (φi = 1,2,3...........,m) where m is the total
number of nodes. This function will be continuous across the triangles. To be
admissible functions, they must satisfy some specific conditions between the
elements; usually the continuity of the field across the boundaries is preferred.

A typical first order triangular element used in finite element discretisation
is shown in Fig. 3.5. Inside each first order element, the nodal field values
φ are interpolated continuously. Ni(x,y) is defined as the shape function and
φm(x,y) is defined as the field inside each element.

Thus, using the interpolation function the element field can be written as

φm(x,y) =
3

∑
i=1

Ni(x,y).φi i = 1,2,3 (3.6)

where φi are the nodal field values. Equation (3.6) can be written in the
following matrix form

φm(x,y) = [N1 N2 N3]


φ1

φ2

φ3

 (3.7)

Therefore,

φm(x,y) = [N]{φm} (3.8)
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where [N] is the matrix form of the shape function and {φm} is the vector
corresponding to the element nodal field values at the three nodes of the
triangular element.

Linear approximation of the field inside an element is considered in order
to obtain the shape function, Ni(x,y), i = 1,2,3

φm(x,y) = a+bx+ cy (3.9)

where a, b and c are constants.

Equation (3.9) can be written as to satisfy the following condition

φm(xi,yi) = φi (3.10)

Then, the nodal field values φi can be expressed as

φ1 ≡ φm(x1,y1) = a+bx1 + cy1 (3.11)

φ2 ≡ φm(x2,y2) = a+bx2 + cy2 (3.12)

φ3 ≡ φm(x3,y3) = a+bx3 + cy3 (3.13)

In matrix form: 
φ1

φ2

φ3

=

1 x1 y1

1 x2 y2

1 x3 y3




a

b

c

 (3.14)

The constant a, b, c can be determined in terms of φi as

a =
1

2Ae
[φ1(x2y3 − x3y2)+φ2(x3y1 − x1y3)+φ3(x1y2 − x2y1)] (3.15)
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b =
1

2Ae
[φ1(y2 − y3)+φ2(y3 − y1)+φ3(y1 − y2)] (3.16)

c =
1

2Ae
[φ1(x3 − x2)+φ2(x1 − x2)+φ3(x2 − x1)] (3.17)

where Ae is the area of triangular element:

Ae =

∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣
=

1
2
[(x2y3 − x3y2)+(x3y1 − x1y3)+(x1y2 − x2y1)]

(3.18)

Substituting the values of a, b, c from Equations (3.15)-(3.17) into Equa-
tion (3.9) and rearranging yields

φm(x,y) = N1(x,y).φ1 +N2(x,y).φ2 +N3(x,y).φ3 (3.19)

or

φm(x,y) = [N]φm (3.20)

Thus, after meshing the domain into small triangular elements, we can
write the unknown field φm in every element in terms of an interpolation of
the field values at each node, given by Equation (3.20). Ni are the shape or
interpolation functions and are defined as

{N}T =

N1

N2

N3

= 1
2Ae

x2y3 − x3y2 y2 − y3 x3 − x2

x3y1 − x1y3 y3 − y1 x1 − x3

x1y2 − x2y1 y1 − y2 x2 − x1


1

x

y

 (3.21)
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where T denotes the transpose. This shape function matrix can also be written
as

{N}T =

N1

N2

N3

= 1
2Ae

a1 +b1x+ c1y

a2 +b2x+ c2y

a3 +b3x+ c3y

 (3.22)

and ai, bi, ci, i = 1, 2, 3 are calculated as

a1 = x2y3 − x3y2 (3.23)

b1 = y2 − y3 (3.24)

c1 = x3 − x2 (3.25)

with cycling exchange of 1 → 2 → 3 in Equations (3.23)-(3.25).

Consider a typical point p(x,y) inside the linear triangular element in Fig.
3.5. Therefore, the coordinates functions Ni can be expressed in terms of the
areas of the triangles as below:

N1 =
area of the sub triangle(p,b,c)
area of the full triangle(a,b,c)

(3.26)

N2 and N3 can be expresses similarly. Therefore, Ni have the following
property:

3

∑
i=1

Ni = 1 (3.27)

According to Equation (3.27), the value of the shape function N1 at
a(x1,y1) is one, and for b(x2,y2) and c(x3,y3) the value of the shape function
N1 is zero. This is known as the unique first-degree interpolation function
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for a(x1,y1). Similarly, the shape functions N2 and N3 give a value of one at
b(x2,y2) and c(x3,y3), respectively and zero at other nodes.

Formation of element and global matrices

The solution of the optical waveguide by the FE method can be transformed
to a standard eigenvalue problem as in Equation (3.1) where matrices [A]

and [B] are known as global matrices and consist of the summation of the
element matrices for each triangular element of the discretised cross-section
of the optical waveguide. In this section, the assembly of the element and
global matrices is shown, with respect to the shape functions and the nodal
field values of each triangular element, based on the variational formulation.
Throughout the procedure, the full H-field formulation in terms of the three
components is assumed and first-order triangular elements are being used.
Within each of the triangular elements the three unknown field H-components
Hx, Hy, and Hz of the magnetic field can be represented as follows

Hx(x,y) =
[
N1 N2 N3

]Hx1

Hx2

Hx3

 (3.28)

Hy(x,y) =
[
N1 N2 N3

]Hy1

Hy2

Hy3

 (3.29)

Hz(x,y) =
[
N1 N2 N3

]Hz1

Hz2

Hz3

 (3.30)
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where Hxi,Hyi and Hzi for i = 1,2,3 are the x,y and z components of the
magnetic fields at the three-nodes of a triangle. Hence the magnetic field over
the element [H]e can be described as

[H]e =

Hx(x,y)

Hy(x,y)

Hz(x,y)



=

N1 N2 N3 0 0 0 0 0 0
0 0 0 N1 N2 N3 0 0 0
0 0 0 0 0 0 N1 N2 N3





Hx1

Hx2

Hx3

Hy1

Hy2

Hy3

Hz1

Hz2

Hz3



(3.31)

In more compact form, the above equation (3.31) can be expressed as

[H]e = [N]{H}e (3.32)

where {H}e is the column vector representing the three components of the
nodal field values in the elements and [N] is the shape function matrix.

Using Equation (3.32), the curl of magnetic field vector (∇×H)e can be
applied in order to define this parameter over each element and can be written
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as

(∇×H)e = ∇× [N]{H}e

=

 0 −∂/∂ z ∂/∂y

∂/∂ z 0 −∂/∂x

−∂/∂y ∂/∂x 0

 [N]{H}e

= [Q]{H}e

(3.33)

where matrix [Q] can be written as

[Q] =

 [0] −∂ [N]/∂ z ∂ [N]/∂y

∂ [N]/∂ z [0] ∂ [N]/∂x

−∂ [N]/∂y ∂ [N]/∂x [0]



=

 [0] Jβ [N] ∂ [N]/∂y

− jβ [N] [0] −∂ [N]/∂x

−∂ [N]/∂y ∂ [N]/∂x [0]


(3.34)

where, [0] = [0 0 0], [N] = [N1 N2 N3], ∂ [N]/∂x= [b1 b2 b3] and
∂ [N]/∂y = [c1 c2 c3] and the ∂ [N]/∂x and ∂ [N]/∂y are the differentiated
form of Equations (3.24) and (3.25).

The vector H-field formulation can be expressed for an element by substi-
tuting Equations (3.32)-(3.33) into Equation (3.4)

Je =
∫

Ω

{H}T
e [Q]∗ε̂

−1[Q]{H}edΩ−ω
2
∫

Ω

{H}T
e [N]T µ̂[N]{H}dΩ (3.35)

where T and ∗ denote a transpose of matrix and the complex conjugate,
respectively, and the integration is performed over the waveguide cross-
section. In isotropic materials, the permittivity (ε) is a scalar value where
as tensor permittivity, the ε can be represented in terms of the 3×3 inverse
matrix format.
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The relationship between function, J and the summation of the number of
individual elements n over the waveguide cross-section, Je can be written as

J =
n

∑
e=1

Je (3.36)

By differentiating Equation (3.36) with respect to nodal field values and
equating it to zero, the relationship can be obtained

∂J
∂{H}e

= 0 e = 1,2, ........,n (3.37)

Therefore, the the eigenvalue equation can be written as

[A]{H}−ω
2[B]{H}= 0 (3.38)

where,

[A] =
n

∑
e=1

[A]e =
n

∑
e=1

∫
Ω

ε
−1[Q]∗[Q]dΩ (3.39)

[B] =
n

∑
e=1

[B]e =
n

∑
e=1

∫
Ω

µ[N]T [N]dΩ (3.40)

where [A] and [B] are global matrices, [A]e and [B]e denote the element matri-
ces and these matrices derived in Appendix. The {H} matrix consists of all
H-field nodal values of the waveguide cross-section.

The infinite elements

In open-type waveguides the problem domain is represented by filling ortho-
dox elements up to a chosen boundary. This simple method is susceptible to
significant errors being generated if the boundary is too close, hence requires
the consideration of excessively large domains. One solution is to recursively
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Fig. 3.6 Discretisation of a dielectric waveguide with orthodox and infinite elements.

shift the virtual boundary wall until a criterion for maximum field strength is
satisfied. Rahman and Davies [78] presents a rather elegant solution which
adds infinite elements along the outer boundary of orthodox elements as
shown in Figure 3.6. For a typical rectangular dielectric waveguide problem,
a quarter of the structure is discretised into orthodox and infinite elements
by assuming two fold symmetry. The advantage of this concept comes from
the fact that the computational domain is extended to infinity without increas-
ing the matrix order, thus causing almost no change in the computational
complexity.

The shape functions of the infinite elements should decay exponentially
in the direction where the field extends to infinity. If an element is extended
to infinity in the positive x-direction, the following shape function can be
considered

N(x,y) = Ny(y).Nx(x) = Ny(y).exp(−x/Lx) (3.41)

where Lx is the decay length in the x-direction. Lx represents the decaying
behaviour of the field outside the core region and depends on the structure
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under consideration, Further, elements can be extended in the y-direction or
both directions in a similar pattern to Equation (3.41) [78].

3.3 Split-step Fourier method

The GNLSE [Equation (2.29) in Chapter 2] is a nonlinear partial differen-
tial equation that does not generally lend itself to analytic solutions where
nolinear mechanisms such as self-steepening, Raman delayed response, and
higher-order dispersions are present. A numerical approach is therefore often
necessary for an understanding of the nonlinear effects developed owing to
propagation of optical signal inside the optical waveguides [1]. There is a
number of different methods have been developed, [82–84], that could be
used to solve the GNLSE. The most commonly employed method is the split-
step Fourier method (SSFM) [1, 82]. The SSFM is a pseudo-spectral method
which is faster by up to two orders of magnitude compared to finite difference
methods [1]. For the pulse widths of the order of ps this method is shown to
work efficiently and accurately [1, 82]. In this thesis the SSFM is employed to
solve the GNLSE for observing SC generation in optical waveguides (Chapter
5-7). A brief description of SSFM will be presented next.

3.3.1 SSFM for solving GNLSE

The SSFM method is based on separating the dispersive and nonlinear effects
of the equation from one another. This assumes that over a very small distance
these components may be assumed to be independent. Therefore, Equation
(2.29) can be expressed in the following form

∂A
∂ z

= (D̂+ N̂)A (3.42)



3.3 Split-step Fourier method 55

where D̂ is linear differential operator that takes into account dispersion and
absorption of the medium and N̂ is a nonlinear operator that accounts for the
effect of waveguide nonlinearities on pulse propagation [1]. These operators
are defined as

D̂ =−α

2
+ ∑

m≥2

jm+1

m!
βm

∂ mA
∂T m (3.43)

N̂ = j
(

γ + j
α2

2Aeff

)(
1+

j
ω0

∂

∂T

)(
A(z,T )

∫
∞

−∞

R(T ) | A(z,T −T ′) |2 dT ′
)

(3.44)

Solving Equation (3.42) gives

A(z+h,T ) = exp[h(D̂+ N̂)]A(z,T ) (3.45)

In general, dispersion and nonlinearity act together along the length of the
waveguide. The split-step Fourier method obtains an approximate solution
by assuming that in propagating the optical field over a small distance h,
the dispersive and nonlinear effects can be assumed to act independently.
Suppose, propagation from z to z+h is performed in two steps. In the first
step, the nonlinearity acts alone, D̂ = 0 and in the second step, dispersion acts
alone, N̂ = 0 in Equation (3.42).

The Baker-Hausdorff theorem states that for two non-commuting operators
[85]

exp(hD̂)exp(hN̂) = exp

(
h(D̂+ N̂)+

h2

2
[D̂N̂ − N̂D̂]+ ...

)
(3.46)
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By ignoring the h2 and higher terms in the exponential the following
approximation can be made

exp[h(D̂+ N̂)]≈ exp(hD̂)exp(hN̂) (3.47)

This will result in the SSFM having an accuracy of approximately second
order due to h2 and higher-terms in the Baker-Hausdorff expansion have been
neglected. It should be noted that the nonlinear and dispersive terms do not in
fact commute.

Therefore, the solution for the pulse envelope of Equation (3.45) can be
expressed as

A(z+h,T )≈ exp(hD̂)exp(hN̂)A(z,T ) (3.48)

The accuracy of the split-step Fourier method can be improved by variation
of Equation (3.48) known as the symmetrised SSFM [86], which has a higher

z = 0 h

A (z+h, t)A (z, t) 

Nonlinearity calculated

Dispersion calculated

Fig. 3.7 Schematic diagram of the symmetrized SSFM used for numerical simulations.
Waveguide length is divided into a large number of segments of width h and the effect of
nonlinearity is included at the mid of the step shown by a dashed line.
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accuracy. It works by calculating the nonlinear effects in the middle of each
step as opposed to the edges as shown in Fig. 3.7. The spatial dependence of
the nonlinear term is more accurately described by an integral, where as in
Equation (3.48) it was approximated by

A(z+h,T )≈ exp
(

h
2

D̂
)

exp

(∫ z+h

z
N̂(ẑ)dẑ

)
exp
(

h
2

D̂
)

A(z,T ) (3.49)

The most important advantage of using the symmetrized form is that
its accuracy increased to third-order due to applying the Baker-Hausdorff
formula twice in Equation (3.49).

The accuracy of the split-step Fourier method can be further improved
by evaluating the integral in Equation (3.49) more accurately than approxi-
mating it by hN̂(z). A simple approach is to employ the trapezoidal rule and
approximate the integral from Equation (3.49) by [1]∫ z+h

z
N̂(ẑ)dẑ ≈ h

2

(
N̂(z)+ N̂(z+h)

)
(3.50)

It is necessary to follow an iterative procedure that is initiated by replacing
N̂(z+h) by N̂(z) as because N̂(z+h) is unknown at the midsegment located
at z+h/2. By using Equation (3.49), it can now easily estimate A(z+h,T )

which in turn is used to calculate the new value of N̂(z+h). Although the
iteration procedure is time consuming, it can still reduce the overall computing
time if the step size h can be increased because of the improved accuracy of
the numerical algorithm.

3.3.2 SSFM implementation

To simulate SC generation MATLAB was used. The symmetrised SSFM
was executed using the code ’SSPROP’ [82] (based on the freely available in
University of Maryland) in MATLAB. To implement SSFM, the waveguide
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length is divided into a large number of segments that need to be spaced
equally as shown in Fig. 3.7. The optical pulse is propagated from segment
to segment using the prescription of Equation (3.49). The optical field A(z,T )

is first propagated for a distance h/2 with dispersion using the FFT algorithm
[1]. At the midplane z+h/2, the field is multiplied by a nonlinear term that
represents the effect of nonlinearity over the whole segment length h. Finally,
the field is propagated for the remaining distance h/2 with dispersion only to
obtain A(z+h,T ). The nonlinearity is assumed to be lumped at the midplane
of each segment by dashed lines as shown in Fig. 3.7.

Taking the Fourier transform of the dispersion terms and the above approx-
imation into account, the program will implement the symmetrised SSFM as
follows

A(z+h,T )≈ F−1

exp
(

h
2

D̂( jω)

)
F

exp

(∫ z+h

z
N̂(ẑ)dẑ

)
F−1

{
exp
(

h
2

D̂( jω)

)
F
{

A(z,T )
}}


(3.51)

3.4 Summary

This chapter gives a theoretical overview of the numerical methods that re-
quired to be known for understanding of the work presented in this thesis. The
light guiding mechanisms in different kinds of optical waveguides giving em-
phasis on most extensively used planar waveguides and microstructured fibres
have been presented. A finite-element (FE) method based approach using the
variational formulation with emphasis giving on vector H-field formulation
has been presented to create the modal solutions of various optical waveg-
uides. Various aspects of the implementation of the FE method including
domain discretisation, the use of different scalar and vector formulations, the
use of boundary conditions, shape functions and the assembly of element and
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global matrices have been discussed including spurious modes elimination
technique. Finally, for observing optical signal evolution in the waveguide
output, the nonlinear pulse propagation equation (GNLSE) has been solved
using split-step Fourier method including the results obtained through modal
solutions by FE method.



Chapter 4

Overview of SC generation

The generation of new frequency components with spectral broadening is
inherent feature of nonlinear optics and intensively studied since the early
1960s. When narrowband incident pulses undergo extreme nonlinear spec-
tral broadening to yield a broadband spectrally continuous output then this
process is known as SC generation [87]. SC generation was first observed
by Alfano and Shapiro in bulk BK7 glass in 1970 [2, 3], and has since been
the subject of numerous investigations in a wide variety of nonlinear optical
waveguides. The advent of a new class of optical waveguides in the form of
the microstrucutred photonic crystal fibre (PCF) in the late 1990s attracted
widespread interest throughout the scientific community, and has led to a
revolution in the generation of ultrabroadband high brightness spectra through
SC generation [7, 8, 88]. The design freedom of microstructured fibres has
allowed SC generation to be observed over a much wider range of source
parameters than has been possible with planar waveguides or conventional
fibres. For example, experiments have reported SC generation using un-
amplified input pulses of durations ranging from tens of femtoseconds to
several nanoseconds, and even using high power continuous wave sources.
SC sources have found numerous applications in the fields of spectroscopy,
pulse compression, optical coherent tomography, bio-imaging, frequency
metrology, and the design of tunable ultrafast femtosecond laser sources. In
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the context of telecommunications, the spectral slicing of broadband SC spec-
tra has also been proposed as a simple way to create multi-wavelength optical
sources for dense wavelength division multiplexing (DWDM) applications.

In this chapter, we provide an overview of the nonlinear optics literature
relating to the SC generation process. Section 4.1 reviews the work studying
SC spectral broadening in bulk media. Section 4.2 devoted to review the SC
works on silica microstructured fibres, and then in Section 4.3 reviewed the
results obtained in nonsilica fibres and waveguides.

