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Abstract 

There is now a substantial literature on the effects of rebalancing on portfolio performance. 

However, this literature contains frequent misattribution between ‘rebalancing returns’ which are 

specific to the act of rebalancing, and ‘diversification returns’ which can be earned by both 

rebalanced and unrebalanced strategies. Confusion on this issue can encourage investors to follow 

strategies which involve insufficient diversification and excessive transactions costs. This paper 

identifies the misleading claims that are made for rebalanced strategies and demonstrates 

theoretically and by simulation that the apparent advantages of rebalanced strategies over infinite 

horizons give an inaccurate impression of their performance over finite horizons.  
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What Does Rebalancing Really Achieve?   

1. Introduction 

Rebalancing is a vital part of many investment strategies. Passive strategies usually involve 

choosing portfolio weights according to some predetermined rule and a key practical element of 

such strategies is the frequency and hence cost of rebalancing. Only if portfolio weights are allowed 

to evolve over time according to the relative returns on the component assets (a buy and hold 

strategy, B&H) will there be no rebalancing. Other passive strategies require at least periodic 

rebalancing, and in the extreme some passive strategies assume continuous rebalancing to keep 

asset weights constant (an assumption that is often required to produce tractable closed form 

results). Rebalancing is so widespread that a good understanding of its effects is vital. 

The well-established literature on optimal growth considers portfolio weights chosen to 

maximise the expected geometric growth rate of the portfolio value, consistent with maximising 

the expected logarithm of final wealth (Kelly 1956, Luenberger 1997, Thorpe 2010, Platen and 

Rendek 2010). Rebalancing is a vital part of these strategies. Another strand of the literature 

considers arbitrary fixed weight portfolios which are compared with a B&H strategy (e.g. Fernholz 

and Shay 1982, Booth and Fama 1992, Luenberger 1997, Mulvey et al. 2007, Qian 2012, 

Willenbrock, 2012). A key result from this part of the literature is that a rebalanced portfolio of 

independently and identically distributed (IID) assets has a higher expected portfolio growth rate 

than the corresponding B&H strategy even when assets follow a random walk. “Volatility 
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pumping” is a strategy which seeks to boost this effect by deliberately choosing high volatility 

assets and rebalancing each period to fixed weights.  

In this paper we focus on the choice between constant portfolio weight rebalanced strategies 

and the corresponding B&H strategies. We examine under what circumstances and for what 

reasons one strategy outperforms the other. The purpose of this paper is to correct misleading 

claims that are widely made about the benefits of rebalancing.  

It is widely noted that even when there is no predictable time structure to asset returns 

rebalanced portfolios generate “excess growth” (defined in this literature as expected geometric 

portfolio growth which is greater than the average geometric growth of the underlying assets). We 

demonstrate mathematically that unrebalanced portfolios also generate “excess growth”, and that 

growth rates of unrebalanced and rebalanced portfolios only diverge to the extent that drift in 

portfolio weights gradually leaves the unrebalanced portfolio less well diversified.  

Confusion on this issue appears to have arisen in part because of the difficulty in making 

meaningful comparisons between rebalanced and unrebalanced portfolios, since even when the 

portfolios are initially identical the composition of the unrebalanced portfolio tends to shift over 

time. We derive like-for-like comparisons between rebalanced and unrebalanced portfolios and 

demonstrate analytically that in the absence of mean reversion in relative asset prices the greater 

expected growth of rebalanced strategies is entirely explained by their lower portfolio volatilities 

rather than – as is claimed – being due to the rebalancing trades themselves being profitable. We 

also demonstrate that the apparent advantages of such rebalanced strategies over infinite horizons 
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are very misleading indicators of performance over the finite horizons that are likely to be of 

interest to investors.  

This has important implications for investors. The misleading claims that are made for 

rebalancing encourage investors to increase the scale of their rebalancing trades by holding volatile 

assets and rebalancing frequently. More efficient portfolios can be constructed simply by 

diversifying effectively. Investors might rationally prefer rebalancing strategies where they 

anticipate mean reversion in relative asset prices, but this is very different from the claims in the 

theoretical literature that rebalancing directly boosts returns even in the absence of any such time 

structure in returns. 

The rest of the paper is organised as follows. Section 2 reviews the theoretical and empirical 

literature on rebalancing. Section 3 shows, using analytic and simulation approaches, that under 

standard assumptions the expected growth rate of a portfolio of risky assets (either rebalanced or 

B&H) is entirely explained by diversification, with no additional “rebalancing return”. Section 4 

examines the impact of rebalancing in the widely-cited case of a portfolio consisting of one risky 

and one risk-free asset. Conclusions are drawn in Section 5.    
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2. Literature Review 

Rebalancing is important in a wide range of situations. It is inherent in any portfolio weighting 

strategy other than capitalisation-weighting and plays a part in the debate over fundamental and 

alternative forms of equity indexing (Arnott, Hsu and Moore 2005, Kaplan 2008, Hsu et al. 2011) 

and universal portfolios (Cover 1991). Rebalancing also has a significant impact on the growth 

rates of portfolios of commodity futures (Gorton and Rouwenhorst 2006a and 2006b, Erb and 

Harvey 2006).  

In the theoretical literature Cheng and Deets (1971) compare the performance of B&H and 

rebalancing strategies assuming that risky asset prices follow random walks and are IID except for 

their different mean returns i . The B&H strategy and the rebalancing strategy give the same 

expected terminal wealth when the mean returns of all risky assets are equal. However, if at least 

one pair of assets has different mean returns μi ≠ μj then an initially equally weighted B&H strategy 

always gives a higher expected terminal wealth than the corresponding rebalancing strategy 

(intuitively, a B&H portfolio is likely over time to give increasing weight to the assets with higher 

μi). This relative superiority of B&H in terms of expected wealth is found to be larger the greater 

the dispersion of the i , the longer the investment horizon and the more frequently the rebalanced 

portfolio is returned to equal weights.  

A specific situation which is widely analysed (e.g. Fernholz and Shay 1982, Perold and 

Sharpe 1988, Luenberger 1997, and Gabay and Herlemont 2007) is a portfolio which is rebalanced 

each period to keep a fixed proportion 1   in a risk-free asset which pays zero interest. The 
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remainder is invested in a risky asset which follows the lognormal diffusion process

exp( ( ))tS gt W t   where 2 / 2g     and ( )W t is a Wiener process. Hence, if 0g   the 

long term growth rate of this risky asset approaches zero as t→∞.  However, the terminal wealth 

of the rebalanced portfolio is: 

                               
*

( )reb g t
t tV S e   where  * 2(1 ) / 2g        (1) 

The term *g is referred to as the “excess growth rate” of the portfolio (in excess of the 

weighted average of the growth rates of the component assets, which in this case is zero). The 

expected portfolio excess growth rate is positive for 0 1  , is maximized for 1/ 2   and 

increases with volatility  . The corresponding B&H portfolio has the same initial weights, but 

does not rebalance. This has terminal wealth:  

& (1 )B H
t tV S          (2) 

Using (1) and (2), for the risk-free plus single risky asset portfolio we have: 

2
&

1
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    (3) 

Thus the log of relative wealth for the two strategies is stochastic, but depends positively 

on the time horizon and the volatility of the risky asset (hence the term “volatility pumping” given 

to the rebalancing strategy). Dempster, Evstigneev and Schenk-Hoppe (2007) use a more general 

setting of stationary stochastic processes for returns to show that an equally-weighted rebalanced 
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portfolio of N risky assets also generates excess growth. They too note that if individual assets have 

zero long-run growth, then this rebalancing strategy seems to provide “something for nothing”.  

