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Abstract: We formulate a new bootstrap principle which allows for the construction of

particle spectra involving unstable as well as stable particles. We comment on the general

Lie algebraic structure which underlies theories with unstable particles and propose sev-

eral new scattering matrices. We find a new Lie algebraic decoupling rule, which predicts

the renormalization group flow in dependence of the relative ordering of the resonance

parameters. The proposals are exemplified for some concrete theories which involve un-

stable particles, such as the homogeneous sine-Gordon models and their generalizations.

The new decoupling rule can be validated by means of our new bootstrap principle and

also via the renormalization group flow, which we obtain from a thermodynamic Bethe

ansatz analysis.

1. Introduction

One of the central quantities in the study of quantum field theories is the scattering matrix

S, which relates asymptotic in and out states. In particular in 1+1 space-time dimensions

and when concentrating in addition on integrable theories in this context, the bootstrap

principle [1] has turned out to be a very powerful non-perturbative construction tool.

Many consistent exact scattering matrices have been determined based on this idea. Exact

is here always to be understood in the sense that S is known to all orders in perturbation

theory. The bootstrap principle was also successfully generalized to theories in half-space

[2], theories with purely transmitting defects [3] and even theories which possess infinitely

many resonance states [4]. However, hitherto there exists no formulation of a construction

principle leading to unstable particles in the spectrum. Some specific theories containing

unstable particles are known, but so far the latter emerge as poles in the unphysical sheet as

by-products in the scattering process of two stable particles. A description of the scattering

process of an unstable particle with another stable or unstable particle is entirely missing

in this context. Obviously, scattering processes involving unstable particles do occur in

nature, such that the quest for a proper prescription is of physical relevance. It is also

clear that this can not be a scattering theory in the usual sense, since for that one requires

http://arxiv.org/abs/hep-th/0211168v1
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the particles involved to exist asymptotically, i.e. for t→ ∞. Clearly any unstable particle

will vanish in this limit rendering such formulation meaningless at first sight. Nonetheless,

some particles have extremely long lifetimes, and appear to exist quasi infinitely long from

an experimentalists point of view. It appears therefore natural to seek a principle closely

related to the conventional bootstrap for stable particles. One of the main purposes of this

paper is to provide such a construction principle.

Our bootstrap proposal has the following predictive power: a) It yields the amount of

unstable particles together with their mass. This prediction can be used to explain a mass

degeneracy of some unstable particles which can not be seen in a thermodynamic Bethe

ansatz (TBA) analysis. b) It yields the three-point couplings of all possible interactions,

that is, involving stable as well as unstable particles. c) It is in agreement with a general

Lie algebraic decoupling rule, which we also propose in this paper, describing the behaviour

when certain resonance parameters tend to infinity.

We illustrate the working of the bootstrap for some concrete theories which are known

to contain unstable particles in their spectrum, the homogeneous sine-Gordon models

(HSG) [5]. For these models we also test the newly proposed decoupling rule, which

predicts the renormalization group (RG) flow from the ultraviolet to the infrared directly

on the level of the scattering matrix constructed from the new bootstrap principle and also

by means of a TBA analysis.

2. A bootstrap for unstable particles

In general unstable particles of finite life time τ are described by complexifying the physical

mass of a stable particle, by adding a decay width Γ ∼ ~/τ . This prescription is well

established in quantum mechanics, see e.g. [6] and can also be applied similarly in the

quantum field theory context, see e.g. [7]. When describing the latter by means of a

scattering theory, the formation of an unstable particle (ij) from two stable ones of type

i and j is well understood. In that case the creation process is reflected by a pole in the

scattering matrix Sij as a function of the Mandelstam variable at sij = (m(ij) − iΓ(ij)/2)
2.

As discussed for instance in [7], whenever m(ij) ≫ Γ(ij), the quantity m(ij) admits a clear

cut interpretation as the physical mass. Transforming as usual in this context from the

Mandelstam variable s to the rapidity variable θ and describing the scattering of the two

stable particles of type i and j with masses mi and mj by an S-matrix Sij(θ), the resonance

pole is situated at η
(ij)
ij = γ

(ij)
ij − iγ̄

(ij)
ij with resonance parameters γ

(ij)
ij , γ̄

(ij)
ij ∈ R

+. It is

crucial to note that the formation of the unstable particle is accompanied by a parity

breaking and poles with γ
(ij)
ij ∈ R

− are not associated to such a process. Identifying the

real and imaginary parts of the pole, then yields the well-known Breit-Wigner equations

[8]

m2
(ij)

−
Γ2

ij

4
= m2

i +m2
j + 2mimj cosh γ

(ij)
ij cos γ̄

(ij)
ij (2.1)

m
(ij)

Γ
ij

= 2mimj sinh γ
(ij)
ij sin γ̄

(ij)
ij . (2.2)
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Eliminating the decay width from (2.1) and (2.2), we can express the mass of the unstable

particles m
(ij)

in the model as a function of the masses of the stable particles mi,mj and

the resonance parameter γ
(ij)
ij . A simple consequence of (2.1) and (2.2) is that for large

resonance parameters γ
(ij)
ij the masses of the unstable particles are

m(ij) ∼
√
mimje

γ
(ij)
ij /2 , (2.3)

which is a relation we will appeal to quite frequently. In some places of the literature,

e.g. [10, 11], the absolute value of γ
(ij)
ij is used in (2.2) rather than γ

(ij)
ij itself, which seems

to suggest that the sign of γ
(ij)
ij is not relevant. This contradicts, however, the findings of

the thermodynamic Bethe ansatz (TBA) analysis below, in which the signs turn out to be

crucial, and we want to argue here that in fact this absolute value is not needed and even

leads to wrong predictions if implemented. To manifest this point of view, let us first look

at a heuristic argument and consider the two-particle wave functions ψij ∼ exp(−Γ
ij
t) and

ψji ∼ exp(−Γ
ji
t) associated to the scattering of particles i with j and vice versa. When

choosing for definiteness Γ
ij
> 0, the function ψij decays for t → ∞ and ψji decays for

t → −∞. This is the effect of parity breaking, suggesting that the unstable particle (ı) is

formed in the process

i+ j → (ı) (2.4)

rather than j + i. As common also for stable particles we distinguish the anti-particle

of an unstable particle by an overbar, i.e. (ı) is the anti-particle of (ij). In general in

our notation the unstable particles can be recognized as they carry the names of their

parents, where the two names are inherited. This interpretation is compatible with a PT-

transformation and hence no absolute value is needed in (2.2). A reason for an artificial

introduction of an absolute value is that apparently in (2.2) the parameter Γ can become

negative for γ
(ij)
ij < 0, which is unphysical. However, once one also attaches indices to

the decay width, this concern is eliminated and one obtains a clear physical meaning for

these values. A less heuristic validation of this point of view will be obtained from our

TBA-analysis presented in section 4.2.

One may now ask the natural question whether one can cross the unstable particle to

the other side in the process (2.4), that is, do the processes (ij) + i or j + (ij) make any

sense and, furthermore, is it possible to formulate a bootstrap principle for unstable parti-

cles? To formulate such a principle is highly desirable, since it would allow for an explicit

construction of unstable particles. Up to now they only emerge indirectly, somewhat as a

side product once the stable particle content has been determined.

As already mentioned in the introduction, the main conceptual obstacle in the for-

mulation of a bootstrap principle for unstable particles is the fact that in a well defined

scattering theory one always deals with asymptotic states. Nonetheless, one may seek an

approach closely related to a properly defined S-matrix.

Let us formulate the bootstrap principle: We commence with the fusing of two stable

particles to create an unstable particle as in the process (2.4). To the process (2.4) we

can associate bootstrap equations almost in the usual way. We scatter for this with an

– 3 –
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additional particle, say of type l, and exploit the integrability of the theory. Accordingly

the ordering of the scattering is associative, such that we can equate the two situations of

either l scattering before or after the creation of the unstable particle. The object which

describes the latter process we refer to as S̃l(ij), indicating with the tilde that we do not

view this object as a standard S-matrix since it involves one particle which is unstable.

In the conventional formulation one generally assumes that also the created particle exists

asymptotically. It is this assumption we propose to relax. We depict the bootstrap equation

in figure 1. Identifying in figure 1 the

Figure 1: The Bootstrap equations.

particle k with (ij) we obtain, according

to the outlined conventions, the S̃ boot-

strap equations

S̃li(θ − η̄
(ij)i) S̃lj(θ + η̄ı

j(ij)) = S̃l(ı)(θ),

(2.5)

where η̄ = ±iπ− η and also η̄ → −η̄ is

not a symmetry. In figure 1 we indicate

that the angles should be measured anti-

clockwise, which explains the signs. We

also note that we do not assume parity

invariance, such that in general η̄
(ı)
ji 6=

η̄
(ı)
ij . As further analogy between S̃ and S, we assume that the crossing and analyticity

relations are maintained

S̃kl(θ) = S̃l̄k(iπ − θ) and S̃kl(θ)S̃lk(−θ) = 1 . (2.6)

However, we do not demand S̃ to be unitary, for reasons we will comment upon further

below. With the help of (2.6), one derives the bootstrap equations for the opposite parity

and the ones for the crossed processes i+ (ij) → ̄ and j + (ij) → ı̄ from (2.5)

S̃(ı)l(θ) = S̃il(θ + η̄
(ij)i) S̃jl(θ − η̄ı

j(ij)) , (2.7)

S̃l̄(θ) = S̃l(ij)(θ − η̄ı
j(ij)) S̃li(θ ± iπ − η̄̄

(ij)i − η̄ı
j(ij)), (2.8)

S̃lı̄(θ) = S̃l(ij)(θ + η̄̄
(ij)i)S̃lj(θ ± iπ + η̄̄

(ij)i + η̄ı
j(ij)) . (2.9)

From the crossing relation for the scattering matrix and (2.8) or (2.9) one obtains some

relations between the various fusing angles

η̄
(ı)
ij + η̄̄

(ij)i + η̄ı
j(ij) = ±iπ . (2.10)

At first sight this looks very much like the usual bootstrap prescription, but there are some

differences. As is clear from the scattering process of two stable particles producing an

unstable one, the angle η̄
(ı)
ij is not purely complex any longer as it is for the situation

when exclusively stable particles scatter. As a consequence, this property then extends to

the other angles η̄̄
(ij)i and η̄ı

j(ij) in (2.5), which also possess some non-vanishing real parts.

