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Treatment with 670 nm Light Up Regulates Cytochrome
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Age-Related Macular Degeneration Model
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Abstract

Inflammation is an umbrella feature of ageing. It is present in the aged retina and many retinal diseases including age-
related macular degeneration (AMD). In ageing and in AMD mitochondrial function declines. In normal ageing this can
be manipulated by brief exposure to 670 nm light on the retina, which increases mitochondrial membrane potential
and reduces inflammation. Here we ask if 670 nm exposure has the same ability in an aged mouse model of AMD, the
complement factor H knockout (CFH2/2) where inflammation is a key feature. Further, we ask whether this occurs
when 670 nm is delivered briefly in environmental lighting rather than directly focussed on the retina. Mice were
exposed to 670 nm for 6 minutes twice a day for 14 days in the form of supplemented environmental light. Exposed
animals had significant increase in cytochrome c oxidase (COX), which is a mitochondrial enzyme regulating oxidative
phosphorylation.There was a significant reduction in complement component C3, an inflammatory marker in the outer
retina. Vimetin and glial fibrillary acidic protein (GFAP) expression, which reflect retinal stress in Muller glia, were also
significantly down regulated. There were also significant changes in outer retinal macrophage morphology. However,
amyloid beta (Ab) load, which also increases with age in the outer retina and is pro-inflammatory, did not change.
Hence, 670 nm is effective in reducing inflammation probably via COX activation in mice with a genotype similar to
that in 50% of AMD patients even when brief exposures are delivered via environmental lighting. Further, inflammation
can be reduced independent of Ab. The efficacy revealed here supports current early stage clinical trials of 670 nm in
AMD patients.
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Introduction

Progressive ageing is associated with systemic inflammation [1–

3]. This is marked in tissues with high metabolic demand such as

the retina that suffers from progressive oxidative stress [4–6]. This

is partly driven by excess extra-cellular deposition along an ageing

Bruch’s membrane, where inflammation becomes a key feature,

even in the absence of pathology [2,7]. It is also a common feature

of retinal disease whether it be age related macular degeneration

(AMD), diabetic retinopathy or posterior uveitis [8–12]. Amelio-

rating retinal inflammation is becoming a key problem with an

ageing population as this may be associated with age related

retinal cell loss and declining visual function [13–15]. It is also

critical in many retinal diseases [5,10,11].

There are multiple routes to dealing with retinal inflamma-

tion, however key to any success is the need for cheap effective

therapies that are minimally invasive and do not require clinical

time. Inflammation is partially driven by shifts in mitochondrial

function that result in reduced adenosine triphosphate (ATP)

production and increased reactive oxygen species (ROS) output

[5,7,16]. This can be modulated by brief exposure to 670 nm

light, which is absorbed by cytochrome c oxidase (COX) and

increases ATP production [17,18]. This has been shown to

reduce a range of retinal inflammatory markers in normal aged

mice when directly exposed to the light for brief periods [7]. It

has also been used effectively to reduce damage from

experimental pathology in a wide range of independent studies

(see Table 1 in ref 7).

Here we ask two questions. First, is 670 nm light a potential

therapeutic route in an aged mouse model of AMD? Half of

AMD cases are associated with polymorphisms of the comple-

ment system including complement factor H (CFH) [19–21].

There is a mouse model of CFH2/2 that has a distinct retinal

phenotype with outer retinal disorganisation, elevated inflam-

mation and reduced retinal function [22–24] that we employ

here. Second, in previous studies using 670 nm light, animals

have been held individually directly in front of the light source

[7,25]. Here we also ask whether 670 nm is therapeutic when

given for short periods indirectly as part of the environmental

lighting when animals are caged in groups and their retinae are

not forcibly exposed to it individually. With both of these

questions our analysis is focussed primarily on the outer retina,

which is the location for disease initiation and progression in

AMD, both in humans and in the mouse model [26–28].
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Materials and Methods

Animals-ethics Statement
Twenty nine 16 month old CFH2/2 mice were used. Thirty

nine eyes from these animals were used in different procedures

(Table 1). Mice had been maintained from birth in a normal

animal unit with a 12:12 light cycle. None of the animals were

exposed to direct lighting. All animals were used with University

College London ethics committee approval and under a UK

Home Office project licence (PPL 70/7036). All procedures were

conducted in accordance to the United Kingdom Animal

Scientific Procedures Act 1986.

