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Abstract

In this thesis, we are concerned with the finite-time ruin probabilities in

two alternative dependent risk models, the insurance risk model and the

dual risk model, including the numerical evaluation of the explicit expres-

sions for these quantities and the application of the probabilistic results

obtained. We first investigate the numerical properties of the formulas

for the finite-time ruin probability derived by Ignatov and Kaishev (2000,

2004) and Ignatov et al. (2001) for a generalized insurance risk model

allowing dependence. Efficient numerical algorithms are proposed for com-

puting the ruin probability with a prescribed accuracy in order to facilitate

the following studies. We then propose a new definition of alarm time in the

insurance risk model, which generalizes that of Das and Kratz (2012), ex-

pressed in terms of the joint distribution of the time to ruin and the deficit

at ruin. The alarm time is devised to warn that the future ruin probability

within a finite-time window has reached a pre-specified critical level and

capital injection is required. Due to our definition, the implementation

of the alarm time highly relies on the computation of the finite-time ruin

probability, which utilizes the previous results on computing the ruin prob-

ability with a prescribed accuracy. The results of the ruin probability and

the alarm time are then transferred nicely to a generalized dual risk model,

whose name stems from its duality to the insurance risk model, through an

enlightening link established between the two risk models. Finally, based

on the two alternative risk models, we introduce a framework for analyz-

ing the risk of systems failure based on estimating the failure probability,

and illustrate how the probabilistic models and results obtained can be ap-

plied as risk analytic tools in various practical risk assessment situations,

such as systems reliability, inventory management, flood control via dam

xvii



management, infection disease spread and financial insolvency.
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Chapter 1

Introduction

This thesis focuses on the ruin probability within a finite time horizon in

dependent risk models and the numerical implementation and applications.

We start from insurance risk model. The classical insurance risk model

assuming independence among claim severities and claim arrivals has been

believed unrealistic and cannot meet the needs of practical risk modelling

in reality. Research on ruin probability beyond the classical risk model

has intensified significantly in recent year. More general ruin probability

models assuming dependence between claim amounts and/or claim arrivals

and non-linear aggregate premium income have been considered in the

actuarial and applied probability literature. Such models are better suited

to reflect the dependence in the arrival and severity of losses generated

by portfolios of insurance policies. Exploring ruin probability theoretically

and numerically, under these more general dependence assumptions, is of

utmost importance within the Solvency II framework of internal insolvency-

risk model building.

For this purpose, we consider the generalized insurance risk model first

1



considered by Ignatov and Kaishev (2000, 2004) and Ignatov et al. (2001),

where the premium income function is assumed an arbitrary non-negative

non-decreasing real function of time only, and the claim amounts are as-

sumed arbitrarily distributed with any dependent structures, following a

homogeneous Poisson claim arrival process. Under such reasonably gen-

eral assumptions, we explore the explicit ruin probability formulas and

their efficient numerical implementation to facilitate the following studies,

and demonstrate that the formulas are useful not only theoretically but

also in computing ruin probabilities in the dependent risk model. The lat-

ter is important in practical applications. For example, as recently pointed

out by Das and Kratz (2012), the need to evaluate the Ignatov-Kaishev

ruin probability formulas naturally arises in the context of designing early

warning systems against ruin of insurance companies. This need also arises

in the context of reserving and risk capital allocation in particular, for op-

erational risk, see Kaishev et al. (2008).

We then propose a new definition of alarm time in the insurance risk

model, which generalizes that of Das and Kratz (2012), expressed in terms

of the joint distribution of the time to ruin and the deficit at ruin. The

key inspiration for this part of research is the idea introduced by Kaishev

et al. (2008) that, instead of locking up a significant amount of reserve

capital initially, part of it could be invested more profitably and reserved

at a later instant, without sacrificing the predetermined overall solvency

target. Kaishev et al. (2008) demonstrate that allocating capital in two

portions, one initially and one at a later instant, leads to the same (99%)

non-ruin probability as in the case of the entire capital being reserved

at the start of the period. In order to have a fair comparison, the two
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strategies assume equal amount of premium (and capital) accumulated

at the end of the period, but different premium rates. The approach of

Kaishev et al. (2008) has been recently extended by Das and Kratz (2010,

2012) who base their framework on the notion of alarm time. The latter is a

future time instant at which short-term ruin probability is alarmingly high

and exceeds the predetermined threshold level. The additional portion of

capital could then be reserved at the alarm time so that the probability

of ruin falls below the threshold level. It should be noted that such a

capital allocation strategy is determined at the start of the reserving period

and is reflected in the capital and future premium income function which

models the allocation of the portions of risk capital and the accumulation

of premiums over time.

Due to our newly proposed definition of alarm time, its implementa-

tion highly relies on the computation of the finite-time ruin probability,

which utilizes the previous results on computing the ruin probability with

a prescribed accuracy. The new definition also involves the joint distri-

bution of the time to ruin and the deficit at ruin, motivated by the idea

that, even though the company may get ruined, the deficit at ruin may

be small, allowing the company to easily borrow and recover. Therefore,

incorporating deficit at ruin in the definition of alarm time allows one to

emphasize only ruin cases with significant deficit. We therefore derive new

expressions for the joint distribution of the time to ruin and the deficit at

ruin, under more general assumptions.

The results of the ruin probability and the alarm time in the insurance

risk model are then transferred nicely to a generalized dual risk model,

whose name stems from its duality to the insurance risk model, through
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an enlightening link established between the two risk models. As noted by

Avanzi et al. (2007), while the insurance risk model is suitable for modelling

insurance risks, the dual risk model has a wider application. It describes

well the operation of companies specializing in geological exploration of

minerals and petroleum, pharmaceutical research, and technological dis-

coveries and inventions, where routine operations generate continuous ex-

penses over time and occasional discoveries or inventions bring stochastic

capital gains to the company. It can also be applied in modelling the op-

eration of research and development departments from companies in other

industries. Or alternatively, these could be banks, hedge funds or other

investment companies, receiving capital gains from their investment and

other financial operations, while at the same time experiencing perma-

nently accumulating operational expenses. Thus, the results obtained in

the dual risk model are highly applicable for modelling the insolvency of

such institutions.

Finally, we turn our attention to the practical application of the depen-

dent risk models introduced and the probabilistic results obtained in this

thesis. Based on the two alternative risk models, we introduce a frame-

work for analyzing the risk of systems failure based on estimating the

failure probability, and illustrate how the probabilistic models and results

obtained can be applied as risk analytic tools in various practical risk as-

sessment situations, such as systems reliability, inventory management,

flood control via dam management, infection disease spread and financial

insolvency.
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1.1 Chapter summaries

This thesis is organized as a series of papers, each of which is presented

in a separate chapter. All the four chapters/papers have been submitted

to peer reviewed journals. It is worth pointing out that all the papers

are based on joint work with my PhD supervisors. In what follows, we

summarize the main results of each chapter, and a list of the publications

arising from this thesis is provided in Section 1.2.

In Chapter 2, we consider a generalized insurance risk model assum-

ing an arbitrary non-negative, non-decreasing premium income function,

possibly dependent claim severities with any dependence structures, fol-

lowing a homogeneous Poisson claim arrivals, and focus on the finite-time

ruin probability in this dependent risk model. First, we summarize the ex-

plicit ruin probability formulas which appear in the papers by Ignatov and

Kaishev (2000, 2004) and Ignatov et al. (2001) and provide their unified

treatment in terms of classical Appell polynomials. This is achieved by es-

tablishing some enlightening connections between these formulas. Second,

we consider their efficient numerical implementation, and demonstrate that

the formulas are useful not only theoretically but also in computing ruin

probabilities in the generalized insurance risk model. For this purpose, we

propose a method of computing survival probability with a prescribed ac-

curacy and introduce and examine a simulation-based method employing

order statistics proposed by Dimitrova and Kaishev (2013). Extensive nu-

merical experiments and comparisons are provided, covering cases of both

discrete and continuous, dependent and independent claim severities.

Chapter 3 presents a new definition of an alarm time in the insurance
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risk model, which generalizes that of Das and Kratz (2012). The insurance

risk model considered in this chapter is more general than that considered

in Chapter 2, as we here further relax the assumption of Poisson claim

arrivals. In our new definition of alarm time, we incorporate not only the

finite-time ruin probability, but also the deficit at ruin. The motivation for

this is that, even though the company may get ruined, the deficit at ruin

may be small, allowing the company to easily borrow and recover. There-

fore, incorporating deficit at ruin in the definition of alarm time allows one

to emphasize only ruin cases with significant deficit. In order to numer-

ically evaluate the alarm time in the more general insurance risk model,

we summarize existing ruin formulas and also derive some new closed-form

expressions for the joint probability of the ruin time and the deficit at ruin

under the relaxed assumptions, in terms of exponential Appell polynomials,

introduced by Ignatov and Kaishev (2012). Based on our new definition of

alarm times, we formulate an optimal dynamic capital allocation problem.

Based on its numerical solution, we demonstrate that reserving capital se-

quentially in portions at the alarm times, rather than reserving the capital

initially as a lump sum, leads to higher finite-time survival probability.

We therefore demonstrate such dynamic capital allocation strategies are

very appealing from a solvency risk management perspective. Extensive

numerical examples are also provided.

In Chapter 4, we turn our attention to the dual risk model, whose name

stems from its duality to the insurance risk model. We consider a general-

ized dual risk model assuming any non-negative non-decreasing cumulative

operational cost function and arbitrary capital gain arrival process and fo-

cus on the ruin probability over a finite horizon, which has not been consid-
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ered before. First, by establishing an enlightening connection between the

two models, a trajectory hitting an upper bound and a trajectory hitting a

lower bound, we link the dual risk model with its corresponding insurance

risk model. By revisiting the formulas of survival probability in two rea-

sonably general insurance risk models considered by Ignatov and Kaishev

(2004) and Ignatov and Kaishev (2012), we obtain explicit formulas for

the finite-time survival probability in our generalized dual risk model for

exponential and Erlang capital gains, in terms of classical Appell polyno-

mials and the exponential Appell polynomials, respectively. The results

are then generalized to the case where capital gains follow a linear combi-

nation of exponential distributions or a hyperexponential distribution. The

latter result is then used to obtain the survival probability for arbitrarily

distributed capital gains, including heavy-tailed families. We further re-

lax the independence assumptions in our dual risk model and introduce

certain dependence structures between capital gains and/or inter-arrival

times in order to make the model more realistic. Finally, we address the

problem of risk capital allocation in the dual risk model, which to the best

of our knowledge, has not been previously considered in the literature.

We base our approach on the ideas of Kaishev et al. (2008) of distribut-

ing the initial capital over a finite-time horizon without affecting a fixed

desired sufficiently high level of survival probability in the insurance risk

model. These ideas have been further extended by Das and Kratz (2012),

who introduced the concept of alarm time, an early warning system to the

problem of risk capital allocation. In our work, we transfer these ideas and

concepts to the dual risk model and illustrate them numerically.

In the last chapter, we are concerned with the possible applications of
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the two risk models considered in this thesis. Chapter 5 develops a frame-

work for analyzing the risk of systems failure based on estimating the

failure probability. The latter is defined as the probability that a certain

risk process, characterizing the operations of a system, reaches a possibly

time-dependent critical risk level within a finite-time interval. Under gen-

eral assumptions, we utilize the probabilistic results obtained in previous

chapters for the failure probability and also the joint probability of the time

of the occurrence of failure and the excess of the risk process over the risk

level. We illustrate how to interpret the model parameters of the two alter-

native risk models in order to reflect the specifics of the concrete practical

risk assessment problems and how the probabilistic results obtained can

be successfully applied in several important areas of risk analysis among

which systems reliability, inventory management, flood control via dam

management, infection disease spread and financial insolvency. Numerical

illustrations are also presented.
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1.2 Publications arising from this thesis

Chapter 2: On the evaluation of finite-time ruin probabilities in a depen-

dent risk model.

This chapter has been submitted to a peer reviewed journal as:

Dimitrova, D.S., Kaishev, V.K., Zhao, S. 2014. On the evaluation of finite-

time ruin probabilities in a dependent risk model.

Chapter 3: Early warning of bankruptcy and risk capital allocation based

on the time to ruin and the deficit at ruin.

This chapter has been submitted to a peer reviewed journal as:

Dimitrova, D.S., Kaishev, V.K., Zhao, S. 2014. Early warning of bankruptcy

and risk capital allocation based on the time to ruin and the deficit at ruin.

Chapter 4: On finite-time ruin probabilities in a generalized dual risk

model with dependence.

This chapter has been submitted to a peer reviewed journal as:

Dimitrova, D.S., Kaishev, V.K., Zhao, S. 2014. On finite-time ruin proba-

bilities in a generalized dual risk model with dependence.