Note that (2.10) implies that the real parts of the three angels involved add up to zero.

– 4 –
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At this point we do not have an entirely compelling reason for demanding that, but this

formulation will turn out to work well. The main conceptual difference is of course that

we allow unstable particles to be involved in the scattering processes. In the time interval

0 < t < τ (ij) we could formally associate to those particles some operators Z̃†
(ij)(θ), with

limt→∞ Z̃†
(ij)(θ) = 1 if τ (ij) < ∞. It is important to note that these operators do not

exist asymptotically, such that in general
〈

Z̃(ij)(θ)Z̃
†
(ij)(θ

′)
〉

6= δ(θ− θ′). In fact the entire

operation of crossing Z̃†
(ij)(θ) from an in to an out state is ill defined. This property is

then reflected in the non-unitary of S̃. The loss of unitarity is somewhat natural, since it

usually reflects conservation of probabilities, which of course we do not expect in the case

of unstable particles.

It can already be anticipated that our proposal will lead to the construction of further

unstable particles besides the primary (fundamental) ones created in the scattering process

of two stable ones. In the following we shall refer to unstable particles formed in a scattering

process involving at least one primary unstable particle as “secondaries” and to those which

have at least one secondary as their parent as “tertiaries”, etc. An important observation

will be that tertiaries can be degenerate in mass to stables, primaries or secondaries.

3. Generalities on theories with unstable particles

At present all known theories with unstable particles in their spectrum can be thought

of in terms of a simple universal Lie algebraic structure. The formulation is based on an

arbitrary simply laced Lie algebra g̃ (possibly with a subalgebra h̃) with rank ℓ̃ together

with its associated Dynkin diagram (for more details see for instance [9]). To each node

one attaches a simply laced Lie algebra gi and to each link between the nodes i and j a

resonance parameter σij , as depicted in the following g̃/h̃-coset Dynkin diagram

✉

g1

. . . ✉

σij

gi

✟✟❍❍
✉

σjk

gj

❍❍✟✟
✉

gk

. . . ✉

gℓ̃ �
�

�. . . ✉

σlm

gl

✟✟❍❍
✉

σmn

gm

❍❍✟✟
✉

gn

. . .

Besides the usual rules for Dynkin diagrams, we adopt here the convention that we add

an arrow to the link, which manifests the parity breaking and allows to identify the signs

of the resonance parameters. An arrow pointing from the node i to j simply indicates

that σij > 0. Since, except in section 4.2.6, we are dealing mostly with simply laced Lie

algebras, this should not lead to confusion.

As particular examples one can choose for instance g̃ to be simply laced and g1 = . . . =

gℓ̃ = SU(k), in which case one obtains the g̃k-homogeneous sine-Gordon models [5, 10].

This is generalized [12] when taking instead g̃ to be non-simply laced and gi = SU(2k/α2
i ),

with αi being the simple roots of g̃. The choice g1 = . . . = gℓ̃ = g with g being any

arbitrary simply laced Lie algebra gives the g|g̃-theories [13]. An example for a theory

associated to a coset is the roaming sinh-Gordon model [14], which can be thought of as

g̃/h̃≡ limk→∞ SU(k+1)/SU(k) with g1 = . . . = gℓ̃ = SU(2). It is clear that the examples

presented here do not exhaust yet all possible combinations and the structure mentioned

above allows for more combinations of algebras, which are not yet explored. One is also

– 5 –
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not limited to Dynkin diagrams and may consider more general graphs which have multiple

links, i.e. resonance parameters, between various nodes. Examples for such theories were

proposed and studied in [4].

On the base of this Lie algebraic picture one can then easily construct the scattering

matrix. For this, we characterize each particle by two quantum numbers (a, i), which

take their values in different ranges 1 ≤ a ≤ ℓi, where ℓi is not necessarily rank gi and

1 ≤ i ≤ ℓ̃ =rank g̃. This means, in total we have (ℓ̃ × ∑

i ℓi) different particle types. The

scattering matrix describing the interaction between these type of particles is then of the

general form

Sij
ab(θ, σij) = [Smin

ab (θ)]δij [Sij
ab(θ, σij)]

Ĩij , (3.1)

where Smin
ab (θ) corresponds to some scaling model of a statistical model and Ĩ is the inci-

dence matrix of g̃. It is known that all S-matrices of these scaling models can be viewed as

minimal parts of some affine Toda field theory (ATFT) S-matrix [15]. Then Sij
ab(θ, σij) is

essentially a CDD-factor [16] for which the coupling constant is chosen to be a function of

the values i, j. At present, all known scattering theories which involve unstable particles

are of this generic form and in particular all of the above mentioned examples.

We propose here yet a further class of scattering matrices. The presented picture

makes it very suggestive to be generalized by introducing a coupling constant dependence

into such models simply by replacing Smin
ab (θ) by a full affine Toda field theory scattering

matrix

Sij
ab(θ,B, σij) := [SATFT

ab (θ,B)]δij [Sij
ab(θ, σij)]

Ĩij . (3.2)

Obviously this will not alter any of the bootstrap consistency equations, since the difference

between the theory with a minimal S-matrix and the one with a coupling constant depen-

dence such as (3.2) is simply a CDD factor. It should also be clear that we may introduce an

additional coupling constant into the second factor in (3.2) by a similar consideration. As

an illustration of the construction principle (3.2) we present here a new scattering matrix

which corresponds to the coupling constant dependent version of the SU(3)2-HSG model.

The two self-conjugate particles in the model named by “ + ” and “ − ” interact as

S±±(θ,B) =
tanh 1

2

(

θ − iπ2B
)

tanh 1
2

(

θ + iπ2B
) and S±∓(θ, σ) = ± tanh

1

2

(

θ ± σ − i
π

2

)

. (3.3)

It is easy to check that this matrices satisfy the unitarity-analyticity and crossing relations.

There is no pole in the physical sheet, such that no fusing takes place in this model. There

exist various distinct limits: Taking the coupling constant B to be real and 0 ≤ B ≤ 2

the scattering of two particles of the same type is described by the sinh-Gordon scattering

matrix. The analytic continuation B → 1 + iσ̄/π turns S±±(θ) into two copies of the

roaming trajectory S-matrix of Zamolodchikov [14]. Taking the limit σ̄ → ∞ reduces the

whole system (3.3) to the usual SU(3)2-HSG model. The limit σ → ∞ decouples the

system into a direct product of two theories described either by the sinh-Gordon scattering

matrix, two roaming trajectory S-matrices, two thermally perturbed Ising models or a free

boson, depending on the value of B.
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3.1 Decoupling rule

Of special interest is to investigate the behaviour of such systems when certain resonance

parameters σij tend to infinity. According to (2.3) this limit corresponds to a situation

when the energy scale of the unstable particle is so large that it can never be created.

As a consequence, the particle content of the theory will be altered when such a limit

is carried out. This feature should be captured by the bootstrap construction. When

taking several of such limits in a consecutive order, this behaviour is reflected in addition

in the renormalization group flow in form of the typical staircase pattern of the Virasoro

central charge as a function of the inverse temperature as will be discussed below. In the

direction from the infrared to the ultraviolet, the flow from one plateau to the next is then

associated to the formation of an unstable particle with mass (2.3). The challenge is of

course to predict the positions, that is, the height and the on-set of the plateaux, as a

function of the temperature. The on-set is simply determined by the formula (2.3). In

order to predict the height, i.e. the fixed points of the RG flow, we propose the following

Decoupling rule: Call the overall Dynkin diagram C and denote the associated Lie

group and Lie algebra by G̃C and g̃C, respectively. Let σij be some resonance parameter

related to the link between the nodes i and j. To each node i attach a simply laced Lie

algebra gi. Produce a reduced diagram Cji containing the node j by cutting the link adjacent

to it in the direction i. Likewise produce a reduced diagram Cij containing the node i by

cutting the link adjacent to it in the direction j. Then the G̃C-theory decouples according

to the rule

lim
σij→∞

G̃C = G̃(C−Cij ) ⊗ G̃(C−Cji)/G̃(C−Cij−Cji) . (3.4)

We depict this rule also graphically in terms of Dynkin diagrams:

. . . ✉

gi

❡

C
. . . ❡ ✉

gj

. . . ⇒ . . . ✉

gi

❡

C − Cji
. . . ❡

σij → ∞
⊗ ❡

C − Cij
. . . ❡ ✉

gj

. . .

�
�

�

❡

C − Cij − Cji
. . . ❡

According to the GKO-coset construction [19], this means that the Virasoro central charge

flows as

cg̃C
→ cg̃C−Cij

+ cg̃C−Cji
− cg̃C−Cij−Cji

. (3.5)

The rule may be applied consecutively to each disconnected subgraph produced according

to the decoupling rule. We stress that this rule is really a decoupling rule and not a fusing

rule, it only predicts the flow from the ultraviolet to the infrared and not vice versa. This

is of course natural as scaling functions measure the degrees of freedom of the system and

the information loss in the RG flow is irreversible. Hence, potentially we have for the

visible unstable particles [ℓ(ℓ− 1)/2]! different types of flows corresponding to the possible

orderings for the masses. For SU(ℓ + 1) the particular ordering σ2i,2i+1 > 0, σ2i−1,2i < 0

with |σ2i,2i+1| < |σ2i−1,2i| leads to the decoupling rule as discussed in [20], which is a special

case of (3.4). In the following we shall confirm the general rule (3.4) directly on the level

– 7 –



Integrable scattering theories with unstable particles

of the scattering matrix and also by means of a TBA analysis which yields the RG flow

passing along the central charges as predicted by (3.5).