Therapeutic Light Treatment and Control
The aged mice were divided randomly into two groups. These

were caged separately for 14 days in adjacent compartments of

a large animal cabinet. Individual cages had an internal space of

6,422 cubic centimeters, with a maximum of five animals per cage.

The external walls of the cage were sprayed matt white to increase

internal reflectance (Figure 1). All were exposed to low levels of

room illumination on a 12:12 L/D pattern of approximately

50 Lux.

The spectrum of the room illumination was measured at 0.5 m

below the light source and within the cage with an Ocean Optics

(USB2000+UV-VIS-ES, Dunedin, USA), showing minimal

670 nm content (Figure 2). Room illumination was indirect. The

experimental group were exposed to 670 nm light via LED

sources (C.H. Electronics, UK) behind clear perspex screens at

either end of the cage (Figure 1). Spectral (Ocean Optics) and

intensity measurements with a radiometer (International Lights, IL

1700 SED033IF/W, Massachusetts, USA) were made directly in

front of the source and behind the perspex screens. There was no

spectral shift as a consequence of the perspex screen and only vary

minimal attenuation in intensity.

Energy levels for 670 nm and room lighting at different parts of

the cage are given in Table 2. Each source produced 20 mW/cm2

and was turned on automatically for 6 minutes at approximately

6 am and 6 pm each day for 14 days. No attempt was made to

modify the animal’s behaviour during exposures. The control

group were housed separately, under identical conditions and

could not see the 670 nm lights.

Following 14 days of light exposure all animals were killed by

cervical dislocation and their eyes removed. Those for

immunohistochemistry were fixed for 1 hour in 4% para-

formaldehyde in phosphate buffered saline (PBS, pH 7.2) at

room temperature, followed by X3 washes with PBS. Those for

Quantitative real-time polymerase chain reaction (qPCR) and

for Western blots were chilled on ice. Immunostaining was

undertaken for a range of markers including COX, ionized

calcium-binding adaptor molecule 1 (IBA-1), complement

component C3, vimetin, glial fibrillary acidic protein (GFAP)

and amyloid beta (Ab). qPCR was used to confirm key COX

and C3 labelling. Western blot analysis was undertaken

additionally to confirm COX labelling as this is fundamental

to the mode of action of 670 nm light.

Immunostaining- Outer Retinal Macrophages
To examine the morphology of outer retinal macrophages flat

mounts were stained with IBA-1. Eyes were dissected and flat

mounts of the retinal pigmented epithelial (RPE) surface were

produced following method used by Hoh Kam et al [2]. These

were washed with PBS X1 for 5 minutes and blocked with 5%

Normal Donkey Serum (NDS) in 3% Triton X-100 PBS for 2

hours on shaker. Followed by X1 wash with PBS and a primary

antibody solution prepared by diluting 1% NDS in 3% Triton X-

100 and incubated with IBA-1 (rabbit polyclonal, 1:1000, A.

Menarini Diagnostics, Wokingham, UK) overnight to mark

macrophages. Next day the tissue was washed X3 with PBS and

a secondary antibody solution prepared by diluting 2% NDS in

0.3% Triton X-100, incubated with donkey-anti rabbit 488

(1:2000, Invitrogen, Paisley, UK) for 2 hours. Tissues were

washed X3 with PBS then incubated with 49,6-diamidino-2-

phenylindole (DAPI, 1:5000, Sigma Aldrich, Dorset, UK) for 1

minute in the dark to provide a counter stain. Lastly, tissues were

washed several times with PBS and Tris buffered saline (TBS). The

RPE flat mounts were mounted with Vectrashield (Vector

laboratories, Peterborough, UK), cover slipped and sealed with

nail varnish.

Immunostaining- Sections
Fixed eyes were cryo-protected in 30% sucrose in PBS and

embedded in optimal cutting temperature compound (OCT,

Agar scientific, Stanstead, UK). Eyes were sectioned at 10 mm
and thaw-mounted onto charged slides overnight. Immunohis-

tochemistry was performed according to Hoh Kam et al [2].