4.1 SC generation in bulk media

SC generation was first observed by Alfano and Shapiro 1970 extending the
white light spectrum covering the entire visible range from 400 to 700 nm
after launching 5 mJ picosecond pulses at 530 nm in bulk BK7 glass [2, 3].
The bandwidth of SC obtained by the Alfano and Shapiro’s experiment was
ten-times wider than anything previously reported. It was very interesting
that they did not particularly emphasize this aspect in their article where
they actually described to the first identification of nonresonant four-photon
coupling, i.e., four-wave mixing. Later on Manassah et al. coined this
phenomenon as ‘supercontinuum’ [89]. In the meantime, the phenomenon of
SC generation was referred to as superbroadening in [90–92].

In 2000, Gaeta has given a consistent explanation based on full three-
dimensional simulations of light propagation [93]. The concept proposed
by Werncke et al. later on accepted that white light continuum generation
in bulk material is due to the formation of an optical shock at the back of
the pump pulses due to space-time focusing and self-steepening [90]. The
role of plasma formation and multiphoton absorption is simply to arrest the
collapse of the beam and to prevent the optical breakdown of the material.
Self-focusing was found to be the key ingredient to SC generation in bulk
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media, as it was commonly observed that the SC threshold coincided with the
critical power for catastrophic collapse, usually associated with the formation
of self-trapped filaments. SPM enhances in bulk material by beam collapsing
which leads to an rapid increase in the peak intensity, but which also gives
rise to a range of higher-order nonlinear effects, including self-steepening,
space-time focusing, multiphoton absorption, avalanche ionization, and the
formation of a free-electron plasma. It is clear that self-trapped filaments
may or may not form in the process depending on the pulse duration and
on the relative strength of chromatic dispersion, self-focusing, and plasma
defocusing[94]. This phenomena is in agreement with all known observations,
including the dependence of SC generation on the band gap of the material
[95]. Self-focusing, in material with a small band gap, is stopped at lower
intensities by free-electron defocusing, preventing the formation of a shock.

SC generation in bulk material is a highly complex process involving an
intricate coupling between spatial and temporal effects and required high
pump power such as in MW level. SC generation by contrast in optical
waveguides such as planar or fibre based geometries involves purely temporal
dynamical processes, with the transverse mode characteristics determined
only by linear waveguide properties. Therefore, this suggests that a further
motivation to study SC generation in planar and microstructured based fibres
through dispersion engineering is to clarify the nature of temporal nonlinear
propagation effects in order to improve the understanding of the more complex
bulk waveguide design.

4.2 SC generation in conventional fibres

The first SC generation in optical fibres was first observed in 1976 by launch-
ing 10 ns pulses from a dye laser into a 20-m-long fibre [96]. The SC spectrum
extended over 180 nm when the peak power was 1 kW. The pulses with du-
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ration of 25 ps were launched into a 15-m-long fibre supporting four modes
at the input wavelength of 532 nm in a 1987 experiment [97]. The output
spectrum extended over 50 nm because of the combined effects of SPM, XPM,
SRS, and FWM. Similar results were observed when single-mode fibres were
used [98]. In a 1987 experiment, a 1-km-long single-mode fibre was used in
which 830 fs input pulses with 530 W peak power produced a 200 nm wide
spectrum at the output end of the fibre [99]. Similar features were obtained
later with longer pulses [100, 101].

SC generation in single-mode fibres was used as a practical tool for gen-
erating pulse trains at multiple wavelengths simultaneously by launching
a single picosecond pulse train at a wavelength near 1.55 µm [102–105].
Such a SC source acts as a useful laser for wavelength division multiplexing
systems. The pulses with duration of 6 ps at a 6.3 GHz repetition rate with a
peak power of 3.8 W which was obtained through amplifying the output of a
gain-switched semiconductor laser operating at 1553 nm, were propagated in
the anomalous dispersion region of a 4.9-km-long fibre in a experiment [103].
The SC generated was 40 nm wide enough that it could be used to produce 40
WDM channels by filtering the fibre output with an optical filter exhibiting
periodic transmission peaks. The resulting 6.3 GHz pulse trains in different
channels consisted of nearly transform limited pulses whose widths varied in
the range of 5-12 ps. This technique produced a 200 nm wide SC, resulting in
a 200 channel WDM source by 1995 [104]. The same technique was used to
produce even shorter pulses by enlarging the bandwidth of each transmission
peak of the optical filter. In 1997, Morioka et al. tuned the variable pulse
width in the range of 0.37-11.3 ps by using an arrayed waveguide grating
filter. In 1997, a SC source was used to demonstrate data transmission at a bit
rate of 1.4 Tb/s using seven WDM channels with 600-GHz spacing [105].

The majority of SC generation studies in conventional fibre focused on the
regime where pumping used ultrafast pump pulses. The detailed physics un-
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derlying SC generation using longer pump pulses or CW excitation remained
a subject of active research. Particularly an important work was reported by
[106], where numerical simulations were used to elucidate the relationship
between modulation instability, soliton dynamics, and Raman scattering under
CW pump conditions. This work highlighted the fact that the SC generation in
the anomalous GVD regime using CW pumps also involved soliton dynamics
as in the case of pulsed excitation. Although an important physical insight,
the lack of suitable high power CW sources somewhat limited follow up
experimental studies in this field.

4.3 SC generation in silica microstructured fibres

SC generation is observed in microstructured fibres such as in photonic crystal
fibres (PCFs) having a solid core in the center of the structure so that the fibre
consists of a region of solid glass surrounded by an array of air-holes running
along its length. The effective refractive index of the central region of the
PCF is higher than that of the surrounding air-hole region often referred to
as the photonic crystal cladding, and guidance occurs through modified total
internal reflection [107]. Although this is conceptually similar to the guidance
mechanism in conventional fibres, the additional degrees of freedom offered
by modifying the hole size and periodicity in such an index-guiding PCF open
up possibilities to engineer the waveguide dispersive properties in such ways
which simply do not exist in conventional fibres. The total dispersion of PCF
can be obtained by combining the both material and waveguide contributions
together. The material dispersion for the conventional fibre and PCF are same
but the wavguide dispersion are different for both fibres. Owing to high index
contrast between core cladding interface, PCF has higher confinement of
optical signal inside the core which in turn increases the nonlinearity of the
PCF than conventional fibres. The dispersive properties of the PCF can be
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adjusted easily by varying the air hole diameter and pitch which is impossible
in conventional fibres. Therefore, these two properties have given PCF the
superiority for SC generation than standard silica fibres.

In 2000, Ranka et al. experimentally reported SC extending from 400 to
1600 nm pumped with 100 fs pulses at 770 nm launched into a 75 cm long
section of a silica microstructured fibre exhibiting anomalous dispersion near
this wavelength with a peak power of 7 kW [7]. For such a short fibre SC
was extremely broad and relatively flat over the entire bandwidth. Similar
phenomena were observed in another experiment in the same year in which a
9-cm-long silica tapered PCF with 2 µm core diameter was employed and
observed output spectra with 100 fs duration pulses at average power levels
ranging between 60 and 380 mW [13]. SC spectra generated using short
PCF in 2000 led to an explosion of research activity during the years of
2002 and 2003 in this nascent field [108–113]. The selection of the pump
wavelength relative to the ZDW of the fibre was found to be a critical factor for
SC generation [108]. Spectral expansion was reduced considerably because
higher-order solitons could not form owing to the input pump wavelength fell
in the normal GVD region of the fibre. In one experiment in 2002, a Yb-doped
fibre laser producing parabolic pulses was used where the pump wavelength
employed was exceeded 1000 nm [109]. In another experiment in the same
year, femtosecond pulses were launched in the near of the second ZDW of a
tapered fibre obtaining SC extending from 1000 to 1700 nm pumped at 1260
nm with 750 pJ of energy [110]. In the same year, a cobweb type 4.1-cm
silica PCF with core diameters ranging from 1 to 4 µm was employed for SC
generation experimentally by launching pump at a duration of 18 fs. As the
PCF core was not perfectly circular, the fibre exhibited some birefringence.
The spectral widths of observed SC spectra varied considerably with the
polarization angle of incident light with respect to the slow axis of the fibre.
In another experiment, a 6-m-ong PCF at a pump wavelength of 850 nm
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with 200 fs duration of pulses were launched from which it was observed
the SC spectra exhibited multiple distinct peaks on the long-wavelength side
which corresponded to Raman solitons formed after the fission of a high-order
soliton [111]. In 2003, a relatively 600-m-long silica fibre employing 200
fs pulses from a mode-locked erbium fibre laser, a octave spanning SC was
obtained from 1100 to 2200 nm experimentally [112]. SC extending from
1000 to 2500 nm was obtained experimentally employing a single 5-m-long
highly nonlinear polarization maintaining fibre was used in a 2005 [113].

4.4 SC generation using nonsilica fibres

SC generation is of great theoretical interest as well as having numerous
applications in optical frequency metrology, bio-imaging and spectroscopy
due to having the creation of broadband spectral components from an intense
light pulse passing through a nonlinear medium [23]. The generation of SC
in a silica PCF and silica fibre tapers using a Ti:Sapphire laser had a striking
impact on this research field [7, 13]. To generate a SC with a large bandwidth
ranging from near-infrared to mid-infrared region with high brightness, nu-
merous efforts have focused on fused silica fibres. However, the intrinsic
transmission window of fused silica makes SC expansion beyond 2.2 µm
a challenging task [27] which caused a gradual shift towards other types of
glasses that have transmission windows transparent in the long wavelength
region. In particular silicon (Si), ZBLAN, tellurite, and chalcogenide were
investigated as nonlinear mediums for SC generation. Silicon offers a high
Kerr nonlinearity and is attractive for generating SC using silicon-on-insulator
(SOI) nanowires [28–30]. Although Si has low losses in the near infrared,
it has some disadvantages in the telecommunication band centred at 1550
nm where it is affected by two-photon absorption (TPA) and free-carrier ab-
sorption (FCA), both of which clamp spectral broadening of SC and limit the
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achievable bandwidth. The nonlinear properties of ZBLAN are approximately
same as silica while tellurite is roughly 30 times and chalcogenide can be as
much as a factor of thousand times more nonlinear than silica. Nonlinearity
when combined with reasonably low TPA makes these glasses highly suited
to both SC generation and ultrafast nonlinear switching applications. Fluoride
glasses have linear and nonlinear refractive indices similar to those of silica,
and ZBLAN has a lower loss than silica in the MIR, which enabled its use
in some recent high power SC generation experiment [114]. Heavy metal
oxide glasses such as lead silicate, bismuth oxide, tellurite have linear indices
in the range 1.8–2.0, nonlinear indices ten times higher than silica, material
ZDWs of 2-3 µm. Chalcogenide glasses such as GLS, As2S3 have linear
indices of 2.2–2.4, and As2Se3, GeAsSe have linear indices 2.4-2.6 where
their nonlinear indices significantly greater than those of the oxide glasses
and ZDWs larger than 4 µm.

In an experiment in 2003, a 30-cm-long fluoride fibre was pumped with 60
fs pulses and the SC extended in the range 350-1750 nm pumped at 1560 nm
with 210 pJ energy where the measured spectra were limited to under 1750
nm because of a limit set by the optical spectrum analyzer employed [115].
It was found that the spectrum extended beyond this limit in 2006 using an
infrared HgCdTe detector which could go up to 3000 nm for a fibre that was
only 0.57 cm long [116]. In this experiment, 110 fs pulses with a 80 MHz
repetition rate at a pump wavelength of 1550 nm were launched into a 2.6
µm core PCF made of Schott SF6 lead-silicate glass for the two different
lengths such as 0.57-cm and 70-cm for average launched powers in the range
of 1-70 mW, for which nonlinearity coefficient is 10 times larger than that
of silica. SC was obtained up to 3000 nm for the highest average power of
70 mW in this experiment. It was found in an experiment in 2006 that the
SC could be extended to up to 4500 nm by combining a 1-m-long silica fibre
with a few meters long fluoride fibre where the strong absorption exhibited
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by the fibres at wavelengths beyond 4500 nm [117]. The largest bandwidth
in the range 565-5240 nm was realized in 2009 when a 2-cm-long fluoride
fibre was pumped with 180 fs pulses at a wavelength of 1450 nm the average
power level of 20 mW [118].

SC generation also have observed in tellurite glass based microstructured
fibres. In 2008, the SC spectrum experimentally extended in the range 790-
4870 nm measured at the -20 dB below the peak spectral power when 100 fs
pulses with 1.9 nJ energy at a 1550 nm wavelength were transmitted through
a 0.8-cm-long PCF [119]. In another experiment in the same year, SC could
be extended from 900 to 2500 nm in a 9-cm-long microstructured tellurite
fibre even with a large effective mode area of 3000 µm2 pumped with 120
fs pulses [120]. In an experiment in 2009, SC was observed from visible
region to beyond 2.4 µm employing a 6-cm-long hexagonal core tellurite
PCF pumped using 400 fs pulses at 1557 nm with pulse energies of 0.6 nJ
[121].

Recently attention has focused on chalcogenide (ChG) glasses because
these glasses exhibit high optical nonlinearities (several hundred times that
of silica), are transparent in the MIR region, and can be easily drawn into
a fibre form [35]. Clearly, ChG fibres can be used to develop a SC source
providing wavelengths beyond 5 µm, where the propagation losses of silica,
ZBLAN, and tellurite fibres become intolerably large. ChG glasses contain
the chalcogen elements S, Se, Te, covalently bonded with elements such
as Ge, As, Sb and form stable glasses over a wide range of compositions
[122]. Their optical properties such as refractive index and nonlinearity can
be tuned by the appropriate selection of composition. In general, ChG glasses
possess relatively high refractive indices which in turn increases the nonlinear
refractive index according to Miller rule. For waveguide fabrication a high
refractive index is advantageous and allows strong confinement of light, a
reduction in the effective mode area and thus an increased nonlinear response.
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The high index contrast also allows the waveguide bend radius to be reduced,
which allows more compact integrated photonic devices. ChG glasses can
provide MIR transparency up to 14 µm when selenide-based materials are
employed [141]. Since GeAsSe glasses have excellent film-forming properties
and possess a relatively high third-order nonlinearity, there has been growing
interest in using them for designing optical waveguides for broadband MIR
SC generation [39]. Their high refractive index (2.4-2.8) allows strong optical
field confinement, enabling small form factors in photonic chip design, small
waveguide bend radii, as well as enhanced optical intensities for increased
nonlinear interaction efficiency. They are also attractive in terms of waveguide
fabrication because ChG glass can be drawn into high quality fibre (linear
loss of less than 1 dB/m for step-indexed fibre at 1550 nm) [123] or fabricated
as a planar waveguide on an oxidised silicon wafer (propagation loss of 0.05
dB/cm) [20]. In one approach, ultrashort pump pulses are launched into a
dispersion-engineered planar waveguide. However, this approach suffers from
cladding absorption and cut-off of the fundamental mode when an asymmetric
structure is employed. A fibre-based device remain attractive because of its
ruggedness, excellent beam quality, and relative ease of manufacturing [132].
Microstructured fibres are attractive due to their inherent advantages such as a
controllable mode area and desirable dispersion properties achieved through
tailoring their structural parameters. PCFs are particularly attractive as they
offer significant enhancement of the nonlinear effects owing to a strong mode
confinement and easier dispersion management resulting from the use of a
cladding containing air holes [142].

Several experimental and theoretical investigations on mid-infrared SC
generation were reported in ChG planar waveguides [21, 143–145] and ChG
fibres [38, 132, 134, 137, 147–151, 153–156]. In an experiment in 2008,
Lamont et al. [21] demonstrated SC generation in the range of 1200-1950 nm
with a bandwidth of 750 nm launching pulses of 610 fs duration with a peak
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power of 68 W in a 6-cm-long dispersion engineered As2S3 rib waveguide.
Gai et al. [143] reported SC generation from 2.9 µm to 4.2 µm in dispersion-
engineered As2S3 glass rib waveguide (6.6-cm-ong) pumped with 7.5 ps
duration pulses at a wavelength of 3.26 µm with a pulse peak power of
around 2 kW. Yu et al. [144] reported SC generation up to 4.7 µm using a
4.7-cm-long As2S3 glass rib waveguide employing MgF2 glass as a substrate
and pumped with 7.5 ps duration with a peak power of 1 kW pulses at a
wavelength of 3.26 µm. They observed a flat SC extending from 2.5 µm to
7.5 µm in 5-mm-thick bulk sample of Ge11.5As24Se64.5 glass pumped with
150 fs duration pulses with up to 20 MW peak power at a wavelength of 5.3
µm. They also reported theoretically that SC could be generated beyond 10
µm in a dispersion-engineered all-chalcogenide Ge11.5As24Se64.5 glass rib
waveguide pumped with 250 fs duration pulses at a wavelength of 4 µm or
longer. Yu et al. [145] recently reported the generation of broadband SC
spanning from 1.8 µm to 7.5 µm in dispersion-engineered Ge11.5As24Se64.5

glass 1-cm-long rib waveguide pumped at 4 µm using 320 fs pulses from a
periodically-poled lithium niobate optical parametric amplifier pumped with
commercially available mode-locked Yb laser with a peak power of 3260 W.
In the case of optical fibres, Salem et al. [124] numerically demonstrated
MIR SC extending in the range 3.14-6.33 µm by using 8-mm-long tapered
As2S3 PCF with input pulse energy of 100 pJ pumped at 4.7 µm. Kubat et al.

[149] reported a approach for generating MIR SC spanning in the range 0.9-9
µm by using concatenated 10-m-long fluoride and 10-cm-long chalcogenide
fibres using a Tm fibre laser with a duration of 3.5-ps at a wavelength of
2 µm. For step-index fibre based on As2S3, Hudson et al. [38] reported
1.9-octave SC extending from 1.6 µm to 5.9 µm pumped at a wavelength of
3.1 µm with a peak power of 520 kW. Al-Kadry et al. [156] reported MIR
SC generation from 1.1 µm to 4.4 µm in 10-cm-long As2Se3 microwires
pumped with 800 fs duration pulses at a wavelength of 1.94 µm with energy
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of 500 pJ. Petersen et al. [150] used 100 fs pulses at 6.3 µm to generate SC
covering the range 1.4-13.3 µm in 85 mm long As2S3 step-index fibre with a
16 µm core. Mφ ller et al. [151] used a 18-cm-long, low-loss, suspended core
As38S62 fibre and generated a SC spanning from 1.7 to 7.5 µm by pumping
this fibre with 320 fs pulses with a peak power of 5.2 kW at a wavelength of
4.4 µm. Yu et al. [152] recently reported that a SC extending from 1.8 to 10
µm could be generated in a 11-cm-long, GeAsSe-based fibre using 320 fs
pump pulses at a wavelength of 4 µm with a moderate peak power of 3 kW.

