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We review the behaviour of a recently introduced model of agreement dynamics, namely the
Naming Game. This model describes the self-organized emergence of a linguistic convention or a
communication system in a population of agents with pairwise local interactions. The mechanisms
of convergence towards agreement strongly depend on the network interaction between the agents.
In particular, the mean-field case in which all agents communicate with all the others is not efficient
in the sense that a large temporary memory is needed. On the other hand, regular lattice topologies
lead to a fast local convergence but to slow global dynamics similar to coarsening phenomena.
The embedding of the agents in a small-world network represents an interesting trade-off: a local
consensus is easily reached, while the long-range links allow to bypass coarsening-like convergence.
We also consider alternative adaptive strategies which can lead to faster global convergence.

I. INTRODUCTION

The recent past has witnessed an important develop-
ment of the activities of statistical physicists in the area
of social sciences (for a recent collection of papers see [1]).
Indeed, the standard methods of statistical physics are
very appropriate to study collective behaviors, neglect-
ing details and retaining only few general ingredients ob-
served in real social interactions. For this reason, physi-
cists have put forward a large number of theoretical mod-
els of social dynamics, borrowing a suite of statistical
methods from the theory of interacting particles systems
[2–5]. In particular, many models have been proposed
for the study of opinion formation, such as the Voter
model [2, 6–10], the Sznajd-Weron model [11], the Axel-
rod model for the dissemination of culture [12], and their
variants (e.g. the models proposed by Deffuant et al. [13]
and by Krause and Hegselmann [14]).

The behavior of these models has been much studied
on regular topologies or in situations where each agent
can interact with all the others. Recently however, net-
work science [15–17] has led to a better knowledge of the
topological properties of real social groups [18], and in
particular to show that the topology of the network on
which agents interact is not regular. Models of social
dynamics have thus been reconsidered, in order to inte-
grate the new framework of complex networks, and to
study the influence of various complex topologies on the
corresponding dynamical behavior.

In this article, we review the behaviour of a recently
proposed model for the emergence of a communication
system, called Naming Game, investigating its dynami-
cal behavior on both regular topologies and complex net-
works [19–22]. Social interactions are indeed based on the
existence of a communication system among the agents,
who are able to understand each other by means of com-
mon linguistic patterns or, more generally, by means of
a common vocabulary of symbols.

Such a communication system is the result of a
self-organized process in which individuals select specific

symbols (words) and associate them to concepts and
ideas (objects). The emergence of a shared lexicon inside
social groups and communities of people is very likely to
be driven by simple criteria, like popularity, imitation,
negotiation, and agreement. When a new concept is
introduced, people refer to it using several different
names or words. These words start spreading among the
population, competing one against the other, until the
choice of one of them is taken (with a sudden transition
or with a long process) and everyone uses the same
word (or symbol, etc) [23–25]. This kind of dynamics
has recently become of broad interest after the diffusion
of a new generation of web-tools which enable human
users to self-organize a system of tags in such a way
to ensure a shared classification of information about
different arguments (see, for instance, del.icio.us or
www.flickr.com and Refs. [26, 27]). Another application
concerns global coordination problems in artificial
intelligence, where a group of artificial embodied agents
moving in an unknown environment have to exchange
informations about the objects they gradually discover.
The emergence of consensus about the objects names
allows to establish a communication system. A practical
example of this type of dynamics is provided by the
well-known Talking Heads experiment [28, 29], in which
embodied software agents develop their vocabulary
observing objects through digital cameras, assigning
them randomly chosen names and negotiating these
names with other agents.

The paper is organized as follows..........

II. MODEL DEFINITION

A minimal model of Naming Game has been put for-
ward by Baronchelli et al. in Ref. [30] to reproduce the
main features of Semiotic Dynamics and the fundamental
results of adaptive coordination observed in the Talking
Heads experiment. The minimal Naming Game model
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FIG. 1: Agents interaction rules. Each agent is described by
its inventory, i.e. the repertoire of known words. The speaker
picks up at random a name in its inventory and transmits it
to the hearer. If the hearer does not know the selected word
the interaction is a failure (top), and it adds the new name to
its inventory. Otherwise (bottom), the interaction is a success
and both agents delete all their words but the winning one.
Note that if the speaker has an empty inventory (as it happens
at the beginning of the game), it invents a new name and the
interaction is a failure.

consists of a population of N agents observing a single
object, for which they invent names that they try to com-
municate to one another through pairwise interactions, in
order to reach a global agreement. The agents are iden-
tical and dispose of an internal inventory, in which they
can store an a priori unlimited number of names (or opin-
ions). All agents start with empty inventories. At each
time step, a pair of neighboring agents is chosen ran-
domly, one playing as “speaker”, the other as “hearer”,
and negotiate according to the following rules (see also
Fig. 1):

• the speaker selects randomly one of its words and
conveys it to the hearer;

• if the hearer’s inventory contains such a word, the
two agents update their inventories in order to keep
only the word involved in the interaction (success);

• if the hearer does not possess the uttered word,
the latter is added to those already stored in the
hearer’s inventory (failure), i.e. it learns the word.