Sections were initially washed for 5 minutes with PBS and then

blocked with 5% NDS in 0.3% Triton X-100 solution for 1

hour. These were washed briefly and then a primary antibody

solution was prepared by diluting 1% NDS in 0.3% Triton X-

100 and incubated overnight. The following day, this was

washed 1X with PBS, and a secondary antibody solution was

prepared as described above and incubated for 1 hour. After

incubation, this was washed several times and then DAPI was

applied for 1 minute as a counter stain. Sections were then

washed with PBS and TBS, mounted, cover slipped and sealed

as described above. The following primary antibodies were

used: COX subunit VIb (rabbit monoclonal 1:200, Abcam,

Cambridge, UK), C3 (rabbit polyclonal 1:20, Abcam, Cam-

bridge, UK), vimentin (rabbit monoclonal 1:100, Abcam,

Cambridge, UK), GFAP (mouse monoclonal 1:1000, Abcam,

Cambridge, UK) and Ab (mouse monoclonal 1:500, Covance,

UK). This was followed by incubation with the appropriate

Alexa fluor secondary antibody, donkey-anti rabbit 568 (1:2000,

Invitrogen, Paisley, UK) and donkey anti-mouse 568 (1:2000,

Invitrogen, Paisley, UK). Negative controls were done for all the

above where the primary antibody was omitted.

Quantitative Real-time Polymerase Chain Reaction
RNA was extracted using TRIzol reagent (Sigma Aldrich,

Dorset, UK) from whole eye cups after the removal of extra-ocular

tissue, cornea, lens and ciliary body/iris. The RNA was reverse

transcribed using a Qiagen QuantiTect Kit and qPCR was

performed using Power SYBR PCR master mix (Applied

Biosystems, Paisley, UK) with the primer pairs; COX6B1 (Fwd:

Table 1. The number of eyes used in separate experiments.

Experiment 670 nm (n) Control (n)

RPE Flat mounts
(1 eye)

5 5

Immunohistochemistry on sections (1 eye) 5 5

Western blots (1 eye) 4 5

qPCR (both eyes) 5 5

A total of twenty nine CFH2/2 mice were used for various applications.
doi:10.1371/journal.pone.0057828.t001

670 nm Light Increases COX and Reduces Inflammation
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ACAATCTTTAGGAGTCAGGATGG, Rev:

TTCTTAGTCTGGTTCTGGTTGG) and C3 (Fwd:

GCGTAGTGATTGAGGATGGTG, Rev: ACAGTGACGGA-

GACATACAGG). Values were normalised using beta actin

mRNA levels and analysed with DART-PCR software [29]. Each

group consisted of 5 mice.

Western Blot
Anterior chambers were dissected out leaving the retina and

RPE-choroidal tissues, which were immediately frozen in liquid

nitrogen and stored at 280uC. The tissues were homogenized in

lysis buffer containing 4% sodium dodecyl sulfate, 17.5% glycerol,

0.25 M Tris and 100 mM DTT before extracts were electropho-

retically separated on sodium dodecyl sulphate polyacrylamide

gels. Subsequently, immunoblotted for COX (Abcam, Cambridge,

UK) and tubulin (clone DM1A, Sigma Aldrich, Dorset, UK) as

a housekeeping control protein. Changes of proteins were

determined by densitometric scanning of immunoblots. Values

were normalised to tubulin as loading control and averaged over at

least 3 independent experiments [2,30].

Analysis
Macrophage number, morphology and

distribution. Fluorescence images of the complete RPE surface

were captured using a Nikon DMX1200 digital camera (Tokyo,

Japan) at a magnification of X400 and saved in JPEG format to

count macrophages. The numbers of IBA-1 positive cells per eye

were determined using the count tool on Adobe Photoshop CS6.

To analyze macrophage morphology, images were captured

at X1000 of cells that were clearly well labelled but still

representative of the population. More labelled macrophages

were commonly found in central regions approximately 1 mm

from the optic nerve head than in other areas. The diameters of

the whole mounts were approximately 5 mm with approxi-

mately 50 cells in experimental animals and about 90 cells in

controls. Within each retinae 9–12 individual cells were selected

for analysis on the basis of morphological clarity and

a separation of more than 75 mm from any other cells analyzed.