More familiar is a decoupling rule found by Dynkin [17] for the construction of semi-

simple1 subalgebras h̃ from a given algebra g̃. For the more general diagrams which can

be related to the g̃k-HSG models the generalized rule can be found in [18]. These rules are

all based on removing some of the nodes rather than links. For our physical situation at

hand this corresponds to sending all stable particles which are associated to the algebra of

a particular node to infinity. As in the decoupling rule (3.4) the number of stable particles

remains preserved, it is evident that the two rules are inequivalent. Letting for instance

the mass scale in gj go to infinity, the generalized (in the sense that gj can be different

from Aℓ) rule of Kuniba is simply depicted as

. . . ✉

gi

✉

gj

C
✉

gk

. . . ⇒
mj → ∞

. . . ✉

gi

C − Cji
⊗

C − Cjk
✉

gk

. . .

We illustrate the working of the rule (3.4) with the simple example of the SU(4)2-HSG

model. For level 2, we can associate the simple roots to the nodes of the g̃-Dynkin diagram.

For the ordering σ13 > σ12 > σ23 we predict from (3.4) the flow

✉

α1

✉

α2

✉

α3

G = SU(4)2 c = 2

→ σ13 ✉

α1

✉

α2

⊗ ✉

α2

✉

α3 �
�

� ✉

α2

G = SU(3)⊗2
2 /SU(2)2 c = 1.9

→ σ12 ✉

α1

⊗ ✉

α2

✉

α3

G = SU(3)2 ⊗ SU(2)2 c = 1.7

→ σ23 ✉

α1

⊗ ✉

α2

⊗ ✉

α3

G = SU(2)⊗3
2 c = 1.5

Taking instead the ordering σ23 > σ13 > σ12, we compute
✉

α1

✉

α2

✉

α3

G = SU(4)2 c = 2

→ σ23 ✉

α1

✉

α2

⊗ ✉

α3

G = SU(3)2 ⊗ SU(2)2 c = 1.7
→ σ23 ✉

α1

✉

α2

⊗ ✉

α3

G = SU(3)2 ⊗ SU(2)2 c = 1.7

→ σ13 is already decoupled

→ σ12 ✉

α1

⊗ ✉

α2

⊗ ✉

α3

G = SU(2)⊗3
2 c = 1.5

The central charges can be obtained from (4.2) using (3.5). We will elaborate more on this

example in section 4.1.2 and 4.2.1 from the bootstrap and TBA point of view, respectively.

It is important to note the non-commutative nature of the limiting procedures. For more

complicated algebras it is essential to keep track of the labels on the nodes, since only in

this way one can decide whether they cancel against the subgroup diagrams or not. See

1The subalgebras constructed in this way are not necessarily maximal and regular. A guarantee for

obtaining those, exept in six special cases, is only given when one manipulates adequately the extended

Dynkin diagram.
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section 4.2 for more details and examples.

4. The homogeneous sine-Gordon models

Let us now consider some specific choice of algebras being g1 = . . . = gℓ̃ = SU(k), which as

we mentioned corresponds to the g̃k-HSG models. These theories have recently attracted

some attention, because it could be argued even from a Lagrangian point of view that

besides stable particles they also contain unstable particles in their spectrum [5]. The

HSG-models belong to the huge class of massive integrable models which can be obtained

as relevant perturbations from conformal field theories in the spirit of [21],

HGk-HSG = HGk/U(1)ℓ-CFT − λ

∫

d2xφ(x, t) . (4.1)

The underlying conformal field theory is a WZNW-Gk/U(1)ℓ-coset theory [22, 19] with k

being the level and ℓ the rank of a semi-simple Lie algebra g. The Virasoro central charge

c and the conformal dimensions ∆, ∆̄ of the perturbing operator φ are

c = ℓ
k h− h∨

k + h∨
and ∆ = ∆̄ =

h∨

k + h∨
. (4.2)

Here (h∨)h is the (dual) Coxeter number of g. In the notation of the massive theory we will

not carry along the subalgebra U(1)ℓ as indicated in (4.1) for simplicity. The S-matrices

involving the stable particles for simply laced and non-simply laced algebras were proposed

in [10] and [12], respectively. Examples on which we will focus a lot in the following are

models with level k = 2. Adopting the notation of [20], the related scattering matrix may

be written for the simply laced case as

Sij(θ, σij) = (−1)δij ε(σij)(σij, 2)
Iij , 1 ≤ i, j ≤ ℓ (4.3)

where I denotes the incidence matrix of g. It is convenient to abbreviate

(σ, x) := tanh(θ + σ − iπx/4)/2 . (4.4)

The ε(x) is the step-function, i.e. ε(x) = 1 for x ≥ 0, ε(x) = −1 for x < 0. The model

contains (ℓ − 1) linear independent resonance parameters σij. As a convenient basis one

usually chooses those which can be associated directly to the links in the Dynkin diagram,

i.e. the primary unstable particles. The σ’s can be thought of as being composed as a

difference σij = σi − σj, such that σij = −σji and σij = σik + σkj . Up to now, the precise

correspondence between the unstable particles occurring in the HSG-model and all these

resonance parameters has not been worked out in the literature. So far stable particles were

associated to simple roots and unstable particles have been identified on the quantum level

as the sum of two simple roots αi, αj with Iij 6= 0. However, these are only the primaries

and as we already mentioned, we also expect to find secondaries, tertiaries, etc. Here we

want to provide evidence that unstable particles can in fact be related to each non-simple

positive root, such that the amount of unstable particles is in fact

# of unstable particles = ℓ (h− 2)/2. (4.5)
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It will turn out that not all of these particles are visible in the RG scaling function, since

our bootstrap proposal will show that by construction several of the unstable particles

are unavoidably degenerate in the mass given by (2.3), such that only ℓ(ℓ− 1)/2 unstable

particles will be detectable by a TBA analysis. This means whenever h = ℓ + 1, as

in SU(ℓ + 1), we can see all unstable particles in an RG flow, but otherwise not as for

instance in SO(2 ℓ).

4.1 Bootstrap construction

We present now three examples which we consider to be instructive to illustrate the working

of the bootstrap principle as they gradually include new features. The SU(3)2-HSG model

contains only primary unstables, the SU(4)2 model contains in addition secondaries and

the SO(8)2 model is an example for a theory with tertiaries and mass degeneracy. Note

that for level 2 all particles are self-conjugate.

4.1.1 The SU(3)2-HSG model

Starting now with the known part of the scattering matrix (4.3) for the stable particles,

and leaving the remaining entries which involve unstable particles unknown, we construct

consistent solutions to the bootstrap equations (2.5), (2.8) and (2.9). We can fix the imagi-

nary parts of the fusing angles by the requirement that for vanishing resonance parameters

we want to reproduce the masses predicted by the Breit-Wigner formula. Choosing the

masses of the stable particles to be m1 = m2 = m the one for the unstable results to

m(12) =
√

2m. This argument does not constrain the real parts of the fusing angles, such

that they are not completely fixed and still contain a certain ambiguity. The different

choices of these parameters give rise to slightly different theories. First we consider the

case σ21 > 0.

✉

α1

✟✟❍❍
✉

α2

For the SU(3)2-HSG model with this choice of the resonance parameter, we then find the

following bootstrap equations

S̃l(12)(θ) = S̃l1(θ + (1 − ν)σ12 + iπ/4)S̃l2(θ − νσ12 − iπ/4) (4.6)

from which we construct

S̃SU(3)(θ, σ12) =







−1 −(σ12, 2) −((1 − ν)σ12, 3)

(σ21, 2) −1 −(νσ21, 1)

−((ν − 1)σ12, 1) −(νσ12, 3) −1






. (4.7)

Here we label the rows and columns in the order {1, 2, (12)}. According to the principles

outlined above, the S-matrix (4.7) allows for the processes

1 + 2 → (12), 2 + (12) → 1, (12) + 1 → 2. (4.8)

The related fusing angles are read off from (4.7) as

η
(12)
12 = −iπ/2 + σ21, η2

(12)1 = −3iπ/4 + (1− ν)σ12, η1
2(12) = −3iπ/4 + νσ12 (4.9)
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and are interrelated through equation (2.10), which still holds even though the η’s have

non-vanishing real parts. We can employ these fusing angles and compute the masses and

decay widths by means of the Breit-Wigner formulae (2.1) and (2.2). Taking again for

simplicity m1 = m2 = m and in addition ν = 1/2, we obtain for the first process in (4.8)

m(12) =
√

2m coshσ21/2 and Γ(12) = 2
√

2m sinhσ21/2 . (4.10)

Employing now also in the process 2 + (12) → 1 the Breit-Wigner formula, we construct

in the limit σ12 → 0 the values m1 = m and Γ1 = 0. Likewise, in the last process in (4.8)

we obtain m2 = m and Γ2 = 0.

The asymptotic limit t→ ∞ becomes meaningful when we operate on an energy scale

at which the unstable particle has not even been created yet, i.e. Γ(12) → ∞ ≡ σ21 → ∞.

In that case the theory decouples into two SU(2)2-models, i.e. free Fermions, with S11 =

S22 = −1. This is a simple version of the decoupling rule (3.4). We consider now a different

theory with σ12 > 0.

✉

α1

❍❍✟✟
✉

α2

Taking now also in this case for simplicity ν = 1/2, we find the following bootstrap satisfied

S̃l(12)(θ) = S̃l2(θ − σ12/2 + iπ/4)S̃l1(θ + σ12/2 − iπ/4), (4.11)

which yields the S-matrix

S̃SU(3)(θ, σ21) =







−1 (σ12, 2) −(σ12/2, 1)

−(σ21, 2) −1 −(σ21/2, 3)

−(σ21/2, 3) −(σ12/2, 1) −1






. (4.12)

The S-matrix (4.12) allows for the processes

2 + 1 → (12), 1 + (12) → 2, (12) + 2 → 1, (4.13)

instead of (4.8). Now the fusing angles are read off as

η
(12)
21 = −iπ/2 + σ12, η2

1(12) = −3iπ/4 − σ12/2, η1
2(12) = −3iπ/4 − σ12/2 (4.14)

and also satisfy (2.10). The masses and decay width are obtained again from (2.1) and

(2.2) with σ12 → σ21. As a whole, we can think of this theory simply as being obtained

from the Z2-Dynkin diagram automorphism which exchanges the roles of the particles 1

and 2. However, since parity invariance is now broken this is not a symmetry any more

and the two theories are different. In the asymptotic limit σ12 → ∞, we obtain once again

a simple version of the decoupling rule and the theory decouples into two SU(2)2-models.

