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ABSTRACT  

Motivated by the need to reduce monetary and energy consumption costs of wireless sensor networks in undertaking 

output-only/operational modal analysis of engineering structures, this paper considers a multi-coset analog-to-

information converter for structural system identification from acceleration response signals of white noise excited linear 

damped structures sampled at sub-Nyquist rates. The underlying natural frequencies, peak gains in the frequency 

domain, and critical damping ratios of the vibrating structures are estimated directly from the sub-Nyquist measurements 

and, therefore, the computationally demanding signal reconstruction step is by-passed. This is accomplished by first 

employing a power spectrum blind sampling (PSBS) technique for multi-band wide sense stationary stochastic processes 

in conjunction with deterministic non-uniform multi-coset sampling patterns derived from solving a weighted least 

square optimization problem. Next, modal properties are derived by the standard frequency domain peak picking 

algorithm. Special attention is focused on assessing the potential of the adopted PSBS technique, which poses no sparsity 

requirements to the sensed signals, to derive accurate estimates of modal structural system properties from noisy sub-

Nyquist measurements. To this aim, sub-Nyquist sampled acceleration response signals corrupted by various levels of 

additive white noise pertaining to a benchmark space truss structure with closely spaced natural frequencies are obtained 

within an efficient Monte Carlo simulation-based framework. Accurate estimates of natural frequencies and reasonable 

estimates of local peak spectral ordinates and critical damping ratios are derived from measurements sampled at about 

70% below the Nyquist rate and for SNR as low as 0db demonstrating that the adopted approach enjoys noise immunity.  

Keywords: Sub-Nyquist multi-coset sampling, Multi-band stationary stochastic processes, Power spectrum blind 

estimation, Output-only system identification, ARMA filter, analog-to-information converter, additive white noise. 

 

1. INTRODUCTION  

Operational modal analysis (OMA), also termed as output-only system identification, is historically, the first, and, 

arguably, the most widely used technique for global condition assessment, design verification, and health monitoring of 

civil engineering structures and structural components1,2. OMA relies on linear system identification and modal testing 

concepts and techniques3 to derive structural dynamic/modal properties (i.e., natural frequencies, damping ratios, and 

mode shapes) by acquiring and processing low-amplitude response (output) acceleration signals from linearly vibrating 

structures due to ambient noise excitation (input). In practice, the input/excitation is not measured but is assumed to be 

sufficiently white (i.e., have a flat spectrum over a range of frequencies within which the structural natural frequencies of 

interest lie) by allowing for a long enough observation time. Consequently, ignoring any additive noise, the (analog) 

acceleration signals considered in OMA are naturally sparse in the frequency domain since their energy is concentrated 

around the natural frequencies of the structural system at which (for lightly damped structures) a prominent local peak in 

the spectrum is attained. From a theoretical viewpoint, a plethora of system/modal identification algorithms and signal 

processing techniques have been considered2,4,5 to address the two major challenges of OMA: (i) the modal coupling 

effect3 (i.e., the identification of closely spaced natural frequencies and the separation of the corresponding mode shapes) 

commonly encountered in higher modes of vibration1, and (ii) bias errors due to environmental conditions, measurement 

noise, and model uncertainties4. From a technological viewpoint, the consideration of wireless sensor networks (WSNs) 

has been an important development in OMA in the past 15 years6,7. This is because WSNs allow for less obtrusive and 

more economical and rapid implementation of OMA compared to arrays of tethered sensors.  

To this end, significant research effort has been devoted to develop low energy-consuming wireless sensors while 

maintaining their cost and sophistication at a reasonable level6. Specifically, in a typical WSN deployment for OMA, 

sensors acquire acceleration measurements, perform local data processing at on-board micro-processors, and transmit 

data to a base station for further processing.  The local data processing step is undertaken to: (i) reduce the amount of 

required data to be transmitted within the WSN, and to (ii) minimize the sensor energy consumption (and, therefore, the 



 

 
 

 

requirements for energy harvesting and/or frequency of battery replacement), since data transmission is the most power 

consuming operation.  This step commonly involves off-line lossy or lossless data compression of stored discrete-time 

signals acquired at an analog-to-digital converter (ADC) sampling by, at least, twice the Nyquist rate. The compressed 

data are transmitted to a base station where they are de-compressed to reconstruct the originally acquired signals (or an 

estimate of them in case of lossy compression). These signals are then further processed by standard OMA algorithms to 

derive structural dynamical properties. Despite these efforts, current wireless sensors require battery replacement at 

intervals of few weeks to few months, depending on various factors such as the sampling frequency, the duration of each 

monitoring interval, the on-board hardware and software to be executed. 