One distinctive feature of this literature is the use of the expected geometric portfolio 

growth rate (or the corresponding discrete time geometric mean return, GM) as the performance 

metric instead of more conventional metrics such as the arithmetic mean return (AM), Sharpe ratio, 

Fama-French 4-factor alpha, expected utility or certainty equivalent return.1 Our objective in this 

paper is to clear up the confusion which is apparent in the literature over the effects of rebalancing 

on some of these metrics. 

Rebalancing clearly has important implications for portfolio risk2, but our key interest in 

this paper is in the claims that are made for the growth rates and terminal wealth achieved by 

rebalanced portfolios (either in expectation or asymptotically as t→∞). In particular, we examine 

the claims originally made in Fernholz and Shay (1982) and endorsed by an increasing number of 

                                                      
1 Using the geometric growth rate or GM as a performance metric raises a number of questions (see, for 

example, Elton and Gruber 1974, Brennan and Schwartz 1985). For example, maximising the GM will 

maximise the welfare of an investor whose utility is a logarithmic function of terminal wealth. It is less clear 

that it is an appropriate target for investors with other utility functions. This topic has previously been the 

subject of a long and rancorous debate, which we do not wish to revisit here. For our purposes it is sufficient 

to note that investors are encouraged to choose rebalanced strategies on the basis of their expected growth 

rates or GM returns. This paper seeks to clarify how these apparently attractive returns come about. 
2 Perold and Sharpe (1988) note that a constant-weight rebalanced strategy which buys more risky assets 

after they have underperformed does the opposite of a portfolio insurance strategy, and could thus be seen 

as selling such portfolio insurance to other investors. By contrast, rebalancing a portfolio composed entirely 

of equally risky assets can help ensure that diversification is maintained and portfolio variance kept low. 
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subsequent papers (e.g. Luenberger 1997, Mulvey et al. 2007, Stein et al. 2009, Qian 2012, 

Willenbrock 2012, Bouchey et al. 2012, Hallerbach 2014), that even when returns have no 

predictable time structure (for example when asset prices evolve following geometric Brownian 

motion), rebalanced portfolios must be expected to outperform because they generate “rebalancing 

returns” which are entirely absent in unrebalanced portfolios.  

In parallel to this theoretical literature, a large body of empirical research has investigated 

the effects of rebalancing. This is testament to the practical importance of this issue to investors. 

One sizeable strand of the empirical literature seeks to identify the optimal rebalancing frequency 

or no-trade interval around desired portfolio weights (e.g. Buetow et al. 2002, Masters 2003, Smith 

and Desormeau 2006, McLellan et al 2009), but it arrives at no clear consensus. Many studies 

attempt to assess the effects of rebalancing on a simple two asset equity/bond portfolio. The results 

have varied, depending on the different performance metrics used, different markets and time 

horizons considered, the frequency of rebalancing and the extent to which transactions costs are 

taken into account. Some studies find that a rebalancing strategy outperforms a B&H strategy 

(Arnott and Lovell 1993, Tsai 2001, Donohue and Yip 2003, Harjoto and Jones 2006, Tokat and 

Wicas 2007, Bolognesi et al. 2013), whilst Jaconetti, Kinniry and Zilbering (2010) find the reverse. 

Plaxco and Arnott (2002) conclude that a B&H strategy “may appear to outperform in a strongly 

trending market”, but that rebalancing outperforms on a risk-adjusted basis.  

Dichtl, Drobetz and Wambach (2012) note that most empirical studies consider at most a 

small number of different sets of realised equity and bond returns, and hence cannot attribute any 
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statistical significance to their findings. Instead, they use a block bootstrap approach, finding that 

rebalancing boosts returns “only marginally” and not consistently.  

By contrast, Plyakha et al. (2012) construct portfolios by randomly sampling 100 stocks 

from within the S&P500 index and find that rebalanced equally-weighted portfolios outperform in 

terms of mean return and four factor alpha as well as risk-adjusted measures. They attribute this to 

the fact that rebalancing is “a contrarian strategy that exploits reversal in stock prices”, consistent 

with earlier evidence of such reversals (eg. Jegadeesh 1990, and Jegadeesh and Titman, 1993 and 

2002). However, the finding that rebalancing strategies may outperform because of such empirical 

regularities is very different from the claim made in the theoretical literature that rebalancing 

strategies automatically outperform even when asset returns follow a geometric Brownian motion, 

and hence have no identifiable time structure. In this paper we address the theoretical claims made 

in favour of rebalancing, and demonstrate that they are very misleading. 

3. Rebalancing Multiple Asset Portfolios 

In this section we first define the terms “volatility drag”, “diversification returns” and “rebalancing 

returns”, as used in this literature. Second we demonstrate analytically that the concept of 

“rebalancing returns” is misleading since unrebalanced portfolios also generate such returns. 

Finally, we show using simulations that the expected growth of a rebalanced or unrebalanced 

portfolio is entirely explained by portfolio volatility and there is no additional effect from 

rebalancing.  
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As discussed above, a number of theoretical papers which use expected growth rates as their 

performance metric claim that rebalanced strategies outperform corresponding unrebalanced 

strategies. Use of the expected growth rate means that we must take account of “volatility drag”. 

This effect will be familiar to many investors, and can be understood directly from the standard 

relationship between the arithmetic and geometric mean returns:3 

2
][][

2
 AMEGME                          (4) 

This tells us that, all else equal, an asset or portfolio will generate a lower expected GM if 

it has a higher volatility. This is because the expected GM is a concave function of terminal wealth. 

If we compare two strategies with identical expected terminal wealth, the one with the more 

dispersed distribution of wealth outturns will generate a lower E[GM] because this concave 

relationship effectively penalizes both exceptionally high and exceptionally low terminal wealth 

outturns (by contrast, terminal wealth is a linear function of the AM). Figure 1 illustrates this 

volatility drag. The same volatility drag effect is seen for the continuous time geometric growth 

                                                      

3 Fama and Booth (1992) derive this relationship using a Taylor expansion for the expected continuously 

compounded return E[log(1+r)] around E[r]. This derivation makes no assumption about the nature of the 

asset or portfolio which generates these returns (except that the distribution of returns is differentiable with 

finite derivatives), yet it is an accurate approximation when compounding over small time periods for which 

E[r] is also small. The precise expression derived by Fama and Booth is E GM E AM
	
[GM], 

but we use it here in the form in which it is most normally cited, which is of course still a good approximation 

for small E[r].  
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rate, which is a similarly concave function.4 We demonstrate this when we examine continuous 

time applications in the next section. 