We also want to make sense of joining two SU(3)2 theories together when one of the

particles is shared, whereas the remaining ones interact trivially. For the choice σ21 > 0

and σ23 > 0 this corresponds algebraically to
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✉

α1

✟✟❍❍
✉

α2

⊗ ✉

α2

❍❍✟✟
✉

α3 �
�

� ✉

α2

Labelling the rows and columns as {1, 2, 3, (12), (23)} we can simply associate the following

scattering matrix to this model

S̃SU(3)⊗SU(3)
SU(2)

=















−1 −(σ12, 2) 1 −(σ12/2, 3) 1

(σ21, 2) −1 −(σ32, 2) −(σ21/2, 1) −(σ23/2, 1)

1 (σ23, 2) −1 1 −(σ32/2, 3)

−(σ21/2, 1) −(σ12/2, 3) 1 −1 1

1 −(σ32/2, 3) −(σ23/2, 1) 1 −1















. (4.15)

The particle 2 is shared by the two original theories. There is a well defined limit of this

matrix, which is in agreement with the decoupling rule

lim
σ21→∞

S̃SU(3)⊗SU(3)/SU(2) = lim
σ23→∞

S̃SU(3)⊗SU(3)/SU(2) = S̃SU(3)⊗SU(2) . (4.16)

Similarly, we can construct the remaining three cases of this kind σ21 < 0, σ23 < 0 or

σ21 > 0, σ23 < 0 or σ21 < 0, σ23 > 0.

So far we have seen from this example that it is possible to develop a consistent

bootstrap and that the outcome depends on the choice of the σ’s. New particles are not

predicted from here.

4.1.2 The SU(4)2-HSG model

In comparison with the previous SU(3)2-model the SU(4)2-model introduces a novel fea-

ture. Besides the fundamental unstable particles formed from two stable particles, it also

allows for the formation of further unstable particles from the fusing of one unstable par-

ticles with a stable one, i.e. secondaries. We start with the case σ21 > 0, σ23 > 0.

✉

α1

✟✟❍❍
✉

α2

❍❍✟✟
✉

α3

Taking the two parameters of the two SU(3)2-copies occurring here to ν = 1/2, we proceed

analogously as before and have the following bootstrap equations to solve

S̃l(12)(θ) = S̃l1

(

θ − σ21
2 + iπ

4

)

S̃l2

(

θ + σ21
2 − iπ

4

)

,

S̃l(23)(θ) = S̃l3

(

θ − σ23
2 + iπ

4

)

S̃l2

(

θ + σ23
2 − iπ

4

)

,

S̃l(123)(θ) = S̃l(12)

(

θ + µ̃σ21 − µσ23 + iπ
4

)

S̃l3

(

θ + 2µ̃+1
2 σ21 − (1 + µ)σ23 − iπ

2

)

,

S̃l(123)(θ) = S̃l(23)

(

θ + 2µ̃+1
2 σ21 − 2µ+1

2 σ23 + iπ
4

)

S̃l1

(

θ + 2µ̃−1
2 σ21 − µσ23 − iπ

2

)

.

(4.17)

Here we have already determined several fusing angles by the requirement that the r.h.s. of

the last two equations have to be identical. The parameters µ and µ̃ enter for the same

reason as in the previous section and remain in principle free. For simplicity we choose
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them now to µ = −µ̃ = 1. As a consistent solution to the bootstrap we then construct

S̃SU(4)(θ, σ21, σ23) =



















• • • • −(σ23−2σ21
2 , 3) (−3σ21+2σ23

2 , 2)

• • • • • −1

• • • −(2σ32+σ21
2 , 3) • (−σ21+4σ23

2 , 2)

• • ∗ • 1 −(−σ21 − σ23, 3)

∗ • • 1 • −(−σ21+3σ23
2 , 3)

∗ ∗ ∗ ∗ ∗ −1



















. (4.18)

Here we labeled the rows and columns in the order {1, 2, 3, (12), (23), (123)}. The particles

are all self-conjugate. We abbreviated the entries

• ≡ S̃SU(3)⊗SU(3)/SU(2)((σ21 > 0, σ23 > 0)). (4.19)

Note that (4.18) does not completely contain the S-matrix S̃SU(3)⊗SU(3)/SU(2), since there

are some entries which do not coincide, which indicates that the two SU(3) copies still

interact non-trivially. Only the ones indicated by • are identical to those in (4.15). For

conciseness we also did not spell out some entries indicated by ‘∗’. If the ∗ is in the entry

S̃ij , we always report explicitly S̃ji and the omitted entry can simply be obtained from the

crossing relation (2.6). In this case this reads (σ, x) → −(−σ, 4 − x). According to the

principles outlined above, the S-matrix (4.18) allows for the processes

1 + 2 → (12), (12) + 1 → 2, 2 + (12) → 1,

3 + 2 → (23), (23) + 3 → 2, 2 + (23) → 3,

(12) + 3 → (123), (123) + (12) → 3, 3 + (123) → (12),

(23) + 1 → (123), (123) + (23) → 1, 1 + (123) → (23).

(4.20)

The related fusing angles are read off as

η
(12)
12 = σ21 − iπ

2 , η2
(12)1 = −σ21

2 − 3iπ
4 , η1

2(12) = −σ21
2 − 3iπ

4 ,

η
(23)
32 = σ23 − iπ

2 , η2
(23)3 = −σ23

2 − 3iπ
4 , η3

2(23) = −σ23
2 − 3iπ

4 ,

η
(123)
(12)3 = σ21−2σ23

2 − 3iπ
4 , η

3
(123)(12) = −σ21 − σ23 − 3iπ

4 , η
(12)
3(123) = σ21+4σ23

2 − iπ
2 ,

η
(123)
(23)1 = σ23−2σ21

2 − 3iπ
4 , η

1
(123)(23) = −σ21−3σ23

2 − 3iπ
4 , η

(23)
1(123) = 3σ21

2 + σ23 − iπ
2 .

(4.21)

One verifies that the sum relation of the fusing angles (2.10) holds for all possible processes.

The first two lines in (4.20) correspond simply to two copies of SU(3)2 and one does not

need to comment further on them. An interesting prediction results from the consideration

of the first two processes in the last two lines of (4.20). Making in the first process the

particle (12) and in the second the particle (23) stable, by σ2 → σ1 and by σ2 → σ3,

respectively, both predict the mass of the particle (123) as

m(123) ∼ me|σ13|/2 . (4.22)

This value is precisely the one we expect from the approximation in the Breit-Wigner

formula (2.3). Note that in one case we obtain σ13 and in the other σ31 as a resonance

parameter. The difference results from the fact that according to the processes (4.20), the
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particle (123) is either formed as (1 + 2) + 3 or 3+ (2 + 1). Thus the different parity shows

up in this process, but this has no effect on the values for the mass. We also confirm the

decoupling rule on the basis of the constructed S-matrix

lim
σ21→∞

S̃SU(4)(σ21, σ23) = S̃SU(2) + S̃SU(3)(σ23) , (4.23)

lim
σ23→∞

S̃SU(4)(σ21, σ23) = S̃SU(3)(σ21) + S̃SU(2) . (4.24)

Similarly we can construct the case σ12 > 0, σ32 > 0, which leads essentially to a similar

qualitative behaviour and we can therefore omit its presentation here. More interesting is

the case σ21 > 0, σ32 > 0.

✉

α1

✟✟❍❍
✉

α2

✟✟❍❍
✉

α3

Taking again the two parameters of the SU(3)2-algebras to ν = 1/2, we proceed analogously

as before and have the following bootstrap equations to solve

S̃l(12)(θ) = S̃l1

(

θ − σ21
2 + iπ

4

)

S̃l2

(

θ + σ21
2 − iπ

4

)

,

S̃l(23)(θ) = S̃l2

(

θ − σ32
2 + iπ

4

)

S̃l3

(

θ + σ32
2 − iπ

4

)

,

S̃l(123)(θ) = S̃l(12)

(

θ − µ̃σ21 − µσ32 + iπ
4

)

S̃l3

(

θ + 1−2µ̃
2 σ21 + (1 − µ)σ32 − iπ

2

)

,

S̃l(123)(θ) = S̃l1

(

θ − 1+2µ̃
2 σ21 − µσ32 − iπ

2

)

S̃l(23)

(

θ + 1−2µ̃
2 σ21 + 1−2µ

2 σ32 − iπ
4

)

.

(4.25)

Again we have already fixed several fusing angles by the requirement that the r.h.s. of the

last two equations have to be identical. The parameters µ and µ̃ enter for the same reason

as in the previous section and remain in principle free. As a consistent solution to the

bootstrap we construct now

S̃SU(4)(θ, σ21, σ32) =





















• • • • −(−2σ21+σ32
2 , 1) (− (1+2µ̃)σ21+2µσ32

2 , 1)

• • • • • 1

• • • (2σ32+σ21
2 , 3) • ( (1−2µ̃)σ21+2(1−µ)σ32

2 , 1)

• • ∗ • (σ32+σ21
2 , 2)2 (−µ̃σ21 − µσ32, 3)

∗ • • (−σ32+σ21
2 , 2)2 • −( (1−2µ̃)σ21+(1−2µ)σ32

2 , 1)

∗ ∗ ∗ ∗ ∗ −1





















.

(4.26)

As before, we label the rows and columns in the order {1, 2, 3, (12), (23), (123)} and abbre-

viate the entries

• ≡ S̃SU(3)⊗SU(3)/SU(2)((σ21 > 0, σ32 > 0)). (4.27)

The ∗ entries can be obtained in the same way as in (4.18). The S-matrix (4.26) allows for

the processes

1 + 2 → (12), (12) + 1 → 2, 2 + (12) → 1,

2 + 3 → (23), 3 + (23) → 2, (23) + 2 → 3,

(12) + 3 → (123), (123) + (12) → 3, 3 + (123) → (12),

1 + (23) → (123), (23) + (123) → 1, (123) + 1 → (23).