In this respect, quite recently, certain compressive sensing (CS) or, in general, sub-Nyquist sampling techniques have 

been considered by various researchers (including the authors) in undertaking OMA operations8-11, recognizing that such 

techniques can potentially minimize monetary and energy consumption costs in WSNs12. Specifically, O’Connor et al.10 

reported significantly reduced energy consumption in a long-term field deployment of wireless sensors acquiring 

randomly sampled sub-Nyquist measurements compared to conventional (Nyquist sampling) sensors. In this application, 

the acquired compressed sensed signals were transmitted to a base station and reconstructed in the time-domain (at 

Nyquist rate) by means of a standard CS reconstruction algorithm. The reconstructed signals from each channel/sensors 

were finally Fourier-transformed to obtain frequency response functions (FRFs) and the mode shapes were derived using 

the standard frequency domain decomposition algorithm of OMA13. Following a similar CS-based strategy, that is, 

considering reconstructed Nyquist sampled signals in the time-domain from randomly sampled sub-Nyquist 

measurements, Yang and Nagarajaiah11 explored the potential of CS-based OMA in conjunction with blind source 

separation for mode shape and natural frequency estimation. In a different study, Park et al.8 recognized that for the 

purposes of modal system identification of linear systems, signal reconstruction in time-domain from CS measurements 

is not necessary. In this regard, they considered a singular value decomposition based algorithm to retrieve mode shapes 

directly from sub-Nyquist non-uniform random measurements assumed to be acquired by means of a particular CS-based 

analog-to-information (AIC) sampling device, namely the random demodulator (RD)14. Note that the RD assumes a 

multi-tone analog signal model attaining a spectrum with a number of “spikes” (harmonics) and zero elsewhere. In the 

theory of structural dynamics, such a signal model is consistent with the (deterministic) response of free oscillating non-

decaying (i.e., undamped) structures. Indeed, the analytical work of Park et al.8 rely on the above assumption, which is 

not in alignment with the typical analog OMA signals (multi-band wide sense stationary random signals/ stochastic 

processes). Still, reasonably accurate results in terms of mode shapes were derived from noisy field recorded data 

pertaining to a specific bridge structure using the proposed algorithm for system identification. 

Notably, the above discussed CS-based approaches for OMA are sensitive to added noise in the CS measurements since 

they rely on signal sparsity considerations15. It has been shown that a signal reconstruction error of approximately 3 dB 

of signal-to-noise ratio (SNR) for each halving of the number of measurements (per octave of subsampling) occurs 

which implies signal noise amplification at higher compression rates. In fact, a trade-off between noise level and 

sampling rate exists for CS-based AICs (i.e., random sampling assuming analog signal sparsity): within noisy 

environments (low SNRs), faster sampling rates and, therefore, an increased number of measurements are required to 

extract the underlying signal information16. 

Inspired by recent developments in power spectrum blind sampling (PSBS) driven mainly by applications in 

telecommunications and especially by cognitive radio17, the authors9 considered the use of an AIC device18 

implementing deterministic non-uniform periodic multi-coset sampling19 to acquire sub-Nyquist acceleration 

measurements from linear white-noise excited structural systems. Next, a PSBS approach that does not require any 

signal sparsity assumption18,20 has been applied to approximate the underlying FRFs directly from the sub-Nyquist 

measurements. Finally, the standard “peak picking” in the frequency domain OMA algorithm is applied to extract the 

useful information from these FRFs. That is, the central frequency of each spiky “occupied” band in the spectrum 

corresponding to a natural frequency of the system, the width of the occupied bands associated with structural damping, 