Chapter 5: Modelling finite-time failure probabilities in risk analysis ap-

plications.

This chapter has been submitted to a peer reviewed journal as:

Dimitrova, D.S., Kaishev, V.K., Zhao, S. 2014. Modelling finite-time fail-

ure probabilities in risk analysis applications.
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On the evaluation of finite-time ruin probabilities in a
dependent risk model

Abstract

This paper establishes some enlightening connections between the explicit

formulas of the finite-time ruin probability established by Ignatov and Kai-

shev (2000, 2004) and Ignatov et al. (2001) for a risk model allowing de-

pendence. The numerical properties of these formulas are investigated and

efficient algorithms for computing ruin probability with prescribed accuracy

are presented. Extensive numerical comparisons and examples are provided.

Keywords: finite time ruin probability, dependent risk modelling, Appell

polynomials, numerical implementation, order statistics
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Early warning of bankruptcy and risk capital alloca-
tion based on the time to ruin and the deficit at ruin

Abstract

We present a new definition of an alarm time, which generalizes that of Das

and Kratz (2012), and is expressed in terms of the joint distribution of the

ruin time and the deficit at ruin under a general insurance risk model with

dependence. In order to evaluate the alarm time, we summarize existing

ruin formulas and also derive some new closed-form expressions for the joint

probability of the ruin time and the deficit at ruin, in terms of exponential

Appell polynomials, introduced by Ignatov and Kaishev (2012b). Based

on our new definition of alarm times, we formulate an optimal dynamic

capital allocation problem. Based on its numerical solution, we demonstrate

that reserving capital sequentially in portions at the alarm times, rather

than reserving the capital initially as a lump sum, leads to higher finite-

time survival probability. We therefore demonstrate such dynamic capital

allocation strategies are very appealing from a solvency risk management

perspective. Extensive numerical examples are also provided.

Keywords: alarm time, joint distribution of the ruin time and the deficit

at ruin, exponential Appell polynomials, capital allocation, reserving
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3.1 Introduction

Problems of allocating and managing risk capital in insurance companies

have attracted considerable attention in the actuarial science literature.

Allocating capital between different business units or lines of business has

been extensively explored (see e.g. Dhaene et al. 2003; Tsanakas 2004,

2009; Dhaene et al. 2012). Under an alternative approach (see Embrechts

and Samorodnitsky 2003; Embrechts et al. 2004), risk capital is reserved at

the start of a period, so as to ensure that the probability of the company’s

future ruin is less than a predetermined solvency target level. It can be

argued however, that instead of locking up a significant amount of reserve

capital initially, part of it could be invested more profitably and reserved

at a later instant, without sacrificing the predetermined overall solvency

target. This time-distributed (dynamic) capital allocation approach has

first been considered by Kaishev et al. (2008), who demonstrate that al-

locating capital in two portions, one initially and one at a later instant,

leads to the same (99%) non-ruin probability as in the case of the entire

capital being reserved at the start of the period. In order to have a fair

comparison, the two strategies assume equal amount of premium (and cap-

ital) accumulated at the end of the period, but different premium rates.

The approach of Kaishev et al. (2008) has been recently extended by Das

and Kratz (2010, 2012) who base their framework on the notion of alarm

time. The latter is a future time instant at which short-term ruin prob-

ability is alarmingly high and exceeds the predetermined threshold level.

The additional portion of capital could then be reserved at the alarm time

so that the probability of ruin falls below the threshold level. It should

77



be noted that such a capital allocation strategy is determined at the start

of the reserving period and is reflected in the capital and future premium

income function which models the allocation of the portions of risk capital

and the accumulation of premiums over time.

A system of alarm times at which certain portions of capital should

be reserved for the purpose of reducing finite-time ruin risk is referred by

Das and Kratz (2012) as alarm system of an insurance company. The

authors have also examined the effectiveness of the proposed strategy by

numerically comparing the finite- and infinite-time ruin probabilities in

the scenarios with and without an alarm system. Their comparison re-

sults show that the model employing an alarm system provides a higher

probability of survival in a longer time horizon. Analytical bounds for

the difference between the ruin probabilities in the two cases are also ob-

tained. It is worth noting that, the alarm time, as defined by Das and

Kratz (2012), requires only the evaluation of finite-time ruin (survival)

probability. However, instead of considering analytic expressions for the

finite-time ruin probability, the authors compute it by simulation, which

may introduce significant (simulation) error in the evaluation of the alarm

time. The reason for this, as noted by the authors, is that the time unit

with which the alarm time is computed is not specified in absolute terms

and a unit of time may correspond to a long period. Therefore, a small

inaccuracy in the simulated alarm time can make a big difference in ab-

solute terms. It should also be mentioned that Das and Kratz (2012) do

not consider the problem of how much capital to allocate at each alarm

time, which is in fact the most important question in practical risk capital

allocation.
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This paper can be viewed as a follow-up from Das and Kratz (2012), and

our objective is four-fold. First, we propose a new definition of alarm time

which generalizes that of Das and Kratz (2012). In our new definition (see

Definition 3.2.2), we incorporate not only the finite-time ruin probability,

but also the deficit at ruin. The motivation for this is that, even though

the company may get ruined, the deficit at ruin may be small, allowing the

company to easily borrow and recover. Therefore, incorporating deficit at

ruin in the definition of alarm time allows one to emphasize only ruin cases

with significant deficit. Second, as discussed above, since simulation may

introduce significant errors, we give explicit expressions for the finite-time

survival probability and the joint probability of the time to ruin and the

deficit at ruin, which we also use to evaluate the alarm time numerically.

Explicit expressions for these two probabilities, under a reasonably general

risk model allowing dependence, are summarized in Section 3.2.2. Some

new expressions are also derived under further extensions of the model,

which is our third contribution in the paper (see Theorem 3.5.1 in the

Appendix). Our fourth contribution is related to suggesting an optimal

way of determining the amount of capital which needs to be allocated at

the alarm times as part of an alarm system for an insurance company (see

Section 3.3). We recall that such an optimal capital allocation problem

has not been considered by Das and Kratz (2012).

The paper is organized as follows. In Section 3.2.2, we introduce the

framework we are concerned with in this paper and the related assumptions

and notations. Various expressions for the finite-time survival probability

and the joint probability of the time to ruin and the deficit at ruin are

provided under different assumptions. We then generalize the definition of
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alarm time proposed by Das and Kratz (2012) in Section 3.2.1, where we

incorporate in the new definition both the ruin probability and the deficit

at ruin. We study the impacts of different parameters in the model with ex-

tensive numerical examples and parameter settings, covering both discrete

and continuous, dependent and independent claim severities. In Section

3.2.4, we devise a system with multiple alarms based on the definition of

a single alarm. Section 3.3 is devoted to studying the capital allocation

strategies in the alarm system. Optimization problems of capital alloca-

tion are formulated and attempted in simple cases with only one and two

alarms in Sections 3.3.1 and 3.3.2 respectively. Section 3.4 concludes the

paper.

3.2 Alarm times and alarm systems

In this section we introduce the concepts of alarm time and alarm system

and demonstrate how the latter can be used to allocate risk capital over

time. For the purpose we first introduce the insurance risk model and

related notation.

3.2.1 Definition of an alarm time

We start by considering the notion of alarm time, as defined by Das and

Kratz (2012), and then we provide its further generalization. Under gen-

eral insurance risk model, which has first been considered in Ignatov and

Kaishev (2000, 2004) and Ignatov et al. (2001), the possibly dependent

random variables W1,W2, . . . denote claim severities, and Y1, Y2, . . . denote

their partial sums, with joint density fY1,...,Yk(y1, . . . , yk) or joint probabil-
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ity mass function pY1,...,Yk(y1, . . . , yk) in case Y1, Y2, . . . are discrete. Let

τ1, τ2, . . . denote the claim inter-arrival times assumed independent, iden-

tically distributed random variables. We first assume τ1, τ2, . . . follow an

exponential distribution with mean 1/λ, i.e. τi ∼Exp(λ), i = 1, 2, . . .,

an assumption which will later be relaxed (see Theorem 3.5.1). Thus,

the number of claims up to time t is modelled by the Poisson process

Nt = max{i : τ1 + · · · + τi ≤ t}, t > 0. We denote by T1, T2, . . . the

arrival times of consecutive claims, i.e. Ti = τ1 + . . . + τi, i = 1, 2, . . ..

Let u0 be the initial capital at time 0 and g(t) denote the cumulative pre-

mium income function of an insurance company (or a particular line of

business), which is assumed a non-negative and non-decreasing continuous

real-valued function defined on R+ with g(0) = 0. Thus, h(t) = u0 +g(t) is

the cumulative capital and premium income function. For brevity, we will

refer to h(t) as the capital-premium function. It is worth mentioning that

the function h(t) may have discontinuities, resulting from e.g. lump-sum

capital injections, in which case we define h−1(z) = inf{t : h(t) ≥ z}. The

insurance company’s surplus process is expressed as Rt = h(t)− St, where

St = YNt is the aggregate claim amount process. The instant of ruin T is

thus defined as

T := inf{t : t > 0, Rt ≤ 0},

or T = ∞ if Rt ≥ 0 for all t, and the deficit at ruin Y is defined as

Y = RT+ if T < ∞. We consider a finite-time interval [0, x], and denote

by P (T > x) and P (T < x, Y > y) the probability of non-ruin in [0, x] and

the probability that ruin occurs before time x with a deficit Y exceeding y.

It should be noted that we consider this general insurance risk model since
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it incorporates jumps in the capital-premium function h(t) and therefore

allows to implement the definitions of alarm time (and capital allocation

strategies) which follow. We note that this has not been possible under the

classical insurance risk model, where h(t) is assumed continuous, strictly

linearly increasing.

We will address the following capital allocation problem. A total risk

reserve capital u = u0 + u1 of an insurance company (or a line of business)

is available at time 0. Instead of reserving the entire capital u, only part

of it, u0, is reserved initially. A second part, u1, is released (for possible

investment) and earns interest with a certain interest rate r. At an appro-

priate later moment of time, say tA, the accumulated amount u1e
rtA will

then be reserved. The following question then arises. Given initial capital

u0 at time 0, is there a future time instant, tA > 0, before which ruin is

very unlikely, but becomes very probable shortly after, with ruin proba-

bility exceeding an alarmingly high threshold level. If tA exists, it can be

called the alarm time, at which the additional capital, u1e
rtA , should be

added (injected) in the capital-premium function, h(t), so as to assure that

the probability of ruin falls below a required threshold level. This approach

provides a strategy for a dynamic allocation of a total risk capital amount

u = u0 +u1 in two portions, u0 initially at time t = 0, and u1 later at time

tA. It should be noted that such a strategy is determined at time 0 by

the capital-premium function h(t) ≡ h0(t) = u0 + g(t), which will then be

accordingly modified and becomes h1(t) = u0 + u1e
rtAI{t≥tA} + g(t). The

question of how to determine u0 and u1 optimally is addressed in Section

3.3. The alarm time tA has been given the following formal definition by

Das and Kratz (2012).
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Definition 3.2.1 (Das and Kratz (2012)) The alarm time tA = tA(a, b, d;h0(t))

is defined as

tA = inf {t > 0 : P (T ≤ t+ d|T > t) ≥ 1− a and P (T > t) ≥ 1− b}

= inf

{
t > 0 : P (T > t) ≥ max

(
1− b, 1

a
P (T > t+ d)

)}
, (3.1)

where a and b are prescribed probabilities and d represents the length of a

pre-specified future time interval (window).

As noted by Das and Kratz (2012), the value of the parameter b should

be considerably small to ensure that the probability of ruin before the alarm

time (i.e. on [0, tA]) is minimal; the value of the parameter a needs to be

moderately small (but not too small), so that the prospect of ruin within

[tA, tA + d] is realistic and a remedial action (e.g. topping up capital) will

be required; the length of the time interval d has to be moderate, neither

very small, which leaves little possibility for remedial action to be effected,

nor very large, which indicates that ruin may occur in the distant future

and there is no strong immediate likelihood of it at time tA. In fact, a and

d could be inter-related.

Clearly, in order to compute the alarm time specified in Definition 3.2.1,

one only needs to be able to compute the finite-time survival probability

P (T > t). For this purpose, one can use the explicit expressions summa-

rized in Section 3.2.2 under various assumptions for the risk model param-

eters.