(4.28)
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The related fusing angles are read off as

η
(12)
12 = σ21 − iπ

2 , η2
(12)1 = −σ21

2 − 3iπ
4 , η1

2(12) = −σ21
2 − 3iπ

4 ,

η
(23)
23 = σ32 − iπ

2 , η2
3(23) = −σ32

2 − 3iπ
4 , η3

(23)2 = −σ32
2 − 3iπ

4 ,

η
(123)
(12)3

= 2σ21+4σ32−3iπ
4 , η3

(123)(12) = −4µ̃σ21+4µσ32+3iπ
4 , η

(12)
3(123)

= (2µ−2)σ32+(2µ̃−1)σ21−iπ
2 ,

η
(123)
1(23) = 2σ32+4σ21−3iπ

4 , η1
(23)(123) = (4µ̃−2)σ21+(4µ−2)σ32−3iπ

4 , η
(23)
(123)1 = − (2µ̃+1)σ21+µσ32+iπ

2 .

(4.29)

Again one verifies that the relation (2.10) holds for all possible processes. The first two lines

in (4.29) correspond again just to two copies of SU(3)2. Also in this case we predict the mass

of the particle (123) to correspond to (4.22) making in the first process the particle (12)

and in the second the particle (23) stable, by σ2 → σ1 and by σ2 → σ3, respectively. There

are, however, some fundamental differences with regard to the previous case. First we note

that the entries S̃(12)(23)(θ) and S̃(23)(12)(θ) posses a double pole. We can interpret this as

in the case when all particles are stable in terms of the usual Coleman-Thun mechanism

[23]. We depict the corresponding fusing structure in

Figure 2: Coleman-Thun mechanism.

figure 2. Also the decoupling rule works differently in

this case. Now we have σ31 > σ21, σ32 > 0 and due to

the non-commutative nature of the limits we obtain

a different flow when the resonance parameters are

taken to approximate infinity. We note that apart

from the • all the entries tend to ±1. Thus we also

confirm the decoupling rule in the version

lim
σ31→∞

S̃SU(4)(σ21, σ32) ∼ S̃SU(3)⊗SU(3)
SU(2)

. (4.30)

The case σ12 > 0, σ23 > 0 is very similar to this one

in behaviour and does not need to be reported. In

summary, we saw in this section that the bootstrap

leads to the prediction of secondary unstable particles with a mass computable from the

Breit-Wigner formula. In addition, we saw that by changing the order of the resonance

parameters the fusing structure does not merely change with regard to the parity, but even

develops new pole structures such as double poles.

4.1.3 The SO(8)2-HSG model

For all models studied so far, we found a one-to-one correspondence between the parti-

cle content of the theory and the amount of resonance parameters σij with i < j and

i, j ∈ {1, . . . , ℓ}. With regard to the RG scaling functions, which will be computed in the

next section, this means that every plateau can be interpreted naturally as related to the

onset energy for the excitation of a particle. However, as we already indicated in section

4, this one-to-one correspondence only holds for the SU(ℓ + 1)2-HSG models. For the

remaining simply-laced algebras it turns out that the dimension of the positive root space

is always larger than the amount of parameters σij at hand. We study here the simplest

example which will exhibit such a behaviour, i.e. the SO(8)2-HSG model. According to
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(4.5) there are 12 unstable particles, whereas the amount of available resonance parame-

ters is only 10. The following analysis will show that the generalized bootstrap equations

we propose provide a satisfactory explanation for this mismatch, in agreement with the

previous understanding. We will demonstrate that, in fact, there are 12 particles present

in the theory, but the masses of four of them are unavoidably pairwise degenerated. Since

both the RG scaling functions and the decoupling rule are determined by the relative mass

scales of the particles in the theory, such a degeneracy can not be unraveled in that context

and only 10 particles will be visible.

We consider now the SO(8)2 -HSG model for the choice σ13 > 0, σ23 > 0, σ43 > 0 and

label the particles as indicated in the Dynkin diagram.

✉

α1

❍❍✟✟
✉

α3

✉

✁✁❆❆

α4

✟✟❍❍
✉

α2

Matching every particle with a positive root of D4, we collect the 12 particles in the model

in the set

P = {1, 2, 3, 4, (13), (23), (43), (123), (423), (143), (1234), (12334)} (4.31)

which allows later for very compact notations. With regard to the previous cases we have

a further novelty, namely the occurrence of tertiary unstable particles, i.e. (1234) and

(12334). In addition, these two particles exhibit the mentioned mass degeneracy, as we will

see later in detail. For the given choice of the resonance parameters we have the bootstrap

equations

S̃l(i3)(θ) = S̃l3(θ − σi3
2 + iπ

4 )S̃li(θ + σi3
2 − iπ

4 ) ,

S̃l(ij3)(θ) = S̃lj(θ −
µijσji+2σ3j

2 + iπ
2 )S̃l(i3)(θ +

µijσij+σi3

2 − iπ
4 ) ,

S̃l(ij3)(θ) = S̃li(θ −
µijσji+2σ3i

2 + iπ
2 )S̃l(j3)(θ +

µijσij+σj3

2 − iπ
4 ) ,

S̃l(1234)(θ) = S̃l(ki3)(θ − µkiσki+µ42σ24+κ
2 + iπ

4 )S̃lj(θ +
µ42σ42+σj3−κ

2 − iπ
4 ) ,

S̃l(12334)(θ) = S̃l(1234)(θ − µ42σ42+σ13−κ+λ
2 + iπ

4 )S̃l3(θ − σ13+λ
2 − iπ

2 ) ,

S̃l(12334)(θ) = S̃l(j3)(θ − σ1j+λ
2 + iπ

4 )S̃l(ki3)(θ + µkiσik+σ31−λ
2 − iπ

2 ) ,

(4.32)

The indices i, j, k can take values in {1, 2, 4}, such that no two indices are repeated and

the associated particles are in P. This convention will be used throughout this section.

The parameters µij, κ and λ are in principle free but will be constrained below in order

to match consistently the pole structure of S̃ with the corresponding mass spectrum. The

entries of the S-matrix can be written in a very compact form, namely

S̃i(j3)(θ) = (−1)δij (
σi3+σij

2 , 1 + 2δi3) ,

S̃i(jk3)(θ) = (−1)δij+δik(
µjkσjk+2σi3

2 , 2) , i 6= 3

S̃(i3)(j3)(θ) = (−1)δij ,

S̃(ij3)(kl3)(θ) = (−1)δikδjl ,

S̃(i3)(jk3)(θ) = −(−1)
δij+δik

(
µjkσjk+2σi3

2 , 1) ,

S̃(i3)(12334)(θ) = (σi1−λ
2 , 3) ,

(4.33)
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S̃(ij3)(1234)(θ) = (
µijσji+µ42σ42−κ

2 , 3) ,

S̃(ij3)(12334)(θ) = −(
µijσji+σ31−λ

2 , 3) ,

S̃(1234)(12334)(θ) = (
µ42σ24+σ31+κ−λ

2 , 3),

S̃(1234)(1234)(θ) = S̃(12334)(12334)(θ) = S̃3(jk3)(θ) = S̃(i3)(1234)(θ) = −1.

(4.34)

According to the same principles outlined in the previous sections, the physical scattering

processes involving the fundamental (primary) unstable particles as well as the correspond-

ing fusing angles are

3 + j → (j3), (j3) + 3 → j, j + (j3) → 3, (4.35)

η
(j3)
3j = σj3 − iπ

2 , ηj
(j3)3

= −σj3

2 − 3iπ
4 , η3

j(j3) = −σj3

2 − 3iπ
4 , (4.36)

where we recall j can take the values 1, 2 and 4, in correspondence with the first equation

in (4.32). The processes involving secondary unstable particles are

j + (k3) → (jk3), (jk3) + j → (k3), (k3) + (jk3) → j,

k + (j3) → (jk3), (jk3) + k → (j3), (j3) + (jk3) → k,
(4.37)

with (jk3) ∈ P, such that every secondary unstable particle (123), (423) and (143) can be

formed in two different processes. The associated fusing angles can also be written in a

closed form

η
(jk3)
j(k3) =

2(σ3j+σjk)−3iπ
4 , η

(k3)
(jk3)j =

µjkσjk+2σk3−iπ

2 , ηj
(k3)(jk3) =

2(µjkσkj+2σ3k)−3iπ

4 ,

η
(jk3)
k(j3) =

2(σ3k+σkj)−3iπ
4 , η

(j3)
(jk3)k =

µjkσjk+2σj3−iπ

2 , ηk
(j3)(jk3) =

2(µjkσkj+2σ3j)−3iπ

4 .
(4.38)

Finally, the processes which involve the tertiary unstable particles (1234) and (12334) are

(kl3) + j → (1234), (1234) + (kl3) → j, j + (1234) → (kl3),

(j3) + (kl3) → (12334), (kl3) + (12334) → (j3), (12334) + (j3) → (kl3),

(1234) + 3 → (12334), 3 + (12334) → (1234), (12334) + (1234) → 3,

(4.39)

with fusing angles

η
(1234)
(kl3)j =

µklσkl+2σj3−iπ
2 , ηj

(1234)(kl3) = 2(µklσlk+µ42σ42−κ)−3iπ
4 , η

(kl3)
j(1234) =

2(µ42σ24+κ+2σ3j)−3iπ
4

η
(12334)
(j3)(kl3) =

2(µklσlk+2σ3j)−3iπ
4 , η

(j3)
(kl3)(12334) = µklσkl+σ13+λ−iπ

2 , η
(kl3)
(12334)(j3) =

2(σj1−λ)−3iπ
4 ,

η
(12334)
(1234)3 = 2(µ42σ42−κ)−3iπ

4 , η
(1234)
3(12334) = σ13+λ−iπ

2 , η3
(12334)(1234) = 2(µ42σ24+2σ31−λ+κ)−3iπ

4 .