The SC generation in As2S3 fibres and waveguides has been limited to 5
µm due to their increased losses in the long wavelength region [132, 143, 153].
Although As2Se3 chalcogenide glass has its loss edge in the long wavelength
region around 16-17 µm, the use of such materials for SC generation has so
far been limited owing to high peak power pump sources required in the MIR
region [31, 150, 156]. Among all chalcogenide materials, Ge11.5As24Se64.5

ChG glass has excellent film-forming properties with high thermal and op-
tical stability under intense illumination [39]. Recently interest has grown
in designing and optimizing planar waveguides and microstructured based
fibres made from Ge11.5As24Se64.5 chalcogenide glass owing to having MIR
transpaprency up to 14 µm for broadband MIR SC generation far into the
MIR regime with suitably tailored group-velocity dispersion (GVD), includ-
ing a zero-dispersion wavelength (ZDW) close to the central wavelength of
the pump sources [21, 35].

4.5 Summary

SC sources have been widely available since 1970 and the physics describing
its operation has been theoretically and experimentally predicted and iden-
tified since the end of the 1980s. It is really quite remarkable that the rapid
growth in optical fibre based SC sources development has been commenced
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in the last decade. In this chapter initially we have given the short overview
of SC generation employing bulk media following the conventional fibres.
Then a brief overview on SC generation using silica microstructured fibres
has been presented. Finally SC generation employing nonsilica fibres such as
flouride and tellurite fibres have been described following highly nonlinear
material such as chalcogenide glasses which are being nowadays considered
as a promising platform for the realisation of compact on-chip SC genera-
tion. The overview on SC generation described in this chapter gives some
indication of how this nonlinear optical processes such as dynamics of SC in
optical waveguides has led to this development.



Chapter 5

SC generation in chalcogenide nanowire

Recently chalcogenide (ChG) planar optical waveguides have emerged as the
key devices to construct scalable, low cost integrated optical circuits such
as supercontinuum (SC) laser sources for numerous applications between
near-infrared (IR) and mid-infrared (MIR) regimes [143–145]. Among such
planar integrated circuits ChG rectangular channel waveguides have shown
promising waveguide design for such applications. ChG waveguide enables
the generation of MIR SC to above 10 µm due to its wide transmission
window as well as the higher nonlinear refractive index (n2), depending on
the content of sulphur (S) or selenium (Se) used [146–149]. ChG glasses made
from series of compound glasses such as As2S3, As2Se3, Ge11.5As24S64.5,
and Ge11.5As24Se64.5 are typically used for optical waveguides fabrication
[150–152]. Particularly, the compound Ge11.5As24Se64.5 ChG glass has a
large ultrafast third-order nonlinearity among other ChG compounds reported
which makes it attractive for fabricating planar optical waveguides as laser
sources for broadband SC generation. Its high linear refractive index n ≈ 2.6
and broad infrared transparency beyond 14 µm suggest that compact optical
circuit waveguides can be fabricated for near-IR to MIR applications. A high
linear refractive index of this glass implies a higher nonlinear refractive index,
n2 which induced from ultrafast third-order (Kerr) nonlinearity which is up to
thousand times that of silica, making this ChG glass attractive for all optical
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signal processing [35–37]. Owing to having such useful properties, we choose
to design and optimize a ChG nanowire through dispersion engineering made
from Ge11.5As24Se64.5 ChG glass for wideband SC generation.

This chapter presents detailed analysis of chalcogenide nanowire design for
SC generation. Section 5.1 briefly reviews the materiel properties of chalco-
genide glasses. Section 5.2 presents the dispersion optimization technique
for analyzing two dimensional rectangular waveguides such as chalcogenide
nanowires through rigorous numerical simulations by FE mode-solver. To
test and verify the results obtained by FE mode-solver, two accuracy testing
techniques have also been discussed in this section. Section 5.3 provides
the simulations parameters for solving GNLSE numerically to predict SC
generation in ChG nanowire output. Section 5.4 describes the results obtained
through GNLSE simulations with the propagation dynamics occurred during
wideband SC generation by the nanowire geometries optimized through FE
mode-solver in earlier section. Section 5.5 shows verification of a SC result
obtained through SSFM by frequency domain method. Finally, section 5.6
summarizes the study.

5.1 Material properties of ChG glasses

Chalcogenide glasses are comprised of heavy elements which give them
some unique properties for infrared, nonlinear and waveguide optics. They
contain one or more of the chalcogen elements from group 16 of the periodic
table (S, Se, Te but excluding oxygen) covalently bonded to network formers
such as As, Sb, Ge, Gb, Si, or P etc. They are, therefore, composed of
relatively weakly bonded heavy elements and this leads to many of their
most important optical and physical properties. Relatively low bond energies
results in optical gaps in the visible or near IR as well as low to moderate glass
transition temperatures (Tg ≈ 100−400◦C). The low vibrational energies of
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the bonds extends optical transparency to 8 µm for sulphides to 14 µm for
selenides and beyond 20 µm for tellurides although impurities often exist in
bulk glasses or films which significantly limit long wavelength transmission.
For example ’high purity’ chemical elements used for glass fabrication often
contain significant quantities of C, O and H and these lead to absorption
bands between 1.4 µm and 15 µm. As a consequence, a number of diverse
approaches for purifying the starting materials have been developed that can
reduce impurity levels to ≈ 10−5% by weight, thus markedly improving
infrared transparency [31, 35, 129].

A scenario, how the properties of ChG glasses depend on composition,
has emerged from the literatures [35, 125–128] where researchers works
have shown substantial improvement of the understanding of the network
topology of ternary chalcogenides such as the GeAsSe system. Recent studies
comparing the properties of GeAsSe films with those of bulk glass suggest
that for some composition films formed by thermal evaporation are also self
organized so that they form with chemical bonds indistinguishable from those
of the bulk glass [35, 130]. This is in fact quite unusual for ChGs since
creating a film by physical vapour deposition onto a cold substrate is a highly
non-equilibrium process which results in the film containing large numbers
of defect bonds or molecular clusters. As a result it is usual for evaporated
ChG films to have different physical properties (band-gap, refractive index,
density, etc) from the bulk glass. Thus the self-organizing nature of networks
is important for film forming and creates films that have been shown to be
thermally stable. This has motivated researchers to study compositions such
as Ge11.5As24Se64.5 which is an example of a thermally stable nonlinear
optical glass suitable for waveguide fabrication.

The structure of GeAsSe ChG glass on the atomic scale is best described
as a continuous random network, for which an important parameter is the
mean coordination number (MCN) - the sum of the products of the individual
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abundance times the valency of the constituent atoms. For common binary
ChG glass such as As2Se3, the As-Se network is locally two dimensional
with weak van der Waals bonding between the layers. The addition of atoms
such as germanium makes the network three dimensional by creating bonds
between layers, increasing network rigidity, Tg, strength and hardness. Gai
et al. reported that glasses from the intermediate phase of the GeAsSe
system corresponding to compositions with MCN around 2.45-2.5 should be
the best for waveguide fabrication [35, 129, 130]. They demonstrated that
films in this range deposited by thermal evaporation have physical properties
(refractive index, band gap, density) indistinguishable from those of the bulk
glass [35, 130]. In contrast, films with higher (or lower) MCN have quite
different properties from the bulk. A consequence is that thermal annealing of
films in the region of the intermediate phase does not change their properties
whereas outside this region large changes can occur. Therefore it is believed
that Ge11.5As24Se64.5 ChG glass is a good stable material for waveguide
fabrication.

The linear propagation loss of ChG waveguides due to material absorption
is almost negligible in short waveguides design. The loss becomes more
significant when the waveguide dimensions are reduced to the submicron
range. Scattering losses of the optical field at the core-cladding boundary
may become more significant only in the transition regions of the tapered
fibre waist. To date the smallest planar waveguides/nanowires fabricated from
GeAsSe ChG glass have losses around 1.5 dB/cm reported at a wavelength of
1550 nm through process improvements [35]. For larger planar waveguides,
the optical losses have reported around 0.05 dB/cm at 1550 nm [20]. This is
comparable with the lowest losses achieved in silica planar waveguides and
indicate that complex circuits requiring long path lengths are also feasible.
Nevertheless, for producing low loss waveguides operating over wide ranges
in the MIR, impurity absorption in the glass films must be carefully controlled
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to preserve optical transparency which will require careful attention to the
purity of the starting materials used to make films and to the processes used
to make the devices [35].
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H

Fig. 5.1 Schematic diagram of chalacogenide nanowire.

5.2 ChG nanowire design

5.2.1 Structure of ChG nanowire

When a thin layer with a slightly increased refractive index is fabricated on
top of some crystal or glass, it functions as a planar waveguide. Generally,
rectangular planar waveguides consist of a square or rectangular core sur-
rounded by a cladding with lower refractive index than that of the core. A
channel waveguide has a guiding structure in the form of a stripe with finite
width and thickness. This may be a ridge on top of the cladding structure or
an embedded channel. A ridge type ChG nanowire is designed and optimized
here which is shown in Fig. 5.1. Five nanowire structures have been opti-
mized here through dispersion tailoring by varying nanowire dimensions at a
pump wavelength of 1550 nm intended for applications in the MIR around 3
µm for wideband SC generation.
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The schematic diagram of the Ge11.5As24Se64.5 ChG nanowire used in our
simulations is shown in Fig. 5.1. The wavelength-dependent linear refractive
index of Ge11.5As24Se64.5 and SiO2 glasses over the entire wavelength range
used in the simulation was obtained using the Sellmeier equation,

n(λ ) =

√
1+

m

∑
j=1

A jλ 2

λ 2 −λ 2
j
, (5.1)

Here λ is the wavelength in micrometers. We use the Sellmeier coefficients
calculated by fitting smooth curves to the measured refractive index data for
the ChG [39] and the SiO2 [166] glasses. The values of the integer m and the
fitting coefficients are given in Table 5.1.

Table 5.1 Sellmeier fitting coefficients

Material Ge11.5As24Se64.5[39] SiO2[166]
m 1 2

A j λ j A j λ j
j = 1 5.78525 0.287950 0.6961663 0.0684043
j = 2 0.39705 30.39338 0.4079426 0.1539661
j = 3 – – 0.8974794 9.8961610

5.2.2 Aitken extrapolation technique for accuracy testing of FE modal
solution

Before evaluating GVD and higher-order dispersion parameters, accuracy of
the finite-element modal solutions is tested. It should be noted that the design
of optical waveguides for SC generation depends on dispersion parameters, βm

(m ≥ 2) and βm depends on mode propagation constant, β0(ω). So accuracy
of any design critically depends on modal solutions of a waveguide. It is well-
known that accuracy of numerical solutions depends on several discretization
parameters. For our optical waveguides, solution accuracy depends on the
number of elements used to represent the waveguide structure. Using the FE
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Fig. 5.2 Dominant Hy field profile of fundamental quasi TE-mode (H11
y ) for the nanowire

structure of W = 700 nm and H = 500 nm at a wavelength of 1550 nm; a) Contour, b) Surface,
c) Hy field along width, and d) Hy field along thickness of a nanowire.

method described in Chapter 3 we have obtained modal solutions from which
mode propagation constant β (ω) of the fundamental mode over a range of
frequencies are evaluated and calculate the effective index,

neff =
β (ω)

2π
λ (5.2)

where λ is the operating wavelength.

Figure 5.2 shows the (H11
y ) mode field profile of the fundamental quasi-TE

mode with the four different field representations of the nanowire structure,
W = 700 nm and H = 500 nm at a wavelength of 1500 nm. It is apparent from
different field representations inside the core as well as along the dimensions
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of the structure that the mode is highly confined inside the core of this
nanowire. Variation of the effective index, neff with the number of mesh
divisions N used is shown in Fig. 5.3 by a solid black line for the fundamental
mode of a waveguide designed with the width and thickness, W = 700 nm,
H = 500 nm and the operating wavelength of 1550 nm. The same value
of mesh division, N was used in both the transverse directions. It can be
observed that, as N increases, neff first increases rapidly and then reaches a
constant value asymptotically. It should be noted that when a 100×100 mesh
is used neff is accurate to 3rd decimal place, and the accuracy is increased
to 4th decimal place when mesh size is increased to 500×500. A powerful
extrapolation technique [133] was used to test the accuracy of modal solution
for this nanowire structure. Aitken’s procedure [133] extrapolates from three
successive values of neff with a fixed geometric mesh division ratio in both
the transverse dimensions of a waveguide:

n∞
eff = neff(r+1)−

[neff(r+1)−neff(r)]
2

neff(r+1)−2neff(r)+neff(r−1)
, (5.3)

Table 5.2 Aitken’s extrapolated values calculated using Equation (5.3) for the nanowire, W =
700 nm, H = 500 nm at a wavelength of 1550 nm.

Mesh (Nx ×Ny) neff Aitken value
(
n∞

eff
)

50 × 50 2.20901 –
100 × 100 2.21377 –
150 × 150 2.21470 –
200 × 200 2.21503 2.21548
250 × 250 2.21519 –
300 × 300 2.21529 –
400 × 400 2.21536 2.21548
500 × 500 2.21540 –
600 × 600 2.21543 2.21547
800 × 800 2.21545 2.21547

1000 × 1000 2.21546 2.21547
1200 × 1200 2.21546 2.21547
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We have plotted the Aitken extrapolated values of n∞
eff from Table 5.2 in

Fig. 5.3 by a red-dashed line. Using Equation (5.3), for instance, we calculate
Aitken’s value from three successive neff values of 2.20901, 2.21377, and
2.21503 for mesh divisions, Nx ×Ny = 50× 50,100× 100, and 200× 200,
respectively. From these three values, the extrapolated more accurate value
is 2.21548. It is possible to get similar accuracy without using Aitken’s
extrapolation, but it would take a mesh finer than 1000×1000 to obtain it.
Figure 5.3 clearly illustrates the convergence of raw FEM results and the
advantage of using an extrapolation technique.

Fig. 5.3 Variation of neff of the fundamental quasi-TE mode with the mesh size and improve-
ment realized with the Aitken extrapolation technique.

5.2.3 Calculation of GVD and higher-order dispersions

Dispersion of the waveguide plays an important role in determining the SC
spectrum. Ideally dispersion near the pump wavelength should be small in
magnitude as well as relatively flat in nature [137]. ChG glasses generally
have smaller material dispersion than silicon. However, to obtain the ZDW
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close to the pump wavelength, relatively larger waveguide dispersion is re-
quired to offset the material dispersion, resulting in a waveguide that supports
more than one mode. To reduce higher-order modes, a polymer cladding
with a refractive index value of 1.51 is often used in place of air cladding
[35] as it reduces the index contrast between the core and cladding of the
nanowire. As chromatic dispersion of the waveguide manifests through the
wavelength dependence of the refractive index n(λ ) which is approximated
by the Sellmeier Equation (5.1), therefore, the GVD parameter of the ChG
nanowire can be calculated from the neff by

D(λ ) =
dβ1

dω
=−λ

c
d2neff

dλ 2 (ps/nm/km) (5.4)

where β1 = 1/vg, vg is the group velocity of pulse envelop and the third-order
dispersion (TOD) can be calculated as

TOD =
dD(λ )

dω
(ps3/km) (5.5)

The GVD, TOD and subsequently other higher-order dispersion coeffi-
cients up to eighth-order are calculated from neff numerically implemented
by finite-difference method. Spectral broadening of a SC mainly depends on
these dispersion parameters and the nonlinear coefficient, γ , which in turn
depends on the nonlinear refractive index of the material, n2 and effective
mode area of the waveguide. Optimized mode area, Aeff can be obtained by
using our FE mode-solver [79] and using this Aeff a relatively large nonlinear
co-efficient can be realized [27].

To realize a ZDW close to the pump wavelength and to make dispersion
slightly anomalous at this pump wavelength, the dimension of Ge11.5As24Se64.5

nanowires can be adjusted. In one set, thickness of the waveguide is kept
constant at 500 nm and its width is varied as shown in Fig. 5.4(a). This
figure shows dispersion curves having two ZDWs, with anomalous dispersion
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(a)

(b)

Fig. 5.4 GVD curves for the fundamental quasi-TE mode calculated from the neff values for
(a) different W and same H and (b) different H and same W. Vertical dotted line represents
the wavelength λ = 1550 nm.
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between these two ZDWs but both the peak value and slope of these curves
increases as the width is increased. It can be observed from this figure that the
1st ZDW point with a positive slope shifts from left to right, and the 2nd ZDW
with a negative slope also shift towards right but with a larger margin when W

is increased. In this case the overall anomalous range also increases. Figure
5.4(a) clearly illustrates that the ZDW of the waveguide can be realized close
to the pump wavelength by varying the width of that waveguide. In the other
set of dispersion curves shown in Fig. 5.4(b), thickness of the waveguide
is varied while keeping its width constant at 700 nm. In this case, ZDWs
shift in the opposite directions, but the long wavelength one shifts more than
the shorter one. It can be observed that the peak value of D increases when
H is increased. Figures 5.4(a) and 5.4(b) indicate that the lower ZDW of a
waveguide can be made to fall near the pump wavelength by adjusting the
waveguide dimensions W and H.

5.2.4 Accuracy testing of GVD with the variation of FE mesh and data
fitting through Taylor series expansion

As the dispersion of waveguide depends on neff which varies with λ , the
accuracy of GVD also required testing as well as all higher-order dispersion
coefficients calculated from it. Accuracy of the resulting curve is shown
in Fig. 5.5 for three different mesh sizes for the same nanowire structure
with W = 700 nm, H = 500 nm. The resulting dispersion curves nearly
overlap since they are related to changes in the neff values rather than their
absolute values. At the 1550 nm wavelength, GVD for three different meshes
are calculated as 29.60 ps/nm/km, 30.49 ps/nm/km, and 30.94 ps/nm/km,
respectively. The small differences among these dispersion values do not
result in significant changes in the SC spectrum. However, we have observed
through numerical simulations that the third and higher-order dispersion
parameters have significant effect on the SC generation. In the following
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Fig. 5.5 GVD for the fundamental quasi-TE mode as a function of wavelength for the naowire
structure with W = 700 nm and H = 500 nm. The black-solid, red-dashed, and blue-dotted
correspond to a mesh size of 200×200, 300×300, and 600×600, respectively.

numerical results we have used an appropriate mesh size and we are confident
about the accuracy of numerically simulated results.

To confirm the accuracy of the GVD coefficients obtained from the FE
mode-solver, we plot in Fig. 5.6 the GVD curves for the nanowire structures W

= 775 nm, H = 500 nm and W = 800 nm, H = 500 nm obtained with the curve
fitting method, using the Taylor series expansion and adding successively
higher-order dispersion terms. However, as shown in Fig. 5.4, wavelength
dependent dispersion D(λ ) can also be directly calculated over the whole
wavelength range; these curves are shown by a black lines in Fig. 5.6. By
taking adequate number of higher-order dispersion terms one hopes to mimic
the actual wavelength dependent D(λ ), but when a limited number of higher-
order terms are used, the resulting dispersion curve may be very different
than the actual one. It is apparent from the Fig. 5.6(a) an 5.6(b) that the GVD
curves obtained from curve fitting closely matches with the actual GVDs
when dispersion up to eighth-order is included. This gives us confidence in
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(a)

(b)

Fig. 5.6 GVD curves obtained with FE method (black) fitted the Taylor series expansion up
to β8 for the nanowires (a) W = 775 nm, H = 500 nm and (b) W = 800 nm, H = 500 nm.
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claiming that the results obtained by truncating the Taylor series at the β8

term represent the situation one will observe in actual experiments.