It is reasonable to assume, however, that in practice, when a technical

ruin occurs and the deficit at ruin is insignificant, the insurance company

would be able to cover it through external funding and remain operational.
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Therefore, it is reasonable to incorporate the deficit at ruin in the definition

of alarm time and highlight only ruin cases with more significant deficit

at ruin. More precisely, under Definition 3.2.2 proposed below, instead

of detecting a time window [tA, tA + d] within which ruin probability is

alarmingly high (i.e. higher than a critical level b), we consider the likeli-

hood that ruin within [tA, tA+d] occurs in combination with a large deficit

at ruin Y > y, where y is a predetermined threshold level. Therefore,

this new definition is a refinement of Definition 3.2.1, which dismisses ruin

cases when the deficit at ruin is too small to cause serious concerns for the

company.

Definition 3.2.2 The alarm time tA = tA(a, b, d;h0(t), y) is defined as

tA = inf {t > 0 : P (T ≤ t+ d, Y > y|T > t) ≥ 1− a and P (T > t) ≥ 1− b}

= inf{t > 0 : P (T ≤ t+ d, Y > y)− P (T ≤ t, Y > y) ≥ (1− a)P (T > t)

and P (T > t) ≥ 1− b}, (3.2)

where Y denotes the deficit at ruin and y is a pre-defined threshold level.

Clearly, Definition 3.2.2 is more general and includes Definition 3.2.1

as a special case when y = 0. It is worth pointing out that the two

conditions in (3.2) may not always be fulfilled simultaneously, i.e. we may

not necessarily be able to find such a time point tA in all cases, because,

for all possible values t such that P (T > t) ≥ 1 − b, the ruin probability

(jointly with the deficit at ruin) may not increase significantly within the

future time interval [t, t+ d] for fixed a, d and y. In Das and Kratz (2012),

such cases are referred to as “no alarm”. However, under Definition 3.2.2,
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we define the alarm time in such cases as

tA = inf {t > 0 : P (T > t) < 1− b} , (3.3)

i.e. the alarm time is when the survival probability drops below the pre-

scribed critical level, which makes Definition 3.2.2 more comprehensible,

avoiding “no alarm” situations appearing in Tables 2 and 3 of Das and

Kratz (2012).

As can be seen from (3.2), computing the alarm time given by Defini-

tion 3.2.2 requires computing not only the finite-time survival probability,

but also the joint distribution of the time to ruin and the deficit at ruin,

P (T < t, Y > y). Explicit expressions for the latter joint distribution un-

der various assumptions for the risk model parameters will also be provided

in Section 3.2.2.

3.2.2 Explicit expressions for P (T > x) and P (T <

x, Y > y)

In this section, we summarize the existing explicit expressions for the finite-

time survival probability and the joint distribution of the time to ruin and

the deficit at ruin in the insurance risk model described in Section 3.2.1.

We also provide some explicit results for P (T > x) and P (T < x, Y > y)

under more general model assumptions. We note that in order for these

expressions to be applied to compute tA, x should be replaced by t.

Under the insurance risk model discussed in Section 3.2.1, the follow-

ing explicit expression for the probability of non-ruin within a finite-time
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interval [0, x], P (T > x), assuming continuous claim severities, has been

derived in Ignatov and Kaishev (2004),

P (T > x) = e−λx
(

1 +
∞∑
k=1

λk
∫ h(x)

0

∫ h(x)

y1

· · ·
∫ h(x)

yk−1

Ak(x; ν1, . . . , νk)

×fY1,...,Yk(y1, . . . , yk)dyk . . . dy1

)
, (3.4)

where νk = h−1(yk), and Ak(x; ν1, . . . , νk) for k = 1, 2, . . . are the classical

Appell polynomials of degree k with a coefficient in front of xk equal to

1/k!, uniquely defined as

A0(x) = 1,

A′k(x; ν1, . . . , νk) = Ak−1(x; ν1, . . . , νk−1),

Ak(νk; ν1, . . . , νk) = 0, k = 1, 2, . . . ,

where ν1 ≤ . . . ≤ νk, νi ∈ R. It can directly be seen that formula (3.4) is

also valid for discrete claim severities (see Dimitrova et al. 2013a) in which

case it takes the form:

P (T > x) = e−λx
(

1 +
n∑
k=1

λk
n−(k−1)∑
y1=1

n−(k−2)∑
y2=y1+1

· · ·
n∑

yk=yk−1+1

Ak(x; ν1, . . . , νk)

×pY1,...,Yk(y1, . . . , yk)
)
, (3.5)

where n is the integer part of h(x), i.e. n = bh(x)c.

It has been illustrated by Dimitrova et al. (2013a) that formulas (3.4)

and (3.5) are computationally appealing. For details on the numerical

properties of the two formulas, we refer to Dimitrova et al. (2013a) where

extensive numerical experiments are provided.
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Explicit expressions for the joint distribution of the time to ruin T and

the deficit at ruin Y , P (T < x, Y > y), x > 0, y ≥ 0, are obtained by

Ignatov and Kaishev (2012a), in terms of the classical Appell polynomials,

for discrete and continuous claim severities respectively given by

P (T < x, Y > y) = 1−
m−1∑
y1=1

pY1(y1)−
l∑

y1=m

pY1(y1)e−λh
−1(y1−y)

−e−λx
(

1−
l∑

y1=1

pY1(y1)

)

+
l∑

k=2

∑
Ck

pY1,...,Yk(y1, . . . , yk)
{
Bk−2

(
h−1 (yk−1) ; ν1, . . . , νk−2

)
−Bk−1

(
h−1 (yk − y) ; ν1, . . . , νk−1

)}
+
∞∑
k=2

∑
Dk

pY1,...,Yk(y1, . . . , yk)
{
Bk−2

(
h−1 (yk−1) ; ν1, . . . , νk−2

)
−Bk−1 (x; ν1, . . . , νk−1)

}
, (3.6)

where m = byc+ 1, n = bh(x)c, l = bh(x) + yc,

Ck = {(y1, . . . , yk) : 1 ≤ y1, 1 + yi−1 ≤ yi, i = 2, . . . , k − 1, yk−1 + y ≤ yk < h(x) + y},

Dk = {(y1, . . . , yk) : 1 ≤ y1, 1 + yi−1 ≤ yi, i = 2, . . . , k − 1, yk−1 ≤ h(x) ≤

h(x) + y ≤ yk < +∞} and

Bk(z; ν1, . . . , νk) = e−λz
[
A0 + λA1 (z; ν1) + · · ·+ λkAk (z; ν1, . . . , νk)

]
, and
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P (T < x, Y > y) =

∫ +∞

y

f(y1)dy1 −
∫ h(x)+y

y

e−λh
−1(y1−y)f(y1)dy1

−e−λx
∫ +∞

h(x)+y

f(y1)dy1

+
∞∑
k=2

∫
. . .

∫
Ck

{
Bk−2

(
h−1 (yk−1) ; ν1, . . . , νk−2

)
−Bk−1

(
h−1 (yk − y) ; ν1, . . . , νk−1

)}
f(y1, . . . , yk)dyk . . . dy1

+
∞∑
k=2

∫
. . .

∫
Dk

{
Bk−2

(
h−1 (yk−1) ; ν1, . . . , νk−2

)
−Bk−1 (x; y1, . . . , yk−1)

}
f(y1, . . . , yk)dyk . . . dy1, (3.7)

where Ck = {(y1, . . . , yk) : 0 < y1 < . . . < yk−1 ≤ yk−1 + y < yk < h(x) + y},

Dk = {(y1, . . . , yk) : 0 < y1 < . . . < yk−1 < h(x) ≤ h(x) + y ≤ yk < +∞} and

Bk(z; ν1, . . . , νk) = e−λz
[
A0 + λA1 (z; ν1) + · · ·+ λkAk (z; ν1, . . . , νk)

]
.

It is not difficult to verify that, when y = 0, formulas (3.6) and (3.7)

coincide with (3.5) and (3.4) respectively. The proof of that is a simplified

version (special case) of the proof of Corollary 3.5.3 (see also Appendix A

in Dimitrova et al. 2014).

In what follows, we relax the assumption of Poisson claim arrivals. As a

more general case, we assume the inter-arrival times follow an independent

non-identical Erlang distribution, i.e. τi ∼Erlang(mi, λi), and a Poisson

arrival process can be viewed as a special case where mi = 1 and λi = λ.

The following explicit expression for the finite-time survival probability has

been obtained by Ignatov and Kaishev (2012b), assuming continuous claim
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severities with an arbitrary dependence structure governing Y1, Y2, . . .,

P (T > x) = e−λ1x +
∞∑
k=1

∫
. . .

∫
0≤y1≤...≤yj(k)≤h(x)

Bk(x)f
(
y1, . . . , yj(k)

)
dyj(k) · · · dy1,

(3.8)

where j(k), k = 0, 1, 2, . . . , is an integer-valued function such that

m1 + . . .+mj(k) ≤ k < m1 + . . .+mj(k) +mj(k)+1, (3.9)

and Bk are called exponential Appell polynomials, defined recursively as

Bk(x) = λj(k−1)+1e
−λj(k)+1x

∫ x

h−1(yj(k))
eλj(k)+1zBk−1(z)dz, k = 1, 2, . . . ,

with B0(x) = e−λ1x. A discrete version of (3.8) can be directly deduced.

The corresponding formula for the joint distribution of the time to ruin

and the deficit at ruin, P (T < x, Y > y), is derived in the Appendix, see

formula (3.23) in Corollary 3.5.4 (see also Appendix B in Dimitrova et al.

2014), and Corollary 3.5.5 states that, when y = 0, formula (3.23) coincides

with (3.8).

A further generalization can be made by assuming that the inter-arrival

times are independent, non-identically distributed as a linear combination

of exponential r.v.s, i.e. τi =
∑mi

j=1 αijηij, where the constants αij > 0 and

ηij ∼Exp(λij). The latter assumption is rather general, and includes both

the Erlang and exponential assumptions on the inter-arrival time distribu-

tion as special cases. Under this general assumption, the following explicit

expression for the non-ruin probability has been derived by Dimitrova et al.
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(2013b),

P (T > x) =
∞∑
k=0

∫
. . .

∫
0≤y1≤...≤yj(k)≤h(x)

Bk(x)f(y1, . . . , yj(k))dyj(k) · · · dy1, (3.10)

where j(k) is defined as in (3.9),

Bk(x) = θke
−θk+1x

∫ x

νk

eθk+1zBk−1(z)dz, k = 1, 2, . . . ,

with B0(x) = e−θ1x, θn =
λij
αij

, such that
∑i−1

s=1ms < n ≤
∑i

s=1ms and

j = n −
∑i−1

s=1 ms, and 0 ≤ ν1 ≤ ν2 ≤ . . . is a sequence of real numbers

denoting

h−1(0) ≤ . . . ≤ h−1(0)︸ ︷︷ ︸
m1−1

≤ h−1(y1) ≤ . . . ≤ h−1(y1)︸ ︷︷ ︸
m2

≤ . . . ,

correspondingly. Furthermore, under these general assumptions, we derive

the joint distribution of the time to ruin and the deficit at ruin, P (T <

x, Y > y), in Theorem 3.5.1 (see expression (3.13) and its detailed proof

in Appendix 3.5), and Corollary 3.5.3 demonstrates that, when y = 0,

formula (3.13) coincides with (3.10).

It is worth mentioning that, although we only give the expressions for

continuous claim severities under the more general assumptions of inter-

arrival times, it is straightforward to obtain the form that is valid for

discrete claim amounts.

In this section, we have summarized explicit expressions for the finite-

time survival probability and the joint probability of the time to ruin and

the deficit at ruin under various assumptions to support the numerical
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computation of alarm times defined in Definitions 3.2.1 and 3.2.2. As

mentioned previously, to avoid the inaccuracy introduced by numerical

simulations, we choose to use explicit formulas for the these quantities, in

contrast to Das and Kratz (2012), who resort on simulation. Therefore,

the explicit expressions summarized in this section will be highly important

and helpful in the numerical analysis provided next.

3.2.3 Sensitivity analysis

In what follows, we provide some sensitivity analysis of the alarm time (3.2)

against various parameters based on the following two examples, which

cover cases of discrete and continuous, dependent and independent claim

severities.

Example 3.2.3 Claim amounts follow an i.i.d logarithmic distribution

with parameter α, i.e. W ∼Log(α) with a generic p.m.f. P (W = i) =

−αi/(i ln (1− α)).

Example 3.2.4 Claim amounts are inter-dependent with Pareto marginals,

i.e. W ∼Pareto(α, β) with a generic p.d.f. f(w) = αβ(α + w)−β−1β, and

the dependence structure is modelled by a rotated Clayton copula, which

models upper tail dependence, with density

cRCl(u1, . . . , uk; θ) = θk
Γ(1/θ + k)

Γ(1/θ)

k∏
i=1

(1−ui)−θ−1
( k∑
i=1

(1−ui)−θ−k+1
)−1/θ−k

,

where θ ∈ (0,∞) denotes the dependence parameter.