Similarly as for the SU(4)2-HSG model studied before, one of the main predictions, which

supports the working of our proposal, are the masses of the unstable particles. In the

case of the present theory, this predictive power is especially important, since we intend to

show the degeneracy of some of these masses. For the secondary unstable particles we can

proceed as in the previous sections and consider the processes j + (k3) and k + (j3) for

fixed j, k and make the primary unstable particles stable. By looking at the corresponding

fusing angles we find

lim
σ3→σk

j + (k3) → (jk3)

lim
σ3→σj

k + (j3) → (jk3)







⇒ m(jk3) ∼ me|σjk|/2, (4.40)
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that is, the masses of the secondary unstables are predicted once more according to (2.3).

Most interesting is the analysis for the next generation of unstable particles, the tertiaries.

Let us consider the formation process for the particle (1234). We have to look at the

processes (jk3) + l → (1234) with j, k, l ≡ {1, 2, 4} such that (jk3) ∈ P,

lim
σj→σk

lim
σ3→σk

j + (k3) → (jk3) + l

lim
σ3→σj

k + (j3) → (jk3) + l







→ (1234) ⇒ m(1234) ∼
√

2me
|σl3|

2 . (4.41)

This equation requires some comments. Reading (4.41) for each individual value of l, we

end up with the condition σk = σj = σ3 for j, k ∈ {1, 2, 4} 6= l. This should hold for all

values of l, such that when we demand the uniqueness of the mass m(1234) we end up with

the condition σ1 = σ2 = σ3 = σ4. This means

m(1234) ∼
√

2m. (4.42)

and the particle (1234) will also be invisible in any RG flow. Let us now consider the

tertiary particle (12334). The processes to be investigated are the ones listed above in

(4.39)

lim
σj→σk

lim
σ3→σk

j + (k3) → (jk3) + l

lim
σ3→σj

k + (j3) → (jk3) + l







→ (1234)
σl→σ3

+3 → (12334) ⇒ m(12334) ∼ m, (4.43)

lim
σl→σ3

(l3) +
lim

σ3→σk

j + (k3)

lim
σ3→σj

k + (j3)







→ (l3)+ (jk3)
σj→σk

→ (12334) ⇒ m(12334) ∼ m. (4.44)

We presented here the complete chain of processes leading to the formation of the unstable

particle (12334). As can be seen from (4.44) and (4.43), making all intermediate particles

stable amounts to the equality of all resonance parameters, so that there is no σ-dependence

in the final expression for the mass. Therefore, with regard to the mass spectrum, the

particle (12334) is indistinguishable from the stable particles in the theory.

Due to the fact that the formation of (1234) and (12334) requires all resonance pa-

rameters to be equal, the parameters κ and λ can never be fixed by the mass analysis.

Similarly the parameters µij can also not be constrained further by means of the mass

analysis. However, there is still a further check to be carried out, namely the decoupling

rule. For the choice mentioned σ13 > 0, σ23 > 0, σ43 > 0 we expect to find the following

decoupling flow

lim
σ43,σ23,σ13→∞

S̃SO(8)(σ13, σ23, σ43) = lim
σ43,σ23→∞

S̃SU(4)(σ23, σ43) + S̃SU(2)

= lim
σ43→∞

S̃SU(3)(σ43) + S̃SU(2) + S̃SU(2) = S̃SU(2) + S̃SU(2) + S̃SU(2). (4.45)

In order to achieve consistency of S̃ with (4.45) the following constraints have to be satisfied

∣

∣µij

∣

∣ > 2,

|κ1| > 2, |κ2| > 0, |κ4| > 0,
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|λ2| > 1, |λ4| > 1, |λ1| > 0,

|κ1 + µ12| > 0, |κ1 + µ14| > 0,

|κ2 + µ42| > 2, |κ2 − µ12| > 0, (4.46)

|κ4 + µ42| > 0, |κ4 − µ42| > 2,

|λ1 − κ1 + 1| > 0, |λ1 + µ14 + 1| > 0, |λ1 + µ12 + 1| > 0,

|λ2 − κ2 − µ42| > 0, |λ2 − µ12| > 0, |λ2 − µ42| > 0,

|λ4 − κ4 + µ42| > 0, |λ4 − µ42| > 0, |λ4 − µ14| > 0,

for

κ = κ1σ13 + κ2σ23 + κ4σ43 and λ = λ1σ13 + λ2σ23 + λ4σ43. (4.47)

A possible, but not unique, choice which allows to satisfy the conditions (4.46) is

µij = κ1 = λ1 = 5/2, λ2 = λ4 = 3/2 and κ4 = κ2 = 7/2. (4.48)

We summarize the main new observations from this example: Tertiary unstable particles

can be formed, but in this case they are unavoidably mass degenerate in comparison with

a primary and a stable particle.

4.2 Thermodynamic Bethe ansatz analysis

In this section we want to compare the findings of the previous section with an alternative

method. We employ for this the thermodynamic Bethe ansatz [24] in order to compute

the scaling function in dependence of the inverse temperature. One should stress that the

only input into this approach is the proper S-matrix involving stable particles and not S̃.

As discussed in [11] for the first time for the HSG-models, we expect to find the typical

staircase pattern, in which each step can be related to the energy scale of the formation

of at least an unstable particle. The central equations to solve in this context are the

TBA-equations

rmi
a cosh θ = εia(θ) +

ℓ
∑

b=1

ℓ̃
∑

j=1

Φij
ab ∗ L

j
b(θ) (4.49)

By the symbol ’∗’ we denote the rapidity convolution of two functions defined as f ∗
g(θ) :=

∫

dθ′/2π f(θ − θ′)g(θ′). The renormalization group parameter r is related to the

temperature T as r = m/T , where m is the mass scale of the lightest particle. We also

re-defined the masses as usual by mi
a → mi

a/m. The pseudo-energies εi
a(θ) are related to

the functions Lj
b(θ) = ln(1 + e−εj

b
(θ)). The kernels in the integrals carry the information of

the dynamical interaction of the system and are given by

Φij
ab(θ) = −i d

dθ
lnSij

ab(θ) . (4.50)

Recall that in general we characterize the particles by two quantum numbers (a, i) as

explained in section 3, unlike in the last sections where we could drop one as we were

dealing with level 2 only. For instance for the g̃2-HSG scattering matrix (4.3) the kernel

simply reads

Φij(θ) = Ĩij cosh−1(θ + σij) , (4.51)
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with Ĩ being the incidence matrix of g̃. Having solved the equations (4.49) for the pseudo-

energies εi(θ) one can compute the scaling function

c(r) =
3 r

π2

∑

i,a

mi
a

∞
∫

0

dθ cosh θ (Li
a(θ) + Li

a(−θ)) . (4.52)

Due to its non-linear nature the TBA equations are known not to be solvable analytically,

albeit in certain regions analytical approximations exist. We shall now solve these equations

numerically. According to the above discussion we are particularly interested in higher rank

Lie algebras, since the decoupling rule (3.4) will be most complex in that case. Even though

solving (4.49) numerically is a relatively simple iteration problem, its full solution for high

ranks requires a considerable computational effort. In order to tackle such situations a

sophisticated procedure has been developed [25], which allows to compute in a reasonable

short time high rank scaling functions to a very high precision.

However, in many cases one can use some standard techniques, see e.g. [24, 11], and

approximate (4.49) by the so-called constant TBA-equations and predict the values for c.

In a large regime for θ, when r is small, one may approximate εia(θ) = εia = const. By

standard TBA arguments [24] it follows that the effective central charge is expressible as

ceff =
6

π2

ℓ
∑

a=1

ℓ̃
∑

i=1

L
(

xi
a

1 + xi
a

)

, xi
a =

ℓ
∏

b=1

ℓ̃
∏

j=1

(1 + xj
b)

N ij
ab (4.53)

with L(x) =
∑∞

n=1 x
n/n2 + lnx ln(1 − x)/2 denoting Rogers dilogarithm, xi

a = exp(−εia)
and N ij

ab = 1/2π
∫ ∞
−∞ dθ Φij

ab(θ) . We will exploit this fact below.

4.2.1 The SU(4)2-HSG model

As already discussed as an example in sections 3.1 and 3.2.2, we have two qualitatively

different behaviours for this case. For the ordering σ21 > 0, σ23 > 0 we expect to find

3 plateaux in the scaling function, whereas the ordering σ21 > 0, σ32 > 0 is associated

to a different decoupling rule with 4 plateaux. This is the behaviour the decoupling rule

predicts and which we already saw confirmed when taking the limits of the scattering

matrix obtained from our bootstrap proposal. In addition we now also find this behaviour

being validated with a TBA analysis. Figure 3 contains the numerical outcome of the

solutions of the equations (4.49), (4.52) and agrees with our expectations. Note that we do

not only predict correctly the height of the plateaux, but also their onset at ln(r/2) ∼ σ/2,

which is in agreement with the approximation to the Breit-Wigner formula (2.3). From this

analysis we can now support our reasoning with regard to the comment on the occurrence

of the absolute value in the Breit-Wigner formula. The two cases presented in figure 3 only

differ by the signs of the resonance parameter σ12 and are evidently not identical. In one

case we have σ13 = σ12 + σ23 = 90 leading to an additional plateau and in the other we

have σ13 = σ12 + σ23 = 30, which does not give an onset related to σ13 as the decoupling

between the vertices 1 and 2 already took place.
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These findings seem to contradict

Figure 3: The SU(4)2 RG flow.

some result previously obtained from

a form factor analysis [20]. In there

as in all previous publications on

the subject, e.g. [10, 11], an abso-

lute value was used in the Breit-

Wigner formula, such that the signs

of the resonance parameters were

handled quite casual. In fact, the

results presented in figure 1 in [20]

for SU(4)2 correspond to the val-

ues σ12 = 50, σ23 = −20 rather

than σ12 = 50, σ23 = 20 which

agrees with the decoupling rule. Like-

wise matters are clarified below for

the SU(5)2-HSG case.