and the local peak values of the occupied bands associated with mode shapes which can be retrieved in a multi-channel 

setting. It is noted in passing that in cognitive radio applications the goal is to efficiently detect unoccupied bands in a 

wide spectral range of telecommunication signals; a relatively simple task compared to the retrieval of modal properties 

in OMA. Importantly, the above approach, adopted in this paper as well, does not require signal reconstruction and does 

not pose any sparsity requirements to the analog signal. Therefore, it is expected to be insensitive to added noise to the 

sub-Nyquist measurements offering an important advantage over the CS-based random sampling considered in the 

previously reviewed approaches8,10,11. In this regard, this paper furnishes novel numerical results to assess the potential 

of the adopted PSBS approach18,20 to retrieve useful data for OMA from a single channel/sensor acquiring noisy sub-



 

 
 

 

Nyquist multi-coset samples. To this aim, a benchmark space truss structure with closely-spaced natural frequencies is 

considered as a testbed21 together with a novel frequency domain simulation-based framework which allows for the 

efficient generation of wide sense stationary structural response acceleration signals with additive noise consistent with 

the assumptions of OMA.  

The remainder of the paper is organized as follows. Section 2 introduces the adopted AIC device and multi-coset sub-

Nyquist sampling strategy for stochastic processes (random signals). Section 3 reviews the mathematical details to 

accomplish PSBS directly from the coset sub-Nyquist measurements, while section 4 outlines the optimization problem 

that needs to be solved to design efficient deterministic multi-coset sampling patterns. Section 5 provides pertinent 

numerical results to assess the robustness of the adopted approach to noise and, lastly, section 6 summarizes conclusions 

and points to directions for future work. 

 

2. MULTI-COSET SUB-NYQUIST SAMPLING  

Multi-coset Sampling Strategy and Device  

Let x(t) be a continuous in time t real-valued wide-sense-stationary random signal (or stochastic process) characterized in 

the frequency domain by the power spectrum Px(ω) band-limited by 2π/T. It is desired to sample x(t) at a rate lower than 

the Nyquist sampling rate 1/Τ (in Hz), and still be able to obtain a useful estimate of the power spectrum Px(ω). To this 

aim, the multi-coset sampling strategy is herein adopted19, according to which the grid of Nyquist samples x(nT) is 

divided into blocks of N consecutive samples and from each block M (<N) Nyquist-rate samples are selected. The 

resulting sampling is periodic with period N; non-uniform since any subset of M samples may be selected from a total of 

N Nyquist-rate samples within each block; and deterministic since the position of the M samples on the Nyquist grid of 

samples x(nT) is defined a priori and applies to all considered blocks. The above sampling strategy can be implemented 

by utilizing M interleaved ADC units operating at a sampling rate 1/(NT) as discussed in Ariananda and Leus18. A 

discrete-time model of such a sampling device is shown in Figure 1 in which the discrete-time signal x[n]= x(n/T) enters 

M branches and at each m branch (m= 0,1,…,M-1), the signal is convolved (filtered) by an N-length sequence cm[n] and 

down-sampled by N.  

 

Figure 1. Discrete-time model of the considered AIC multi-coset sampling device18. 

The selection of M samples (sampling pattern) within each block is governed by the coefficients cm[n] of the filter 

written as  
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where there is no repetition in nm , i.e.,  
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The output of the m-th branch is given by  
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Relation of the Input and Output Correlation Functions  

Consider the cross-correlation function between the output sequences of the different branches of the device in Figure 1 

and the autocorrelation function of the input signal to the device given by  
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respectively, where Ea{·} is the mathematical expectation operator with respect to a and the “*” superscript denotes 

complex conjugation. Further, consider the pattern cross-correlation function between the different sampling patterns of 

each branch of the same device expressed as 
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Substituting Eq. (1) into Eq. (7) yields  
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where δ[n]=1 for n=0 and δ[n]=0 for n≠0. 