Based on Examples 3.2.3 and 3.2.4 and expression (3.2), we compute

the alarm time in Definition 3.2.2 with various sets of parameters and illus-
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trate how it varies against different parameter values. For computational

simplicity, we assume Poisson claim arrivals and a linear premium income

function g(t) = ct, where c denotes a constant premium income rate, i.e.

h0(t) = u0 + ct.

Table 3.1: Alarm time tA with b = 0.25 and y = 0, for different a and d,
based on Example 3.2.3. Parameter values: λ = 2, α = 0.7, u0 = 10 and
c = 1.

d a
0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5

2.5 2.32 2.32 2.32 2.32 2.32 2.24 2.04 1.67 1.38
2.75 2.32 2.32 2.32 2.24 2.04 1.78 1.48 1.18 1.04
3 2.32 2.32 2.15 1.82 1.58 1.33 1.05 0.86 0.71
3.25 2.32 2.06 1.62 1.40 1.18 0.88 0.70 0.56 0.42
3.5 1.88 1.46 1.26 1.07 0.86 0.61 0.41 0.28 0.15
3.75 1.43 1.13 0.88 0.74 0.53 0.30 0.14 0.02 0
4 1.03 0.82 0.63 0.44 0.25 0.03 0 0 0
4.25 0.70 0.52 0.34 0.17 0 0 0 0 0
4.5 0.42 0.25 0.08 0 0 0 0 0 0
4.75 0.15 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0

Table 3.2: Alarm time tA with b = 0.25 and y = 0.2, for different a and d,
based on Example 3.2.3. Parameter values: λ = 2, α = 0.7, u0 = 10 and
c = 1.

d a
0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5

2.5 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.08
2.75 2.32 2.32 2.32 2.32 2.32 2.32 2.32 1.88 1.80
3 2.32 2.32 2.32 2.32 2.32 2.22 1.84 1.56 1.28
3.25 2.32 2.32 2.32 2.32 2.08 1.86 1.37 1.14 0.88
3.5 2.32 2.32 2.28 1.88 1.83 1.22 1.02 0.86 0.62
3.75 2.32 2.32 1.88 1.74 1.16 0.88 0.76 0.54 0.31
4 2.32 1.88 1.61 1.21 0.86 0.64 0.45 0.25 0.03
4.25 1.88 1.51 1.17 0.88 0.53 0.35 0.17 0 0
4.5 1.83 1.12 0.88 0.60 0.25 0.08 0 0 0
4.75 1.12 0.86 0.60 0.28 0 0 0 0 0
5 0.86 0.57 0.30 0.01 0 0 0 0 0
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Table 3.3: Alarm time tA with b = 0.25 and y = 0.5, for different a and d,
based on Example 3.2.3. Parameter values: λ = 2, α = 0.7, u0 = 10 and
c = 1.

d a
0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5

2.5 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32
2.75 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32
3 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32
3.25 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32
3.5 2.32 2.32 2.32 2.32 2.32 2.32 2.32 2.32 1.85
3.75 2.32 2.32 2.32 2.32 2.32 2.32 2.32 1.84 1.60
4 2.32 2.32 2.32 2.32 2.32 2.32 1.88 1.61 1.12
4.25 2.32 2.32 2.32 2.32 2.32 2.16 1.75 1.10 0.81
4.5 2.32 2.32 2.32 2.32 2.32 1.82 1.53 0.81 0.55
4.75 2.32 2.32 2.32 2.32 1.88 1.61 0.83 0.56 0.23
5 2.32 2.32 2.32 2.32 1.76 1.04 0.58 0.27 0

In Tables 3.1, 3.2 and 3.3, we compare the alarm times obtained for

various choices of a, d and y, based on Example 3.2.3, where the claim

severities follow an i.i.d. logarithmic distribution. As noted by Das and

Kratz (2012), under the original definition (3.1), the alarm time decreases

with the increase of a and d, which is rather intuitive. Here, we observe

similar effects under the new definition. Particularly, for smaller values

of a and/or d, the first condition in (3.2) cannot be fulfilled prior to the

survival probability decreasing below the pre-specified level 1 − b. Hence,

the alarm time is determined solely by definition (3.3) and the level of

the parameter b. In fact, b is used in order to cap the alarm time, and

its impact on tA signifies when a and d are small and definition (3.3) is

employed. It can also be observed that the alarm time increases along with

y. This is reasonable, because for a high level of the deficit threshold y, it

takes longer time t for P (T ≤ t + d, Y > y|T > t) to become significant

enough to reach an alarm time, and so the latter is postponed.
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Based on Example 3.2.4, where the claims are assumed dependent, with

a joint distribution modelled by a rotated Clayton copula with Pareto

marginals, Figure 3.1 illustrates how the alarm time varies for different

choices of the initial capital level, u0, and with the increase of the depen-

dence level, θ. Clearly, the alarm time, tA, increases with the value of

u0 and also it occurs later when stronger dependence is assumed, and the

increase in tA decelerates with the increase in θ. This is because higher

level of dependence among claims, modelled by Rotated Clayton copula,

facilitates the occurrence of clusters of either small claims or large claims.

Due to the choices of the parameters, it is more likely to have a series of

small claims, which raises the survival probability and therefore defers the

alarm time, tA. With further increase in the dependence level θ, its impact

gradually vanishes after certain level of θ and the increase in the alarm

time also diminishes.

0 1 2 3 4 5
Θ

0.6

0.7

0.8

0.9

1

1.1

1.2

tA

Alarm Times

u0=5

u0=6

u0=7

Figure 3.1: Alarm time tA against dependence level θ, based on Example
3.2.4. Parameter values: λ = 1, α = 5, β = 2, c = 10, a = 0.4, b = 0.1,
d = 2 and y = 0.5. Blue (solid), red (dotted) and brown (dashed) lines
represent u0 = 5, 6, 7 respectively.
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So far, we have provided a new definition of a single alarm time, tak-

ing into account both the time to ruin and the deficit at ruin, and have

numerically illustrated the impacts of the various model parameters. In

the next section, we develop an alarm system, i.e. a system with multiple

alarm times and capital injections at each alarm time.

3.2.4 A system with multiple alarms

In this section, we introduce the concept of an alarm system, i.e. a sys-

tem with multiple alarm times and corresponding capital injections at each

alarm time. Suppose we have an initial capital u0 = h(0), which ensures

a high solvency level for the insurance company (line of business) until

time tA1 , which is the first alarm time determined according to definition

(3.2). It is reasonable to suppose that the company will inject capital at

the alarm time to maintain the solvency target and keep the company op-

erational. Now, we can generalize this single-alarm time procedure and

develop a system with multiple alarms {tAi}i≥1, topping up capital at each

alarm time tAi with an amount ui. It is worth noting that all alarm times

are determined sequentially with respect to time 0, and so are the corre-

sponding capital amounts injected at each alarm time. Next, we provide

the formal definition.

Definition 3.2.5 Given the first i alarm times, tA1 , . . . , tAi, and the cor-

responding capital-premium function hi(t) = u0 +
∑i

k=1 ui× I{t≥tAi}+ g(t),

the i + 1-th alarm time, tAi+1
= tAi+1

(ai+1, bi+1, di+1;hi(t), yi+1), with pre-

specified sequences of values {ai}i≥1, {bi}i≥1, {di}i≥1 and {yi}i≥1, is defined
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as follows,

tAi+1
= inf

{
t > tAi : P (T ≤ t+ di+1, Y > yi+1|T > t) ≥ 1− ai+1

and P (T > t|T > tAi) ≥ 1− bi+1

}
= inf{t > tAi : P (T ≤ t+ di+1, Y > yi+1)− P (T ≤ t, Y > yi+1)

≥ (1− ai+1)P (T > t) and P (T > t|T > tAi) ≥ 1− bi+1},

(3.11)

or

tAi+1
= inf {t > tAi : P (T > t|T > tAi) < 1− bi+1} , (3.12)

if the two conditions in (3.11) cannot be satisfied simultaneously.

Note that, theoretically, one can have an infinite number of alarm times

and the corresponding sequence can be computed sequentially according to

definitions (3.11) and (3.12). However, in practice, it would be highly un-

realistic to consider many alarm times due to the increasing complexity of

the alarm system and the related solvency concerns. Hence, in our numeri-

cal illustrations, we restrict the number of alarm times to a maximum of 3,

which, besides practical considerations, also provides computational conve-

nience. In what follows, we revisit Examples 3.2.3 and 3.2.4 to numerically

illustrate the concept of multiple alarm times, and in the following Section

3.3, we illustrate complete alarm systems. For simplicity, we use constant

values of a, b, d and y when determining the consecutive alarm times, i.e.

ai = a, bi = b, di = d and yi = y. We also assume a constant premium

income rate c, i.e. g(t) = ct, and a fixed size of each capital injection,

ui = ∆u.
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Example 3.2.3 Revisited. Using the assumptions of Example 3.2.3, i.e.

logarithmically distributed claim severities, we compute the alarm times

according to definition (3.11) and illustrate these in Table 3.4. The latter

are computed for a certain set of parameter values, specified in Table 3.4,

with varying threshold level for the deficit at ruin Y , and assuming a

constant amount of top up capital, ∆u, which should be added at each

alarm time to keep the business running healthily. It is not surprising to

see that, with the increase of the size ∆u of the capital injections, the

alarm times occur later and later. However, it can be observed that the

incremental increase in tA3 is larger than that in tA2 , which can be explained

as a compounded effect.

Table 3.4: First 3 alarm times tA1 , tA2 , tA3 under a system with multiple
alarms, based on Example 3.2.3. Parameter values: λ = 2, α = 0.7,
u0 = 10, c = 1, a = 0.4, b = 0.25 and d = 4.

∆u y = 0 y = 0.1 y = 0.2
tA1 tA2 tA3 tA1 tA2 tA3 tA1 tA2 tA3

0.2 0.25 0.34 0.45 0.54 0.58 0.83 0.86 1.03 1.18
0.4 0.25 0.39 0.70 0.54 0.69 1.08 0.86 1.14 1.52
0.6 0.25 0.44 0.98 0.54 0.82 1.35 0.86 1.18 1.86
0.8 0.25 0.59 1.26 0.54 0.88 1.59 0.86 1.31 2.19
1 0.25 0.66 1.54 0.54 0.92 1.81 0.86 1.45 2.52

Example 3.2.4 Revisited. Under the assumption of Example 3.2.4 (dis-

tribution of claim severities modelled by rotated Clayton copula with Pareto

marginals), in Figure 3.2 the first three alarm times are illustrated against

varying dependence level, θ. It is observed that each alarm time is again

postponed as dependence intensifies, which has been discussed previously

in connection to the results of Figure 3.1. Although the first alarm time is

too small to clearly illustrate this phenomenon, it is well expressed in the
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graphs of the following two alarm times (see Figure 3.2).
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Figure 3.2: First 3 alarm times tA1 , tA2 , tA3 under a system with multiple
alarms, based on Example 3.2.4. Parameter values: λ = 1, α = 5, β = 2,
u0 = 5, c = 10, ∆u = 1, a = 0.4, b = 0.03, d = 2 and y = 0.5. Blue
(solid), red (dotted) and brown (dashed) lines represent alarm times 1, 2,
3, respectively.

3.3 Capital allocation strategies

As noted already, a system with multiple alarm times with sequential cap-

ital injections is treated as a capital allocation strategy alternative to re-

serving the entire amount of risk capital initially. The effectiveness of

this alternative strategy has been numerically examined by Das and Kratz

(2012), where, to draw a fair comparison with a system without alarms, the

total capital under two alternatives is equated and the time value of money

is considered. The comparison is made under various choices of interest

rate, and the proposed system with alarms is believed to outperform the

non-alarm system when interest rate is high or the time horizon is long.

However, as we have noted, Das and Kratz (2012) have not considered

the problem of how to optimize capital allocation at the alarm times. In
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this section, we study capital allocation strategies and attempt to solve

related optimization problems. More precisely, we formulate the problems

as follows.

1. How many alarm times (capital injections) should a company allow

of within the time interval considered [0, x]?

2. Given a fixed number of alarm times, what is the optimal amount of

each capital injection (which will decide the following alarm time)?

3. How does the rate of return, which is assumed constant over the whole

period considered, affect the optimal capital allocation strategies?

As discussed previously, despite mathematical feasibility, in reality, it is

highly unlikely for a company to allow of many alarm times due to practical

and regulatory concerns. Hence, in this paper, we only explore the cases

with a single alarm time and two alarm times within the period considered,

and thus, focus on problems 2 and 3. We employ the finite-time survival

probability as our criterion when studying problems 2 and 3 and assessing

the solutions. As the finite-time survival probability itself is sensitive to

the length of the chosen time horizon [0, x], the optimal capital allocation

strategy may also vary accordingly when we consider different times. Thus,

we are also exploring whether there is a unified solution when we consider

time horizons with different lengths.