The occurrence of additional plate-

Figure 4: The SU(5)2 RG flow.

aux which could not be associated

to primary unstable particles for sev-

eral algebras was noted in [25]. Their

occurrence in the SU(4)2, SU(5)2,

SO(8)2-HSG models, as will also

be discussed in the next section,

was also commented upon in [26].

This latter observation was only ba-

sed on a TBA-calculation of the fi-

nite size scaling function. In [26]

the statement was made that these

further plateaux could possibly be

related to “new” unstable particles

in the spectrum. However, predic-

tive rules for the fixed points of the

RG flow such as the decoupling rule

(3.4) and also for the on-set as the bootstrap principle, which we both provide here, were

absent.

4.2.2 The SU(5)2-HSG model

This case already allows for many more possibilities, that is, potentially 6! different or-

derings of the resonance parameters. Let us discuss one case in more detail and present

two more in a shorter form. We choose the values for the resonance parameters directly

associated to the links of the Dynkin diagram, i.e. the primary unstables, as σ23 = 90,

σ12 = 50, σ34 = 20, such that the remaining parameters result to σ14 = 160, σ13 = 140,

σ24 = 110. According to the decoupling rule we can then predict the renormalization group
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flow. We report here the flow from the ultraviolet to the infrared, indicating the resonance

parameters responsible for the particular onsets together with the Dynkin diagrams of the

new underlying algebra and their related Lie groups and Virasoro central charges:

✉

α1

✉

α2

✉

α3

✉

α4

SU(5) 20
7 ∼ 2.86

→ σ14 ✉

α1

✉

α2

✉

α3

⊗ ✉

α2

✉

α3

✉

α4 �
�

� ✉

α2

✉

α3

SU(4)2

SU(3) 2.8

→ σ13 ✉

α1

✉

α2

⊗ ✉

α2

✉

α3

✉

α4 �
�

� ✉

α2

SU(4)⊗SU(3)
SU(2) 2.7

→ σ24 ✉

α1

✉

α2

⊗ ✉

α2

✉

α3

⊗ ✉

α3

✉

α4 �
�

� ✉

α2

⊗ ✉

α3

SU(3)⊗3

SU(2)⊗2 2.6

→ σ23 ✉

α1

✉

α2

⊗ ✉

α3

✉

α4

SU(3)⊗2 2.4

→ σ12 ✉

α1

⊗ ✉

α2

⊗ ✉

α3

✉

α4

SU(3) ⊗ SU(2)⊗2 2.2

→ σ34 ✉

α1

⊗ ✉

α2

⊗ ✉

α3

⊗ ✉

α4

SU(2)⊗4 2

Comparing this computation with the numerical outcome of our TBA analysis, depicted in

figure 4, reproduces very well this flow in form of the dotted line together with the onset at

ln(r/2) ∼ σ/2 for each resonance parameter. Note the explicit occurrence of the secondary

unstable particles. The other two examples presented in figure 4 are

SU(5) 20/7 ∼ 2.86

→ σ14 = 160/σ14 = 160 SU(4)⊗2/SU(3) 2.8

→ σ13 = 140/σ13 = 110 SU(4) ⊗ SU(3)/SU(2) 2.7

→ σ12 = 90/σ12 = 90 SU(4) ⊗ SU(2) 2.5

→ σ24 = 70/σ24 = 70 SU(3)⊗2 ⊗ SU(2)/SU(2) 2.4

→ σ23 = 50/σ34 = 50 SU(3) ⊗ SU(2)⊗2 2.2

→ σ34 = 20/σ23 = 20 SU(2)⊗4 2

(4.54)

Note that both orderings in (4.54) give rise to the same flows which is once again in

agreement with the decoupling rule. The difference between these two orderings is, however,

that we are dealing with theories which contain different mass spectra of the unstable

particles, such that the onset varies in both cases according to (2.3).

4.2.3 The SO(8)2-HSG model

Being a rank 4 algebra as the previous example, also in this case we have potentially 6!

different orderings of the resonance parameters. Let us study this case for the ordering

σ24 = 140 > σ23 = 90 > σ21 = σ14 = 70 > σ34 = 50 > σ13 = 20 . (4.55)

Then, according to the decoupling rule, we predict the flow
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✉

α1

✉

α3

✉

α4

✉α2

SO(8) 3

→ σ24 ✉

α1

✉

α3

✉

α2

⊗ ✉

α1

✉

α3

✉

α4 �
�

� ✉

α1

✉

α3

SU(4)2

SU(3) 2.8

→ σ23 ✉

α2

⊗ ✉

α1

✉

α3

✉

α4

SU(4) ⊗ SU(2) 2.5

→ σ14 ✉

α2

⊗ ✉

α1

✉

α3

⊗ ✉

α3

✉

α4 �
�

� ✉

α3

SU(3)⊗2⊗SU(2)
SU(2) 2.4

→ σ21 is already decoupled

→ σ34 ✉

α2

⊗ ✉

α4

⊗ ✉

α1

✉

α3

SU(3) ⊗ SU(2)⊗2 2.2

→ σ13 ✉

α1

⊗ ✉

α2

⊗ ✉

α3

⊗ ✉

α4

SU(2)⊗4 2

From the decoupling at σ14 we ob-

Figure 5: The SO(8)2 RG flow.

serve that it is important to keep

track of the simple root labels on

the vertices. The cancellation will

be different whether one decouples

next with σ13 or σ34. The pre-

sented values for the RG fixed points

may be compared with the dotted

line in figure 5, which is again the

numerical outcome of a TBA-analysis.

We present two more flows in figure

5. Once again the two different or-

derings lead to the same flows, but

the onsets vary according to (2.3).

An important fact to notice from

all graphs is that we only observe

the primary and secondary unstables in this analysis and the tertiaries remain invisible.

This is in agreement with our bootstrap analysis in section 3.2.3, which provides a consis-

tent explanation of the claim that all positive roots but the simple ones should be related

to unstable particles.

SO(8) 3

→ σ14 = 170/σ24 = 140 SU(4)⊗2/SU(3) 2.8

→ σ12 = 140/σ14 = 110 SU(4) ⊗ SU(3)/SU(2) 2.7

→ σ13 = 100/σ34 = 90 SU(4) ⊗ SU(2) 2.5

→ σ34 = 70/σ23 = 50 SU(2)⊗2 ⊗ SU(3) 2.2

→ ∗ ∗ ∗ ∗ ∗/σ21 = 30 is already decoupled

(4.56)
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→ σ32 = 40/σ13 = 20 SU(2)⊗4 2

→ σ24 = 30/ ∗ ∗ ∗ ∗ ∗ ∗ is already decoupled
(4.57)

In summary, we conclude from this section that the number of unstable particles is

actually 12, in agreement with (4.5), but for the mentioned reason only 10 can be seen in

the RG flow.

4.2.4 The (E6)2-HSG model

In this case we have already 15! different possible orderings. We want to present two more

explicit examples, which will be instructive since in comparison with the previous ones

they add more non-trivial structure, namely mass degeneracy. Note that this degeneracy

is not the unavoidable one of the tertiary unstables as discussed in the previous section,

but it arises through the particular choice of the primary resonance parameters. This is

nonetheless instructive as we will demonstrate that the decoupling rule also works well in

that case. We label the particles as indicated in the following Dynkin diagram:

✉

α1

✉

α3

✉

α4

✉α2

✉

α5

✉

α6

We choose once again first the ordering for the primary resonance parameters

σ13 = 100 > σ34 = 80 > σ45 = 60 > σ56 = 40 > σ24 = 20 . (4.58)

According to the decoupling rule we predict then the flow:

E6
36
7 ∼ 5. 14

→ σ16 = 280 SO(10)⊗2/SO(8) 5

→ σ15 = 240 SO(10) ⊗ SU(5)/SU(4) 34
7 ∼ 4. 86

→ σ14 = σ36 = 180 SO(8) ⊗ SU(5) ⊗ SU(3)/SU(4) ⊗ SU(2) 319
70 ∼ 4. 56

→ σ12 = 160 is already decoupled

→ σ35 = 140 SU(5) ⊗ SU(4) ⊗ SU(3)/SU(3) ⊗ SU(2) 61
14 ∼ 4. 36

→ σ26 = 120 SU(4)⊗3 ⊗ SU(3)/SU(3)⊗2 ⊗ SU(2) 4.3

→ σ13 = σ46 = 100 SU(4)⊗2 ⊗ SU(3) ⊗ SU(2)/SU(3) ⊗ SU(2) 4

→ σ25 = σ34 = 80 SU(3)⊗3 ⊗ SU(2)⊗2/SU(2)⊗2 3.6

→ σ32 = σ45 = 60 SU(3)⊗2 ⊗ SU(2)⊗2 3.4

→ σ56 = 40 SU(3) ⊗ SU(2)⊗4 3.2

→ σ24 = 20 SU(2)⊗6 3

(4.59)

These analytical predictions are well confirmed with the outcome of our TBA-analysis as

presented by the solid line in figure 6. Note that eight particles are pairwise degenerate

and we therefore expect to find 15 − 8/2 = 11 plateaux in the flow. The first step which

corresponds to one of these degeneracies occurs for instance at σ14 = σ36 and we have to

apply the decoupling rule twice at this point.
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Figure 6: The (E6)2 RG flow.

The dashed line corresponds to the flow

E6
36
7 ∼ 5. 14

→ σ16 = 280 SO(10)⊗2/SO(8) 5

→ σ15 = 240 SO(10) ⊗ SU(5)/SU(4) 34
7 ∼ 4. 86

→ σ36 = 220 SU(5)⊗2 ⊗ SO(8)/SU(4)⊗2 33
7 ∼ 4. 71

→ σ35 = 180 SU(5)⊗2/SU(3) 158
35 ∼ 4. 51

→ σ26 = 160 SU(4)⊗2 ⊗ SU(5)/SU(3)⊗2 156
35 ∼ 4. 46

→ σ14 = σ46 = 140 SU(4)⊗2 ⊗ SU(3)⊗2/SU(2)⊗2 ⊗ SU(3) 4.2

→ σ12 = σ25 = 120 SU(4) ⊗ SU(3)⊗3/SU(2)⊗3 4.1

→ σ45 = 100 SU(4) ⊗ SU(3)⊗2/SU(2) 3.9

→ σ34 = 80 SU(3)⊗3 3.6

→ σ13 = σ32 = 60 SU(3)⊗2 ⊗ SU(2)⊗2 3.4

→ σ56 = 40 SU(3) ⊗ SU(2)⊗4 3.2

→ σ24 = 20 SU(2)⊗6 3

(4.60)

Now only six particles are pairwise degenerate and we expect to find 15−6/2 = 12 plateaux,

which is precisely what we see in figure 6. Overall we have seen in this section that even

for this involved case the decoupling rule is confirmed.