Within such constraints candidate cells were identified by

scanning across the RPE surface.

For every image the total number of primary dendritic

processes on each macrophage was counted by drawing a 30 mm
diameter circle around the soma and then counting the

processes crossing the circle, as undertaken by Lee et al [30].

The same images were used to measure primary process length

from the centre of the nucleus to the tip of each dendrite.

Dendritic field size was also determined using the same image.

For this, the longest axis of the dendritic field was measured

and that of the field orthogonal to this and the mean length

calculated. Lasso tool in Adobe Photoshop CS6 was used to

measure the cell body area on the same cells [30]. The distance

between adjacent macrophages was calculated from nucleus of

each cell to its nearest neighbour [2]. For this the images were

taken at a lower magnification of X400, as was undertaken to

count macrophage numbers.

Quantifying immunostaining intensity. The methods

used to quantify the intensity of the immunostaining were similar

to those employed previously [2,7,30]. Sections used for analysis

had relatively uniform staining patterns. Two regions in the

central retina were selected for analysis on either side of the optic

nerve head that were approximately 200 mm away from the optic

nerve and 150 mm wide and captured at a magnification of X400

in JPEG format. Pixel intensity was calculated in Adobe Photo-

shop CS6, by using the lasso tool to draw a line. No less than 10

measurements per eye were taken. The regions of interest for

Figure 1. Cage for 670 nm exposure. LED lights were placed at both ends of the cage behind perspex screens. The internal space occupied
a volume of 6,422 cubic centimeters (13 cm626 cm619 cm). A maximum of five animals were caged together. The longest distance the animals
were from the light source was approximately 13 cm and the minimum was 0.4 cm, which is the thickness of the perspex screens.
doi:10.1371/journal.pone.0057828.g001

670 nm Light Increases COX and Reduces Inflammation
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immune staining varied depending on the marker as they

accumulate at different locations. For COX, this was at the level

of the photoreceptor inner segments. For C3 it was Bruch’s

membrane and photoreceptor outer segments, while for vimentin

and GFAP measurements were made across the full depth of the

neural retina. Ab was measured along Bruch’s membrane/RPE

interface. For all immunostaining sections from experimental and

control groups were stained on the same day and imaged with

standard microscope settings. All data were analysed with

GraphPad Prism 5 and statistical analysis was undertaken using

Mann-Whitney U non parametric tests.

Results

670 nm Treatment Significantly Elevates COX Expression
COX is an enzyme in the mitochondrial respiratory chain

which also functions as a photoacceptor molecule activated by

long wavelengths [18,25,31–32]. COX immunostaining was

present in both groups and was largely confined to mitochondrial

rich regions, including photoreceptor inner segments and the outer

plexiform layer (Figure 3A–D). There were significant differences

between the two groups, in the experimental group COX

expression was up regulated by approximately 50% (Figure 3E).

To confirm the up regulation of COX following 670 nm

treatment, quantitative Western blot and qPCR analysis were

undertaken. These two independent methods confirmed similar

significant increases with COX expression following light exposure

(Figure 3F–H).

670 nm Treatment Significantly Changes Macrophage
Morphology
IBA-1 is commonly used as a marker of macrophages. IBA-1

positive cells were widely distributed in a relatively uniform

pattern over the RPE surface in both experimental and control

groups, with somewhat more present in central than peripheral

regions (Figure 4A–B). The morphology of the macrophages in

the two groups appeared to be markedly different (Figure 4C–

Figure 2. Spectral composition of room light in which mice were caged. The spectrum was measured directly under the room light which
had an opaque cover (blue line) and again in the cage (red line), which did not receive any direct room illumination. The measurements for the cage
are X 10 of those for the room light. As common with room lighting, it is primarily composed of a series of discrete peaks, however none of these are
close to 670 nm.
doi:10.1371/journal.pone.0057828.g002

Table 2. Energy levels with 670 nm and room lighting.