In the following two sections, we analyze systems with one and two

alarm times respectively, formulate the above mentioned (optimization)

problems 2 and 3 more precisely and provide some numerical illustrations

to their solutions.
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3.3.1 Capital allocation strategy in a system with a

single alarm time

In this section, we study capital allocation strategies in a single-alarm

system and provide numerical solutions to the optimization problems 2 and

3 listed above. First, let us formulate the problems more precisely. Suppose

at time 0 an insurance company has capital of size u in total. It can either

choose to reserve all the capital at time 0 in order to achieve a high solvency

level within a pre-specified horizon [0, x], or, alternatively, opt for smaller

initial capital of size u0 and invest the remaining part to earn a fixed rate

of return r > 0. The accumulated amount of the investment, (u− u0)ertA ,

will then be added back to the capital at the alarm time tA, determined by

definition (3.2) (or (3.3)). Recall that here we consider a capital allocation

strategy when a single alarm time, 0 ≤ tA ≤ x, is allowed. Thus the

alarm time tA = tA(u0) is solely determined by the amount of the initial

capital u0, the problem is to find the optimal level of capital, u0, to set

aside initially, given a fixed total amount u, and the optimality is decided

by the finite-time survival probability over the period [0, x], P (T > x).

Mathematically, the optimization problem can be formulated as follows.

Problem 3.1. Given a fixed total amount of capital u, find an appro-

priate level of initial capital u∗0 such that

u∗0 = arg max
0≤u0≤u

P
(
T > x;h1(t;u0, tA(u0))

)
,

where the alarm time tA = tA(u0) is determined according to (3.2) (or

(3.3)) with h0(t) = u0 + g(t), and the capital-premium function h1(t) =
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h1(t;u0, tA(u0)) = u0 + (u−u0)ertA(u0)× I{t≥tA(u0)}+g(t), is used in finding

u∗0.

Next, we illustrate the solution to this one-dimensional optimization

problem through the following numerical example.

Example 3.2.3 Revisited. We recall the setup in Example 3.2.3, where

the claim severities are assumed to follow an i.i.d. logarithmic distribu-

tion. We numerically exhaust all possible values for the initial capital

u0, resulting in different alarm times tA, and evaluate the finite-time sur-

vival probability P
(
T > x;h1(t;u0, tA(u0))

)
for each tA(u0) in order to

find the maximum survival probability, and hence, determine the opti-

mal level of u0. As mentioned previously, depending on the length of

the time horizon [0, x], which the company might consider, the optimal

solution to Problem 3.1 may vary. Here, we illustrate the sensitivity

of the solution to Problem 3.1 to various choices of x, but with all the

choices, we ensure the alarm time (moment for capital injection) falls in

the time period considered, i.e. 0 < tA < x. Since we are also inter-

ested in how the rate of return r will affect the result, two different val-

ues of r are selected for comparison. For simplicity, we again assume a

constant premium income rate c, i.e. g(t) = ct, h0(t) = u0 + ct and

h1(t) = h1(t;u0, tA(u0)) = u0 + (u− u0)ertA(u0) × I{t≥tA(u0)} + ct.

Figure 3.3 illustrates the alarm times tA determined by the correspond-

ing choices of initial capital u0. It is worth mentioning that for u0 ≤ 6.1 the

alarm goes off immediately at time 0. The finite-time survival probability

P
(
T > x;h1(t;u0, tA(u0))

)
is plotted in Figure 3.4 for different choices

of x, and the blue (solid) and red (dotted) lines correspond to two differ-

ent levels of rate of return, r = 5% and r = 10% respectively. Clearly,
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Figure 3.3: Alarm time tA for varying choices of initial capital u0. Pa-
rameter values: λ = 2, α = 0.7, u = 10, c = 1, a = 0.4, b = 0.25 and
d = 3.

a unique optimal solution to Problem 3.1, u∗0, is found for each choice of

x = 2, 3, 4, 5, and illustrated in the four panels of Figure 3.4. It is interest-

ing to see that the panel in the left top, where x = 2, has a slightly different

pattern from the others. This may be because the time interval considered

is not long enough; thus, the survival probability significantly depends on

the investment returns and the marginal increase in initial capital is not

sufficient to compensate for the decrease in the injected portion. As can

be seen, the optimal level of initial capital, u∗0, is deceleratively increasing

with the length of the time horizon [0, x]. This is reasonable since, when

considering a longer time interval [0, x], the optimal time for the capital

injection to take place is postponed, which in turn requires more initial

capital, and this effect gradually vanishes as x becomes sufficiently large.

Figure 3.4 also demonstrates that, for a given time horizon [0, x], different

choices of rate of return r lead to the same optimal level of initial capital

u∗0. In other words, the rate of return r has no impact on optimizing the

capital allocation in this case.
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Figure 3.4: Survival probability P (T > x) against different levels of initial
capital u0. Parameter values: λ = 2, α = 0.7, u = 10, c = 1, a = 0.4,
b = 0.25 and d = 3. Blue (solid) and red (dotted) lines represent r = 5%
and r = 10% respectively.
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3.3.2 Capital allocation strategy in a system with

two alarm times

This section is devoted to studying optimal capital allocation strategies

in a system allowing two alarm times. We formulate the problem in a

somewhat different way from the case with a single-alarm system, with the

consideration that the initial capital u0, held by an insurance company,

may be pre-set at a certain level due to related regulations and solvency

requirements. Thus, it may not be possible for the company to choose a

(lower) initial capital level in order to pursue higher investment returns.

We therefore assume a fixed split between the initial capital and the portion

used for investment, respectively denoted by u0 and u′. As we now allow

two alarm times in the system and the first alarm time, tA1 , will be pre-

determined by the level of u0, what remains to be optimized is the portion

to be injected at the first alarm time, tA1 , which, according to definitions

(3.11) and (3.12), will then determine the second alarm time, tA2 , when all

the remaining capital will be injected along with the investment returns.

We thus divide u′ into two parts, u1 and u′−u1, so the capital increments to

be injected at the two alarm times are u1e
rtA1 and (u′−u1)ertA2 respectively.

Hence, the problem of finding optimal capital allocation strategy is now

equivalent to finding the appropriate capital portion u1 which maximizes

the finite-time survival probability P (T > x) over the time horizon [0, x]

considered by the company. Thus, we formulate the following optimization

problem.

Problem 3.2. Given a fixed total amount of capital u = u0 + u′ and

a fixed level of u0, find an appropriate level of the first capital portion u1
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such that

u∗1 = arg max
0≤u1≤u′

P
(
T > x;h2(t;u1, tA2(u1))

)
,

where the alarm time tA2 = tA2(u1) is determined according to (3.11)

(or (3.12)) with h1(t) = u0 + u1e
rtA1 × I{t≥tA1

} + g(t), and the capital-

premium function h2(t) = h2(t;u1, tA2(u1)) = u0 +u1e
rtA1 × I{t≥tA1

}+(u′−

u1)ertA2
(u1) × I{t≥tA2

(u1)} + g(t) is used in finding u∗1.

This is again a one-dimensional optimization problem and we illustrate

it numerically in the following example.

Example 3.2.3 Revisited. We again consider the setup in Example 3.2.3

with i.i.d. logarithmically distributed claim amounts. Here, since u0 and

tA1 are both pre-determined, we compute the second alarm time, tA2 , for

all possible values of u1 ∈ [0, u′] and then evaluate the finite-time survival

probability P
(
T > x;h2(t;u1, tA2(u1))

)
to seek for the optimal value of

u1 and thus find the optimal capital allocation strategy. Similarly to the

previous section, here we again consider various time horizons [0, x] and

rate of return r, and assume a linear premium income function g(t) = ct, so

that h2(t) = h2(t;u1, tA2(u1))) = u0 +u1e
rtA1 ×I{t≥tA1

}+(u′−u1)ertA2
(u1)×

I{t≥tA2
(u1)} + ct.

In Figure 3.5, we plot the second alarm time tA2 against varying sizes

of u1 for two different choices of rate of return r, with the blue (solid) and

red (dotted) lines representing r = 5% and r = 10% respectively. Clearly,

for fixed u1, when a higher rate of return r is applied, higher returns

are accrued on u1 until time tA1 and thus, the second alarm time tA2 is

postponed. Figure 3.6 illustrates the optimal solution of Problem 3.2 for

four choices of time horizon [0, x]. Compared to the case of single-alarm
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Figure 3.5: The second alarm time tA2 for different values of u1. Parameter
values: λ = 2, α = 0.7, u0 = 10, u′ = 2, c = 1, a = 0.4, b = 0.25 and
d = 4. Blue (solid) and red (dotted) lines represent r = 5% and r = 10%
respectively.

system, there is a slightly larger gap between the two curves corresponding

to 5% and 10% rate of return. This can again be explained with the

higher returns accrued on u1 and u′ − u1. Apart from this, there is not

much difference in the pattern of the curves compared with the one-alarm

system. It is interesting to see that for x ≥ 3, the size of u1 that maximizes

the finite-time survival probability remains the same, and the effect of the

optimal size of u1 increasing with the length of the time horizon considered

completely vanishes. Thus, it is more conclusive that, when a longer time

interval is considered, there tends to be a fixed optimal strategy for capital

allocation. However, it is worth pointing out that the rate of return r is

still playing a negligible role on optimizing the capital allocation.

3.4 Concluding remarks

We have presented a new definition of an alarm time, tA, which is expressed

in terms of the joint probability of the time to ruin T and the deficit at ruin
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Figure 3.6: Survival probability P (T > x) against different choices of u1.
Parameter values: λ = 2, α = 0.7, u0 = 10, u′ = 2, c = 1, a = 0.4,
b = 0.25 and d = 4. Blue (solid) and red (dotted) lines represent r = 5%
and r = 10% respectively.
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Y in a general risk model. It generalizes a definition based solely on ruin

probability, recently introduced by Das and Kratz (2012). Alarm times

are consecutive time instants, at which portions of risk capital should be

reserved sequentially so as to maintain the probability of finite-time ruin

below a certain pre-specified target level. We have further summarized

some closed-form ruin probability formulas obtained by Ignatov and Kai-

shev (2012b) and more recently investigated by Dimitrova et al. (2013b)

and Dimitrova et al. (2014) and derived some new expressions for the joint

distribution of T and Y , which generalizes some of the above mentioned

results. We have shown further that, by solving an appropriate optimal

capital allocation problem, it is possible to optimally determine the amount

of risk capital which should be injected sequentially at the alarm times so as

to maximize the finite-time survival probability. We have also undertaken

a thorough numerical model sensitivity investigation which has revealed

some interesting properties of the alarm time and the alarm system.

We summarize the following key findings from the numerical experi-

ments. It has been shown that the parameters in the definition of alarm

time are inter-related, and the values should be selected carefully in order

to obtain meaningful results. It has also been noted that, due to the specific

settings of our optimal capital allocation problem, there tends to be a fixed

optimal allocation strategy as a longer time period is considered, which is

independent of the rate of return. However, if we focus on a shorter time

horizon, the optimal allocation strategy will involve a smaller portion of

initial capital and a larger portion of capital injection at the alarm time.

In this work, the concept of alarm system has been carried out as an

alternative capital allocation strategy to reduce the size of initial capital,
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which is practically highly preferable for the insurance companies. How-

ever, how to allocate capital optimally still remains an open question. In

this paper, finite-time survival probability has been employed as the key

criterion to assess the optimality. However, other risk measures could also

be considered. The framework could also be formulated in different ways.

It is worth mentioning that the problems formulated in this paper were

quite simple, but we hope these could provide some enlightenment for fur-

ther studies. Due to the nature of the definition of the alarm times, the

(computational) complexity embedded may snowball with the increase of

the dimension of the problems to be solved.

Another interesting direction to further expand the framework is to

move from a static problem to a more dynamic setting. In practice, the

operations of the company may change, as well as the solvency require-

ments. Hence, a more dynamic and adaptive definition of an alarm system

could be developed to reflect the information and the data collected over

time. An empirical study based on real data from the industry also sounds

appealing. These are all in the scope of our future work.
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3.5 Appendix

Derivation for the joint probability of the time

to ruin and the deficit at ruin in the insurance

risk model with independent non-identical inter-

arrival times following a linear combination of

exponential distributions

Here, we provide a detailed derivation for the joint probability of the time

to ruin and the deficit at ruin in the insurance risk model with independent

non-identical inter-arrival times following a linear combination of exponen-

tial distributions. In what follows, we only consider the case of continu-

ous claim severities. However, we note that, for the case of discrete claim

amounts, an analogous derivation can be followed and similar results should

be reached.