[Figure 1] 

Volatility drag is inherent in the relationship between periodic returns and terminal wealth 

and, as Equation 4 shows, is merely a function of the volatility of returns. Volatility drag thus 

affects both rebalanced and unrebalanced portfolios, although rebalancing may indirectly affect 

expected portfolio growth to the extent that it keeps the portfolio better diversified, with lower 

variance. Another entirely different effect is that portfolio rebalancing could boost expected 

terminal wealth if the rebalancing trades themselves tend to be profitable. A fixed weight 

rebalancing strategy sells some of each asset that outperformed in the most recent period and buys 

assets that underperformed, so it will profit if these relative price movements tend to reverse in 

future as a result of negative autocorrelation in relative asset returns. 

These two effects are entirely distinct: One is an increase in the expected growth rate as a 

result of the reduction in portfolio volatility (but, as Chambers and Zdanowicz 2014 show, this 

does not affect expected terminal wealth), the other is an increase in expected terminal wealth 

which occurs only if there is (a) rebalancing, and (b) negative autocorrelation in relative asset 

returns. We argue below that proponents of rebalancing strategies tend to confuse these two effects 

                                                      
4 GM=(WT/W0)1/T–1 in discrete time (where WT= Terminal wealth, W0= Initial wealth). The equivalent 

continuous time growth rate is 1/Tlog(WT/W0). Both are concave functions of terminal wealth.  
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by claiming that rebalancing generates excess growth because of “rebalancing returns” which are 

entirely absent from unrebalanced portfolios, but which are not dependent on any time structure in 

asset returns. 

Equation (4) holds for any asset or portfolio. We can apply it to a diversified portfolio p 

and also to a portfolio containing a single asset i. Subtracting one of the resulting equations from 

the other gives us:5 

)][()][(][][ 2
2

12
2

1 iippip AMEAMEGMEGME     (5) 

For simplicity we assume all asset returns are IID and not autocorrelated6. Without this 

assumption, assets with larger expected returns are likely over time to comprise a larger proportion 

of an unrebalanced portfolio, raising E[AM] of the portfolio as a whole, as shown by Cheng and 

Deets (1971). By removing this effect, our assumption of IID asset returns not only simplifies the 

analysis, it is also generous to rebalanced portfolios. We show below that even with this 

assumption, unrebalanced portfolios give expected geometric returns equal to those of rebalanced 

portfolios with equal levels of volatility. Without it, unrebalanced portfolios would tend to 

outperform.  

                                                      
5 Applying equation (2) to a portfolio p gives us E[GMp]≈E[AMp]-σp

2/2. A similar equation relates the 

expected return and variance (σi
2) of a single asset i: E[GMi]≈E[AMi]-σi

2/2 

6 Other studies such as Fernholz and Shay (1982) and Luenberger (2013) similarly assume that all assets 

have identical expected growth rates, with no autocorrelation of returns. 
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By definition, the expected portfolio AM is the weighted average of the expected AM of 

its component assets. With E[AM] assumed equal for every asset E[AMp]=E[AMi] regardless of 

the composition of the portfolio (we assume zero leverage, so portfolio weights always sum to 

unity). This gives us: 

)(][][ 22
2

1 piip GMEGME  
                     (6)

 

Booth and Fama (1992) define the “diversification return” as the degree to which the 

expected GM of a portfolio is greater than the weighted average of the expected GMs of its 

component assets. Our assumption of IID asset returns means that every asset has an identical 

E[GM] so the weighted average of these component returns is the same for any unleveraged 

portfolio of these assets. Equation 6 thus represents the diversification return of shifting from a 

single asset to a portfolio of similar assets. It also tells us that this diversification return is entirely 

due to the associated reduction in portfolio volatility (volatility drag).  

The "rebalancing return" is portrayed as resulting from a very different process. Fernholz 

and Shay (1982) claim that even when asset returns follow a geometric Brownian motion an 

equally-weighted portfolio of IID assets generates “excess growth” (an expected growth rate which 

is greater than the weighted average growth of its component assets) and so will tend to outperform 

the corresponding unrebalanced portfolio, which they claim has the same expected growth rate as 

its component assets (i.e. zero excess growth). They explain this higher growth as resulting from 

the rebalancing process “buying on downticks and selling on upticks”. This claim has been 
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endorsed by subsequent papers (e.g. Qian, 2012, Luenberger, 1997, Bouchey et al., 2012, 

Willenbrock, 2012, Stein et al. 2012) and in the practitioner literature. 

We can assess this claim directly and with complete generality by taking an unrebalanced 

portfolio Pu and modelling it as two sub-portfolios which are initially of equal value. These sub-

portfolios have growth paths described by the random variables x and y: 

0.5 + 0.5       (7) 

Using the Taylor expansion: 

1
2

	
2 4

1
2 2 4

	 																																																															 8  

	⟹ 1 	 	
	

	 			  (9) 

If x and y are always identical (so that the portfolio in effect consists of only one asset) then 

	 /2, so the portfolio grows at a rate which is close to the average growth rate of 

its component parts, with no excess growth.7 If instead Pu can be divided into two non-identical 

                                                      
7 For clarity the analysis above expanded only to the quadratic terms, but the excess growth clearly remains positive if 

we add the third and fourth power terms of the expansion. Adding the extra terms to equation (5) gives us the following 

(for simplicity we omit the t subscripts): 

1
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sub-portfolios then the 	  term is unambiguously positive. Thus any diversified portfolio 

has “excess growth” even if it is not rebalanced.8 This directly contradicts the explicit claims made 

by proponents of rebalancing strategies. Labelling these as “rebalancing returns” is extremely 

misleading – they are better regarded as the result of reduced portfolio volatility, since they clearly 

arise for any diversified portfolio. 

  

                                                      

This gives us all the terms up to the fourth power in the Taylor expansion of exp plus additional terms which 

represent "excess growth" by which growth in the portfolio exceeds the average (equally weighted in this case) of the 

growth rates of its components. If our portfolio consists of a single asset then x and y will be identical and, by 

inspection, the excess growth terms will all be equal to zero. If instead the portfolio is diversified then x and y are non-

identical and these excess growth terms are: 

	
1
8

	
3
48

6
384

	
1
384

 

1
64

4 	 2 	
1
6

 

This excess growth is clearly always positive for x≠y. We cannot rule out the possibility that over long horizons higher 

order terms will become significant, but at least for modest investment horizons (where x and y are well below 1) these 

can be safely ignored. Thus, contrary to what proponents of rebalancing explicitly claim, diversification 

unambiguously raises the expected growth rate of an unrebalanced portfolio. 