4.2.5 The SU(4)3-HSG model

In order to support the working of the decoupling rule also for higher level algebras we will

now consider one level 3 example, i.e. SU(4)3. In this model we have six particles. When

labeling the rows and columns in the order {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}, the
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scattering matrix in this case reads

S =





















[2]−1
0 e−

iπ
3 [1]σ12 1 −[1]−1

0 e−
2πi
3 [2]σ12 1

e
iπ
3 [1]σ21 [2]−1

0 e−
iπ
3 [1]σ23 e

2πi
3 [2]σ21 −[1]−1

0 e−
2πi
3 [2]σ23

1 e
iπ
3 [1]σ32 [2]−1

0 1 e
2πi
3 [2]σ32 −[1]−1

0

−[1]−1
0 e−

2πi
3 [2]σ12 1 [2]−2

0 [4]−1
0 −e− iπ

3 [1]σ12 1

e
2πi
3 [2]σ21 −[1]−1

0 e−
2πi
3 [2]σ23 −e iπ

3 [1]σ21 [2]−2
0 [4]−1

0 −e− iπ
3 [1]σ23

1 e
2πi
3 [2]σ32 −[1]−1

0 1 −e iπ
3 [1]σ32 [2]−2

0 [4]−1
0





















(4.61)

where we abbreviated [x]σ := sinh 1
2

(

θ + σ − iπx
3

)

/ sinh 1
2

(

θ + σ + iπx
3

)

. As in the previous

cases we can now solve the TBA equations numerically and according to the fusing rule

we expect as in the level 2 case either 3 or 4 plateaux depending on the ordering σ21 >

0, σ23 > 0 or σ21 > 0, σ32 > 0, respectively.

SU(4)3
24
7 ∼ 3. 49

→ σ23 = 60 SU(2)3 ⊗ SU(3)3 2.8

→ σ21 = 30 (SU(2)3)
⊗3 2.4

or

SU(4)3
24
7 ∼ 3. 49

→ σ13 = 90 (SU(3)3)
⊗2 /SU(2)3 3.2

→ σ23 = 60 SU(2)3 ⊗ SU(3)3 2.8

→ σ12 = 30 (SU(2)3)
⊗3 2.4

(4.62)

Indeed figure 7 confirms this behaviour in form of the solid and dashed line. Unfortuna-

tely, the iterative procedure used

Figure 7: The SU(4)3 RG flow.

for solving the TBA equations ceases

to converge when we reach the value

ln(r/2) equal to the highest reso-

nance parameter in both cases. None-

theless, the highest plateau may be

computed analytically simply from

the constant TBA equations (4.53).

In figure 7 we indicate these analyt-

ical values, which we can not ob-

tain numerically at present, by the

dotted lines. The other RG fixed

points may be computed similarly.

We evaluate

x1
1 = x1

2 = x3
1 = x1

2 =
sin(2π

7 ) sin(4π
7 )

sin(π
7 ) sin(5π

7 )
− 1, x2

1 = x2
2 =

sin2(3π
7 )

sin(π
7 ) sin(5π

7 )
− 1, (4.63)

ceff =
6

π2

[

4L
(

x1
1

1 + x1
1

)

+ 2L
(

x2
2

1 + x2
2

)]

=
24

7
∼ 3.43 . (4.64)
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The important fact here is the confirmation of the decoupling rule for higher levels, sus-

tained by the occurrence of the additional plateau at 3.2.

4.2.6 The Sp(4)2-HSG model

Having provided some evidence for the working of the decoupling rule (3.4) at higher

levels, we now want to extend this also to non-simply laced algebras, for which consistent

S-matrices were proposed in [12]. Since a TBA analysis has not been carried out for

the non-simply laced case, the following will also provide support for the working of the

proposal in [12]. According to the latter the Sp(4)2-HSG model is comprised out of four

stable particles

P =
{

(1, 1) = (1, 1), (1, 2) = (3, 2), (2, 2) = (2, 2), (3, 2) = (1, 2)
}

, (4.65)

where, as before, we refer to every particle by two quantum numbers (a, i). Labeling the

rows and columns of the S-matrix in the same order as in (4.65) and particularizing the

closed formulae provided in [12] yields

SSp(4)2 =











−1 −(σ12, 2) (σ12, 1) (σ12, 3) −(σ12, 2)

−(σ21, 2) i(0,−2) − (0,−1) (0,−3) −i(0,−2)

(σ21, 1) (σ21, 3) − (0,−1) (0,−3) (0,−2)2 − (0,−1) (0,−3)

−(σ21, 2) −i(0,−2) − (0,−1) (0,−3) i(0,−2)











,

(4.66)

where σ12 = − σ21 is the only resonance parameter in the theory and we employed the

building blocks (4.4). Carrying out the logarithmic derivative of the individual components

of SSp(4)2 yields the kernel

ΦSp(4)2 =















0 1
cosh(θ+σ12)

2
√

2 cosh(θ+σ12)
cosh 2(θ+σ12)

1
cosh(θ+σ12)

1
cosh(θ+σ21)

−1
cosh θ

−2
√

2 cosh θ
cosh 2θ

−1
cosh θ

2
√

2 cosh(θ+σ21)
cosh 2(θ+σ21)

−2
√

2 cosh θ
cosh 2θ

−2
cosh θ

−2
√

2 cosh θ
cosh 2θ

1
cosh(θ+σ21)

−1
cosh θ

−2
√

2 cosh θ
cosh 2θ

−1
cosh θ















. (4.67)

We are content here with the presentation of the analytic approximations for the plateaux.

As we are dealing with functions strongly peaked at the origin, we can approximate the

TBA-equations and obtain the effective central charge in the deep UV from the constant

TBA-equations (4.53). The N -matrix involved in there reads

NSp(4)2 =
1

2π

∞
∫

−∞

dθ ΦSp(4)2(θ) =











0 1/2 1 1/2

1/2 −1/2 −1 −1/2

1 −1 −1 −1

1/2 −1/2 −1 −1/2











. (4.68)

One can easily check that the same matrix (4.68) is also obtained when specializing the

general formula given in [12]. The corresponding constant TBA solutions of (4.53) are

x1
1 = 3, x2

1 = x4
1 = 2/3, x3

1 = 4/5, (4.69)
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which yield the Virasoro effective central charge

ceff =
6

π2

[

L
(

3

4

)

+ 2L
(

2

5

)

+ L
(

4

9

)]

= 2 , (4.70)

in complete agreement with the expectations (4.2), for k = 2, ℓ = 2, h = 4 and h∨ = 3.

Let us now apply the decoupling rule to (4.66). We expect2

✉

SU(2)
❍❍
✟✟ ✉

SU(4)
Sp(4)2 2

→ σ12 ✉

SU(2)

✉

SU(4)
SU(2)2 ⊗ SU(2)4 1.5

Indeed taking the limit σ12 → ∞ in (4.67) gives the N -matrix

lim
σ12→∞

NSp(4)2 =











0 0 0 0

0 −1/2 −1 −1/2

0 −1 −1 −1

0 −1/2 −1 −1/2











. (4.71)

We note that particle (1, 1) has completely decoupled from the other particles. The solu-

tions of the constant TBA equations are then

x1
1 = 1, x2

1 = x4
1 = 1/2, x3

1 = 1/3, (4.72)

which gives

ceff =
6

π2

[

L
(

1

2

)

+ 2L
(

1

3

)

+ L
(

1

4

)]

= 3/2, (4.73)

in complete agreement with our expectations. Taking now m1 or m2 to infinity yields

SU(2)4 or SU(2)2, respectively. This is what is predicted from the relations (3.9) in [18],

which makes the proposal in [12] natural.

5. Conclusion

We have proposed a new bootstrap principle, which involves also unstable particles in the

scattering processes. So far, only primary unstable particles were analyzed in the literature,

which occurred merely as side products in the scattering processes of stable particles. Our

proposal goes beyond this and has predictive power, as it allows to evaluate the mass

spectrum of further unstable particles, such as secondaries, tertiaries, etc. In addition, it

explains the degeneracy of tertiary unstable particles and possibly of higher generations

for certain theories.

We commented on the general Lie algebraic picture, which underlies the construction

of all known scattering theories which involve unstable particles in their spectrum. Within

this picture we propose various new scattering matrices for combinations of algebras not

2Here the arrow in the Dynkin diagram is not related to the sign of σ and has the usual meaning, that

is, pointing from the long to the short root.
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explored so far. Furthermore, we proposed a consistent way to go beyond scaling theories

of statistical models and to incorporate an effective coupling constant. The structure of

the models obtained in this way can be enhanced by a complexification of the coupling

constant and hence combines the “roaming models” with “Lie algebraic” ones. A more

detailed analysis of these latter models would be very interesting and lead to yet unknown

staircase patterns in the RG flow.

For all integrable scattering theories which are of the general form as discussed in

section 3,we formulate a new Lie algebraic decoupling rule which predicts the fixed points

of the RG flow from the ultraviolet to the infrared. The decoupling rule is in agreement

with the bootstrap construction. Still, it would be highly desirable to derive the decoupling

rule more rigorously from first principles.

Our proposals are additionally confirmed by a TBA analysis, which reproduces the

bootstrap prediction of the mass spectrum of unstable particles including those which are

degenerate and hence invisible in the RG flow. For the HSG models the implications are

that each positive root is associated to a particle. All predictions from our decoupling rule

are in perfect agreement with the outcome of our TBA analysis, even for involved high

rank algebras such as E6, for higher level and the non-simply laced case.
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