In the insurance risk model, let τi, i = 1, 2, . . ., be a sequence of indepen-

dent non-identical random variables, denoting the inter-arrival times. We

assume the inter-arrival times follow a combination of exponential distri-

butions, i.e. τi =
∑mi

j=1 αijηij, where ηij ∼Exp(λij). Let li = m1 + · · ·+mi,

i = 1, 2, . . .. Let {τ̃n}n≥1 be a sequence of independent, exponentially dis-

tributed random variables with parameters θ1, θ2, . . . correspondingly, i.e.

τ̃n ∼Exp(θn), such that θn =
λij
αij

, where li−1 < n ≤ li and j = n − li−1.
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Thus, we have

(τ̃1 + · · ·+ τ̃l1 , τ̃l1+1 + · · ·+ τ̃l2 , . . .)
d
= (τ1, τ2, . . .).

Obviously, in this more refined representation of the claim arrivals in terms

of sums of exponentials we have that

θ1, . . . , θl1 , θl1+1, . . . , θl2 , . . . ≡
λ11

α11

, . . . ,
λ1m1

α1m1

,
λ21

α21

, . . . ,
λ2m2

α2m2

, . . . .

In the sequel it will be convenient to use the notation τ̃ ∗1 , τ̃
∗
2 , . . . for the

r.v.s τ̃1, τ̃2, . . ., in the case when θn = 1.

Denote by T1 = τ1, T2 = τ1 + τ2, . . ., the moments of claim arrivals

and introduce the sequence of random variables T̃1 = τ̃1, T̃2 = τ̃1 + τ̃2, . . ..

Obviously, we can also write Ti = T̃li i = 1, 2, . . .. Let us also consider

the partial sums, Yi, i = 1, 2, . . . of the consecutive claim amounts, Y1 =

W1, Y2 = W1 +W2, . . . with probability density function

fY1,...,Yi(y1, . . . , yi) =

{
ϕ(y1, . . . , yi),

0

if 0 ≤ y1 ≤ . . . ≤ yi

otherwise
,

where ϕ(y1, . . . , yi) ≥ 0 for 0 ≤ y1 ≤ . . . ≤ yi and

∫
. . .

∫
0≤y1≤...≤yi

ϕ(y1, . . . , yi)dy1 . . . dyi = 1.

We will also denote by FY1,...,Yi(y1, . . . , yi), the cdf of Y1, . . . , Yi.

We now introduce the non-decreasing sequence of variables Ỹ1, Ỹ2, . . .,

independent of τ̃1, τ̃2, . . . and such that 0 = Ỹ1 = . . . = Ỹl1−1 ≤ Y1 = Ỹl1 =
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. . . = Ỹl2−1 ≤ Y2 = Ỹl2 = . . . = Ỹl3−1 ≤ . . ..

Then we have the following theorem.

Theorem 3.5.1 The probability P (T < x, Y > y), x > 0, y ≥ 0, is given

by (assuming l1 ≥ 2)

P (T < x, Y > y) =

∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
yk−1+y

Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

h(x)+y∫
yk−1+y

Blk−1

(
h−1(yk − y); ν1, . . . , νlk−1

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
h(x)+y

Blk−1 (x; ν1, . . . , νlk−1) fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1,

(3.13)

where

Bk(z; ν1, . . . , νk) =
k∑
i=0

Bi(z; ν1, . . . , νi),

Bk(z; ν1, . . . , νk) ≡ Bk(z) are the (classical) exponential Appell polynomials

defined recurrently by

Bk(z) = θke
−θk+1z

∫ z

νk

eθk+1wBk−1(w)dw, k = 1, 2, . . .

with B0(z) = B0(z) = e−θ1z and 0 ≤ ν1 ≤ ν2 ≤ . . . is a sequence of real
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numbers denoting

h−1(0) ≤ . . . ≤ h−1(0)︸ ︷︷ ︸
m1−1

≤ h−1(y1) ≤ . . . ≤ h−1(y1)︸ ︷︷ ︸
m2

≤ . . . ,

correspondingly.

Proof: By construction, the event {T < x, Y > y} can be expressed as

{T < x, Y > y} =
∞
∪
k=1

[
k−1
∩
i=1
{Yi < h(Ti)} ∩ {Yk > h(Tk) + y} ∩ {Tk < x}

]
=

∞
∪
k=1

[
k−1
∩
i=1

{
Ỹli < h

(
T̃li

)}
∩
{
Ỹlk > h

(
T̃lk

)
+ y
}
∩
{
T̃lk < x

}]
.

Clearly, {
Ỹli < h

(
T̃li

)}
⊆
{
Ỹli < h

(
T̃li+w

)}
for w = 0, 1, . . . ,mi+1 − 1, which is equivalent to

{
Ỹli < h

(
T̃li

)}
⊆
{
Ỹr < h

(
T̃r

)}

for li ≤ r < li+1. Therefore, for any i = 1, 2, . . .,

{
Ỹli < h

(
T̃li

)}
⊆

li+1−1

∩
r=li

{
Ỹr < h

(
T̃r

)}
.

In addition, for 1 ≤ r < l1, we also have

{
Ỹr < h

(
T̃r

)}
=
{

0 < h
(
T̃r

)}
= Ω,

and hence
l1−1
∩
r=1

{
Ỹr < h

(
T̃r

)}
= Ω,
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where Ω is the sure event. Thus, we obtain

{T < x, Y > y} =
∞
∪
k=1

[
lk−1
∩
r=1

{
Ỹr < h

(
T̃r

)}
∩
{
Ỹlk > h

(
T̃lk

)
+ y
}
∩
{
T̃lk < x

}]
.

We note that the events in the square brackets are mutually exclusive.

Hence, we have

P (T < x, Y > y)

= P

(
∞
∪
k=1

[
lk−1
∩
r=1

{
Ỹr < h

(
T̃r

)}
∩
{
Ỹlk > h

(
T̃lk

)
+ y
}
∩
{
T̃lk < x

}])
=

∞∑
k=1

P

(
lk−1
∩
r=1

{
Ỹr < h

(
T̃r

)}
∩
{
Ỹlk > h

(
T̃lk

)
+ y
}
∩
{
T̃lk < x

})

=
∞∑
k=1

x∫
0

. . .

x∫
tlk−1

fT̃1,...,T̃lk
(t1, . . . , tlk)dtlk . . . dt1

h(t1)∫
0

. . .

h(tlk−1)∫
ỹlk−2

∞∫
h(tlk )+y

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk), (3.14)

where FỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk) is the joint distribution of Ỹ1, . . . , Ỹlk and fT̃1,...,T̃lk

(t1, . . . , tlk) is the joint density of T̃1, . . . , T̃lk . It can easily be seen that

the random vector T̃̃T̃T =
(
T̃1, . . . , T̃lk

)′
coincides in distribution with the

random vector BBBlk τ̃
∗, i.e., BBBlk τ̃

∗ d
= T̃̃T̃T , where τ̃ ∗ =

(
τ̃ ∗1 , . . . , τ̃

∗
lk

)′
, and

BBBlk = (bij)lk×lk is a lk × lk dimensional matrix, where bij = 1
θj

, if i ≥ j,

otherwise bij = 0. Then, it is not difficult to see that

fT̃1,...,T̃lk
(t1, . . . , tlk) =

{
e
−1·BBB−1

lk
·ttt ∣∣detBBB−1

lk

∣∣
0

if 0 ≤ t1 ≤ t2 ≤ ... ≤ tlk

otherwise
,

where, 1 =

1, . . . , 1︸ ︷︷ ︸
lk

, ttt = (t1, . . . , tlk)
′, ()′ stands for transposition, and
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detBBB−1
lk

denotes the determinant of the inverse of BBBlk . It can also be

directly verified that the inverse matrix, BBB−1
lk

=
(
b̃ij

)
, is an incomplete,

lower triangular matrix, with non-zero elements only at the main and next

lower diagonals, given by b̃ij = θi, if i = j, b̃ij = −θi, if i = j+ 1, otherwise

b̃ij = 0. Then, P (T < x, Y > y) becomes

P (T < x, Y > y)

=
∞∑
k=1

x∫
0

. . .

x∫
tlk−1

θ1 . . . θlkexp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk(tlk − tlk−1)}]

dtlk . . . dt1

h(t1)∫
0

. . .

h(tlk−1)∫
ỹlk−2

∞∫
h(tlk )+y

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk)

=
∞∑
k=1

x∫
0

. . .

x∫
tlk−1

θ1 . . . θlkexp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk(tlk − tlk−1)}]

dtlk . . . dt1

h(t1)∫
0

. . .

h(tlk−1)∫
ỹlk−2

 ∞∫
ỹlk−1+y

−

h(tlk )+y∫
ỹlk−1+y

 dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk)

=
∞∑
k=1

x∫
0

. . .

x∫
tlk−2

θ1 . . . θlk−1

(
exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk−1(tlk−1 − tlk−2)}]

−exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk(x− tlk−1)}]
)
dtlk−1 . . . dt1

h(t1)∫
0

. . .

h(tlk−1)∫
ỹlk−2

∞∫
ỹlk−1+y

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk)

−
∞∑
k=1

x∫
0

. . .

x∫
tlk−1

θ1 . . . θlkexp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk(tlk − tlk−1)}]

dtlk . . . dt1

h(t1)∫
0

. . .

h(tlk−1)∫
ỹlk−2

h(tlk )+y∫
ỹlk−1+y

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk).
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Permuting the two multiple integrals, we obtain

P (T < x, Y > y)

=
∞∑
k=1

∫
. . .

∫
0<ỹ1<...<ỹlk−1<h(x)
ỹlk−1+y<ỹlk<∞

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk)

t2∫
h−1(ỹ1)

. . .

tlk−1∫
h−1(ỹlk−2)

x∫
h−1(ỹlk−1)

θ1 . . . θlk−1

(
exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk−1(tlk−1 − tlk−2)}]−

exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk(x− tlk−1)}]
)
dtlk−1 . . . dt1

−
∞∑
k=1

∞∑
k=1

∫
. . .

∫
0<ỹ1<...<ỹlk−1<h(x)

ỹlk−1+y<ỹlk<h(x)+y

dFỸ1,...,Ỹlk
(ỹ1, . . . , ỹlk)

t2∫
h−1(ỹ1)

. . .

tlk∫
h−1(ỹlk−1)

x∫
h−1(ỹlk−y)

θ1 . . . θlkexp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk(tlk − tlk−1)}]dtlk . . . dt1

=
∞∑
k=1

∫
. . .

∫
0<y1<...<yk−1<h(x)
yk−1+y<yk<∞

dFY1,...,Yk(y1, . . . , yk)

t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
h−1(yk−1)

θ1 . . . θlk−1

(
exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk−1(tlk−1 − tlk−2)}]−

exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk(x− tlk−1)}]
)
dtlk−1 . . . dt1

−
∞∑
k=1

∫
. . .

∫
0<y1<...<yk−1<h(x)
yk−1+y<yk<h(x)+y

dFY1,...,Yk(y1, . . . , yk)

t2∫
ν1

. . .

tlk∫
νlk−1

x∫
h−1(yk−y)

θ1 . . . θlk

exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk(tlk − tlk−1)}]dtlk . . . dt1,
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which can be rewritten as

P (T < x, Y > y)

=
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
yk−1+y

fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1

t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
h−1(yk−1)

θ1 . . . θlk−1

(
exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk−1(tlk−1 − tlk−2)}]−

exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk(x− tlk−1)}]
)
dtlk−1 . . . dt1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

h(x)+y∫
yk−1+y

fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1

t2∫
ν1

. . .

tlk∫
νlk−1

x∫
h−1(yk−y)

θ1 . . . θlkexp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk(tlk − tlk−1)}]dtlk . . . dt1,

(3.15)

where 0 ≤ ν1 ≤ ν2 ≤ . . . is a sequence of real numbers denoting

h−1(0) ≤ . . . ≤ h−1(0)︸ ︷︷ ︸
m1−1

≤ h−1(y1) ≤ . . . ≤ h−1(y1)︸ ︷︷ ︸
m2

≤ . . . ,

correspondingly.

Let B0(z) = e−θ1z and for k = 1, 2, . . .,

Bk(z; ν1, . . . , νk) ≡ Bk(z)

=

t2∫
ν1

. . .

tk+1∫
νk

∞∫
z

θ1 . . . θk+1exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk+1(tk+1 − tk)}]

dtk+1 dtk . . . dt1.