8 The growth rate gu of a B&H portfolio over a horizon T can be expressed in terms of the growth rates gi of 

its component assets as the following, since the terminal portfolio value is simply the sum of the terminal values of the 

component assets: 1 	∑ 1 		where wi are the initial portfolio weights of the assets. However, 

this complex non-linear relationship does not in general imply the simpler relationship 
	

∑ 	that is 

sometimes alleged and which would if true imply that by definition a B&H portfolio generates no “excess growth”. 
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Simulation 

We can also demonstrate the relationship between expected portfolio growth and portfolio 

volatility using simulation. Such numerical techniques have been little used in this literature since 

without rebalancing, portfolio asset weights tend to vary over time making it difficult to derive 

like-for-like comparisons between rebalanced and unrebalanced strategies.  

We show below that expected portfolio growth for both rebalanced and unrebalanced 

portfolios is entirely explained by portfolio volatility and there is no additional contribution to 

expected growth from rebalancing. Even when asset returns are IID and have no time structure 

there are two effects which might be thought to cause E[GM] of rebalanced and unrebalanced 

portfolios to differ. First, unrebalanced portfolios which are initially equally weighted are likely to 

become less diversified over time, leading to higher portfolio volatility and hence a lower E[GM]. 

Second, it is widely claimed that there is an additional effect on E[GM] which is directly due to the 

act of rebalancing – a claim that we reject.  

We consider returns that are IID and not autocorrelated so E[AM] is the same for both 

strategies. To simulate rebalanced and unrebalanced strategies with a wide range of different 

portfolio variances we use two approaches. We first consider portfolios containing N risky assets 

which we vary from N=2 to 100. For each value of N we simulate (i) an equally-weighted 1/N  

portfolio with rebalancing each month and (ii) an unrebalanced portfolio with initial weights 1/N, 

but with the weights then evolving in line with relative asset returns (i.e. B&H). Monthly asset 

returns are assumed to be IID and not autocorrelated, with annualized (arithmetic) mean 10% and 
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standard deviation 20% per annum for each asset. For each portfolio we conduct 10,000 

simulations, each over a horizon of 100 years. 

The results are shown in Figure 2. Panel A shows that the variances of rebalanced and 

unrebalanced portfolios fall as N rises. However for each level of N the unrebalanced portfolios 

have higher average variances. Asset returns are all assumed identically distributed, so an equally 

weighted rebalanced portfolio gives the minimum portfolio variance. Without rebalancing, the 

weights on each asset tend to diverge over time, leaving the portfolio less effectively diversified. 

The expected AM return remains constant for every portfolio (since the portfolio is unleveraged 

and all assets have identical expected AMs), but the geometric mean returns of these portfolios 

increase as their variances decrease, consistent with E[GM] ≈ E[AM] - σ2/2. 

Panel B presents the same results, but with the average variance for each set of simulations 

plotted against the corresponding expected GM. The results for the rebalanced and unrebalanced 

portfolios now coincide. This shows that rebalancing affects the expected GM only to the extent 

that it affects the portfolio variance, and hence generates different levels of volatility drag. By 

contrast, if rebalancing generated returns by “buying low and selling high” as proponents suggest, 

we should expect different GMs for these portfolios even after correcting for their different 

variances.  

[Figure 2 around here] 
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Next we examine the relationship between the expected GM and portfolio variance for 

portfolios of two risky assets with a range of different initial asset weights (Figure 3). Panel A 

shows that a fixed 50:50 weighting is the minimum variance portfolio, with unrebalanced portfolios 

seeing higher variances as the portfolio weights subsequently drift over time. However in the 

unrebalanced portfolios, if the initial portfolio weights are highly unequal (with one asset 

accounting for 86% or more of the portfolio), then the drift in these portfolio weights reduces 

average portfolio variance because it can result in the weights becoming substantially more equal 

over time.  

Panel B plots the same results in terms of mean realised variance versus mean GM return 

for each set of simulations. The results coincide for rebalanced and unrebalanced portfolios just as 

they did for our earlier simulations. Furthermore, these results and those in Figure 2 all describe 

the same linear relationship (E[GM] ≈ E[AM] - σ2/2), confirming that rebalancing only affects the 

average GM to the extent that it affects the average portfolio variance.9 Thus the different expected 

growth rates of the rebalanced and unrebalanced portfolios can be entirely explained by the 

resulting portfolio volatilities and there are no additional “rebalancing returns”.  For robustness we 

                                                      

9 Annex 1 shows that even though the portfolio variance shifts over time for an unrebalanced portfolio, 

when compounding over multiple short periods equation 1 is still a good approximation for the whole-

horizon expected GM as a function of the average expected AM and average variance over this horizon. 

Using monthly (rather than continuous) compounding is inherently an approximation, but these results show 

that in these simulations it is a very good approximation. The average GMs of our simulated portfolios differ 

by a maximum of only 0.8 basis points from those implied by equation (4). 
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repeated the simulations using asset returns drawn from uniform and t distributions. These show 

the same result: That portfolios with the same variance generated the same expected GM regardless 

of whether they are rebalanced. 

[Figure 3 around here] 

Fernholz and Shay (1982) state that a fixed weights portfolio “buys on a downtick and sells 

on an uptick”, and Luenberger (1997) agrees that it will automatically “buy low and sell high”. 

These authors claim that these effects boost profits even if asset returns follow a geometric 

Brownian motion, but Dempster et al. (2009) rightly note that any such profits are conditional on 

presumed negative autocorrelation of returns. Rebalancing will by construction sell some of an 

asset after a period in which it outperformed the rest of the portfolio, but this sale is only profitable 

if it takes place before a period (of whatever duration) of relative underperformance. It is worth 

noting that if there were such negative autocorrelation then rebalancing would increase the 

expected AM as well as the expected GM, but none of the proponents of rebalancing that we cite 

above claim such an increase in E[AM]. 

Similarly, Willenbrock (2011) argues that “the underlying source of the diversification 

return is the rebalancing”, and Qian (2012) states that a “diversified portfolio, if left alone and not 

rebalanced, does not provide diversification return”. These statements are incorrect. Rebalancing 

can be used to keep the portfolio at its minimum-variance weights and hence maximize the 

diversification return (minimizing volatility drag), but this does not imply that the diversification 
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return will be zero in unrebalanced portfolios. Equation (9) and our simulations both clearly show 

that unrebalanced portfolios achieve higher expected GMs than their component assets as long as 

they retain some element of diversification. This is confirmed in Annex 2 where we derive 

expressions for the excess growth of unrebalanced portfolios. 