Energy levels (w/m2)

Orientation 670 nm room light

Cage floor (looking up) 0.85 2.2561022

Facing a light source 19 1.0861022

90u away from a light
source

0.6 1.1761022

doi:10.1371/journal.pone.0057828.t002

670 nm Light Increases COX and Reduces Inflammation
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D) and although there were less stained cells in the light treated

mice, this was not statistically significant (Figure 4E). However,

the morphological differences between cells in the two groups

were consistently significantly different over a range of metrics.

The primary processes in mice exposed to 670 nm light

appeared to have wider bases and were significantly longer than

those found in the control. In control mice mean primary process

length was approximately 27 mm, while in experimental mice it

almost doubled to approximately 54 mm (Figure 4F). Estimates for

the area covered by the cells dendritic field between the two

populations were consistent with this, as the longer processes in the

670 nm exposed mice covered a significantly larger area of the

RPE surface (Figure 4G).

In the treated mice there was a significant increase in the

distance between the cells from approximately 91 mm to

approximately 151 mm (Figure 4H). Not only were the processes

in treated mice longer, extending over a wider territory, but there

were significantly more primary processes on them (Figure 4I).

The relative expansion in the processes in 670 nm treated eyes was

associated with a significant decline in the relative size of their cell

bodies (Figure 4J). Hence, the dendritic architecture and size of

individual macrophages in treated mice changed significantly in

response to 670 nm light.

670 nm Treatment Reduces Outer Retinal Inflammation
The inflammatory marker C3 normally accumulates with age

on Bruch’s membrane and on photoreceptor outer segments. C3

immunostaining was significantly lower in 670 nm treated mice at

both locations than in controls (Figure 5A–D). On Bruch’s

membrane it was almost halved, and on outer segments the

reduction was approximately 20%. To confirm this finding C3

expression was also measured with qPCR, and again there was

a significant reduction following 670 nm treatment with expres-

sion level halving (Figure 5E).

670 nm Treatment Reduces Retinal Stress
Retinal sections from the two groups were also stained for

vimentin and GFAP. These are cytoskeletal intermediate filaments

expressed in retinal Muller cells and are up regulated following

retinal stress and ageing. Muller cell processes span the entire

retina.

Staining was present for both vimentin and GFAP in both

groups (Figure 6A–D, G–J). However expression of both was

down regulated following 670 nm exposure. Vimentin labelling

was much more extensive than GFAP in both experimental and

control groups. With vimentin the number of Muller cell

processes and their length were significantly reduced by 670 nm

light (Figure 6E–F). In the untreated group (Figure 6C–D)

labelling extended into the outer nuclear layer and was denser

at the vitreal surface than in the treated mice. GFAP labelling

was also significantly reduced following 670 nm light

(Figure 6K), with more label present in the outer retina of

controls (Figure 6I–J).

670 nm Treatment does not Alter Amyloid Beta
Expression
With age, the outer retina accumulates Ab mainly on Bruch’s

membrane and on photoreceptor outer segments [2]. This age

related deposit is pro-inflammatory. Ab was measured on Bruch’s

membrane in both experimental and control group (Figure 7A–B).

Measurements of staining intensity made at this interface showed

no difference in deposition between the two groups (Figure 7C).

Discussion

This study clearly shows that brief passive exposure to 670 nm

light is effective in reducing inflammation in aged CFH2/2 mice

in which retinal pathology has become established [23]. The retina

showed marked changes after 670 nm treatment, with a significant

increase in COX expression and significant reductions in C3,

vimetin and GFAP expression. Further, there were significant

changes in the dendritic morphology and cell body size of sub-

retinal macrophages, although there number did not decline

significantly. These changes occur independent of Ab load, which

did not differ between the two groups.

These results are similar to those that we obtained using normal

aged C57BL/6 mice where retinal inflammation had become

established [7]. However, in previous studies animals were

individually held in front of the light in an attempt to regulate

exposure [7]. This study shows that 670 nm light impacts

therapeutically irrespective of the method of delivery and can be

delivered by supplementing this wavelength in normal light, where

it is largely absent.

While it is clear that a range of inflammatory/stress markers

are reduced by 670 nm light similar to that shown by

Kokkinopoulos et al [7], we did not find a statistically significant

decline in macrophage numbers as found in this earlier study.