Permuting the two innermost integrals, we have
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Bk(z) =

t2∫
ν1

. . .

tk∫
νk−1

(tk+1∫
νk

∞∫
z

θ1 . . . θk θk+1 exp[−{θ1t1 + θ2(t2 − t1) + · · ·

+θk(tk − tk−1) + θk+1(tk+1 − tk)}]dtk+1 dtk

)
dtk−1 . . . dt1

=

t2∫
ν1

. . .

tk∫
νk−1

(∞∫
νk

∞∫
max{tk,z}

θ1 . . . θk θk+1 exp[−{θ1t1 + θ2(t2 − t1) + · · ·

+θk(tk − tk−1)− θk+1tk}]× e−θk+1tk+1dtk+1 dtk

)
dtk−1 . . . dt1

=

t2∫
ν1

. . .

tk∫
νk−1

(∞∫
νk

θ1 . . . θk exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk(tk − tk−1)

−θk+1tk}]× e−θk+1max{tk,z}dtk

)
dtk−1 . . . dt1

=

t2∫
ν1

. . .

tk∫
νk−1

z∫
νk

θ1 . . . θk exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk(tk − tk−1)

−θk+1tk}]e−θk+1zdtk . . . dt1

+

t2∫
ν1

. . .

tk∫
νk−1

∞∫
z

θ1 . . . θk exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk(tk − tk−1)

−θk+1tk}]e−θk+1tkdtk . . . dt1

= Bk(z; ν1, . . . , νk) + Bk−1(z),

where

Bk(z; ν1, . . . , νk) ≡ Bk(z)

= e−θk+1z

t2∫
ν1

. . .

tk∫
νk−1

z∫
νk

θ1 . . . θk exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θk(tk − tk−1)

−θk+1tk}]dtk . . . dt1. (3.16)
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It can be easily seen that Bk(z; ν1, . . . , νk) =
∑k

i=0Bi(z; ν1, . . . , νi) with

B0(z) = B0(z) = e−θ1z. Thus, we have

t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
h−1(yk−1)

θ1 . . . θlk−1

(
exp[−{θ1t1 + θ2(t2 − t1) + · · ·

+θlk−1(tlk−1 − tlk−2)}]

−exp[−{θ1t1 + θ2(t2 − t1) + · · ·+ θlk(x− tlk−1)}]
)
dtlk−1 . . . dt1

=

t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
h−1(yk−1)

θ1 . . . θlk−1exp[−{θ1t1 + θ2(t2 − t1) + · · ·

+θlk−1(tlk−1 − tlk−2)}]dtlk−1 . . . dt1

−
t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
νlk−1

θ1 . . . θlk−1exp[−{θ1t1 + θ2(t2 − t1) + · · ·

+θlk(x− tlk−1)}]dtlk−1 . . . dt1

=

t2∫
ν1

. . .

tlk−1∫
νlk−2

∞∫
h−1(yk−1)

θ1 . . . θlk−1exp[−{θ1t1 + θ2(t2 − t1) + · · ·

+θlk−1(tlk−1 − tlk−2)}]dtlk−1 . . . dt1

−
t2∫
ν1

. . .

tlk−1∫
νlk−2

∞∫
x

θ1 . . . θlk−1exp[−{θ1t1 + θ2(t2 − t1) + · · ·

+θlk−1(tlk−1 − tlk−2)}]dtlk−1 . . . dt1

−
t2∫
ν1

. . .

tlk−1∫
νlk−2

x∫
νlk−1

θ1 . . . θlk−1exp[−{θ1t1 + θ2(t2 − t1) + · · ·

+θlk(x− tlk−1)}]dtlk−1 . . . dt1

= Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
−Blk−2 (x; ν1, . . . , νlk−2)

−Blk−1 (x; ν1, . . . , νlk−1)

= Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
−Blk−1 (x; ν1, . . . , νlk−1) , (3.17)
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noting h−1(yk−1) = νlk−1, and

t2∫
ν1

. . .

tlk∫
νlk−1

x∫
h−1(ylk−y)

θ1 . . . θlkexp[−{θ1t1 + θ2(t2 − t1) + · · ·

+θlk(tlk − tlk−1)}]dtlk . . . dt1

=

t2∫
ν1

. . .

tlk∫
νlk−1

∞∫
h−1(ylk−y)

θ1 . . . θlkexp[−{θ1t1 + θ2(t2 − t1) + · · ·

+θlk(tlk − tlk−1)}]dtlk . . . dt1

−
t2∫
ν1

. . .

tlk∫
νlk−1

∞∫
x

θ1 . . . θlkexp[−{θ1t1 + θ2(t2 − t1) + · · ·

+θlk(tlk − tlk−1)}]dtlk . . . dt1

= Blk−1

(
h−1(yk − y); ν1, . . . , νlk−1

)
−Blk−1 (x; ν1, . . . , νlk−1) .

(3.18)

Substituting (3.17) and (3.18) into (3.15), formula (3.13) directly follows.

Hence, the asserted result holds true.

In what follows, we provide a solution for Bk(z; ν1, . . . , νk) to complete

the proof. Denoting the multiple integral on the right-hand side in (3.16)

by Ik(z), we have

Bk(z) = e−θk+1zIk(z).

One sees that the derivative of Ik(z) is given by
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dIk(z)

dz
=

t2∫
ν1

. . .

tk∫
νk−1

z∫
νk

θ1 . . . θk exp[−{θ1t1 + θ2 (t2 − t1) + . . .

+θk (z − tk−1)− θk+1z}]dtk−1 . . . dt1

= θke
(θk+1−θk)z

t2∫
ν1

. . .

tk∫
νk−1

z∫
νk

θ1 . . . θk−1 exp[−{θ1t1 + θ2 (t2 − t1) + . . .

+θk−1 (tk−1 − tk−2)− θktk−1}]dtk−1 . . . dt1

= θke
(θk+1−θk)zIk−1(z).

Hence,

dBk(z)

dz
= −θk+1e

−θk+1zIk(z) + θke
−θk+1zeθk+1z−θkzIk−1(z)

= −θk+1Bk(z) + θkBk−1(z).

It is not difficult to verify that the system of linear differential equations,

B
′′′

0(z) = −θ1e
−θ1z

B
′′′

k(z) = −θk+1Bk(z) + θkBk−1(z).

for k = 1, 2, . . . with initial conditions

B0(0) = 1, Bk (νk) = 0, k = 1, 2, . . .

has a unique solution, given by the following sequence of functions

Bk(z) = θke
−θk+1z

∫ z

νk

eθk+1wBk−1(w)dw , k = 1, 2, . . .
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with B0(z) = e−θ1z. Actually, Bk(z) are called (classical) exponential Ap-

pell polynomials as defined by Ignatov and Kaishev (2012b). Thus, we

complete the proof. �

Corollary 3.5.2 When l1 = 1, the probability P (T < x, Y > y), x > 0,

y ≥ 0, is given by

P (T < x, Y > y) =

∫ ∞
y

fY1(y1)dy1

+
∞∑
k=2

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
yk−1+y

Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

h(x)+y∫
yk−1+y

Blk−1

(
h−1(yk − y); ν1, . . . , νlk−1

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
h(x)+y

Blk−1 (x; ν1, . . . , νlk−1) fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1.

(3.19)

Proof: From (3.14), we have

P (T < x, Y > y)

=
∞∑
k=1

P

(
lk−1
∩
r=1

{
Ỹr < h

(
T̃r

)}
∩
{
Ỹlk > h

(
T̃lk

)
+ y
}
∩
{
T̃lk < x

})
= P ({Y1 > h(T1) + y} ∩ {T1 < x}) +

∞∑
k=2

P

(
lk−1
∩
r=1

{
Ỹr < h

(
T̃r

)}
∩
{
Ỹlk > h

(
T̃lk

)
+ y
}
∩
{
T̃lk < x

})
.

(3.20)
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For the first term in the right-hand side in (3.20), we have

P ({Y1 > h(T1) + y} ∩ {T1 < x})

=

∫ x

0

fT1(t1)

∫ ∞
h(t1)+y

fY1(y1)dy1dt1

=

∫ x

0

λe−λt1
∫ ∞
y

fY1(y1)dy1dt1 −
∫ x

0

λe−λt1
∫ h(t1)+y

y

fY1(y1)dy1dt1

=
(
1− e−λx

) ∫ ∞
y

fY1(y1)dy1 −
∫ h(x)+y

y

(∫ x

h−1(y1−y)

λe−λt1dt1

)
fY1(y1)dy1

=
(
1− e−λx

) ∫ ∞
y

fY1(y1)dy1 −
∫ h(x)+y

y

(
e−λh

−1(y1−y) − eλx
)
fY1(y1)dy1

=

∫ ∞
y

fY1(y1)dy1 − e−λx
∫ ∞
h(x)+y

fY1(y1)dy1 −
∫ h(x)+y

y

e−λh
−1(y1−y)fY1(y1)dy1.

(3.21)

For the second term in the right-hand side in (3.20), it is not difficult to

follow the proof of Theorem 3.5.1 and obtain

∞∑
k=2

P

(
lk−1
∩
r=1

{
Ỹr < h

(
T̃r

)}
∩
{
Ỹlk > h

(
T̃lk

)
+ y
}
∩
{
T̃lk < x

})

=
∞∑
k=2

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
yk−1+y

Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

−
∞∑
k=2

h(x)∫
0

. . .

h(x)∫
yk−2

h(x)+y∫
yk−1+y

Blk−1

(
h−1(yk − y); ν1, . . . , νlk−1

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

−
∞∑
k=2

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
h(x)+y

Blk−1 (x; ν1, . . . , νlk−1) fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1.

(3.22)
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Substituting the results of (3.21) and (3.22) into (3.20), formula (3.19) di-

rectly follows. Hence, the asserted result holds true. �

Corollary 3.5.3 When y = 0, the finite-time ruin probability given by

Theorem 3.5.1 coincides with the results of Lemma A.1 in Dimitrova et al.

(2013b).

Proof: When y = 0, (3.13) can be simplified as

P (T < x, Y > 0) ≡ P (T < x)

=
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
yk−1

Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

h(x)∫
yk−1

Blk−1

(
h−1(yk); ν1, . . . , νlk−1

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
h(x)

Blk−1 (x; ν1, . . . , νlk−1) fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1

= 1 +
∞∑
k=2

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
yk−1

Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

h(x)∫
yk−1

Blk−1

(
h−1(yk); ν1, . . . , νlk−1

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
h(x)

Blk−1 (x; ν1, . . . , νlk−1) fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1,
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which is equivalent to

P (T > x)

= −
∞∑
k=2

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
yk−1

Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

+
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

h(x)∫
yk−1

Blk−1

(
h−1(yk); ν1, . . . , νlk−1

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

+
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
h(x)

Blk−1 (x; ν1, . . . , νlk−1) fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1

= − 1©+ 2©+ 3©.

We then have

1© =
∞∑
k=2

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
yk−1

Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
fY1,...,Yk(y1, . . . , yk)

dyk dyk−1 . . . dy1

=
∞∑
k=2

h(x)∫
0

. . .

h(x)∫
yk−2

Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

) ∞∫
yk−1

fY1,...,Yk(y1, . . . , yk)dyk


dyk−1 . . . dy1

=
∞∑
k=2

h(x)∫
0

. . .

h(x)∫
yk−2

Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
fY1,...,Yk−1

(y1, . . . , yk−1)

dyk−1 . . . dy1

=
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−1

Blk−1

(
h−1(yk); ν1, . . . , νlk−1

)
fY1,...,Yk(y1, . . . , yk)dyk . . . dy1

= 2©,
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indicating that

P (T > x) = − 1©+ 2©+ 3© = 3©

=
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
h(x)

Blk−1 (x; ν1, . . . , νlk−1)

fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1

=
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
h(x)

lk−1∑
i=0

Bi (x; ν1, . . . , νi)

fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1

=
∞∑
k=0

h(x)∫
0

. . .

h(x)∫
yk−1

∞∫
h(x)

lk+1−1∑
i=0

Bi (x; ν1, . . . , νi)

fY1,...,Yk+1
(y1, . . . , yk+1)dyk+1 dyk . . . dy1.

Permuting the two sums, we obtain

P (T > x) =
∞∑
i=0

∞∑
k=j(i)

h(x)∫
0

. . .

h(x)∫
yk−1

∞∫
h(x)

Bi (x; ν1, . . . , νi)

fY1,...,Yk+1
(y1, . . . , yk+1)dyk+1 dyk . . . dy1,

where j(k), k = 0, 1, 2, . . ., is an integer-valued function such that

lj(k) ≤ k < lj(k+1)

so that

126



k 0 1 . . . l1 − 1 l1 . . . l2 − 1 l2 . . . l3 − 1 l3 . . .

j(k) 0 0 . . . 0 1 . . . 1 2 . . . 2 3 . . .