Rebalancing will be profitable in markets which tend to mean-revert, and loss-making in 

markets which tend to show momentum (as assets which have underperformed in the past ─ and 

so are bought by the rebalancing strategy ─ tend to continue underperforming in the future, and 

vice versa). A large empirical literature has sought to establish the extent to which asset returns in 

various markets tend to show such predictable autoregressive properties. Adding significantly to 

this huge empirical literature is beyond the scope of the present paper. Instead our objective is to 

address the misleading claims that are made in the theoretical literature where there is assumed to 

be no such autoregression. This is important because these misleading claims are likely to 

encourage investors to pursue strategies which are inappropriate for the markets concerned.  

 

4. Portfolios of One Risky Asset and One Risk-Free Asset 

The previous section showed that even unrebalanced portfolios generate “rebalancing returns” 

(defined in this literature as expected growth rates that are greater than the weighted average of the 

expected growth rates of the component assets). We demonstrated this algebraically in complete 

generality, and by simulation for portfolios of assets with returns that are assumed IID (the 

assumption which is least favourable to unrebalanced portfolios) and not autocorrelated. In this 
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section we return to a portfolio consisting of a risk-free deposit and a single risky asset with 

variance σa
2. This example is important, since it is widely used in the academic and practitioner 

literature and because the misleading conclusions drawn from it encourage investors to hold 

volatile assets so as to maximise the scale of the rebalancing trades.  

In this section we show analytically that rebalanced and unrebalanced portfolios initially 

have equal expected growth rates. Second, using simulations, we show that the relative 

outperformance claimed for rebalancing over infinite investment horizons does not apply over 

finite horizons. Indeed, we show that expected portfolio final wealth for an unrebalanced portfolio 

is greater than for a rebalanced portfolio, so on this performance criterion an unrebalanced portfolio 

is superior. 

The risk free and the risky asset are generally assumed to have identical expected growth 

rates (e.g. Fernholz and Shay, 1982, and Mulvey et al., 2007) and for simplicity we follow 

Dempster et al. (2007) and Qian (2012) in also normalising these rates to zero.10 Under these 

assumptions the expected growth rate of a rebalanced portfolio which is 50% risky asset and 50% 

risk-free is shown to be σa
2/8. Thus two assets which each have zero expected growth combine to 

                                                      
10 Without this normalisation, the AM and GM figures in Table 1 would all be increased by the risk-free 

rate. However the key result would remain unchanged: that the risky asset must by implication have E[AM] 

which is greater than the risk-free rate, and that this should be seen as the underlying source of the positive 

expected GM on the 50/50 portfolio, which has half the E[AM] of the risky asset but only one quarter of the 

volatility drag.  
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give positive expected growth in a rebalanced portfolio. This excess growth is interpreted as 

resulting directly from the rebalancing trades. As Fernholz and Shay (1982) put it: 

“...a balanced cash-stock portfolio will buy on a downtick and sell on an uptick. The act of 

rebalancing the portfolio is like an infinitesimal version of buying at the lows and selling at 

the highs. The continuous sequence of fluctuations in the price of the stock produces a 

constant accrual of revenues to the portfolio.”  

However, the authors explicitly assume a geometric Brownian motion in which the risky 

asset has an expected growth rate of zero, so after the price has diverged from its original value, 

the expected geometric return on any shares bought or sold at this new price is zero. This applies 

in every period, so any rebalancing trade shifts wealth from one asset into another which is as likely 

to outperform as underperform the asset it replaces. This shift will raise the expected portfolio 

growth rate if it improves diversification and so reduces volatility drag, but the language used by 

proponents of rebalancing strategies suggests that a very different effect is at work. 

An alternative interpretation is suggested by deriving the size of this increase in expected 

growth without using any dynamic expressions, but instead merely using the standard 

arithmetic/geometric mean relationship (E[GM] ≈ E[AM] - σ2/2). As discussed above, this 

relationship captures the effects of portfolio diversification (volatility drag) on portfolio growth. 

This equation is of general applicability, and makes no presumption about rebalancing − it applies 

to the returns of both rebalanced and unrebalanced portfolios, and indeed to all positive numbers. 

In this case it tells us that the risk-free asset must have zero expected AM (since it is assumed to 
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have zero GM and zero variance). The risky asset is assumed to have variance σa
2, but zero expected 

growth rate, so this equation tells us that it must have a positive expected AM of σa
2/2 (see Table 

1). This positive arithmetic mean is generally not made explicit in discussions of this strategy, thus 

helping to maintain the impression that the expected geometric mean return on the 50:50 portfolio 

is caused by the rebalancing trades buying low and selling high. 

 

Table 1: Expected AM and GM returns derived using E[GM]≈E[AM] - σ2/2 

 E[AM] Variance E[GM] 

Risky asset σa
2/2 σa

2 0 

Risk-free asset 0 0 0 

50:50 fixed 
weight portfolio σa

2/4 σa
2/4 σa

2/8 

 

The 50:50 portfolio has an expected AM equal to half that of the risky asset, but only one 

quarter of the variance. Thus it must have an expected growth rate of σa
2/8. Fernholz and Shay 

(1982) derive this result using stochastic calculus to model the dynamics of the portfolio, but it 

follows directly from the standard AM:GM relationship which applies for all assets and portfolios, 

regardless of whether they are rebalanced. This shows that a positive arithmetic mean return on the 

risky asset is vital if we are to see positive expected portfolio growth. For the 100% risky asset 

portfolio this positive expected AM is perfectly offset by volatility drag, leaving E[GM]=0. By 

contrast, the 50/50 portfolio has an expected AM which is half as large, but it suffers only one 

quarter of the volatility drag, leaving it a positive expected GM. The positive E[GM] of the 
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rebalanced portfolio can thus be explained entirely by the reduced volatility drag, rather than being 

evidence of the buy-low/sell-high effects which are claimed. 

The fact that risky asset returns are assumed to follow a geometric Brownian motion 

suggests that volatility drag is the more appealing of these two explanations. Nevertheless, 

observational equivalence is still a potential problem here since the results in Table 1 require the 

asset weights to be constant at 50%, which requires rebalancing. To prove that there are no such 

buy low/sell high effects we need to consider explicitly the extent to which unrebalanced portfolios 

generate similar gains.  

In practice if there is no rebalancing then the proportion π of the portfolio which is held in 

this single risky asset is likely to vary from one period to the next. E[AM] in any period varies in 

direct proportion to π, whilst the variance of the portfolio varies with π2. Thus the expected GM in 

any period has a quadratic relationship11 with π, with the maximum expected GM at π = 0.5 as 

shown in Figure 4.  

                                                      

11  E[GM] = E[AM] – σp
2/2 = πσa

2
 /2 - π2σa

2/2= π(1- π) σa
2/2. This result is derived by Qian (2012) and, in 

continuous time form, by Fernholz and Shay (1982). If there is only a single risky asset, with an expected 

GM equal to the risk-free rate, then the 50:50 fixed weight portfolio will indeed be the most attractive option 

for an investor who wishes to maximise the expected portfolio GM. But in practice there are likely to be 

alternative risky assets which are less than perfectly correlated. This allows clearly superior strategies to be 

constructed. If, for example, two or more assets have the same expected AM and variance then an 

unleveraged portfolio of them (however weighted) will have the same expected AM, but a lower variance, 

and thus a higher expected GM. Combining this multi-asset portfolio with a fixed π% of cash will (for any 

π>0) generate an expected GM which is greater than that shown in Figure 4. 
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[Figure 4 around here] 

Rebalancing is required to maximise E[GM] by keeping the portfolio composition at 50/50. 