5.3 Simulation parameters for SC generation

To predict the bandwidth of SC in ChG nanowire, the generalized nonlinear
Schrödinger equation (GNLSE) is solved numerically by split-step Fourier
method (SSFM) as described in Chapter 3. The pulse width is taken to be 50
fs (FWHM) at a pump wavelength of 1550 nm, and the nonlinear refractive
index, n2 of ChG is taken to be 8.6×10−18 m2/W at this pump wavelength
[35]. The linear propagation loss is taken to be 3.2 dB/cm at a wavelength of
1550 nm [37]. Light propagation in ChG material at a wavelength of 1550 nm
is significantly influenced by two-photon absorption (TPA) which is taken to
be 9.3×10−14 m/W [35]. The delayed Raman response given by the equation
in Chapter 2 is estimated with considering fractional delayed Raman response,
fR = 0.031, τ1 = 15.5 fs, and τ2 = 230.5 fs [134].

To numerically solve GNLSE in SSFM method, we must represent the
field on a temporal grid propagate stepwise (∆z) through the length (z) of the
waveguide. Therefore, the temporal grid length (T ) must be wide enough
consisting of a number of smaller time-steps (∆t) so that it can accommodate
extreme spectral broadening during pulse propagation containing maximum
frequency of the field. For containing maximum frequency in the temporal
grid, one must choose a temporal grid spacing (∆t) corresponding to twice
the highest frequency and for SC generation this limit is usually on the short
wavelength edge. The bandwidth (BW) of spectral window can be calculated
as

ωBW =
2π

∆t
= 2πc

(
1

λmin
− 1

λmax

)
(5.6)
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where c is the velocity of light and λmin, λmax are the wavelengths at the short
and long wavelength edge of the spectral window, respectively.

As λp is the center wavelength of the pulse, therefore, we can calculate
λmin and λmax from Equation (5.6) as follows:

1
2∆t

= c

(
1

λmin
− 1

λp

)
∴ λmin =

1
1
λp
+ 1

2c∆t

(5.7)

λmax =
1

1
λp
− 1

2c∆t

(5.8)

where ∆t is temporal grid spacing and λp is the pump wavelength. From
Equation (5.8) it is seen that there is a lower limit on ∆t which is given by
∆t > λp/(2c) in order to avoid negative frequencies in the spectral window.
For our case at a pump wavelength of 1550 nm, we obtained minimum ∆t of
2.6-fs.

Considering grid point 213 (FFT point) and utilizing the obtained minimum
∆t of 2.6-fs, using Equations (5.7) and (5.8) we can calculate λmin = 777 nm,
λmax = 24 µm and time window is found to be T = 22 ps which is wide enough
to capture the SC spectrum produced in the output of our ChG nanowire.

5.4 Results and discussions

To study SC generation GNLSE can be solved either in the time domain or in
the frequency domain. In this work, we have used time-domain formulation
for our simulations using a split-step Fourier method (SSFM), as this is the
most commonly reported approach. We verified the result obtained by our
SSFM with so called frequency domain ’Interaction Picture’ method given in
Dudley et al. [138] later in this chapter. Initially a waveguide with W = 700
nm and H = 500 nm is considered for SC generation. This nanowire structure
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is selected because the GVD of this structure is nearly flat near the pump
wavelength of 1550 nm. Higher-order dispersion coefficients βm (m≥ 2) up to
eighth-order (β2 to β8) were calculated numerically from the dispersion curve.
Our aim here is to study the effect of higher-order dispersion coefficients βm

(m ≥ 2) terms on the supercontinuum bandwidth, and how the numerically
simulated SC spectrum is modified with the inclusion of successive higher-
order dispersion terms. Using the FE mode-solver, we obtain Aeff = 0.28
µm2 for our nanowire and this Aeff yields γ = 123 /W/m. For numerical
simulations a TE polarized 50 fs FWHM secant pulse is launched with the
peak power of 25 W. We include wavelength independent propagation loss
of 3.2 dB/cm [35] for the 18 mm long nanowire. Simulations have been
carried out to test the effect of each higher-order dispersion (β3 to β8) terms
successively and the generated spectra are shown in Fig. 5.7. With the
addition of third-order dispersion term, the SC broadens from 850 nm to 3550
nm (black curve) resulting in a -60 dB bandwidth of around 2700 nm. The

Fig. 5.7 Changes in SC spectra with the successive addition of higher-order dispersion terms
pumped at a wavelength of 1550 nm for the nanowire of dimensions W = 700 nm and H =
500 nm.
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equivalent -20 dB bandwidth for this case is 1500 nm. However, after the
addition of the fourth and other higher-order dispersion coefficients, the SC
spectrum becomes narrower. Spectral narrowing converges slowly with the
further addition of higher-order dispersion terms, and the spectra with βm up
to 7th and 8th terms are almost identical. For our nanowire structure the final
supercontinuum extends from 1200 nm to 2100 nm.

Fig. 5.8 Temporal intensity (top), spectral density (middle) and spectrogram (bottom) in-
cluding terms up to β3 (left column), up to β4 (middle column), and up to β8 (right column)
pumped at a wavelength of 1550 nm for the nanowire of dimensions W = 700 nm and H =
500 nm.
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The dynamics of SC generation is well-known. However, we will here
make a numerical investigation of the SC generation broadening process
and the influence of Raman contribution with the successive addition of
higher-order dispersion parameters for the nanowire structure of W = 700
nm and H = 500 nm. As the pump lies in the anomalous GVD regime,
SC generation is mainly dominated by the soliton fission process. Initially
the propagation of the optical pulse is compressed due to the higher-order
soliton dynamics. As a result, a broadened spectrum produced from strong
temporal contraction and this expanded spectrum touched with the resonant
radiation frequency of a dispersive wave on the anti-stoke side. Further
propagation now leads to a break-up of the higher-order soliton into a number
of fundamental solitons through soliton fission process. For the soliton order,
Nsol = 8.13, soliton fission occurs at a distance of Lfiss = 2.6 mm (Fig. 5.8
(a), (b), and (c)), mainly because of perturbation induced by third and higher-
order dispersion parameters. To understand the spectrum broadening process
we have considered terms up to β3, β4, and β8 separately in the Fig. 5.8.
When only third-order dispersion is added, multiple fundamental solitons are
produced after the fission, whose spectra shift toward the longer wavelength
side (stoke-side) because of intrapulse Raman scattering, producing multiple
spectral peaks in the spectrum. In addition, from Fig. 5.8 (a), (d), and (g) it
is apparent that each Raman soliton loses some of its energy from which a
non-solitonic radiation (NSR) in the form of dispersive wave is also generated
but its spectrum lies on the shorter wavelength side (anti-stokes) of the input
spectrum. When even-order dispersions such as β4, β8 terms are added, it is
well-known that NSR is generated on both sides of the input spectrum that
are clearly observed in Fig. 5.8 (b), (e), (h) (addition of dispersion terms
up to β4) and (c), (f), (i) (addition of dispersion terms up to β8). Since the
GVD curve of this nanowire has two ZDWs and a strong NSR is produced
in the stoke-side of the SC spectrum right after the second ZDW (located
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at around 1710 nm in Fig. 5.4 (a) for the black-solid line curve) of the
GVD curve which is only due to the soliton suppression effect. Since the
dispersion slope (dD/dλ ) of the GVD curve in the vicinity of the second
ZDW is negative, owing to the spectral-recoil effect (soliton suppression)
the negative dispersion slope has significantly modified the SC spectrum
through the generation of strong redshifted dispersive wave, allowing the SC
generation is extended further into the infrared. It is evident from Fig. 5.8 that
the final SC depends strongly on how many dispersion terms are included,
and one should include higher-order dispersion coefficients as accurately as
possible to avoid spurious results. The temporal and spectral differences are
also apparent in the spectrogram shown in Fig. 5.8 (bottom row) and the
effect of β3 [Fig. 5.8(g)], β4 [Fig. 5.8(h)] and β8 [Fig. 5.8(i)] on SC spectra
are clearly observed for our proposed nanowire.

To show sensitivity to the waveguide geometry, we consider another
nanowire structure with W = 775 nm and H = 500 nm, having its ZDW

Fig. 5.9 Changes in SC spectra with the successive addition of higher-order dispersion terms
pumped at a wavelength of 1550 nm for the nanowire geometry, W = 775 nm and H = 500
nm.
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Fig. 5.10 (a) Temporal and (b) Spectral evolution for 50 fs pulse launched with 25 W peak
power pumped at a wavelength of 1550 nm along the length of the nanowire structure, W =
775 nm and H = 500 nm.
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closer to the pump wavelength compared to the previous structure. For this
waveguide, with Aeff = 0.31 µm2 obtained by the FE technique, γ = 114
/W/m. After evaluating various dispersion coefficients from dispersion curve
and keeping all other parameters the same, we have performed numerical
simulations for dispersion terms up to β8 successively. Figure 5.9 shows the
resulting SC spectra and should be compared to Fig. 5.7. Unlike the previous
structure interestingly we observe for this nanowire that SC spectrum gets
broaden significantly when the β4 term is added. However, after the addition
of fifth and higher-order dispersion terms, SC spectrum again starts to be-
come narrower. In this case, the SC extends from 1200 nm to 2400 nm when
third-order dispersion in included, yielding a bandwidth of 1200 nm (1100
nm bandwidth at -20 dB). However, when fourth-order dispersion is added,
the SC spectrum broadens up to 4600 nm generating bandwidth of 3400 nm
(2950 nm bandwidth at -20 dB). On the other hand, with the addition of fifth
and higher-order dispersion terms, spectrum becomes narrower. With the
addition of β8 term, the SC converges and has a final bandwidth of 1200
nm (1150 nm bandwidth at -20 dB). Spectrum obtained with up to β7 term
is not shown in Fig. 5.9 as this is almost identical to that of up to the β8

term. The effects of successive addition of higher-order dispersion terms
corresponding to Fig. 5.9 are also shown through density plots (middle row)
and spectrograms (bottom row) in Fig. 5.11.

Figure 5.10 shows the spectral and temporal evolution of 50-fs pulse along
the length of ChG nanowire. For the soliton order, Nsol = 10.74 and the soliton
fission length, Lfiss = 3.8 mm, the same phenomena occur after the addition of
third-order dispersion. As seen in Fig. 5.10(a) and 5.10(b), initially the pulse
undergoes an compression phase while its spectrum broadens because of
SPM. However, after 3.8 mm or so, the soliton undergoes the fission process,
mainly because of perturbations caused by the β3 term added, and the pulse
break up into multiple fundamental solitons. When the β4 term is added, the
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Raman induced frequency shift (RIFS) reduces gradually as solitons spectra
shift towards the second ZDW located at 1865 nm. Since β3 is positive near
the first ZDW but becomes negative near the second ZDW, the change in sign
of β3 changes the frequency associated with NSR generated during soliton
fission and the RIFS is completely suppressed near the second ZDW. This
phenomena has been called the spectral recoil effect [24,25]. According
to energy conservation, as RIFS stops at the second ZDW, because of the

Fig. 5.11 Temporal intensity (top), spectral density (middle) and spectrogram (bottom)
including terms up to β3 (left column), up to β4 (middle column), and up to β8 (right column)
pumped at a wavelength of 1550 nm for the nanowire geometry, W = 775 nm and H = 500
nm.
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spectral recoil effect soliton loses its energy to NSR that is red-shifted and
lies in the infrared region beyond the second ZDW. The red-shifted NSR is
mainly responsible for generating much larger SC bandwidth after addition
of the β4 term. This is also evident from spectral density and spectrogram
shown in Figs. 5.11(e) and 5.11(h), respectively. This large SC bandwidth
reduces considerably after addition of β5 and higher-order terms. Once again,
we note that a premature truncation of the Taylor series can lead to spurious
and misleading results.

To study the impact of device geometry, we have carried out rigorous
numerical simulations for multiple GeAsSe planar structures whose width
varies from 700 to 800 nm, and some of the results were shown in Fig.
5.12. For this set, their GVD curves are shown in Fig. 5.4(a). Dispersion
coefficients up to β8 terms are included for all simulations shown in Fig.
5.12. For the nanowire structure with W = 800 nm, H = 500 nm which
has its ZDW very close to the pump wavelength, it can be observed from

Fig. 5.12 Numerically simulated SC spectra for nanowires with the dispersion curves shown
in Fig. 5.4(a) by including dispersion terms up to β8 at a pump wavelength of 1550 nm.
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Fig. 5.12 that the SC extends over 1300 nm (1250 nm bandwidth at -20 dB)
covering a wavelength range from 1200 nm to 2500 nm, which is more than
the bandwidth achieved by other nanowire structures with widths less than
800 nm.

5.5 Simulated SC result verification with frequency domain
method

We have verified one of our SC spectrum obtained through SSFM with the
frequency domain ’Interaction Picture’ method presented in Dudley et al.

[138] and the comparison of results obtained by both methods is shown in Fig.
5.13. It can be observed from the result shown in figure that both methods
are able to produce nearly same result for SC generation after numerical
simulations.

Fig. 5.13 Numerically simulated SC spectra for nanowire, W = 775 nm and H = 500 with
time domain (SSFM) and frequency domain (Interaction Picture) including dispersion terms
up to β8 at a pump wavelength of 1550 nm with a peak power of 25 W.
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5.6 Summary

In this chapter, a full-vector FE method is used for dispersion tailoring the
Ge11.5As24Se64.5 ChG nanowire through rigorous numerical simulations. The
nanowire designed, by varying it transverse dimensions, in such a way that
it exhibits anomalous dispersion near a chosen pump wavelength and can
generate broadband supercontinuum at low pump powers. As numerically
generated SC spectra critically depends on the dispersion properties of the
nanowire, we have discussed how the accuracy of dispersion can be affected
with the choice of the mesh divisions used for the FE technique. We have
numerically studied SC generation in such nanowire and discussed the effects
of higher-order dispersion coefficients from β3 to β8 terms on their SC band-
widths. We have designed five nanowire structures widths considering in the
range from 700 to 800 nm keeping the same 500 nm thickness. As seen in
Fig. 5.4(a), all of them exhibit anomalous dispersion at a pump wavelength
of 1550 nm and all have two ZDWs. We have carried out SC simulations for
all five nanowire structures and optimized a design for realizing a wideband
SC generation.

Here we highlights the effects of higher-order dispersion coefficients on the
SC spectrum and identifies changes that occur with addition of each successive
dispersion coefficient in numerical simulations. In earlier simulation-based
works on SC generation, sometimes the Taylor series expansion has been
truncated after the third-order or fourth-order term. We have shown that this
may not produce an accurate SC spectrum and more higher-order dispersion
terms may need to be included to obtain a reliable SC spectrum. In this
work propagation losses for nanowires were taken to be 3.2 dB/cm [35]
although such a high loss might not effect on a short device design. However,
recent work has shown that this loss can be reduced to around 1.5 dB/cm
through process improvements [37]. Our conclusions are not affected if this
lower value of loss is used for the simulations. Finally we have shown the
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comparison between time domain ’split-step Fourier method’ and frequency
domain ’Interaction Picture’ method for one of our earlier result obtained
through SSFM. It was found good matching between the results obtained
through those methods after numerical simulations for SC generation.



Chapter 6

Mid-infrared SC generation in
chalcogenide waveguides

Supercontinuum (SC) generation in mid-infrared (MIR) has increasingly
become a focus for research because bright MIR light sources can be used
for molecular fingerprint spectroscopy, frequency metrology, optical coherent
tomography and microscopy [27, 36]. In recent years, several experimental
and theoretical investigations on MIR SC generation were reported in ChG
planar waveguides [143–145] and ChG photonic crystal fibres [147, 148]. In
our earlier work on SC source design shown in Chapter 5, we demonstrated a
low-power broadband SC source with dispersion-tailored Ge11.5As24Se64.5

ChG nanowire with polymer on top and silica as the lower claddings [141]. As
a silica cladding suffered from severe absorption at wavelengths beyond 3 µm,
it was not possible to extend the SC spectrum beyond 3 µm with that design.
As Ge11.5As24Se64.5 ChG glass can provide MIR transparency beyond 14
µm, it is possible to design a SC light source using Ge11.5As24Se64.5 glass
as a core by employing upper and lower claddings with materials that are
transparent in the long wavelength edge far into the MIR, and this may open
numerous applications inaccessible by the sources limited to 2.5 µm. Many
previous research works have shown that along with materials transparency
in the long wavelength edge, the position of pump wavelength is also an



6.1 ChG channel and rib waveguides design 101

important factor for the sufficient extension of SC spectrum far into the MIR
region. Therefore, to overcome the issues encountered to design a SC source
operates in far into the MIR, pump source should be shifted from 1550 nm to
long wavelength region at around 3-5 µm and cladding materials should be
transparent in the long wavelength edge as well.

This chapter presents detailed design procedure for optimization of ChG
rectangular channel and ChG rib waveguides for mid-infrared SC generation.
Section 6.1 reviews the waveguide structures with the materials employed
as upper and lower claddings mentioning Sellmeier coefficients of them.
Section 6.2 discuss the detailed dispersion tailoring for obtaining the ZDW
of the proposed waveguides close to the chosen pump wavelengths. Section
6.3 introduces the simulation parameters for numerical modelling of SC
generation in MIR regimes. Section 6.4 provides results and discussions and
show the effects of pump wavelength in MIR SC on the long wavelength
edge. Section 6.5 concludes the study.

6.1 ChG channel and rib waveguides design

6.1.1 Geometry of channel and rib waveguides

The schematic diagrams of the Ge11.5As24Se64.5 ChG channel waveguides
used for dispersion optimization was shown in Fig. 5.1 in Chapter 5 and ChG
rib waveguide is shown in Fig. 6.1. We have employed As36S64 or air as a
top cladding and As36S64 or Ge11.5As24S64.5 or MgF2 as a lower cladding
instead of polymer and silica during ChG channel wavegides design. Air and
MgF2 glass are employed as upper and lower claddings when rib waveguide
design for MIR SC generation. The wavelength-dependent linear refractive
index of core and claddings materials over the entire wavelength range used
in the simulation was obtained using the Sellmeier Equation (5.1) given in
Chapter 5. As the Sellmeier coefficients of Ge11.5As24Se64.5 glass mentioned
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Fig. 6.1 Schematic diagram of ChG rib waveguide.