However, it was obvious with other metrics that 670 nm light

had a profound impact on these cells by simple observation.

Another factor that significantly reduces inflammation and

impacts on macrophage morphology is vitamin D. Here the

number of cells is significantly reduced along with age related

outer retinal inflammation. Further, the morphology of these

cells also changes, but here they develop larger cell bodies and

have fewer processes [30]. It is likely that reducing macrophages

will be beneficial in aged tissue, but changes in their

morphology in response to different therapeutic routes may be

difficult to compare directly.

These results sit firmly within an expanding data set from

different laboratories, consistently revealing that 670 nm exposure

has a significant impact on both pathology and ageing within

diverse tissues [17,18,25,33–39]. Given this diversity, the mech-

anism of action must act upon a fundamental aspect of cell

function. With ageing and many forms of pathology, mitochon-

drial DNA is damaged and this probably reduces ATP output,

which is critical for normal metabolic function. Changes in

mitochondrial function are key to theories of ageing as the driving

force for ageing probably relates to mitochondrial DNA damage

reducing ATP and increasing ROS output, which is inflammatory

and induces tissue degradation and cell loss [40]. The impact of

Figure 3. Mitochondrial cytochrome c oxidase expression is enhanced in 670 nm treated aged mice. A–D. Retinal sections were
immunostained with COX (red). This enzyme is involved in mitochondrial respiratory chain and is activated by 670 nm light. In the experimental
groups COX expression is significantly up regulated (A–B) compared to controls (C–E, p = 0.0001). B, D. Showed label with DAPI as a counter stain.
COX staining was largely confined to photoreceptor inner segments and outer plexiform layer. F–G. This result was confirmed with significant
increases in COX expression in qPCR (p = 0.0030) and Western blots (p = 0.0004). H. Differences for tubulin between groups were non-significant.
Abbreviations, cytochrome c oxidase (COX), photoreceptor (PR), outer nuclear layer (ONL) and outer plexiform layer (OPL). Scale bar A–D= 40 mm.
doi:10.1371/journal.pone.0057828.g003

670 nm Light Increases COX and Reduces Inflammation
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such damage is marked in regions were metabolic rate is great, as

in the outer retina [4–6]. Age related changes here not only

include increased inflammation and deposition, but also the loss of

approximately 25–30% of central photoreceptors in both man and

mouse [13,41].

The exact mechanism of 670 nm has not been proven.

However it has been proposed that this wavelength is selectively

absorbed by COX in mitochondria [42]. COX is the rate limiting

enzyme in mitochondrial respiration, which we have shown is

significantly up regulated following 670 nm exposure. Its activa-

tion enhances the efficiency of oxidative phosphorylation, which

may in turn lead to an increase in ATP production and a reduction

in ROS [17,18,37,43,44]. This in turn may reduce oxidative stress

in the outer retina, which due to very high metabolic demand is

particularly susceptible to this type of damage [4–6]. Whether this

impacts on transcription factors and gene expression is unknown

and there remains considerable speculation regarding these issues

[31,45]. However our current in vivo studies have confirmed that

retinal ATP production declines with age and that 670 nm

exposure corrects this.