If π falls to zero then the portfolio is composed entirely of risk-free asset, with zero GM. If π rises 

to 1 then the portfolio consists entirely of the risky asset and volatility drag will completely offset 

the positive E[AM], leaving E[GM] zero. However, for short time horizons the proportion of the 

risky asset in the portfolio should not be expected to diverge substantially from its initial 50%, so 

the expected GM for an unrebalanced portfolio will be only slightly below that for the rebalanced 

portfolio. Annex 2 demonstrates that this results also holds in continuous time, with an 

unrebalanced portfolio which is initially 50% cash generating expected growth of approximately 

	 , compared to 	  for the equivalent rebalanced portfolio. Thus expected growth for the 

unrebalanced portfolio is not the zero that is claimed. For short time horizons the 	  term will be 

negligible, showing that the rebalanced and unrebalanced portfolios initially have near-identical 

expected growth. This gradual divergence of expected growth rates for these two portfolios is 

inconsistent with the claim that one always generates rebalancing returns and the other never does. 

By contrast, it is entirely consistent with the different growth rates being due to the gradual increase 

in volatility (and hence volatility drag) as the unrebalanced portfolio’s composition gradually drifts 

away from its initial equal weights.  

If instead of following geometric Brownian motion the risky asset tends to revert to 

previous levels, then the rebalancing trades will generate additional profits that are not available to 
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a B&H strategy. This can be illustrated using the simplest possible example of two consecutive 

periods of duration t over which the risky asset price evolves according to a geometric binomial 

distribution, either rising or falling by a factor σ√t. The portfolio is initially equally-weighted, with 

0.5 in the risky asset and 0.5 in the (zero return) risk-free asset. If the risky asset rises in the first 

period, then the portfolio has 0.5(1+ σ√t) in the risky and 0.5 in the risk-free asset. The rebalancing 

trade then sells half of the first period gains on the risky asset (an amount 0.25σ√t) in order to return 

to equal weights. If the risky asset price falls in the second period (by σ√t) then this trade generates 

a profit of σ2t/4 over the two periods, and this is the amount by which the rebalanced portfolio 

outperforms the unrebalanced portfolio (which simply returns to its starting value). The rebalancing 

strategy makes an identical profit if the risky asset falls in the first period and then rebounds in the 

second. Conversely, the rebalanced portfolio would underperform if the risky asset either rises in 

both periods (in which case the rebalancing trade sold some of this asset at the end of the first 

period before it continued to outperform in the second) or falls in both periods (so the rebalancing 

trade buys more risky asset at the end of period 1 before its price falls in the second). Thus over 

this two period horizon a rebalancing strategy generates greater terminal wealth than the B&H 

strategy at a rate of σ2/8 per period, but this is strictly contingent on the assumption that the risky 

asset price reverts to exactly its starting value at the end of the horizon. 

The same result can be derived if we initially assume that the price of the risky asset follows 

a standard geometric Brownian motion: . Without loss of generality we 

normalise S0=1, and we follow Fernholz and Shay (1982) and other authors in assuming that the 
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risky asset has zero expected growth rate, implying that μ=σ2/2 and . A portfolio Pr 

which is constantly rebalanced to keep 50% in the risky asset and 50% in the risk-free asset will 

always have half the upward drift rate and half the standard deviation of the risky asset itself 

(μ=σ2/4 and standard deviation σ/2), giving us . 

Fernholz and Shay (1982) note that whenever the unrebalanced portfolio returns to its initial 

weights (i.e. W(t)=0, implying St=S0), the rebalanced portfolio will have outperformed by a factor 

 (since 	whilst the unrebalanced portfolio 0.5 0.5  will merely have returned 

to its initial value of 1). Thus the rebalanced portfolio has ‘excess growth’ of σ2/8 per period 

compared to the zero growth rate of each of its component assets, but again this is contingent on 

the assumption that the risky asset returns at the end of the horizon to exactly its starting value. 

One reason for the apparent confusion in the literature may be that this equally weighted 

risky/risk-free asset portfolio generates two very different forms of return which happen to be of 

equal magnitude. First, we have the extra terminal wealth generated by the rebalancing trades if 

the risky asset reverts to its starting value. Second, as we saw above, we have the diversification 

return which means that the rebalanced portfolio generates an expected growth rate of σ2/8 whereas 

each component asset has a growth rate of zero.12 These two effects have the same magnitude, but 

they use different metrics. The first is an increase in terminal wealth (a move along the horizontal 

                                                      
12 The assumption that μ=σ2/2 means that the risky asset has zero growth as the volatility drag perfectly 

offsets the positive drift μ, but the equally-weighted portfolio has half the drift (μ/2=σ2/4) and only one 

quarter of the volatility, implying volatility drag of only σ2/8 and a portfolio growth rate of σ2/8. 
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axis in Figure 1) whilst the second is an increase in the growth rate (the vertical axis). Moreover 

the first is contingent on the risky asset price reverting to its starting value, whilst the second is not. 

Fernholz/Shay (1982) is still very widely cited in support of rebalancing strategies. It 

supports its claim that such strategies benefit from “buying on downticks and selling on upticks” 

by noting, as above, that every time that the B&H portfolio returns to equal proportions the 

corresponding rebalanced portfolio will have outperformed, and also noting that as t→∞ “this will 

occur infinitely often with probability one”. This statement is formally correct, and appears to 

imply that every rebalancing trade must eventually end up generating a profit, but this is far from 

true over the finite horizons that are likely to be of interest to investors. Figure 5 shows that for 

typical parameter values it takes several millennia for the probability that the rebalanced portfolio 

outperforms the unrebalanced portfolio to get anywhere close to unity. Over horizons of up to 100 

years Pr outperforms Pu in less than 70% of our 100,000 simulations.13  

[Figure 5 around here] 

Furthermore, even though the proportion of paths which at some point return to St=S0 tends 

to 1, each period the subset of paths which have not yet returned to S0 will on average have diverged 

further from S0 than in the previous period, so that a rebalancing trade made when it first diverged 

                                                      
13 Gabay and Herlemont (2007) derive a closed form solution for the single risky asset case which shows 

similarly slow convergence to unity of the probability that the rebalanced portfolio outperforms.  
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from S0 will on average be recording ever-larger losses.14 It is only by taking both these subsets 

into account that we can make meaningful statements about the expected return on the rebalanced 

portfolio. Figure 6 shows that the unrebalanced portfolio Pu outperforms at both tails of the 

distribution. Rebalancing trades are profitable on average on paths where St tends to mean revert, 

leaving only small positive or negative cumulative returns. Conversely, when St makes large 

cumulative moves in either direction (i.e. tends instead to trend) then Pr underperforms Pu.  