It can be shown that the following relationship holds18 
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where yr [k] is the M2-by-1 vector collecting the output cross-correlation functions 
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,m my yr  between the M branches of the 

considered sampling device evaluated at index k, that is, 
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where the “T” superscript denotes matrix transposition. 

xr [n] is the N-by-1 vector collecting the input autocorrelation function evaluated at certain indices as in 

 
T

[ ] [ ] [ 1] [( 1) 1] ,x x x xn r nN r nN r n N   r  (11) 

and Rc[l] is the M2-by-N matrix defined as 

0 0 0 1 1 0 1 1

T

, , , ,[ ] [ ] [ ] [ ] [ ] ,
M M Mc c c c c c c c cl l l l l
  

   R r r r r  (12) 

where 



 

 
 

 

1 2 1 2 1 2 1 2

T

, , , ,[ ] [ ] [ 1] [( 1) 1] .
m m m m m m m mc c c c c c c cn nN nN n N    

 
r r r r  (13) 

By assuming that the autocorrelation function of the input signal in Eq. (6) takes on negligible values outside the range   

-L ≤ k ≤ L (in practice this will always hold for some L, depending on the level of damping of the structural system being 

monitored), Eq. (9) can be cast in the form of3 

y c x= ,r R r  (14) 

in which 
yr  is the M2(2L+1)-by-1 vector defined as 
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xr  is the N(2L+1)-by-1 vector defined as 
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and
cR  is the M2(2L+1)-by-N(2L+1) matrix given as 
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where O  is the zero matrix. 

In the next section, an estimator of the power spectrum of the input signal x[n] is considered (and therefore of the process 

x(t)) derived from the cross-correlation functions between the output sequences of the M branches of the sampling device 

in Figure 1 upon solving Eq. (10) for 
xr . These cross-correlation functions are, in turn, estimated directly from the 

output sequences from each branch in Eq. (3). For a Q-long Nyquist sampled input signal x[n] the total number of the 

output measurements are only MQ/N (M<N) with M/N being the compression ratio.  

 

3. POWER SPECTRUM BLIND SENSING FROM SUB-NYQUIST MEASUREMENTS 

Under the assumption that x[n] in Figure 1 is sampled at the Nyquist rate from a band-limited continuous-time process 

x(t), the power spectrum of x(t) can be expressed within the 0 ≤ ω ≤ 2π range as  
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where 1i   . The above equation can be discretized using a Nyquist grid and cast in matrix-vector form as 

x (2 1) x ,L Ns F r  (19) 

where 
(2 1)L NF  is the N(2L+1)-by-N(2L+1) standard discrete Fourier transform (DFT) matrix and 

xs  is a N (2L+1)-by-1 

vector given as 
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Consider the unbiased estimator of the cross-correlation function in Eq. (5) defined as 
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where K is the number of measurements. The following weighted least squares criterion is herein utilized  

x
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in which the weighted version of the Euclidean norm is given by 2 T
W

a a Wa , and W  is a weighting matrix, to estimate 

the vector spectrum sx of Eq. (19) by “inverting” Eq. (14) as 
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where the “-1” superscript denotes matrix inversion. In the last equation, the (2L+1)M2-by-1 vector 
yr̂ is defined in a 

similar way as the vector 
yr  in Eq. (15), where the cross-correlation of Eq. (5) is replaced by the estimator in Eq. (21). 

Although the sampling pattern correlation matrix 
cR  is large (i.e., of size M2(2L+1)-by-N(2L+1)), the fact that it has a 

sparse structure as shown in Eq. (17) can be exploited to reduce the required computational effort to obtain the pseudo-

inverse matrix in Eq. (23). For example, in the special case of the weighting matrix being the identity matrix (i.e., the 

weighted least squares criterion in Eq. (22) becomes the simple least squares criterion), the pseudo-inverse matrix in 

Eq.(23) can be given as20 
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where ( )Λ α  is the N-by-N diagonal matrix with the diagonal 
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in which ( )p n  for p= 1,2,…N is given by 
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and n is the sequence of M positive integer numbers expressed as 

 
T

0 1 1 ,Mn n n n  (27) 

which defines the sampling pattern in Eq. (1). 

To compute the power spectral density estimate in Eq. (23), a sampling pattern n and a weighting matrix W needs to be 

determined. This step is discussed in the next section.  