Table 6.1 Sellmeier fitting coefficients

Material Ge11.5As24S64.5[39] MgF2[166]
m 1 2

A j λ j A j λ j
j = 1 4.18011 0.316790 0.487557080 0.04338400
j = 2 0.35895 22.77018 0.398750310 0.09461442
j = 3 – – 2.312035300 23.7936040

in Chapter 5, we only provide here the Sellmeier coefficients for the lower
cladding materials such as Ge11.5As24S64.5 [39] and MgF2 [166] glasses. The
fitting coefficients are given in Table 6.1.

6.1.2 Dispersion engineering of channel waveguides

The design of an optical waveguide for SC generation depends on GVD and
higher-order dispersion parameters. The accuracy of dispersion parameters
depend on how accurately calculates the mode propagation, β (ω) for the
fundamental mode through FE modal solutions. Therefore, accuracy of any
design critically depends on the accuracy of modal solutions of a waveg-
uide. For our the channel waveguides proposed here, we represent the all
waveguide structures with 360,000 first order triangular elements across the
transverse dimensions to obtain higher accuracy modal solutions. A powerful
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Fig. 6.2 GVD curves for the fundamental quasi-TE mode calculated from neff for three
waveguides geometries employing As36S64 glass for both the upper and lower claddings.
The black solid line curve shows the material dispersion curve for comparison.

extrapolation technique that was used in previous chapter also applied here to
test the accuracy of modal solution for this waveguide structure. We tested
the FE results by Aitken’s extrapolation through convergence between the
raw FEM results and extrapolated values as the number of elements increased.
Using our FE mode-solver we have obtained modal solutions from which
mode propagation constant β (ω) of the fundamental mode over a range of
frequencies are evaluated and calculate the effective index from the mode
propagation constant obtained through modal solutions. We also tested the
GVD curves obtained through FE mode-solver by the data fitting method
applying Taylor series expansion. It was observed good matching between
the two which made us confident about the GVD curve obtained through FE
mode-solver.

As the MIR SC generation requires the cladding as well as core materials of
a waveguide to be transparent at long wavelengths, we first choose a channel
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waveguide fabricated using all chalcogenide materials with a rectangular core
made of Ge11.5As24Se64.5 glass and using As36S64 glass for both the upper
and lower claddings, whose refractive index of 2.37 at 1.55 µm provides an
index contrast of 0.3. By varying waveguide dimensions for realizing ZDW
in the range of 2-4 µm or longer, we numerically calculated GVD for three
different structures as a function of wavelength for the fundamental quasi-TE
mode and plot them with material dispersion in Fig. 6.2. It can be observed
from this figure that the material dispersion, shown by a solid black line,
remains normal for the wavelength range 1.5 µm to 5 µm, considered here.
The total dispersion curve for a waveguide with, W = 4 µm and H = 2.5 µm
is shown by the green dot-dashed line, and it follows the material dispersion
curve quite closely. As the waveguide dimension is reduced, waveguide
dispersion becomes larger. However, total dispersion curves shown by red
dotted and blue dashed lines for structures with, W = 3.7 µm, H = 1.7 µm
and W = 1.7 µm, H = 1.7 µm, respectively. Gai et al. [35] have analyzed
buried channel waveguide using As36S64 as upper and lower claddings with a
square core geometry, W = 1.7 µm and H = 1.7 µm and obtained the total
dispersion of around -500 ps/nm/km after dispersion tailoring with obtaining
polarization independent losses of around 0.2 dB/cm at a wavelength of 1550
nm. After dispersion engineering, we have obtained total dispersion of around
-490 ps/nm/km for the same channel waveguide structure at a wavelength of
1550 nm which can be observed from Fig. 6.2. After increasing the width and
thickness of a structure to W = 4.0 µm and H = 2.5 µm, total dispersion of the
waveguide still remains normal (-40 ps/nm/km) at 3.1 µm and continues to
remain normal over a wide range of wavelengths exceeding 5 µm. It appears
unlikely that a waveguide can be designed to have anomalous dispersion in
this wavelength range by employing such a lower index contrast cladding
material such as As36S64 glass.
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Fig. 6.3 GVD curves for the waveguide geometries employing two different lower claddings
(solid black curve for Ge11.5As24S64.5 and red dashed curve for MgF2) for the fundamental
quasi-TE mode (a) at a pump wavelength of 2 µm and (b) at a pump wavelength of 3.1 µm.
Vertical dotted line indicates the position of pump wavelength.

For realizing anomalous dispersion around the pump wavelength, cladding
materials with larger index contrast than the As36S64 glass are required. To re-
alize the ZDW between 2 µm and 4 µm, we have chosen two different channel
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waveguides by replacing upper cladding with air and lower cladding with ei-
ther Ge11.5As24S64.5 glass or MgF2 glass, respectively. With Ge11.5As24S64.5

glass as the lower clad, index contrast increases to ∼ 0.4 but with MgF2 glass
this value increases significantly to 1.3. To obtain the ZDWs of both designs
close to the pump wavelength of 2 µm and to make GVDs slightly anomalous
at these wavelengths, we optimized the dimensions of the waveguides. Simi-
larly, another set waveguides were optimized for the longer pump wavelength
of 3.1 µm. Figures 6.3(a) and 6.3(b) show the GVD curves obtained for two

Fig. 6.4 Dominant field profile for fundamental quasi-TE mode (H11
y ) for the ChG channel

waveguide geometry, W = 4 µm and H = 1.6 µm employing Ge11.5As24S64.5 glass for its
lower cladding at a wavelength of 3100 nm; a) Contour, b) Surface, c) Hy field along width,
and d) Hy field along thickness of the waveguide.
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different waveguide geometries optimized to work at the pump wavelengths
of 2 µm and 3.1 µm, respectively.

Figures 6.4 and 6.5 show the Hy field profile of the fundamental quasi-TE
mode (H11

y ) of the ChG channel waveguides at a pump wavelength of 3.1 µm
for two different geometries proposed here. Figure 6.4 shows the field profile
for the structure, W = 4 µm and H = 1.6 µm employing Ge11.5As24S64.5 glass
for its lower cladding and Fig 6.5 shows the filed profile of the structure, W =
5 µm and H = 0.95 µm employing MgF2 for its lower cladding. It is apparent
from the figures that the different field representations inside the core as well

Fig. 6.5 Dominant field profile for fundamental quasi-TE mode (H11
y ) for the channel structure

of W = 5 µm and H = 0.95 µm employing MgF2 for its lower cladding at a wavelength of
3100 nm; a) Contour, b) Surface, c) Hy field (normalized value) along width, and d) Hy field
(normalized value) along thickness of the waveguide.



108 Mid-infrared SC generation in chalcogenide waveguides

as along the transverse dimensions of the structures that the mode is highly
confined inside the channel waveguide for its lower cladding containing MgF2

than the waveguide for its lower cladding containing Ge11.5As24S64.5 glass.
From Fig. 6.4(d), it is seen that owing to using lower index contrast material
as a lower cladding for this structure, a large portion of field is penetrated into
the lower cladding which is increased with the wavelength and eventually
increases the mode area (Aeff) of this waveguide. In contrast, the field is
highly confined along the thickness (Fig. 6.5(d)) for the other structure due to
using lager index contrast material for its lower cladding which gives lower
Aeff than the earlier structure. The field variations along the width of the
either waveguide geometry is remained symmetrical which can be observed
from Figs. 6.4(c) and 6.5(c).

6.1.3 Dispersion tailoring of a rib waveguide

To tailor the rib waveguide for obtaining GVD curve, we represent the waveg-
uide structure with 360,000 first order triangular elements across the trans-
verse dimensions to obtain higher accuracy modal solutions as before. We
tested the FE results by Aitken’s extrapolation through convergence between
the raw FEM results and extrapolated values as the number of elements in-
creased. Using the FE mode-solver we have obtained modal solutions from
which mode propagation constant β (ω) of the fundamental mode over a
range of wavelengths are calculated. Inset of Fig. 6.6 shows the field profile
of the fundamental quasi-TE mode of the ChG rib waveguide at a pump
wavelength of 3.1 µm for the waveguide geometry, W = 5 µm and H = 1.1
µm employing air as upper and MgF2 glass for its lower claddings. It is
apparent from the figure that the field representation inside the core as well
as along the transverse dimensions of the structures that the mode is highly
confined inside the rib waveguide owing to using large index contrast cladding
material. As the mode field is highly confined along the thickness due to using



6.1 ChG channel and rib waveguides design 109

Fig. 6.6 Dominant field profile for fundamental quasi-TE mode (H11
y ) for the rib structure

of W = 5 µm and H = 1.1 µm employing MgF2 for its lower cladding at a wavelength of
3100 nm; a) Contour, b) Surface, c) Hy field (normalized value) along width, and d) Hy field
(normalized value) along thickness of the waveguide.

lager index contrast material for its lower cladding resulting in lower Aeff

which, in turn, increases nonlinearity of the waveguide. The spatial profile
of the fundamental mode, shown as an inset of Fig. 6.6, exhibits excellent
field confinement to the central core region which thus enables an enhanced
nonlinear interaction.

Since the MIR SC generation requires the cladding as well as core ma-
terials of a waveguide to be transparent at long wavelengths, we designed
and optimized a rib waveguide made using air as upper cladding and MgF2

glass as lower cladding, whose refractive index of 1.33 at 3.1 µm provides
an index contrast of 1.3. By varying waveguide dimensions for realizing
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Fig. 6.7 GVD curve (solid red line) tailored for the fundamental quasi-TE mode calcu-
lated from neff and dotted black line curve represents the material dispersion (DM) of
Ge11.5As24Se64.5 ChG material. Vertical dotted line indicates pump wavelength and the
inset shows the spatial profile of the fundamental mode at a wavelength of 3.1 µm.

ZDW around the pump wavelength, we numerically calculated GVD for this
structure as a function of wavelength for the fundamental quasi-TE mode
and plot it with material dispersion in Fig. 6.7. It can be observed from this
figure that the material dispersion, shown by a dotted black line, remains
normal for the wavelength range 1.5 µm to 5.5 µm, considered here but the
total dispersion curve, shown by a solid red line, reached to the anomalous
dispersion region between the 2.5 µm (1st ZDW) and 4.8 µm (2nd ZDW)
due to tailoring dispersion through the variation of transverse dimensions
of the rib waveguide. The GVD value estimated at the pump wavelength is
around 32 ps/nm/km. Due to asymmetric waveguide structure, this waveguide
geometry supports propagation of the fundamental quasi-TE mode up to the
cut-off wavelength beyond 12 µm.
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6.2 Simulation parameters for MIR SC modelling

For modelling MIR SC in ChG channel waveguides designed and optimized
in earlier section, the GNLSE is solved through SSFM as described in Chap-
ter 3. We carry out simulations for two different structures of ChG channel
waveguides and a rib waveguide assuming that the input pulse excites the
fundamental quasi-TE mode for two pump sources at wavelength of 2 µm
and 3.1 µm, respectively. A sech pulse of 150 fs duration (FWHM) at a
pump wavelength of 2 µm was launched including a wavelength-independent
propagation loss of 2.5 dB/cm [39] for our 1-cm-long rectangular channel
waveguides. For achieving suficient extension of SC in the MIR, we next
perform simulations for the another set of ChG geometries that were opti-
mized at a pump wavelength of 3.1 µm assuming input pulse excites the
fundamental quasi-TE mode with pulse duration of 85 fs and repetition rate
of 160 kHz [157] taking wavelength independent loss of 0.5 dB/cm [39]. The
TPA and delayed Raman response are taken as considered in Chapter 5. Since
the actual n2 of ChG glasses has not been measured in the MIR region, so its
measured value at 1.55 µm [35] was reduced by a factor of two at the pump
wavelength of 3.1 µm [145].

The minimum time-step (∆t) is calculated according to the procedure
described in Chapter 5 at a wavelength of 2 µm and 3.1 µm as 3.3 fs and 5.2
fs, respectively. Considering grid point 213 (FFT point) at a wavelength of 2
µm and 3.1 µm and using the minimum time-step obtained accordingly, we
can calculate the time window as 27 ps and 43 ps that are wide enough to
capture the SC spectrum produced in the output of the waveguides at a pump
wavelengths of 2 µm and 3.1 µm, respectively. The minimum wavelength
edge for the spectral window in both pumps are calculated by using Equation
(5.7) in Chapter 5 as 1 µm and 1.56 µm, respectively.
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6.3 Results and discussions

As we know, among many other factors, the extension of SC in the long
wavelength edge depends on the position of pump source employed. To study
SC in the MIR regimes and to know the effect of pump wavelength on SC
extension in the long wavelength region, we have carried out simulations in
our dispersion optimized channel waveguides at a wavelength of 2 µm and
3.1 µm, separately. We proposed here two rectangular channel waveguides
with air as top cladding and either Ge11.5As24S64.5 glass or MgF2 glass as its
lower cladding material. Both waveguides optimized by dispersion tailoring
at wavelengths of 2 µm and 3.1 µm and their GVD curves are shown in Fig.
6.3. We also optimized a rib waveguide employing MgF2 as a lower cladding
at a pump wavelength of 3.1 µm. Before carrying out SC simulations, we
have performed some accuracy testing procedure such as FE modal solution
accuracy and GVD parameters testing accuracy. However, as these accuracy
testing methods described in detail in Chapter 5, we did not show it here
further. In earlier chapter we found spurious results owing to the addition of
insufficient number of higher-order dispersion coefficients during numerical
simulations for SC generation. Therefore we calculate and add up to 10th

order dispersion during SC simulations.

6.3.1 Simulation results for channel waveguides pump employing at 2
µm

For studying SC generation at a pump wavelength of 2 µm, we consider a
waveguide containing a core of dimensions W = 1.5 µm and H = 1.1 µm with
air and Ge11.5As24S64.5 glass as upper and lower claddings, respectively. An-
other geometry has a core with W = 1.35 µm and H = 0.4 µm but MgF2 glass
as the lower cladding. We optimized both of these waveguides by dispersion
engineering and their dispersion curves were shown in Fig. 6.3(a). Using
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Fig. 6.8 Simulated SC spectra at a pump wavelength of 2 µm for (a) air-clad all-chalcogenide
waveguide at peak power from 25, 100, and 500 W; (b) air-clad chalcogenide core employing
MgF2 for its lower cladding at the same power levels.

FE mode-solver, we obtain Aeff = 1.09 µm2 which yields γ = 24.79 /W/m
for the structure with Ge11.5As24S64.5 lower cladding and significantly lower
Aeff = 0.51 µm2 which yields γ = 53.39 /W/m for the structure with MgF2

lower cladding (provides higher index contrast) at a pump wavelength of 2
µm. The GVD parameter calculated at the pump wavelength for both waveg-



114 Mid-infrared SC generation in chalcogenide waveguides

Fig. 6.9 Simulated SC spectra at a pump wavelength of 2 µm for waveguides with two
different lower claddings at a peak power of 500 W only. Black-solid line curve represents
the SC spectrum for the waveguide containing Ge11.5As24S64.5 glass for its lower cladding
and red-dashed line curve represents the spectrum for the structure employing MgF2 as its
lower cladding.

uides has a value of 13 ps/nm/km. These waveguides supported propagation
of the fundamental TE mode up to the cut-off wavelength near 3.1 µm for
the air-clad all-ChG structure and around 4 µm for the structure employing
MgF2 glass as lower cladding. A sech pulse of 150 fs duration (FWHM)
was launched with peak power between 25 W and 500 W for numerical
simulations. We included a wavelength-independent propagation loss of 2.5
dB/cm [39] for our 1-cm-long rectangular channel waveguides. Figure 6.8
shows the predicted SC spectra for the two waveguides at three different
power levels at a pump wavelength of 2 µm. In the case of 100 W input
power the SC spectrum extends from 1.5 µm to around 3 µm, producing a
-30 dB bandwidth of 1500 nm for the waveguide using Ge11.5As24S64.5 glass
for its lower cladding. At the same power level the SC spectrum extends
from 1.4 µm to around 3.1 µm producing a -30 dB bandwidth of 1700 nm
for the waveguide with MgF2 glass for its lower cladding. After increasing
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Fig. 6.10 Spectral evolution at a pump wavelength of 2 µm for (a) air-clad all-chalcogenide
waveguide at a peak power of 500 W; (b) air-clad chalcogenide core employing MgF2 for its
lower cladding at the same power level.

input peak power level at 500 W, the SC spectra broadened from 1.3 µm to
3.3 µm (output bandwidth of 2000 nm) and from 1.3 µm to 3.5 µm (output
bandwidth of 2200 nm) for these two waveguides, respectively. The spectral
evolution plots corresponding to Fig. 6.9 at a peak power level of 500 W
are shown in Fig. 6.10. It is apparent that a larger output bandwidth can be
realized by using a waveguide employing MgF2 glass for its lower cladding.
The reason behind this bandwidth enhancement solely related to the higher
index contrast between the core and cladding materials when MgF2 glass is
used for the lower cladding. However, it was not possible to extend the SC
spectrum to beyond 3.5 µm by using a pump wavelength of 2 µm.

6.3.2 Simulation results for channel waveguides pump employing at
3.1 µm

We have found that at the pump wavelength of 2 µm the SC never extended
beyond 4.5 µm for any of our designs. Therefore, to extend the SC in the MIR
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Fig. 6.11 Simulated SC spectra at a pump wavelength of 3.1 µm for (a) air-clad all-
chalcogenide waveguide at peak power between 100 W and 3000 W; (b) air-clad chalcogenide
core employing MgF2 for its lower cladding for the same power levels.

regime, we need to shift the pump wavelength toward longer wavelengths
[144]. We employ a pump wavelength of 3.1 µm since such a pump source
has been realized at a repetition rate of 160 kHz [157]. Using 85 fs duration
pulses at a wavelength of 3.1 µm, we focus on a waveguide with W = 4 µm
and H = 1.6 µm with Ge11.5As24S64.5 glass for its lower lower cladding. The
second waveguide structure had W = 5 µm and H = 0.95 µm but employed
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Fig. 6.12 Simulated SC spectra at a pump wavelength of 3.1 µm for (a) waveguides employing
with two different lower claddings at a peak power of 500 W only; (b) waveguides with two
different lower claddings at peak power of 3000 W only. Black-solid line curve represents
the SC spectrum for the waveguide structure containing Ge11.5As24S64.5 glass for its lower
cladding and red-dashed line curve represents the spectrum for the structure with MgF2 as its
lower cladding.

MgF2 glass for its lower cladding. Using the FE mode-solver, we obtain Aeff

= 4.25 µm2 and γ = 2.05 /W/m for the first structure and Aeff = 3.32 µm2

and γ = 2.63 /W/m for the second structure. The GVD parameter calculated
at the pump wavelength for these waveguides has values of 10.22 ps/nm/km
and 21 ps/nm/km, respectively. These waveguides supported propagation of
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the fundamental TE mode up to the cut-off wavelength around 6.5 µm for
the air-clad all-ChG structure and beyond 12 µm for the structure employing
MgF2 as lower cladding.