It is not difficult to follow that

P (T > x)

=
∞∑
i=0

h(x)∫
0

. . .

h(x)∫
yj(i)−1

Bi (x; ν1, . . . , νi)×

 ∞∑
k=j(i)

h(x)∫
yj(i)

. . .

∞∫
h(x)

fY1,...,Yk+1
(y1, . . . , yk+1)dyk+1 . . . dyj(i)+1

 dyj(i) . . . dy1

=
∞∑
i=0

h(x)∫
0

. . .

h(x)∫
yj(i)−1

Bi (x; ν1, . . . , νi)

×
( ∞∫
h(x)

fY1,...,Yj(i)+1
(y1, . . . , yj(i)+1)dyj(i)+1

+

h(x)∫
yj(i)

∞∫
h(x)

fY1,...,Yj(i)+2
(y1, . . . , yj(i)+2)dyj(i)+2dyj(i)+1

+

h(x)∫
yj(i)

h(x)∫
yj(i)+1

∞∫
h(x)

fY1,...,Yj(i)+3
(y1, . . . , yj(i)+3)dyj(i)+3dyj(i)+2dyj(i)+1

+ · · ·
)
dyj(i) . . . dy1.

Noting that the term in the brackets is identically equal to fY1,...,Yj(i)(y1, . . . , yj(i)),

we have
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P (T > x) =
∞∑
i=0

h(x)∫
0

. . .

h(x)∫
yj(i)−1

Bi (x; ν1, . . . , νi) fY1,...,Yj(i)(y1, . . . , yj(i))dyj(i) . . . dy1

=
∞∑
i=0

∫
. . .

∫
0≤y1≤...≤yj(i)≤h(x)

Bi (x; ν1, . . . , νi) fY1,...,Yj(i)(y1, . . . , yj(i))dyj(i) . . . dy1,

which exactly coincides with the results of Lemma A.1 in Dimitrova et al.

(2013b). Thus, we complete the proof. �

Now, we consider the following special case. We assume the inter-arrival

times, τi, follow an independent non-identical Erlang distribution with

shape parameter mi > 0 and rate parameter λi > 0, i.e. τi ∼Erlang(mi, λi),

with density

fτi(t) =
λmii tmi−1e−λit

Γ(mi)
,

where mi’s are arbitrary positive integers and λi’s are positive real num-

bers. Clearly, τi
d
=
∑mi

j=1 τ̃i, where τ̃i
i.i.d.∼ Exp(λi). Thus, this can be viewed

as a special case of inter-arrival times following a combination of indepen-

dent non-identical exponential distributions, where λij = λi, j = 1, . . . ,mi.

Hence, without providing further proof, we give the joint probability of the

time to ruin and the deficit at ruin in the insurance risk model with in-

dependent non-identical Erlang distributed inter-arrival times in Corollary

3.5.4, and Corollary 3.5.5 naturally follows.

128



Corollary 3.5.4 The probability P (T < x, Y > y), x > 0, y ≥ 0, is given

by (assuming l1 ≥ 2)

P (T < x, Y > y) =
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
yk−1+y

Blk−2

(
h−1(yk−1); ν1, . . . , νlk−2

)
fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

h(x)+y∫
yk−1+y

Blk−1

(
h−1(yk − y); ν1, . . . , νlk−1

)
fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1

−
∞∑
k=1

h(x)∫
0

. . .

h(x)∫
yk−2

∞∫
h(x)+y

Blk−1 (x; ν1, . . . , νlk−1)

fY1,...,Yk(y1, . . . , yk)dyk dyk−1 . . . dy1, (3.23)

where

Bk(z; ν1, . . . , νk) =
k∑
i=0

Bk(z; ν1, . . . , νk),

Bk(z; ν1, . . . , νk) ≡ Bk(z) are the (classical) exponential Appell polynomials

defined recurrently by

Bk(z) = λj(k−1)+1e
−λj(k)+1z

∫ z

νj(k)

eλj(k)+1wBk−1(w)dw, k = 1, 2, . . .

with B0(z) = B0(z) = e−λ1z, j(k), k = 0, 1, 2, . . ., is an integer-valued

function such that

m1 + · · ·+mj(k) ≤ k < m1 + · · ·+mj(k) +mj(k)+1,
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and 0 ≤ ν1 ≤ ν2 ≤ . . . is a sequence of real numbers denoting

h−1(0) ≤ . . . ≤ h−1(0)︸ ︷︷ ︸
m1−1

≤ h−1(y1) ≤ . . . ≤ h−1(y1)︸ ︷︷ ︸
m2

≤ . . . ,

correspondingly.

Corollary 3.5.5 When y = 0, the finite-time ruin probability given by

Corollary 3.5.4 coincides with the results of Theorem 2.1 in Ignatov and

Kaishev (2012b).
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On finite-time ruin probabilities in a generalized dual
risk model with dependence

Abstract

In this paper, we study the finite-time ruin probability in a reasonably gen-

eralized dual risk model, where we assume any non-negative non-decreasing

cumulative operational cost function and arbitrary capital gain arrival pro-

cess. Establishing an enlightening link between this dual risk model and its

corresponding insurance risk model, explicit expressions for finite-time sur-

vival probability in the dual risk model are obtained under various general

assumptions for the distribution of the capital gains. In order to make the

model more realistic and general, different dependence structures among

capital gains and inter-arrival times and between both are also introduced

and corresponding ruin probability expressions are also given. The concept

of alarm time, due to Das and Kratz (2012), is applied for the dual risk

model within the context of risk capital allocation. Extensive numerical

illustrations are provided.

Keywords: dual risk model, finite-time ruin probability, dependent risk

modelling, capital allocation, alarm time, (exponential) classical Appell

polynomials
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Chapter 5

Modelling finite-time failure

probabilities in risk analysis

applications

189



Modelling finite-time failure probabilities in risk anal-
ysis applications

Abstract

In this paper, we introduce a framework for analyzing the risk of systems

failure based on estimating the failure probability. The latter is defined as

the probability that a certain risk process, characterizing the operations of a

system, reaches a possibly time-dependent critical risk level within a finite-

time interval. Under general assumptions, we define two dually connected

models for the risk process and derive explicit expressions for the failure

probability and also the joint probability of the time of the occurrence of

failure and the excess of the risk process over the risk level. We illustrate how

these probabilistic models and results can be successfully applied in several

important areas of risk analysis among which systems reliability, inventory

management, flood control via dam management, infection disease spread

and financial insolvency. Numerical illustrations are also presented.

Keywords: finite-time failure probability, dependent risk modelling, alarm

time, (exponential) classical Appell polynomials
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Chapter 6

Conclusions

6.1 Summary

In this thesis, we have considered two alternative dependent risk models,

the insurance risk model and the dual risk model. We have derived explicit

expressions for the finite-time ruin probabilities and the joint probabilities

of the time to ruin and the deficit at ruin under various general assumptions

and proposed efficient algorithms to evaluate the ruin probability with a

prescribed accuracy. We have also introduced a new definition of alarm

time to detect the instant when the ruin probability in a pre-specified fu-

ture time interval becomes alarmingly high. It is worth noting that the new

definition highly relies on the computation of the finite-time ruin proba-

bility and the joint probability of the time to ruin and the deficit at ruin,

which have utilized the results obtained previously. Based on the alarm

time devised, optimization problem of capital allocation has been studied.

We have finally introduced a framework for analyzing the risk of systems

failure based on estimating the failure probability and illustrated how these
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probabilistic models and results can be successfully applied as risk analytic

tools in several important areas of risk management. Extensive numerical

experiments have been provided.

In Chapter 2, we have shown that the survival probability formulas

derived by Ignatov and Kaishev (2000, 2004) and Ignatov et al. (2001) can

be derived from one another both in their discrete and continuous versions

and thus, can all be expressed in terms of the classical Appell polynomials.

Various recurrence expressions for computing these polynomials have been

presented, and their numerical properties have been investigated. Fur-

thermore, the numerical efficiency of formulas for the finite-time survival

probability have been investigated and conclusions have been drawn about

the differences in their summation structure. We have selected the com-

putationally more efficient expressions to evaluate the survival probability.

A method of computing the survival probability with a prescribed accu-

racy has been introduced, which is also applicable for the case of discrete

claim amounts whereby the number of summands in the already finite

summation can be further reduced. We also studied the order statistics

simulation-based method, proposed by Dimitrova and Kaishev (2013), for

evaluating the survival probability formulas and provided several numeri-

cal examples to demonstrate its performance in dealing with different cases

of discrete or continuous, dependent or independent claim severities.

In Chapter 3, we have presented a new definition of an alarm time, tA,

which is expressed in terms of the joint probability of the time to ruin T

and the deficit at ruin Y in a general insurance risk model. It generalizes

a definition based solely on ruin probability, recently introduced by Das

and Kratz (2012). Alarm times are consecutive time instants, at which
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portions of risk capital should be reserved sequentially so as to maintain

the probability of finite-time ruin below a certain pre-specified target level.

We have further summarized some closed-form ruin probability formulas

obtained by Ignatov and Kaishev (2012) and more recently investigated by

Dimitrova et al. (2014a) and Dimitrova et al. (2014b) and derived some

new expressions for the joint distribution of T and Y , which generalizes

some of the above mentioned results. We have shown further that, by

solving an appropriate optimal capital allocation problem, it is possible to

optimally determine the amount of risk capital which should be injected

sequentially at the alarm times so as to maximize the finite-time survival

probability. We have also undertaken a thorough numerical model sensi-

tivity investigation which has revealed some interesting properties of the

alarm time and the alarm system.

In Chapter 4, we have considered the problem of finding the proba-

bility of ruin in a finite time in a reasonably generalized dual risk model,

where we assume any non-negative non-decreasing cumulative operational

cost function and arbitrary capital gain arrival process. Establishing an

enlightening link between this dual risk model and its corresponding in-

surance risk model, we obtain explicit expressions for finite-time survival

probability in the dual risk model for various reasonably general assump-

tions for capital gains distribution. Dependence structures among capital

gains and inter-arrival times or between both have also been incorporated

to make the model more realistic and general and corresponding ruin prob-

ability expressions have been obtained. A risk capital allocation approach

based on the concept of alarm time, due to Das and Kratz (2012), has

been proposed for the dual risk model. A corresponding procedure for the
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computation of alarm times, where additional capital needs to be injected

in order to maintain chance of survival above a certain level, has been de-

veloped and implemented numerically. It has to be highlighted that the

ruin probabilistic results obtained here and the elegant duality lemma are

remarkable since there are very few papers in the literature devoted to the

ruin probability in the dual risk model and, to the best of our knowledge,

there are no closed-form results. As illustrated, the dual risk model has

the potential for much wider applications than the insurance risk model.

In Chapter 5, we have introduced two dually connected stochastic mod-

els A and B, representing the generalized insurance risk model and dual risk

model respectively, for quantifying the risk of failure and have interpreted

the related model parameters and variables to fit specific applications in

risk analysis. We have demonstrated that the theoretical results obtained

within the modelling frameworks of models A and B are quite general and

thus, applicable in providing solutions to many risk analytic problems ap-

pearing in systems reliability, inventory management, dam management,

infection disease spread and financial insolvency.

6.2 Directions for future research

In Chapter 2, we have studied the order statistics simulation-based method,

proposed by Dimitrova and Kaishev (2013), for evaluating the survival

probability formulas. In our numerical study, we have not taken advan-

tage of the possibilities for parallelizing the simulations and thus achieving

substantial reduction in computation time but it is clear that this is easily

achievable. We also note that further improvements of the accuracy of the
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proposed method could also be achieved borrowing ideas from the impor-

tance sampling simulation area of research, which is the subject of ongoing

work.

In Chapter 3, the concept of alarm system has been carried out as an

alternative capital allocation strategy to reduce the size of initial capital,

which is practically highly preferable for the insurance companies. How-

ever, how to allocate capital optimally still remains an open question. In

this paper, finite-time survival probability has been employed as the key

criterion to assess the optimality. However, other risk measures could also

be considered. The framework could also be formulated in different ways.

It is worth mentioning that the problems formulated in Chapter 3 were

quite simple, but we hope these could provide some enlightenment for fur-

ther studies. Due to the nature of the definition of the alarm times, the

(computational) complexity embedded may snowball with the increase of

the dimension of the problems to be solved.

Another interesting direction to further expand the framework is to

move to a more dynamic setting. In practice, the operations of the company

may change, as well as the solvency requirements. Hence, a more dynamic

and adaptive definition of an alarm system could be developed to reflect

the information and the data collected over time. An empirical study based

on real data from the industry also sounds appealing. These are all in the

scope of our future work.
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