 

4. DESIGN OF THE MULTI-COSET SAMPLING PATTERN 

Consider the M2(2L+1)-by-M2(2L+1) covariance matrix of the estimator of ry defined as  
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and assume that the number of branches M is known. Further, assume that the input signal x[n] is zero-mean circularly-

symmetric real-valued Gaussian i.i.d. noise (note that although this assumption is unrealistic for x[n] being acceleration 

response of white noise excited linear structural systems, it is only considered herein to facilitate the derivation of the 

sampling pattern of the device in Figure 1 and is not restrictive to the class of simulated or recorded signals that can be 

treated by this device). Then, it can be shown that ˆyr
C  possesses the block-diagonal structure18 
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where 
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By observing that 
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the matrix in Eq. (28) can be concisely written (and efficiently computed using any higher level programming language) 

as 
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Let
WLS-MSE ( )f n  be the normalized weighted mean square error (MSE) of the power spectrum estimator in Eq. (23). It can 

be shown that20  
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where 
E
  is the Euclidean norm. The optimum design of the sampling sequence n and the weighting matrix W used in 

the PSBS estimation is determined by solving the following optimization problem20 
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where     is the mathematical floor operator.The following section provides selected numerical results to illustrate the 

potential of the adopted weighted least squares criterion in Eq. (22) for PSBS directly from sub-Nyquist measurements 

acquired using multi-coset sampling for single-channel output-only system identification of a benchmark structure with 

closely spaced natural frequencies in a noisy environment. 



 

 
 

 

 

5. NUMERICAL ASSESSMENT  

In this section, the 8-bay simply supported aluminum space truss of Figure 2 is considered to assess the applicability and 

effectiveness of the previously discussed PSBS approach and multi-coset sampling AIC device of Figure 1 for single-

channel output-only structural system identification in the presence of additive noise. This truss structure has been used 

in the literature as a benchmark model for comparative assessment of vibration-based structural health monitoring 

algorithms21. It comprises 100 tubular cylindrical structural (truss) members; the black colored members in Figure 1 are 

22mm in diameter and 1mm wall thickness whereas the gray colored members are 30mm in diameter and1.5mm wall 

thickness. Each bay of the truss is a cube of 707mm side. The truss is modelled using the standard linear finite element 

(FE) method in which mass/inertial property of 0.44kg is lumped at each of the 36 nodes of the FE model. For the 

purposes of this study, additional masses of 1.75kg is assigned to nodes 1,7,30, and 34 and of 2.75kg is assigned to nodes 

20,26, and 32, to achieve a structure in which the first two lower natural frequencies corresponding to modes of vibration 

along the vertical (gravity) axis are closely spaced and clustered together and the next two higher natural frequencies 

corresponding to vertical modes of vibration are also closely spaced but at significant higher frequencies from the first 

two low frequencies. Furthermore, a critical damping ratio of 1% for all 4 mode shapes considered is assumed (i.e., 

zi=1%; i=1,2,3,4). The first four natural frequencies ωi (i=1,2,3,4) and the ratios of the peak modal coordinates Ai 

(i=1,2,3,4) corresponding to the second over the first mode shapes (A2/A1) and the fourth over the third (A4/A3)  of the 

considered structure are obtained via standard modal analysis using the FE model and are reported in the first column of 

Table 1.   

 

Figure 2. Considered benchmark space truss model21.  

The Monte Carlo simulation-based framework depicted in Figure 3 is devised to expedite the assessment of the herein 

adopted approach for OMA in noisy environments using the above described truss structure. Effectively, the proposed 

framework bypasses the need to perform linear response history analysis to the FE model for the purpose at hand.  