After evaluating higher-order dispersion terms up to tenth-order from GVD
curves shown in Fig. 6.3(b), we performed numerical simulations for SC
generation in both the waveguide geometries at a power level between 100 W
and 3000 W. The dispersion length, LD = T 2

P / |β2| for he 85 fs pump pulse for
these two structures is 45 mm and 28 mm and the nonlinear length, LNL = 1/γP

Fig. 6.13 Spectral evolution along the waveguide length at a pump wavelength of 3.1 µm for
waveguides with (a) Ge11.5As24S64.5 and (c) MgF2 as its lower claddings at a peak power of
500 W only; (b) Ge11.5As24S64.5 and (d) MgF2 as its lower claddings with a peak power of
3000 W only.
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at a peak power of 500 W is 0.98 mm and 0.76 mm, respectively. The soliton
order, N =

√
LD/LNL was 7 and 6 for the two waveguides, respectively, and

the soliton fission length, Lfiss ≈ LD/N was found to be 6.6 mm and 4.1 mm,
respectively. Figure 6.11 shows the predicted spectra at various power level
up to 3000 W for the two waveguide geometries at a pump wavelength of 3.1
µm. The spectral evolution plots corresponding to Fig. 6.12(a) and 6.12(b)
are shown in Fig. 6.13. It is observed from Fig. 6.13 that the SC generation
is dominated by soliton fission, which results in many short pulses generated
through the soliton fission process whose spectra shifted towards the long
wavelength side of the input spectrum. Raman-induced frequency shift (RIFS)
is reducing gradually as solitons moved towards the second ZDWs located
near 4.15 µm and 4.4 µm for the two waveguide geometries, respectively.
Due to the spectral recoil effect [135, 136], RIFS were completely suppressed
near the second ZDWs. At the same time, nonsolitonic radiation in the form
of dispersive wave is produced at a wavelength that lies beyond the second
ZDW. For the wavguide geometry employing Ge11.5As24S64.5 glass as a
lower cladding, it can be observed from Fig. 6.13 that the SC extends over 4
µm covering a wavelength range from 2 µm to 6 µm and for the structure
employing MgF2 as a bottom cladding, the SC extends over 6 µm covering a
wavelength range from 1.8 µm to around 7.7 µm both at a peak power of 500
W. By increasing power level up to 3000 W, one can generate a SC spectrum
that extends from 2 µm to 7 µm producing a bandwidth of 5 µm for the first
waveguide and bandwidth of 9.2 µm (> 2.5 octave) for the second waveguide
employing MgF2 glass as its lower cladding.

6.3.3 Simulation results for a rib waveguide pump employing at 3.1
µm

To predict SC generation in our proposed rib waveguide, we have calculated
higher-order dispersion terms up to 10th order and the effective mode area was
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Fig. 6.14 Simulated SC spectra at a pump wavelength of 3.1 µm for rib waveguide with peak
power varies between 100 W and 3000 W.

evaluated numerically by using our FE mode-solver which is Aeff = 3.86 µm2,
yielding a nonlinear coefficient of γ = 2.26 W−1/m at the pump wavelength of
3.1 µm. We have carried out numerical simulations launching a TE polarized
85-fs FWHM secant pulse pumped at a wavelength of 3.1 µm for peak power
levels between 100 W and 3000 W and the results are shown in Fig. 6.14. The
SC spectrum extends farther into the long-wavelength region with increasing
pump power as expected. For the largest peak power of 3000 W, SC extended
up to 10 µm at a spectral power level of −30 dB from the peak. However, SC
extended more than two octave covering the wavelength range 1.8-8 µm for
relatively low peak power of 500 W.

The spectra shown in Fig. 6.14 does not reveal how the SC evolves inside
the waveguide. The left and right columns in Fig. 6.15 present the temporal
evolution, spectral evolution, and spectrogram of pump pulses along the 1-
cm length of the waveguide for the peak power levels of 500 W and 3000
W, respectively. The dispersion lengths of the 85-fs pump pulse in these
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(a) (b)

(c) (d)

(e) (f)

Fig. 6.15 Temporal evolution (top), Spectral evolution (middle), and Spectrogram (bottom)
at the rib waveguide output pumped at a wavelength of 3.1 µm for two different peak power
of 500 W (left column) and 3000 W (right column), respectively.

power level is LD = 14.1 mm and the corresponding nonlinear lengths at
a peak power of 0.5 and 3 kW are LNL = 0.15 and 0.89 mm, respectively.
These values correspond to soliton orders N =

√
LD/LNL of about 4 and 10

for the peak power levels 500 and 3000 W, respectively. In both cases, SC
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formation is mainly dominated by the soliton fission process occurring at a
distance of 1.4 mm (left column) and 3.5 mm (right column) shown in Fig.
6.15. The dynamics behind the SC generation has been already described
for channel waveguides above. Since the GVD curve of our proposed rib
waveguide also has two ZDWs, a strong NSR is produced in the stoke-side
of the SC spectrum right after the second ZDW (located at around 4.8 µm)
of the GVD curve which is only due to the soliton suppression effect. As
the dispersion slope (dD/dλ ) of the GVD curve in the vicinity of the second
ZDW is negative, owing to the spectral-recoil effect (soliton suppression),
the negative dispersion slope has significantly modified the SC spectrum
through the generation of strong redshifted dispersive wave, allowing the
SC generation is extended further into the MIR regime up to 8 µm (Fig.
6.15(a) and 6.15(c) in left column) and 10 µm (Fig. 6.15(b) and 6.15(d) in
right column) for the peak powers of 500 W and 3000 W, respectively. The
temporal and spectral differences are also apparent in the spectrogram shown
in Fig. 6.15 (bottom row) and the SC extension beyond 8 µm [Fig. 6.15(e)]
and 10 µm [Fig. 6.15(f)] are clearly observed for our proposed rib waveguide
design with a peak power of 500 W and 3000 W, respectively.

There may be a disadvantage for ChG waveguides fabricated using MgF2

glass for the lower cladding owing to its fragility. This problem becomes
severe for long waveguides but is manageable for short waveguides around
1-cm-long [144]. Ma et al. [39] have shown experimentally that, if the top
surface of the waveguides made from chalcogenide materials is left uncoated,
the bare waveguide surface becomes rapidly contaminated by absorbing
water and hydrocarbons from surrounding environment, resulting in increased
losses. To prevent the surface contamination, a thin 10-nm protective coating
layer of fluoro-polymer may be placed on top of the waveguide geometries.
For this study, we have tested numerically the effect of placing of such a thin
layer and found that the dispersions at a pump wavelength of 3.1 µm for
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Fig. 6.16 GVD curves for the fundamental quasi-TE mode calculated for the waveguide
structure employing Ge11.5As24S64.5 glass as its lower cladding without (black-solid line
curve) and with (red-dotted line curve) adding extra 10 nm layer on the top of the waveguide.

the two waveguides used in our work was 9.85 ps/nm/km (10.23 ps/nm/km
without coating) and 21.68 ps/nm/km (21 ps/nm/km without coating). Such
relatively small changes in the β2 value do not produce noticeable changes
on the SC generated at the waveguide output. Figure 6.16 shows dispersion
calculated for the waveguide employing Ge11.5As24S64.5 glass as its lower
cladding without and with adding extra 10 nm layer coating on the top of
the waveguide from which it can be observed that both dispersion curves
merged and following the same path with a very little difference. As we did
not obtain significant difference between the dispersion curves calculated
for this waveguide structure, we measured the dispersion value of the other
structure at a pump wavelength only.

Recently Yu et al. [145] proposed an air-clad rib waveguide whose core
was made with Ge11.5As24Se64.5 glass and whose lower cladding was made
with Ge11.5As24S64.5 glass. They were able to generate SC covering the wave-
length range 1.8-7.5 µm when pumped with an optical parametric amplifier
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at 4 µm with a peak power of 3260 W. By rigorous numerical simulations,
it is shown here that MIR SC can be generated with dispersion-engineered
air-clad rectangular channel waveguide employing the same materials and
covering the wavelength range of 1.9-7 µm by employing a pump source at a
wavelength of 3.1 µm with a peak power of 3000 W. It is observed from Figs.
6.12 and 6.14 that MIR SC can be extended in the long wavelength regime up
to 11 µm with channel waveguide and 10 µm with rib waveguide employing
MgF2 glass for their lower cladding when pumped with the same power and
pump source although MgF2 glass would be expected to absorb beyond 9 µm
[39].

6.4 Summary

In this chapter we have discussed the possibility of producing a broadband
MIR SC in Ge11.5As24Se64.5 ChG waveguides extending beyond 11 µm
which was not possible to achieve by ChG nanowire designed in Chapter 5.
We have numerically demonstrated MIR SC generation by using dispersion-
engineered, air-clad, channel and rib waveguides designed and optimized
such that they use either Ge11.5As24S64.5 ChG glass or MgF2 glass for its
lower cladding material. The SC is generated with the waveguides proposed
here by using pump pulses with low to moderate peak power at wavelength
near 2 µm and 3.1 µm, separately. Although the nonlinear parameter has
larger values at a pump wavelength of 2 µm, the SC spectra were extended
only over 1.3-3.3 µm and 1.3-3.5 µm, respectively even at the highest but
moderate peak power of 500 W for the two proposed structures.

To extend SC to beyond the 5 µm, it is necessary to choose a longer pump
wavelength around 3-5 µm. To realize the ZDW of the waveguide around this
wavelength the core size of the waveguide must be increased which increases
the effective mode area and hence reduces the nonlinear parameter. The
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only solution is to increase the peak power of the input pulse toward MW
levels which can damage the input facet of the waveguide. Considering these
factors, we designed and optimized an air-clad rectangular channel waveguide
by employing either Ge11.5As24S64.5 or MgF2 glass for its lower cladding
material and a rib waveguide employing MgF2 glass as its lower cladding
choosing pump at a wavelength of 3.1 µm such that broadband SC could
be generated at moderate peak power levels. We have also discussed the
disadvantage of bare waveguide design owing to surface contamination from
surrounding environment. After placing a protective coating on the surface
which does not produce noticeable changes on SC results have also been
discussed.

Using pump source at a wavelength of 3.1 µm with a relatively low peak
power of 500 W we obtained a SC spectrum extended over 1.5 octave and
covering the wavelength range from 2-6 µm with an air-clad all-ChG structure.
However, when we used an optimized waveguide using MgF2 glass for its
lower cladding using same pump power, the SC spectrum extended over
more than two-octaves covered a wavelength ranges 1.8-7.7 µm and 1.8-8µm
for a channel waveguide and a rib waveguide, respectively. We have also
found that, MIR SC can be extended over in the wavelength range 1.9-7
µm and 1.8-11 µm with a moderate peak power of 3000 W when the air-
clad channel waveguide is designed with a Ge11.5As24Se64.5 glass core and
employs Ge11.5As24S64.5 or MgF2 glass for its lower cladding, respectively.



Chapter 7

Mid-infrared SC generation in
chalcogenide microstructured fibres

SC sources operating in the mid-infrared (MIR) wavelength range have at-
tracted much attention because of their numerous applications in the MIR
sciences [31]. Most of the earlier theoretical and experimental investigations
on SC generation mainly focused on fibre based geometries, particularly pho-
tonic crystal fibre (PCF), in which the dispersion could be easily engineered
due to strong confinement associated with the air-holes. Although strong
confinement can be achieved in silica PCF, the low nonlinearity of silica
necessitates kilowatt peak powers for SC generation. Moreover, as silica
suffered from severe absorption at wavelengths beyond 2.2 µm, it was not
possible to extend the SC far into the MIR by using silica based structures.
Recently, efforts have focused on increasing the optical fibre nonlinearity by
using nonlinear glasses and the chalcogenide (ChG) glasses are particularly at-
tractive as these glasses can have optical nonlinearities several thousand times
that of silica, and also transparent in the MIR, and can be easily drawn into
optical fibres. Therefore, ChG fibre can be used to obtain an SC laser source
beyond 5 µm where the propagation loss of silica, ZBLAN, and tellurite
fibres becomes severely large.
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ChG glasses can provide MIR transparency up to 14 µm when selenide-
based materials are employed [141]. Since GeAsSe glasses have excellent
film-forming properties and possess a relatively high third-order nonlinearity,
there has been growing interest in designing and optimizing waveguides made
from these materials and using them for broadband MIR SC generation [39].
Recently a number of experimental and theoretical investigations on MIR SC
generation was reported and a few of which were ChG planar waveguides
[143–146] and ChG fibres [38, 147–152]. In one approach, ultrashort pump
pulses are launched into a dispersion-engineered planar waveguide. However,
this approach suffers from cladding absorption and cut-off of the fundamental
mode when an asymmetric structure is employed. A fibre-based device remain
attractive because of its ruggedness, excellent beam quality, and relative ease
of manufacturing [132]. Microstructured fibres (MoFs) are seen as potentially
important specialized optical waveguides due to their inherent advantages
arising from their modal properties such as controllable mode area and their
dispersion properties which are achieved through tailoring their structural
parameters. Photonic crystal fibres (PCFs) are particularly attractive as they
offer significant enhancement of the nonlinear effects owing to a strong mode
confinement and easier dispersion management resulting from the use of a
cladding containing air holes [142].

This chapter presents the detailed design and optimization of three different
chalcogenide microstructured fibres (MoFs) such as conventional hexago-
nal photonic crystal fibre (H-PCF), triangular/suspended core (TC) fibre,
and equiangular spiral photonic crystal fibre (ES-PCF) through dispersion
engineering with comparative studies for MIR SC generation. Section 7.1
presents MoFs structures. Section 7.2 discusses the dispersion tailoring of
MoFs proposed here. Section 7.3 reviews simulation parameters for numerical
modelling. Section 7.4 presents the results and discussions with comparative
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analysis among microstuctured fibres proposed. Section 7.5 summarizes the
study.
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Fig. 7.1 Schematic diagrams of ChG MoFs (a) Triangular core (TC) fibre and (b) Equiangular
spiral photonic crystal fibre (ES-PCF) geometry used for dispersion optimization.

7.1 Microstructured fibres (MoFs) design

7.1.1 Structure of MoFs

The schematic diagram of the Ge11.5As24Se64.5 ChG hexagonal PCF used
for numerical modelling was shown in Fig. 3.1 (b) in Chapter 3. Its air
holes follow conventional hexagonal symmetry with the central air-hole
missing and consists of five rings of air-holes. The schematic diagram of
triangular/suspended core ChG fibre is shown in Fig. 7.1(a) which cladding
contains three large air-holes resulting a triangular shaped core. The schematic
diagram of ChG equiangular spiral PCF is shown in Fig. 7.1(b) which
consists of five spiral arms with cladding containing three ring air-holes. The
wavelength-dependent linear refractive index of core materials over the entire
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wavelength range used in the simulation was obtained using the Sellmeier
Equation (5.1) given in Chapter 5.

7.1.2 Dispersion tailoring for hexagonal PCF

We have seen in Chapters 5 and 6 that the design of an optical waveguide for
SC generation depends on dispersion parameters and the accuracy of GVD
and higher-order dispersion parameters depends on how accurately calculates

Fig. 7.2 Hx field profile of fundamental mode (H11
x ) for the hexagonal PCF structure of Λ =

3 µm and d/Λ = 0.8 at a wavelength of 3.1 µm; a) Contour, b) Surface, c) Hx field along
x-axis, and d) Hx field along y-axis of a H-PCF.
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the mode propagation, β (ω) for the fundamental mode through finite-element
modal solutions. Therefore, accuracy of any design critically depends on the
accuracy of modal solutions of a waveguide. For our H-PCF, we represent
the waveguide structure with 360,000 first order triangular elements to obtain
higher accuracy modal solutions. A powerful extrapolation technique [133]
was used to test the accuracy of modal solution for this PCF structure. Using
the FE method described in Chapter 3 we have obtained modal solutions
from which mode propagation constant β (ω) of the fundamental mode over
a range of frequencies are evaluated and calculate the effective index from
the mode propagation constant obtained through modal solutions. Figure
7.2 shows the Hx field profile of the fundamental (H11

x ) mode with the four
different field representations of the H-PCF structure with Λ = 3 µm and d/Λ

= 0.8 at a wavelength of 3.1 µm. The spatial profile of the fundamental mode,
shown in Fig. 7.2(b), exhibits excellent field confinement to the central core
region, enabling enhanced nonlinear interaction.

As discussed in earlier chapters, a broadband MIR SC source can be
obtained by using a pump wavelength close to the ZDW of the waveguide.
Several techniques have been used to shift the ZDW of Ge11.5As24Se64.5

ChG material (which is located near 7 µm) toward shorter wavelengths
[27, 147, 148]. Here, we have designed and optimized Ge11.5As24Se64.5 ChG
PCF structure with micro-structuring the air holes in the claddings. It is easier
to fine tune/adjust ZDW over a much wider wavelength range compared to
that of planar waveguides and conventional fibres. In order to shift the ZDW
of a ChG fibre near 3.1 µm with a small value of anomalous dispersion at the
pump wavelength, we tailored a conventional hexagonal PCF and obtained
GVD curves are shown in Fig. 7.3. Its air holes follow hexagonal symmetry
with the central air hole missing. Both the diameter (d) and pitch (Λ) of the
air-hole array can be varied to engineer PCF’s dispersion properties. Through
a rigorous numerical procedure, we obtain two sets of dispersion curves
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for our proposed H-PCF structure. Figure 7.3(a) shows how the dispersion
curve D(λ ) changes when the air-hole diameter to pitch ratio, d/Λ is varied

(a)

(b)

Fig. 7.3 Dispersion curves for the ChG hexagonal PCF design (a) for different d/Λ keeping
Λ constant; (b) for different Λ with d/Λ constant. Vertical dotted line indicates pump
wavelength at 3.1 µm.
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while keeping the pitch, Λ constant. Figure 7.3(b) shows the situation in
which the Λ is changed while keeping the ratio d/Λ constant. In the case
of air-hole diameter (d) variation, ZDW of the dispersion curves changes
with increasing or lowering the GVD value at the pump wavelength of the
dispersion curve which in turn enhancing or decreasing the nonlinearity of
PCF as the effective mode area changes. On the other hand, ZDW of the
dispersion curve moves near to the pump wavelength with lowering the GVD
value if the Λ of that PCF increases which in turn decreases nonlinerity of the
PCF. It can be observed in Fig. 7.3(a) that the separation between two ZDWs
(anomalous dispersion region) of a GVD curve becomes wider for higher
ratio of d/Λ with increasing dispersion value at the pump wavelength. In
contrast, two ZDWs of a GVD curve move to left or right with the variation
of Λ shown in Fig. 7.3(b). It is apparent from the figure that a ChG H-PCF
can be designed to exhibit relatively small anomalous dispersion over a wide
wavelength range extending from 2.7 µm to beyond 8 µm.