Dosages of 670 nm vary between studies, although they tend to

be relatively brief, but efficacy is common, indicating that the

actual exposure levels required may be lower than had been

expected. This is consistent with our data, as exposure levels must

have varied between animals because they were often asleep

through exposures, while at other times they were active but not

necessarily oriented towards the source of the 670 nm light. In

spite of this, because of the relatively long wavelength of 670 nm, it

will penetrate deeply into the tissue. Consistent with this was the

observation that the light from our delivery devices could be seen

through the hand in a dimly lit room. Further, in a study this

wavelength has been shown to reduce the pathology from partial

section of the rat optic nerve when illumination was over the top of

the head and only a very small amount of the light actually

penetrated skull tissues [34]. Hence, 670 nm appears to be

effective relatively independent of dosage or at least over a very

wide range. However, we do not know a number of key variables,

including how long following an exposure the impact of 670 nm

remains effective, and also whether excess exposure ultimately has

a negative impact or is ineffective. Resolution of these questions

Figure 4. IBA-1 staining showed significantly different macrophage morphology between 670 nm and control groups. A–D. RPE flat
mounts labelled with IBA-1 (green) to identify macrophages. After 14 days of treatment with 670 nm light these cells had significantly altered
morphology over a range of metrics. E. Number of IBA-1+ cells per eye was measured; there was a reduction in the number of macrophages following
treatment, but this was not statistically significant. F,G. Dendritic process length and area were significantly increased by 670 nm light (27%, 28%
respectively) following treatment (p = 0.0001 for each). H. The distance between macrophages was measured from nucleus of one cell to its nearest
neighbour, which also showed a significant increase (p = 0.0001). I. Not only were the 670 nm treated cells larger they also had more primary
processes (p = 0.05). J. Even though these cells had a greater dendritic field and territory they had smaller cell bodies in comparison to controls
(p = 0.05). Abbreviations, retinal pigmented epithelial (RPE), ionized calcium-binding adaptor molecule 1 (IBA-1), macrophages (mw). Scale bars A,
B = 40 mm, C,D= 20 mm.
doi:10.1371/journal.pone.0057828.g004

Figure 5. Outer retinal inflammation is significantly reduced following 670 nm treatment. A.B. Retinal sections stained with C3 (red). This
accumulates on Bruch’s membrane and outer segments. C.D Following 670 nm treatment C3 was significantly reduced on Bruch’s membrane and
photoreceptor outer segments (p = 0.0001 for each). E. These data were confirmed with qPCR analysis, which showed again a statistically significant
reduction in C3 expression following treatment (p = 0.0031). Abbreviations, Bruch’s membrane (BM), photoreceptor (PR), complement component
(C3). Scale bars = 40 mm.
doi:10.1371/journal.pone.0057828.g005

670 nm Light Increases COX and Reduces Inflammation
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remains critically important in steps towards human therapeutic

treatment.

In both normal ageing and in AMD outer retinal deposits and

inflammation develop, partly due to the high metabolic demand of

photoreceptors and the accumulation of relatively large quantities

of extra-cellular debris, including Ab, the heavier elements of

which are pro-inflammatory [2,26,46–48]. However, here we

demonstrate that it is possible to disassociate some of these factors

by reducing markers of inflammation/stress independent of Ab
load. While there is little doubt that Ab is toxic [49,50], this is

mainly true of the larger molecular forms, as the smaller elements

are actually critical for synaptic plasticity and normal central

nervous system function [51,52]. Eventually, it is likely that

progressive Ab deposition on Bruch’s membrane will significantly

compromise the permeability of this interface between the outer

retina and its blood supply, which will probably impact negatively

on outer retinal function. However, it is unclear to what extent

such changes drive neuronal degeneration compared with in-

flammation alone. A key strategy in fighting retinal ageing is

focussed on the issue of clearing Ab systemically, which in turn is

Figure 6. Retinal stress is significantly reduced following 670 nm treatment. Vimentin and GFAP are Muller cell markers, which are up
regulated in ageing and when the retina is damaged or stressed. A–D. 670 nm treated groups showed significantly reduced vimentin labelling both
in terms of length of Muller cells processes (E, p = 0.0001) and their number (F, p = 0.0329). G–J. Shows similar differences for GFAP with a statistically
significant reduction following 670 nm treatment (K, p = 0.0001). In both A–D and G–J upper panels are immunostaining alone (red) while in lower
panels DAPI is shown as a counter stain (blue). Abbreviations, outer nuclear layer (ONL), outer plexiform layer (OPL), inner plexiform layer (IPL),
ganglion cell layer (GCL) and glial fibrillary acidic protein (GFAP). Scale bar A–D=40 mm.
doi:10.1371/journal.pone.0057828.g006
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hoped to impact on inflammation. However, physiological levels of

Ab are necessary and their removal is likely to be detrimental with

a loss of function [51,52]. An alternative route that would avoid

such problems may reside in the results of the study presented

here.

Therapeutic routes in AMD have already been initiated using

670 nm light. While the patient numbers have been very low, they

have shown significant improvements in terms of visual function in

some using devices that were held directly in front of the eye [53].

While patient numbers need to be expanded and followed over

long time periods, such results linked with this study and our

previous work are encouraging.
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