Specifically, from the FE modal analysis results reported in the first column of Table 1, the amplitude of the FRF 

squared (transfer function) for acceleration output, termed as accelerance in the field of modal testing3, is analytically 

defined for the four first mode shapes along the vertical axis of the truss in Figure 2. This function is plotted (thick gray 

curve) in the range of relatively low frequencies in Figure 4 and in the full frequency range in Figure 6, upon 

normalization to its peak value. Note that under the OMA assumption of ideal white (ambient) noise input/excitation, the 

above transfer function becomes the “target” (known) power spectral density (PSD) function which is sought to be 

captured by the AIC device of Figure 1. Since the considered device assumes Nyquist sampled discrete-time input 

signals, the continuous-time (analog) filter characterized by the above target PSD is replaced by a surrogate discrete-time 

auto-regressive moving average (ARMA) filter whose transfer function traces closely the target PSD of the analog 

system (broken curve in Figures 2 and 4).  The coefficients of this ARMA filter are derived by the auto/cross correlation 

matching method22, commonly used for spectrum compatible simulation23,24. Next, following the framework of Figure 3, 

simulated sequences of white noise at Nyquist rate are first colored via the ARMA filter and then acquired by the 

discrete-time model of the adopted AIC device upon contamination by additive white noise. Subsequently, PSBS is 

undertaken directly from the sub-Nyquist measurements to obtain an approximation of the target PSD. Finally, the 



 

 
 

 

standard “peak picking” (PP) in the frequency domain technique3 for output-only system identification is used to extract 

approximations of the modal parameters13. 

Table 1. Actual and estimated modal properties of the first four vertical mode shapes of the truss shown in Figure 2. 

 

Structural 

system 

properties 

Estimated properties from “peak picking” in the 

frequency domain 

 SNR [dB] - ∞ 30 20 10 0 

ω1 [rad/s] 408 407 407 407 407 411 

ω2 [rad/s] 440 442 438 442 442 442 

z1 [%] 1.0 2.8 2.8 2.8 1.9 2.8 

z2 [%] 1.0 1.7 2.6 1.7 1.7 2.6 

A2/A1 8.5 6.3 7.5 9.6 10 9.3 

ω3 [rad/s] 1854 1851 1857 1851 1851 1864 

ω4 [rad/s] 1885 1889 1889 1889 1889 1889 

z3 [%] 1.0 1.7 2.1 1.0 1.0 2.1 

z4 [%] 1.0 1.0 2.0 1.7 1.0 2.4 

A4/A3 1.22 0.74 1.13 2.06 1.23 1.22 

 

 

Figure 3. Adopted Monte Carlo simulation-based framework to assess the AIC device of Figure 1 for OMA applications. 

An AIC unit implementing non-uniform multi-coset sampling in Figure 1 is utilized within the above simulation 

framework with five channels, M=5, and a relatively “aggressive” down sampling at each channel, N=16, which 

achieves a compression ratio of / 31%M N  (i.e., only 31% of the Nyquist sampled input data are acquired by the 

device). The optimal in the weighted least squares sense sampling pattern Tˆ [0 1  2  5 8]MSE n       is derived by solving the 

optimization problem in Eq. (35) for K=1000 and L=20. The normalized to its peak value power spectrum estimate of the 

AIC obtained by using using Eqs. (6), (9), and (19) is superposed to the target PSD and to the ARMA transfer function in 

Figures 4 and 6. It is shown to capture well the closely spaced natural frequencies of the considered truss structure not 

only in terms of location in the frequency domain (i.e., identification of occupied bands), but also in terms of capturing 

the salient features of the target PSD in terms of amplitude and shape. 



 

 
 

 

 

Figure 4. Acceleration transfer function of a two degree of freedom structural system (target PSD) with damping ratio 1% 

for all modes and natural frequencies ω1=408 rad/s and ω2=440 rad/s, and theoretical PSD obtained from a multi-coset 

sampling device in Figure 1 with M=5 and N=16. 

 

Figure 5. Estimated PSDs from Nyquist sampled and CS sampled simulated data (K=1000, M=5 and N=16) vis-a-vis the 

target PSD (transfer function of considered two degree of freedom structural system) for (a) SNR=∞ dB, and (b) SNR=0 dB. 

Conveniently, the proposed simulation-based framework in Figure 3 allows for the efficient generation of simulated x[n] 

noisy realizations compatible with the target PSD by filtering discrete-time clipped Gaussian white noise sequences. In 

this regard, 10 such sequences of 16000 length each are generated and colored (filtered) through the ARMA model. 