7.1.3 Dispersion tailoring for TC fibre

To calculate GVD and higher-order dispersion coefficients accurately, we
represents our proposed triangular core structure with 360,000 first order
triangular elements for obtaining the mode propagation constant, β (ω) for
the fundamental mode by FE mode-solver. The simulated fundamental mode-
field profile of the fundamental quasi-TM mode at a wavelength of 3.1 µm is
shown in Fig. 7.4 when the triangular core base, a = 6 µm. In this case Hx

field was dominant and it is seen from the figure that field along the x-axis
of the TC fibre shows symmetric (Fig. 7.4(c)) while along the y-axis of the
fibre, the field shows asymmetric (Fig. 7.4(d)). It can be observed from
field-profile that the mode is tightly confined inside the core enabling good
nonlinear interaction. Now the effective index, neff for this TC structure can be
calculated from the β (ω) obtained by FE mode-solver up to the wavelength
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Fig. 7.4 Hx field profile of fundamental quasi-TM (H11
x ) mode for triangular core (TC)

structure with a base length, a = 6 µm at a wavelength of 3.1 µm; a) Contour, b) Surface, c)
Hx field along x-axis, and d) Hx field along y-axis of a TC fibre.

of interest. In order to shift the ZDW of a ChG TC fibre near 3.1 µm with a
small value of anomalous dispersion at the pump wavelength, we optimized
a MoF structure by adjusting its base, a. We tailored this structure for a
number of its base lengths from 6 µm to 10 µm and obtained GVD curves
are shown in Fig. 7.5. It can be seen from this figure that ZDW of the
dispersion curve moves towards the right with lowering the GVD value at
a pump wavelength as the base length of fibre increased and all dispersion
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curves show a bit sloppy in nature compare with the GVD curves obtained
for H-PCF. Therefore, it is not easier to control dispersion properties of TC
fibre as desired by varying of its only one structural parameter (base length of
TC fibre).

Fig. 7.5 GVD curves for the ChG triangular core (TC) fibre obtained for base length (a)
varies from 6 µm to 10 µm. Vertical dotted line indicates pump wavelength at 3.1 µm.

7.1.4 Dispersion tailoring for equiangular spiral PCF

The equiangular spiral (ES) microstructured fibre we propose here is a modi-
fication of the ES-PCF reported in [158–160]. Figure 7.1(b) shows the five
arm air-hole arrangement in the ES-PCF and the equation for obtaining spiral
pitch (Λs) of this design in polar coordinates is,

Λs = r0 eθ cotα , (7.1)
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Fig. 7.6 Hx field profile of fundamental quasi-TM (H11
x ) mode for equiangular spiral PCF

structure with first ring spiral radius, r0 = 3 µm, hole radius, r = 1.32 µm, and five spiral
arms at a wavelength of 3.1 µm; a) Contour, b) Surface, c) Hx field along x-axis, and d) Hx
field along y-axis of a ES-PCF.

where r0 is the spiral radius which is a distance between the centre of the
structure and the centre of air-holes in first ring, θ is the angular increment
between two successive air-holes in the same arm, Λs is the spiral pitch
between the centre of any air-hole and the the centre of the structure, and α is
the angle between the tangent and the radial line.

Finally we designed and optimized an ES-PCF and obtained two sets
of GVD curves as shown in Fig. 7.7(a) and 7.7(b) from mode propagation
constant obtained by our FE mode-solver. We represent our proposed ES-PCF
structure with 360,000 first order triangular elements as H-PCF and TC fibre
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(a)

(b)

Fig. 7.7 Dispersion curves for the ChG equiangular spiral PCF design (a) for different hole
radius, r and different spiral arms keeping first ring spiral radius, r0 constant; (b) for different
first ring spiral radius, r0 different hole radius, r and keeping the number of spiral arm
constant. Vertical dotted line indicates pump wavelength.



7.1 Microstructured fibres (MoFs) design 137

and evaluate β (ω) up to the wavelength range of interest. Aitken extrapola-
tion technique has been used to verify the accuracy of the results obtained
by FE the mode-solver. The spatial mode-field profile of the fundamental
quasi-TM mode is shown in Fig. 7.6 which exhibits excellent field confine-
ment inside the central core region enabling excellent nonlinear interaction.
The ES-PCF parameters used for dispersion tailoring are 3 air-hole ring, 5
to 7 spiral arm with spiral radius, r0 = 2.75 to 3.00 µm, spiral angle, θ =
27◦ to 36◦, and hole radius, r = 0.75 to 1.32 µm, respectively. Figure 7.7(a)
shows GVD curves with varying air-hole radius, r and number of arms while
keeping spiral radius, r0 constant. In other set shown in Fig. 7.7(b), GVD
curves obtained in a situation by changing r0 and r while keeping number of
arms constant. In ES-PCF, there are four parameters (r0, r, θ , and number of
spiral arms) which can be varied for tailoring the dispersion curve and can be
obtained better dispersion properties than H-PCF and TC fibre. Therefore, it
is easier to tailor a design of an ES-PCF by varying any one or more than one
parameter at a time and can be obtained ZDW around the pump wavelength
with higher confinement and flattened dispersion than conventional H-PCF
(where only two parameters such as Λ and d can be varied) and TC fibre
(where only base length can be varied). The air-holes of each ring in ES-PCF
are revolved with respect to the previous ring which effectively stops the field
spreading into the regions between air-holes and tightly confined in the core
region. During ES-PCF design, as next spiral pitch, Λs varies with initial
spiral radius, r0, angular progression, θ , and the tangent angle, α , there are
possibilities to occur air-hole merging if the structural parameters for the
ES-PCF are not chosen correctly. So, we adopted hole merging check during
simulations. For our design, GVD curves shown in Fig. 7.7(a), we maintain
minimum separation between air-holes is 265 nm and average air-holes sepa-
ration is 4.66 µm for blue-line curve. For red-line dispersion curve shown
in Fig. 7.7(a), the minimum separation between air-holes is obtained around
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254 nm and average air-holes separation is obtained around 3.96 µm. In our
design, as we used the five spiral arms where designer typically use six or
more than six spiral arms, we can obtain good confinement using our design
by increasing air-hole radius with reducing number of arms than the earlier
design reported in [160].

7.2 Simulation parameters for SC modelling in ChG MoFs

To predict SC far into the MIR region using the ChG MoFs tailored in
earlier sections, the GNLSE is solved by SSFM as described in Chapter 3.
We carry out simulations for three different optimized ChG MoF structures
assuming that the input pulse excites the fundamental mode using pump at a
wavelength of 3.1 µm. To obtain sufficient SC extension in the MIR, a sech
pulse of 85 fs duration (FWHM) with repetition rate of 160 kHz [157] at this
pump wavelength was launched including a wavelength-independent linear
propagation loss of 0.5 dB/cm [39] for our 1-cm-long microstructured fibres.
The TPA and delayed Raman response are assumed as considered in Chapter
5. As the actual n2 of ChG glasses has not been measured in the MIR region,
so its measured value at 1.55 µm [35] was reduced by a factor of two at the
pump wavelength of 3.1 µm [145].

The minimum time-step (∆t) was calculated according to the procedure
described in Chapter 5 at a wavelength 3.1 µm. Assuming grid point 213 (FFT
point) at a wavelength of 3.1 µm and using the minimum time-step obtained
accordingly, we can calculate the time window as 43 ps which is wide enough
to capture the SC spectrum produced in the output of the waveguides.
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7.3 Results and discussions

To study the formation of SC inside the waveguide, we model the pulse
evolution in the MoFs with a generalized nonlinear Schrödinger equation
(GNLSE) presented in Chapter 2. Before the SC simulation, it is important
to consider the damage threshold of ChG material. GeAsSe based glass has
the lowest damage threshold at an average power density of 30 kW/cm2.
The damage threshold increases significantly when selenium-based glass
is progressively replaced with the sulphide-based glass [152]. Even then,
the ChG fibre core could be damaged if the peak intensity of pump pulses
reaches 30 GW/cm2 or the average power density at the input facet of the MoF
exceeds 100 kW/cm2. Paying attention with these factors, we designed our
GeAsSe microstructured fibres for MIR SC generation such that the required
peak power of pump pulses is at most 3 kW. For SC simulation we utilize
the GVD curves shown in Fig. 7.3(a), Fig. 7.5 (black and red-line curves
only), and 7.7(a) (blue and red-line curves only) for our three optimized MoFs
structures.

7.3.1 SC generation in hexagonal PCF

Initially we have carried out SC simulation for hexagonal PCF. Using FE
mode-solver, the Aeff for H-PCF is obtained as 6.83 (red-line curve in Fig.
7.3(a)) and 9.36 µm2 (black-line curve in Fig. 7.3(a)), yielding γ = 1.28
and 0.93 W−1/m and D ≈ 41 and 12 ps/nm/km. Evaluating higher-order
dispersion terms up to 10th order at a pump wavelength from the GVD
curves shown in Fig. 7.3 for Λ = 3.00 µm, d/Λ = 0.6 and 0.8, we performed
numerical simulations for the peak power levels between 200 W and 3000 W,
and the results are shown in Fig. 7.8. For the largest peak power of 3000 W,
the SC spectrum at the H-PCF output extends up to 7 µm (for black-line
GVD curve shown in 7.3(a)) and 8 µm (for red-line GVD curve shown
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(a) (b)

(c)

Fig. 7.8 Output SC pumped at a wavelength of 3.1 µm for Hexagonal PCF (a) for the
black-line GVD curve shown in Fig. 7.3(a) with peak power variation between 200 W and
3000 W; (b) for the red-line GVD curve shown in Fig. 7.3(a) with power variation between
200 W and 3000 W; (c) for the GVD curves shown in Fig. 7.3(a) with a peak power of 3000
W only.

in Fig.7.3(a)). Figure 7.8(c) shows the comparative SC output spectra of
dispersion curves shown in Fig. 7.3(a) from which it can be observed that
SC spectrum for lower mode area GVD curve gets broaden than other one
though the GVD value of higher mode area dispersion curve approaches near
to the ZDW of that dispersion curve.
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(a) (b)

(c)

Fig. 7.9 Output SC pumped at a wavelength of 3.1 µm for TC fibre (a) for the red-line GVD
curve shown in Fig. 7.5 with peak power variation between 200 W and 3000 W; (b) for the
black-line GVD curve shown in Fig. 7.5 with power variation between 200 W and 3000 W;
(c) for the GVD curves shown in Fig. 7.5 (red and black line GVD curves only) with a peak
power of 3000 W only.

7.3.2 SC generation in TC fibre

Next, we consider triangular core (TC) fibre for SC generation. Similarly,
the effective mode-area of TC fibre are obtained as Aeff = 7.06 (red-line
curve in Fig. 7.5) and 9.41 µm2 (black-line curve in Fig. 7.5), resulting
in a nonlinear coefficient γ = 1.24 and 0.93 W−1/m and D ≈ 44 and 20
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ps/nm/km, respectively, at the pump wavelength of 3.1 µm. Using higher-
order dispersion terms up to tenth order at a pump wavelength of 3.1 µm for
the red-solid curve shown in Fig. 7.5 for base length, a = 6 and 7 µm, we have
carried out numerical simulations for power levels between 200 and 3000 W,
and the results are shown in Fig. 7.9. For the largest peak power of 3000 W,
the SC spectrum at the MoF output extends up to 7.5 (for black-line GVD
curve) and 6.5 µm (for red-line GVD curve) and the output SC bandwidth are
calculated at a power level of -30 dB from the peak. SC spectrum also gets
broaden here for lower mode area dispersion curve although the dispersion
value of higher mode area GVD curve approaches near to ZDW (shown in
Fig. 7.9(c)).

7.3.3 SC generation in ES-PCF

Finally we consider the equiangular spiral PCF for SC generation. The mode-
area for the ES-PCF are achieved as Aeff = 6.12 µm2 (blue-line GVD curve
in Fig. 7.7(a)) and 8.94 µm2 (red-line curve in Fig. 7.7(a)) resulting γ = 1.42
and 0.98 W−1/m and D ≈ 50 and 17 ps/nm/km at the pump wavelength of
3.1 µm. After evaluating dispersion terms up to 10th order from the GVD
curves shown in Fig. 7.7, a sech pulse of 85-fs (FWHM) duration with a
repetition rate of 160 kHz were applied for numerical simulation with a peak
power variation between 200 W and 3000 W. The spectral evaluation of
ES-PCF for this power range are shown in Fig. 7.10 in which SC spectrum
clearly extends beyond the 11 µm (> 3 octave) (for blue-line GVD curve)
and extends up to 7 µm (for red-line GVD curve) with a largest peak power
of 3000 W.

7.3.4 Comparison of SC evolution in MoFs output

To study how the SC evolves along the MoFs length, we present here the
evolution of pulse spectra over the entire MoFs length of 1-cm for the lower
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(a) (b)

(c)

Fig. 7.10 Output SC pumped at a wavelength of 3.1 µm for ES-PCF (a) for the red-line GVD
curve shown in Fig. 7.7(a) with peak power variation between 200 W and 3000 W; (b) for
the blue-line GVD curve shown in Fig. 7.7(a) with power variation between 200 W and 3000
W; (c) for the GVD curves shown in Fig. 7.3(a) (red and blue line GVD curves only) with a
peak power of 3000 W only.

effective mode area dispersion curves shown in Figs. 7.3(a) (red-line), 7.5
(black-line), and 7.7(a) (blue-line). For the GVD curves mentioned above, the
dispersion lengths of 85-fs pump pulse are LD = 11.1, 10.2, and 9.1 mm, the
nonlinear lengths at a peak power of 3 kW is LNL = 0.26, 0.27, and 0.23 mm,
resulting in a soliton orders N =

√
LD/LNL ≈ 7, 6, and 6 for the H-PCF, TC

fibre and ES-PCF, respectively. As the pump lies in the anomalous GVD
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 7.11 Temporal evolution (left column), Spectral evolution (middle column), and Spectro-
gram (right column) at the fibre output for three fibres with different hole geometries. Top,
middle, and bottom rows correspond to the output spectra shown in Figs. 7.8(a), 7.9(b), and
7.10(b) pumped at a wavelength of 3.1 µm with a peak power of 3 kW, respectively.

regime, SC generation is mainly dominated by the soliton-fission process.
For the soliton order of 7, 6, and 6 fission occurs at a distance of 1.7 mm,
1.7 mm, and 1.5 mm, respectively, which can be observed from temporal
evolution shown in Fig. 7.11 (left column), and corresponding number of
fundamental solitons are produced after the fission, whose spectra shift toward
the long-wavelength side owing to intrapulse Raman scattering, producing
multiple spectral peaks in the spectra seen in Fig. 7.11 (middle column). One
can also observe that non-solitonic radiation in the form of a dispersive wave
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is also generated at a wavelength around first ZDWs of the above mentioned
GVD curves lying in the normal dispersion regime of our ChG MoFs. It
can be observed from Fig. 7.11 (bottom row) that the SC extends over more
than three octaves covering a wavelength range from 1.3 to 11 µm for our
proposed ES-PCF design. The temporal and spectral differences are also
apparent in the spectrogram shown in Fig. 7.11 (right column) and the SC
extension beyond the 11 µm is clearly observed from Fig. 7.11(i) for our
proposed ES-PCF design.

Finally it has been shown comparative spectral evolutions of ES-PCF with
the variation of its structural parameters as well as with other microstructured
fibres proposed in this chapter. Figure 7.10(c) shows the spectral evolution of
the GVD curve obtained in Fig. 7.7(a) with two different structural parameters
of ES-PCF. SC bandwidth can be extended beyond 11 µm at a peak power of
3000 W by tailoring a dispersion curve as shown Fig. 7.7(a) (blue-line) for an
ES-PCF structure with 5 spiral arms of all identical air-holes using air-hole
radius, r = 1.32 µm and initial spiral pitch length, r0 = 3.00 µm. After increas-
ing an arm with reducing air-hole to 0.92 µm keeping the separation between
air-holes above the fabrication tolerance, we tailored a GVD curve as shown
Fig. 7.7(a) (red-line) and obtained SC evolution for this dispersion curve
shown in Fig. 7.10(c) (black-line curve) where it can be observed that SC
spectrum is significantly reduced when the number of spiral arms increased.
Usually when ES-PCF is designed employing six arms with identical air-holes
it behaves like a conventional PCF. Figure 7.12(b) shows the comparative
spectral evolution among the microstructured fibres considered here and it can
be observed from the figure that by choosing similar parameters with tailoring
identical GVD parameter for each microstructured fibre, the SC bandwidth
can be extended up to 11 µm for an ES-PCF at a peak power of 3 kW which
is higher than the bandwidth obtained by the other MoFs. Therefore, from
Fig. 7.12(b), it is clear that by reducing an air-hole from the first ring of
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(a)

(b)

Fig. 7.12 Simulated SC spectra for three different ChG microstructured fibres (a) with higher
mode effective area GVD curves in Figs. 7.3(a) (black-line), 7.5 (red-line), and 7.7(a)
(red-line); (b) with lower mode effective area GVD curves in Figs. 7.3(a) (red-line), 7.5
(black-line), and 7.7(a) (blue-line) pumped at a wavelength of 3.1 µm with a peak power of
3000 W.
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conventional PCF following the design algorithm of equiangular spiral we
can optimize an ES-PCF by which it is possible to improve the SC output
bandwidth significantly than can be obtained by traditional microstructured
fibres. It can also be observed from this figure that the largest SC spectrum
extension occurs for our proposed ES-PCF design and the lowest extension
occurs for the TC fibre. It is also apparent from these Fig. 7.12(a) (higher
mode area SC spectra) and 7.12(b) (lower mode area SC spectra) that SC
spectrum gets broaden for lower mode-area dispersion curve obtained for
every microstructured fibre proposed. Microstructured fibre based on this
geometry can be easily fabricated from soft glasses by the extrusion technique
[158], or even by the stacking technique[159].

7.4 Summary

In this chapter, by using numerical simulations it is demonstrated the use
of dispersion-engineered ChG MoFs allows us to generate ultra-broadband
SC spectra in the MIR region. As a specific example, we considered a quasi
PCF (ES-PCF) made with Ge11.5As24Se64.5 glass and optimized its dispersive
properties by varying the number of spiral arms and diameter of air holes
used for the cladding. Using pump pulses at a wavelength of 3.1 µm with
a relatively low peak power of 3 kW, we obtained a SC spectrum covering
a wavelength range from 1.3 µm to beyond 11 µm (> 3 octave). We also
optimized here TC fibre and conventional H-PCF and used them for SC
generation. Among three different microstructured fibres, ES-PCF design has
shown lower mode effective area which in turn increases the nonlinearity of
ES-PCF and shows good dispersion characteristics with relatively flattened
dispersion than others. The key feature of ES-PCF based waveguide design
with cladding containing air-holes over the planar waveuides and conven-
tional fibres is that ChG MoF has no cladding absorption like ChG planar
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waveguides and ChG step-index fibres in the long wavelength edge of the
broadband SC spectrum. By increasing the pump power, or shifting the pump
wavelength to around 4-5 µm with adjusting ES-PCF design parameters, or
by adjusting both while paying attention to the damage threshold limit of
ChG glass, it should be possible to extend the SC to beyond 14 µm with
our proposed Ge11.5As24Se64.5 chalcogenide ES-PCF. Moreover, the ability
of the ES-PCF structure to effectively control more than two parameters
simultaneously gives it a significant advantage over conventional MoF/PCF
design.