[Figure 6 around here] 

 

The right tail of the distribution thus shows Pu generating more extreme outturns than Pr. 

Over time this tail represents a smaller and smaller probability space, but the average size of (Pu - 

Pr) in these cases keeps increasing. It is straightforward to demonstrate that the expected terminal 

wealth is in fact greater for the unrebalanced portfolio than the rebalanced.15 This ever-more-

                                                      
14 Similarly, we have the standard result that the expected length of time required for a geometric Brownian 

motion with zero expected growth rate (μ=σ2/2) to converge to any arbitrarily distant level is infinite. The 

time to convergence for many paths may be very short, and the proportion of paths which reach this level 

inevitably rises over time, but the remaining paths that have not yet converged will on average have moved 

in the opposite direction. 

15 As above, the underlying asset  where W(t)~N(0,1). The upward skew of this lognormal 

distribution gives 	E .	 Thus 0.5 0.5 	0.5 0.5 . As above, the 

rebalanced portfolio , where 	 and hence . By inspection, the 

ratio E[Pr]/E[Pu] clearly tends to zero as the time horizon increases, and our simulations confirm that the 

average terminal value is higher for unrebalanced portfolios. Cheng and Deets (1971) demonstrate a similar 

result in discrete time and we noted its antecedents in continuous time in the introduction. 
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extended, but ever-less-likely right tail explains why E[Pu]>E[Pr] even though the probability that 

Pr>Pu tends to 1 as time passes. It also tells us that over finite investment horizons it is very 

misleading to ignore this right tail by assuming (as Fernholz and Shay (1982) explicitly does) that 

Pr always outperforms Pu. This is a property that is only true for infinite investment horizons.  

 

5. Conclusion 

A sizeable theoretical literature has now developed concerning the effects of rebalancing. Within 

this literature it is widely claimed that rebalancing strategies automatically generate rebalancing 

returns by “buying low and selling high” even when asset returns show no predictable time 

structure. This paper demonstrates instead that the difference between the expected growth rates of 

rebalanced and unrebalanced portfolios of IID assets is entirely explained by portfolio 

diversification (volatility drag), with no evidence of any additional rebalancing returns. This paper 

also shows that the arguments used by key proponents of rebalancing strategies based on infinite 

horizons are not applicable over finite investor lifetimes.  

We also demonstrate that all diversified portfolios generate expected growth rates greater 

than the average growth of their component assets (the definition of “excess growth” used in this 

literature). This contradicts the claims made by proponents of rebalancing strategies that such 

excess growth is the direct result of the process of rebalancing, and so is entirely absent from 

unrebalanced portfolios. By contrast, we show that unrebalanced portfolios initially generate the 

same expected growth as the corresponding rebalanced portfolios and these growth rates only 

diverge as the composition of the unrebalanced portfolio evolves.  
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The misleading arguments that are widespread in the literature have important implications, 

since they lead to a misinterpretation of the benefits of rebalancing. Specifically, they encourage 

investors to hold portfolios which are concentrated in volatile assets so as to increase the scale of 

the resulting rebalancing trades (e.g. “The pumping effect is obviously most dramatic when the 

original variance is high. After being convinced of this, you will likely begin to enjoy volatility, 

seeking it out for your investment rather than shunning it” Luenberger, 1997).  Frequent 

rebalancing is likely to be costly due to transaction and market impact costs. Furthermore, the 

desire to maximise these transactions may push investors into sub-optimal asset allocations. 

Investors would be better advised to seek to minimize volatility drag by diversifying effectively 

and to rebalance no more than is necessary to keep their portfolio compositions adequately close 

to their target allocations.   
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Annex 1 

Fama and Booth (1992) show that the continuously compounded holding period return is well 

approximated by the expected return expressed in continuously compounded terms minus a fraction 

of the variance of the simple returns. 
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This equation holds in each period, so we can sum each side over periods 1 to T: 
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Rearranging and dividing through by T: 
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If each period is short then E[rt] will be small and the continuously-compounded GM and AM 

above will be close to their more commonly-used discretely compounded equivalents. Thus we end 

up with a form of the standard relationship E[GM] ≈ E[AM] - σ2/2  which applies even if the 

distribution of rt varies over time: the expected GM over the whole multi-period horizon is 

approximately equal to the average expected return over these periods minus half of the average 

variance. The linear relationships shown in Figures 2 and 3 confirm that this relationship holds for 

the unrebalanced portfolio, whose E[AM] and variance shift over time. 
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 Annex	2:	Expected	Growth	Rates	Of	Rebalanced	and	Unrebalanced	Portfolios	
 
(a) Single	Risky	Asset		

The	risky	asset	S	follows		 		 ⇒ 				where	μ=σ2/2,	S0≡1.	To	keep	the	

notation	simple	we	suppress	the	t	subscripts	in	the	following.	

The	rebalanced	portfolio	Pr	follows			 ⇒ 				

Thus	generating	expected	growth	rate:				 log 	 	 	 	 	 	 						(A5)	

For	the	unrebalanced	portfolio		Pu	=0.5	+	0.5St	=	0.5	+	0.5 	

	
⇒			log(Pu)=log(	0.5	+	0.5e )		 	 	 	 	 (A6)	

	
A	Taylor	expansion	of	the	exponent	up	to	terms	in	σ4W(t)4	gives:	
	

log P log	 1 σW t 	 	 (A7)	

	
A	Taylor	expansion	of	the	log	up	to	terms	in	σ4W(t)4	gives:		
	

log 	

	 	 	 	 	 (A8)	

	
We	cannot	rule	out	the	possibility	that	over	long	horizons	higher	order	terms	will	become	significant,	

but	for	modest	investment	horizons	(where	w(t)	is	small)	these	can	be	safely	ignored.	Substituting	in	

standard	 assumptions	 for	 the	 cumulative	 Wiener	 term	 in	 geometric	 Brownian	 motion	

E[W(t)]≡E[W(t)3]≡0,	E[W(t)2]=t,	E[W(t)4]	=3t2:	

	

E log E σ W t 	 				 	 (A9)	

	



36   
 

Hence	the	expected	growth	rate	is			 E log 	 	 .		For	small	horizons	the	 	term	will	be	

negligible,	so	the	expected	growth	of	Pu	is	identical	to	that	of	Pr.	This	is	inconsistent	with	the	key	claim	

made	by	proponents	of	rebalancing	that	Pr	generates	expected	excess	growth	at	a	constant	rate	of	

σ2/8	per	period,	whilst	Pu	has	no	rebalancing	returns	and	hence	zero	excess	growth	(implying	zero	

total	growth	in	this	case	since	both	the	risky	and	risk‐free	asset	are	assumed	to	have	expected	growth	

rates	of	zero).	By	contrast,	the	gradual	decline	of	the	expected	growth	rate	of	Pu	is	entirely	consistent	

with	our	 contention	 that	 this	decline	 is	due	 to	 increased	volatility	drag	as	 the	 composition	of	 the	

portfolio	drifts	away	from	the	optimal	50:50	mix.	