Next, measurement white noise is added to the colored signals which are then enter the assumed AIC device with M=5 

and N=16. Figure 5 plots (black thin curve) the estimated PSD directly from 5000 non-uniform sub-Nyquist 



 

 
 

 

measurements estimated from Eq. (23) for a single x[n] input realization assuming K=1000 blocks of N=16 length each 

(i.e., 16000 Nyquist sampled measurements). PSD estimates for the noiseless case (Figure 5a) and the “extreme” case of 

SNR= 0db (Figure 5b) are shown and they both trace closely the target PSD. For comparison, the PSDs estimated from 

10 Nyquist sampled realizations x[n] derived by means of the standard periodogram are also superposed (light gray 

curves). Similar data are plotted in Figure 7 for SNR=30db, focusing now on the two higher frequency modes. It is 

concluded that the adopted approach has increased sensitivity to additive noise in higher frequencies in terms of PSD 

shape, while in the case of the two first closely spaced (relatively low) natural frequencies it becomes practically immune 

to additive noise. 

The above conclusions are further confirmed by comparing the natural frequencies, damping ratios, and relative 

amplitudes of the 4 considered modes derived by application of PP to the PSD estimated directly from the sub-Nyquist 

measurements with their known values, as indicated in Figure 3. Table 1 summarizes these results for four different 

levels of SNR. Remarkably, fairly accurate estimation of the natural frequencies is achieved even in the case of extreme 

noise corruption (SNR=0dB). Furthermore, the accuracy of the estimated values of the damping ratios and the ratios of 

local peak PSD values derived fall roughly within the expected range of the PP algorithm. In all cases considered, the 

level of additive noise does not seem to correlate with the level of accuracy of the considered approach in terms of out-

only system identification. In this respect, it can be argued that for the purpose at hand, the PSBS approach and multi-

coset sampling AIC device enjoys additive white noise immunity. 

 

 

Figure 6. Acceleration transfer function of a four degree of freedom structural system (target PSD) with damping ratio 1% 

for all modes and natural frequencies ω1=408 rad/s, ω2=440 rad/s, ω3=1850 rad/s, ω4=1880 rad/s and theoretical PSD 

obtained from a multi-coset sampling device in Figure 1 with M=5 and N=16.  

 

Figure 7. Estimated PSDs from Nyquist sampled and CS sampled simulated data (K=1000, M=5 and N=16) vis-a-vis the 

target PSD (transfer function of considered four degree of freedom structural system) for SNR=30 dB. 



 

 
 

 

 

6. CONCLUDING REMARKS  

Motivated by the need to reduce monetary and energy consumption costs of wireless sensor networks in undertaking 

operational modal analysis (OMA) of engineering structures, the performance of a recent power spectrum blind sampling 

(PSBS) technique to undertake frequency domain output-only system identification directly from sub-Nyquist noisy 

acceleration measurements has been numerically assessed. The considered PSBS technique is used in conjunction with a 

multi-coset analog-to-information converter (AIC) to sample acceleration response signals of white noise excited linear 

damped structures at sub-Nyquist rates. Notably, it is applicable to multi-band wide sense stationary random 

signals/stochastic processes and does not pose any sparsity requirements. Furthermore, the underlying natural 

frequencies, peak gains in the frequency domain, and critical damping ratios of the vibrating structures are estimated 

directly from the sub-Nyquist measurements and, therefore, the computationally demanding signal reconstruction step is 

by-passed. This is accomplished by means of the standard peak picking in the frequency domain algorithm for linear 

system identification to estimated spectra via PSBS.  

For numerical assessment, sub-Nyquist sampled acceleration response signals corrupted by various levels of additive 

white noise pertaining to a benchmark space truss structure with closely spaced natural frequencies have been obtained 

within an efficient Monte Carlo simulation-based framework. The proposed framework relies on discrete-time ARMA 

filters to represent the underlying analog structural system and facilitates significantly the numerical work. Accurate 

estimates of natural frequencies and reasonable estimates for local peak spectral ordinates and critical damping ratios are 

derived from measurements sampled at about 70% below Nyquist rate and for signal to noise ratio as low as 0db 

demonstrating that the adopted approach enjoys noise immunity within the common range of frequencies of interest to 

structural OMA.  
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