Chapter 8

Conclusion and Future work

The objective of this research was to study the design and optimization of su-
percontinuum (SC) sources employing highly nonlinear chalcogenide (ChG)
material for wideband SC generation between near-infrared and mid-infrared
regime. This was accomplished in two stages. ChG planar waveguides and
microstructured optical fibres were considered for designing such SC sources
which could be used for near infrared to mid-infrared applications. The
waveguides proposed for designing SC sources were optimized by applying
rigorous numerical procedure such as the finite-element (FE) approach and
the results obtained by this approach have been utilized for numerically solv-
ing the generalized nonlinear Schrödinger equation (GNLSE) by split-step
Fourier method (SSFM) to study broadband SC generation.

Initially SC generation in Ge11.5As24Se64.5 ChG nanowires was studied
considering pump source at a wavelength of 1550 nm with a low peak power
of 25 W. A full-vectorial FE method is used for dispersion tailoring the ChG
nanowires through rigorous numerical simulations. The nanowires were
optimized, by varying their transverse dimensions, in such a way that they
exhibits anomalous dispersion near the chosen pump wavelength. To obtain
GVD coefficient for our proposed ChG nanowires at a pump wavelength, we
use our FE mode-solver to obtain the propagation constants of the fundamental
mode over a wide range of wavelengths. To calculate the effective mode
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index, which is used for calculating GVD and various higher-order dispersion
coefficients, we utilize the mode propagation constant obtained by our FE
mode-solver. To examine the accuracy of the FE modal solution of our ChG
nanowires, we tested the FEM results by Aitken’s extrapolation through
convergence between the raw FEM results and extrapolated values as the
number of mesh elements increased along the transverse dimensions of the
nanowires. As group velocity dispersion (GVD) which is a linear effect
interacting with nonlinearity of the waveguide plays an important role in
producing the broadband SC in the ChG nanowire output, the accuracy of
numerically calculated GVD parameters were tested for different number of
elements used along the transverse dimensions of nanowires. Five nanowires
were specifically designed and all of them exhibit anomalous dispersion
at a pump wavelength having two ZDWs. SC simulations were carried
out for all five nanowires and find out an optimized design from them for
realizing a wideband SC generation. It is highlighted the effects of higher-
order dispersion coefficients on the SC spectrum and identifies changes that
occur with addition of each successive higher-order dispersion coefficient in
numerical simulations. In earlier simulation-based works on SC generation,
sometimes the Taylor series expansion has been truncated after the third-order
or fourth-order term. It has been shown that this may not produce an accurate
SC spectrum and more higher-order dispersion terms may need to be included
to obtain a reliable SC spectrum.

During nanowire design we employ polymer and silica as upper and
lower claddings, respectively. Such nanowires were optimized at a pump
wavelength of 1.55 µm with a low peak power of 25 W. To extend the SC into
MIR region, pump wavelength need to be shifted around 3-4 µm region. As
the silica cladding suffers severe absorption after 3 µm, it was not possible
to obtain long wavelength extension of SC by shifting pump wavelength
in the long wavelength region for that design. Therefore, for producing a
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broadband MIR SC in Ge11.5As24Se64.5 ChG channel waveguides, the upper
and lower claddings were replaced by air and either Ge11.5As24S64.5 or MgF2

glass for its lower cladding material, respectively. We initially optimized
these structures for employing pump at a wavelength of 2 µm. Although
the nonlinear parameter has larger values at a pump wavelength, the SC
spectra were extended only over 1.3-3.3 µm and 1.3-3.5 µm, respectively
even at the highest but moderate peak power of 500 W for the two proposed
structures. To extend SC to beyond the 5 µm, it is necessary to choose a longer
pump wavelength around 3-4 µm. To realize the ZDW of the waveguide
around this wavelength, the core size of the waveguide must be increased
which increases the effective mode area and hence reduces the nonlinear
parameter. The only solution is to increase the peak power of the input
pulse toward MW levels which can damage the input facet of the waveguide.
Paying attention with these factors, we designed and optimized an air-clad
rectangular channel waveguide either employing Ge11.5As24S64.5 or MgF2

glass as its lower cladding and choose a pump at a wavelength of 3.1 µm
such that broadband SC could be generated at moderate peak power levels.
We have also optimized an air-clad rib waveguide employing MgF2 glass
as its lower cladding at a wavelength of 3.1 µm. We have discussed the
disadvantage of bare waveguide design owing to surface contamination from
surrounding environment. After placing a protective coating on the surface
which does not produce noticeable changes on SC results have also been
discussed. Using pump source at a wavelength of 3.1 µm with a relatively
low peak power of 500 W we obtained a SC spectrum extended over 1.5
octave and covering the wavelength range from 2-6 µm with an air-clad
all-ChG structure. However, when we used an optimized waveguide using
MgF2 glass for its lower cladding, the SC spectrum extended over more than
two-octaves covered a wavelength ranges 1.8-7.7 µm and 1.8-8 µm for a
rectangular channel and a rib waveguide, respectively. We have also found
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that, MIR SC can be extended over in the wavelength range 1.9-7 µm and
1.8-11 µm with a moderate peak power of 3000 W when the air-clad channel
waveguide is designed with a Ge11.5As24Se64.5 glass core and employs either
Ge11.5As24S64.5 or MgF2 glass for its lower cladding, respectively. SC can
be extended up to 10 µm using the rib waveguide by employing same pump
with a modest peak power of 3000 W as well.

We have demonstrated in earlier theoretical investigation on chalcogenide
based planar waveguides for extending SC far into the mid-infrared regime,
but the longest wavelength reached was limited owing to cladding absorption
of asymmetric nature of planar waveguide design. Microstructured fibres
based design still attracts researcher much attention to employ them for mid-
infrared SC generation due to having them no cladding absorption in the
long wavelength edge and can be fabricated them easily. In our theoretical
study, we show that the use of microstructured fibres instead of planar and
conventional fibres can overcome this limitation and SC spectrum can be
extended far into the mid-infrared regime. In this thesis, we have demonstrated
numerically that the use of dispersion-engineered ChG microstructured fibres
should allow one to generate an ultra-broadband SC in the MIR region that
extends beyond 11 µm. We considered three fibre geometries based on
Ge11.5As24Se64.5 glass and optimized the dispersive properties of resulting
fibres by varying the design parameters associated with each geometry. We
found that the ES-PCF geometry is superior to other two geometries because
it provides more control over fibre’s dispersive properties. Microstructured
fibre based on this geometry can be easily fabricated from soft glasses by the
extrusion technique [158], or even by the stacking technique [159]. Using
pump pulses at a wavelength of 3.1 µm with a relatively low peak power of 3
kW, we obtained a SC spectrum covering a wavelength range from 1.3 µm to
beyond 11 µm (>3 octaves). The ES-PCF design resulted in a lower mode
effective area (which increases the nonlinear parameter) and shows flatter
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dispersion than the other two geometries we studied. The key feature of the
ES-PCF based design is that the cladding containing air-holes is made of
the same material as the core. As a result, the ChG microstructured fibres
do not suffer from cladding absorption that has limited the performance of
ChG planar waveguides and ChG step-index fibres. Therefore, we have
shown a novel design which is a modification of conventional hexagonal
photonic crystal fibre which has the ability to effectively control more than one
parameter simultaneously gives it a significant advantage over conventional
microstructured fibre design.

To extend the long wavelength edge of SC far into the MIR region, we
numerically investigated the chalcogenide planar waveguides by which it was
possible to extend the SC spectrum beyond 11 µm. The long wavelength
edge of a SC developing in a chalcogenide planar waveguides are determined
by the long wavelength absorption edge as well as cladding absorption due
to cut-off of those asymmetric waveguides design. We then moved to focus
on microstructured based fibres design as these type of fibres can have more
control over their structural parameters for optimizing optical properties in
comparison to planar waveguides and conventional fibres. We investigated
three different microstuctured fibres based on microstructuring their cladding
containing air-holes. After optimizing them for obtaining with suitable dis-
persion properties based on their structural parameters variation, we proposed
one novel design from them by which it was also possible to obtain SC exten-
sion beyond 11 µm by applying same pump source with same peak power
applied during planar waveguides design. The advantage of microstructured
based fibre design is that there is no possibility to occur cladding absorption
as the cladding was made by periodic arrangement of microstructuring the
air-holes in the same ChG material running along the length during the fibre
design.
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There has been considerable progress to fabricate low loss planar opti-
cal waveguides employing chalcogenide glasses for SC generation over the
past decade. The creation of very small waveguides keep the optical field
inside the waveguide so tightly that it effectively enhance the intensity of the
field and thereby increasing the nonlinear response of the device. Normally
ChG waveguides are fabricated on oxidized silicon wafers for near infrared
applications. However, due to rapidly increasing absorption from the silica
bottom cladding in the long wavelength region oxidized silicon wafers need
to be replaced. Sulphide (S) based composition such as GeAsS and MgF2

also can be employed as substrate materials which have longer transparency
than oxidized silicon wafers. The latter substrate has the advantage of pro-
viding a larger index contrast between the core and substrate which helps
to keep power into the core region enhancing nonlinear interaction of the
waveguide. Gai et al. reported GeAsSe and GeAsS ChG glasses can be
prepared by conventional melt quenching technique from purified starting
materials [35]. Two methods became popular among several methods exists
for ChG waveguide fabrication. These are lift-off technique and dry (plasma)
etching technique. Using dry etching technique, thin films can be deposited
via thermal evaporation onto oxidized silicon wafers or MgF2 wafers using
an Angstrom Engineering deposition system. Different type of structures
such as channel/rib waveguide can be prepared by using this method. Ma et

al. reported that the core layer using Ge11.5As24Se64.5 ChG material can be
evaporated directly onto oxidized silicon wafer or MgF2 substrate by thermal
evaporation technique [39]. The ChGs core layer was then dry etched using
an inductively coupled plasma reactive ion etcher. By using wet chemical
stripping and oxygen/argon plasma, the residual photo resist layer can be
removed. The top surface of the waveguides can be either left uncoated or
can be covered with a 10-nm layer of fluoro-polymer which is deposited at
high CHF3 pressure and gas flow after oxygen plasma cleaning of the waveg-
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uide surface. In case of chalcogenide microstructured fibres, stack and draw
technique and extrusion technique can be used for such kind of waveguides
fabrication.

The results obtained in this study are very promising though they are solely
based on numerical predictions. The next step in this line of research would be
the experimental validation of results obtained through numerical simulations.
It is also possible to improve numerical model developed for SC generation.
Some of the assumptions can be replaced by more rigorous theoretical or
empirical findings. During numerical simulations, wavelength independent
propagation losses were considered throughout this work for SC generation.
To predict better results, wavelength dependent propagation loss could be
included in numerical simulations. Simulation of SC generation places high
demands on numerical accuracy, which makes efficient high-order methods
attractive. During implementing split-step Fourier method, for achieving such
accuracy, a higher-order method such as a fourth-order Runge-Kutta would
be preferable instead of using a trapezoidal rule for the integration. In order
to minimize the computational effort it is possible to implement adaptive step
size control in the program which would enable less steps to be taken overall
and would be more accurate.

As most of the earlier theoretical and experimental investigations were
facing difficulties to extend the SC far into the MIR region owing to se-
vere cladding absorption in the long wavelength edge using ChG planar
waveguides and ChG step-index fibre, the alternatives were to use ChG
microstructured fibres for MIR SC extension in the long wavelength edge.
Although hexagonal and equiangular photonic crystal fibres can be optimized
by tailoring their dispersion characteristics for producing SC up to MIR, it
is not possible to obtain the extension beyond 11 µm by using the designs
proposed in this thesis due to peak power limited by damage threshold of ChG
material at a pump wavelength of 3.1 µm. Therefore, by shifting the pump
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wavelength to beyond 4 µm, tailoring the hexagonal and equiangular spiral
PCF around the pump wavelength, it should be possible to extend the SC to
beyond 14 µm using Ge11.5As24Se64.5 ChG glass microstructured photonic
crystal fibres. As equiangular spiral PCF has more control over its structural
parameters than hexagonal PCF, long wavelength extension of the SC into
MIR region could be easily achieved by using equiangular spiral PCF than
conventional microstructured fibre.

The results demonstrated for MIR SC generation in Chapter 7 with ES-
PCF were shown promising one as this microstructured fibre has shown
excellent control over its structural parameters for dispersion optimization.
Further numerical studies of SC generation using tapered fibre could poten-
tially improve the MIR SC generation in the long wavelength edge. Nonlinear
effects can be enhanced by tapering optical fibres and particularly by tapering
microstructured fibre. In order to achieve better control of the dispersion,
microstructured fibre with tapering through controlling of its structural pa-
rameters could be chosen for extending the SC far into the MIR regime.
Particularly, a few specific but crucial numerical investigations regarding to
the spectral flatness and coherence properties of the SC could be carried out
in future, which were not investigated here.



Appendix A

A.1 Pulse parameters

Gaussian pulse

The electric field envelop of a laser pulse (phase free or chirp free) is

A(T ) =
√

P0 exp

(
− T 2

2T 2
0

)
, (A.1)

with pulse energy E is given by

E =
∫

∞

−∞

| A(T ) |2dT =
√

πP0T0 ≈ 1.06P0TFWHM. (A.2)

T0 is the half-width at 1/e-power, related to the power FWHM by

TFWHM = 2
√

ln 2T0 ≈ 1.665T0. (A.3)

The Fourier transform of a Gaussian pulse is also a Gaussian with a FWHM
power spectral width of

∆νFWHM =
2ln 2

πTFWHM
≈ 0.44

TFWHM
, (A.4)

∆λFWHM ≈
λ 2

0
c

∆νFWHM ≈ 0.44
λ 2

0
TFWHM

, (A.5)



158

The average power Pav is

Pav = E f =
√

πP0T0 f ≈ 1.06P0TFWHM f , (A.6)

where f is the repetition rate.

Hyperbolic-secant pulse

The electric field envelop (phase free) of a laser pulse is

A(T ) =
√

P0 sech
(

T
T0

)
, (A.7)

TFWHM = 2 ln(1+
√

2)T0 ≈ 1.763T0, (A.8)

Pav = 2P0T0 f ≈ 1.13P0TFWHM f . (A.9)

A.2 Scaling of the electric field

The electric field of an electromagnetic wave is given by [1]

E(r, t) = E0(r, t)exp[ j(β0z−ω0t)], (A.10)

The intensity of this electromagnetic wave is given by

I(r, t) =
n
2

√
ε0

µ0
| E0(r, t) |2, (A.11)

where µ0 is the vacuum permeability.
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From Eq. (2.24) and the scaling relation EA =
√

1
2ε0cnE one has:

| E0(r, t) |2 =
2

ε0cn
| F(x,y)A(z.t) |2 = 2

ε0cn
| F(x,y) |2| A(z.t) |2, (A.12)

The optical power is then found by integrating over the intensity in the xy

plane:

P(z, t) =
∫ ∫

I(r, t) dxdy

=
n
2

√
ε0

µ0
| A(z, t) |2

∫ ∫
| F(x,y) |2 dxdy

= | A(z, t) |2
∫ ∫

| F(x,y) |2 dxdy,

(A.13)

From this equation it is seen that if F(x,y) is normalized so that
∫ ∫

| F(x,y) |2 dxdy=

1, then the optical power can be calculated as

P(z, t) = | A(z, t) |2. (A.14)
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Element matrix [A]e

In Eq. (3.39) the matrix [A] has matrices [Q] and [Q]∗ which can be written
as:

[Q] =


[0] −∂ [N]

∂ z
∂ [N]
∂y

∂ [N]
∂ z [0] ∂ [N]

∂x

−∂ [N]
∂y

∂ [N]
∂x [0]

 (B.1)

Replacing ∂

∂ z by − jβ , [Q] matrix can be obtain as follows:

[Q] =


[0] jβ [N]

∂ [N]
∂y

− jβ [N] [0] ∂ [N]
∂x

−∂ [N]
∂y

∂ [N]
∂x [0]

 (B.2)

Consequently, [Q]∗ can be obtain as:

[Q]∗ =


[0] jβ [N]T

∂ [N]T

∂y

− jβ [N]T [0] ∂ [N]T

∂x

−∂ [N]T

∂y
∂ [N]T

∂x [0]

 (B.3)
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where [N] and jβ [N] are defined as:

[N] = [N1 N2 N3] (B.4)

jβ [N] =
[

jβN1 JβN2 jβN3

]
(B.5)

The element matrix [A]e from Eq. (3.39) can be evaluated as:

[A]e =
∫

Ω

1
ε
[Q]∗[Q] dΩ

=
1
ε

∫
Ω
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(B.6)

Now the integrating the individual function inside the matrix will result:
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Element matrix [B]e

In Eq. (3.40) the matrix [B] has matrices [N] and [N]T which can be written
as:

[N] =

[N] [0] [0]
[0] [N] [0]
[0] [0] [N]

 (B.8)

[N]T =

[N]T [0]T [0]T

[0]T [N]T [0]T

[0]T [0]T [N]T

 (B.9)

where [N] and [N]T are defined as:

[N] =
[
N1 N2 N3

]
(B.10)

[N]T =

N1

N2

N3

 (B.11)

The element matrix [B]e from Eq. (3.40) can be evaluated as:

[B]e =
∫

Ω
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= µ
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Now the integrating the individual shape function inside the matrix will
result:

∫
Ω

[N]T [N] dΩ =
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The evaluation of the integrations of the shape functions in Eqs. (B.7) and
(B.13) for a triangular element;∫

Ω

Ni
1 N j

2 Nk
3 dΩ =

i! j! k! 2!
(i+ j+ k+2)!

Ae, (B.14)

where Ae is the area of the triangular element.

Therefore, the following integral can be obtained:∫
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∫
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dΩ = Ae. (B.17)

From Eq. (B.7) some of the elements of the [9× 9] Ae matrix can be
written as:
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[A]e(1,2) =
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From Eq. (B.13) some of the elements of the [9× 9] Be matrix can be
written as:

[B]e(1,1) = µ
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[B]e(1,3) = µ
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[B]e(1,4) = 0. (B.25)
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nel waveguide", in proceedings Integrated Photonics Research, Silicon and

Nano Photonics (IPR), OSA, Boston, Massachusetts, USA, Jun. 27-29, 2015.

OPTICS & PHOTONICS NEWS (OPN)

• One of our published research result [Karim et al. Opt. Exp. 23(5), 6903
(2015)] recently referred in optics and photonics news (OPN) of July/August
2015 as "Extending the spectrum: In the mid-infrared" in Materials and

Photonics: Some Recent Developments, pp. 32-39, compiled by Valerie C.
Coffey.
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