	
	
	
(b) Portfolio	Of	N	Risky	Assets	

Each	 asset	 is	 assumed	 to	 follow	 a	 geometric	 Brownian	motion	 	 ,	 implying	

	where	the	initial	value	of	S0	is	normalized	to	1.	A	rebalanced	portfolio	Pr	gives	equal	

weight	to	each	of	n	such	assets,	so	the	growth	rate	of	Pr	is	the	weighted	average	of	the	growth	rates	of	

the	component	assets	(we	again	suppress	the	t	subscripts	in	the	following;	summations	are	over	the	

n	component	assets):	

∑ ∑ ∑ 	 	 	 	 (A10)	

These	assets	are	assumed	IID.		The	dWi	are	standard	N(0,1)	normal	variates	and	are	independent,	so	

ΣdWi~N(0,n)	and	the	portfolio	growth	rate	is	distributed	N(μi,	σi2/n).	We	can	express	this	in	terms	of	

another	standard	N(0,1)	variate	dW:	

⇒ 	 ∑ 	
√

	 	 	 	 (A11)	

Thus	application	of	Ito’s	lemma	gives	a	result	for	Pr	which	is	similar	to	S,	and	simply	reflects	the	lower	

standard	deviation	 √ 	⁄ of	the	rebalanced	portfolio	(and	hence	the	reduced	volatility	drag).	

⇒ √
∑

	 	 	 	 	 (A12)	
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⇒ log 		 	 	 	 	 (A13)	

	

The	unrebalanced	portfolio	 ∑ ∑ 			 	

	

However,	these	assets	are	assumed	IID:	

⇒ ∑ 			 		 	 	 	 (A14)	

	

log 	log	 ∑ 			 	 	 	 (A15)	

	

Taylor	expansion	of	the	exponent	up	to	the	fourth	power	gives:	

	

log log	 ∑ 1 			 		 (A16)	

	

Taylor	expansion	of	the	log	term	to	the	fourth	power	gives:	
	

log 		 	

		 	

	
	

	 	 	

	 	 (A17)	
	
Note	that	for	this	standard	Weiner	process	E[Wi(t)]≡E[Wi3(t)]≡0.	Hence	E[off‐diagonal	terms]=0	so,	
for	example,	E[(ΣWi(t))2]=	E[ΣWi

2(t)]=nt:	

E log E 		 	E
	

E
	

E   (A18)	
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Noting	that	E[Wi4(t)]=3t2	for	this	standard	Wiener	process	and	simplifying:	

E log
	
		 	

	
	 		

	 	
  (A19)	

 

⇒  E log 	 		
	

1                       (A20)	

 
	
For	small	t	the	 	term	is	negligible,	so	the	unrebalanced	and	rebalanced	portfolios	have	the	same	

expected	 growth	 rate:	 E log E log .	 Thereafter	 the	 	 term	 becomes	

significant	so	E log E log .	An	intuitive	interpretation	is	that	Pu	and	Pr	initially	have	equal	

growth	rates	since	they	start	with	identical	composition.	Thereafter	the	arithmetic	mean	of	the	two	

portfolios	remains	identical	(since	the	underlying	assets	are	assumed	IID),	but	Pu	becomes	less	well	

diversified	over	time,	so	it	suffers	from	increasing	volatility	drag.	But	the	claim	that	Pu	never	shows	

any	excess	growth	is	not	true	over	finite	horizons. 

  



39   
 

FIGURE 1  

Illustration of Volatility Drag 

This chart shows how volatility in terminal wealth results in a lower expected growth 

rate, in accordance with equation (4). A zero-volatility terminal wealth outturn of A 

generates a growth rate B, but although two equally likely outturns equidistant (in 

terms of terminal wealth) above and below A would generate the same expected 

terminal wealth, they would generate lower expected growth C because the concavity 

of the log function effectively penalises both exceptionally high and exceptionally low 

outturns. 
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FIGURE 2 

Rebalanced and unrebalanced portfolios – varying number of assets 

These charts show the average annualized GM and variance of rebalanced and 

unrebalanced portfolios comprising different numbers (from 2 to 100) of component assets. 

The unrebalanced portfolios start with equal weights in the chosen number of assets, but 

these weights are then allowed to evolve in line with relative asset returns. For the 

rebalanced portfolio the weights are returned to equality at the end of each period. Asset 

returns are assumed normal, IID and not autocorrelated, with annualized arithmetic mean 

10% and variance 4%. Each path is calculated over 100 years for 10,000 simulated paths. 
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FIGURE 3 

Rebalanced and Unrebalanced Portfolios – Varying Initial Portfolio Weights 

These charts show the average annualized GM and variance of portfolios comprising two 

assets. The unrebalanced portfolios initially start with the weight shown for asset A, but 

the weights are then allowed to evolve in line with relative asset returns. For the rebalanced 

portfolio the weight of asset A is returned at the end of each period to its initial value. Initial 

portfolio weights are given 101 different values (from 0% to 100% asset A) for both 

rebalanced and unrebalanced portfolios − a total of 202 variants.  Asset returns are assumed 

normal, IID and not autocorrelated, with annualized arithmetic mean 10% and variance 

4%. Each path is calculated over 100 years for 10,000 simulated paths. 
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FIGURE 4 

Volatility Pumping – Single Risky Asset 

This chart shows the arithmetic and geometric means of a portfolio comprising a risk-

free asset (zero AM return and zero variance) and a risky asset (expected AM return 

2%, and variance 4%) which is rebalanced to keep the proportion invested in the risky 

asset fixed at the indicated percentage. 
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FIGURE 5 

Proportion of Outcomes where Pr>Pu 

 
This chart shows the proportion of the simulated paths for which the terminal wealth 

of the rebalanced portfolio Pr is greater than the unrebalanced portfolio Pu. This 

proportion is shown for simulations with a wide range of different time horizons. We 

follow Fernholz and Shay (1982) in assuming asset returns follow a geometric 

Brownian motion with zero expected geometric return. We consider two portfolios 

with starting value $1. Both invest $0.50 in a risk-free asset which has an interest rate 

of zero and $0.50 in the risky asset. The rebalanced portfolio rebalances back to 50/50 

asset mix every month. We assume σ is 10% per annum for the risky asset (other 

simulations, not reported here, show our results are robust to alternative assumptions). 
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FIGURE 6 

Probability Density of the Terminal Wealth of Rebalanced and Unrebalanced 

Portfolios after 100 Years 

The chart shows the distribution of terminal wealth over 100,000 simulated paths of a 

100 year time period for rebalanced and unrebalanced portfolios which are initially 

identical. The parameters of the simulated values are the same as for Figure 5. 
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