Before entering in the detailed description of the dy-
namics, it is worth noting some visible differences of the
Naming Game with other commonly studied models of
social dynamics and, in particular, of opinion formation
[2, 11–13]. First of all, each agent can potentially be
in an infinite number of possible discrete states (words,
names, opinions), and the maximum number of states de-
pends on the dynamical evolution itself. This is in con-
trast with traditional models (Voter, Potts, etc) in which
the number of states is a fixed external parameter taking

finite (and usually small) values. The two-steps decision
process is moreover rather realistic: an agent can accu-
mulate in its memory different possible names for the
object, waiting before reaching a decision. Each dynam-
ical step can be seen as a negotiation between speaker
and hearer, with a certain degree of stochasticity, that is
absent in deterministic models such as the Voter model.
The stochastic component is however of a different nature
compared to that of standard Glauber dynamics used in
majority rule models [31], since here it comes from an in-
ternal selection criterion, and involves only the speaker,
without affecting the (deterministic) decision process of
the hearer.

An important remark also concerns the random extrac-
tion of the word in the speaker’s inventory. Most previ-
ously proposed models of semiotic dynamics attempted
to give a more detailed representation of the negotiation
interaction assigning weights to the words in the inven-
tories. In such models, the word with largest weight is
automatically chosen by the speaker and communicated
to the hearer. Success and failures are translated into
updates of the weights: the weight of a word involved in
a successful interaction is increased to the detriment of
those of the others (with no deletion of words); a failure
leads to the decrease of the weight of the word not under-
stood by the hearer. An example of a model including
weights dynamics can be found in Ref. [32] (and refer-
ences therein). For the sake of simplicity the minimal
Naming Game avoids the use of weights, that are appar-
ently more realistic, but their presence is not essential
for the emergence of a global collective behavior of the
system.

Finally, we stress that, in the minimal Naming Game,
all agents refer to the same single object, while in the orig-
inal experiments the embodied agents could observe a set
of different objects. This is actually possible only if we
assume that homonymy is excluded, i.e. two distinct ob-
jects cannot have the same name. Consequently, in this
model, all objects are independent and the general prob-
lem reduces to a set of independently evolving systems,
each one described by the minimal model. In more re-
alistic situations, however, the occurrence of homonymy
cannot be neglected.

III. MEAN-FIELD

Many studies of social dynamics have focused on popu-
lations of agents in which all pairwise interactions are al-
lowed, i.e. the agents are placed on the vertices of a fully-
connected graph. In statistical mechanics, this topologi-
cal structure is commonly referred as ”mean-field” topol-
ogy. The main quantities of interest which describe the
system’s evolution are [30]

• the total number Nw(t) of words in the system at
the time t (i.e. the total size of the memory);

• the number of different words Nd(t) in the system
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FIG. 2: Evolution of the total number of words Nw (top), of
the number of different words Nd (center), and of the average
success rate S(t) (bottom), for a mean-field system (black cir-
cles) and low-dimensional lattices (1D, red squares and 2D,
blue triangles) with N = 1024 agents, averaged over 103 re-
alizations. The inset in the top graph shows the very slow
convergence in low-dimensional lattices.

at the time t;

• the average success rate S(t), i.e. the probabil-
ity, computed averaging over many simulation runs,
that the chosen agent gets involved in a successful
interaction at a given time t.

The consensus state is obtained when Nd = 1 and Nw =
N (moreover it implies S = 1).

The temporal evolution of the three main quantities
is depicted in Fig. 2 (circles). At the beginning, many
disjoint pairs of agents interact, with empty initial in-
ventories: they invent a large number of different words,
that start spreading throughout the system, through fail-
ure events. Indeed, the number of words decreases only
by means of successful interactions. In the early stages
of the dynamics, the overlap between the inventories is
very low, and successful interactions are limited to those
pairs which have been chosen at least twice. Since the
number of possible partners of an agent is of order N , it
rarely interacts twice with the same partner, the proba-
bility of such an event growing as t/N 2. The initial trend
of S(t) (black circles) is indeed linear with a slope of or-
der 1/N2. In this phase of uncorrelated proliferation of
words, the number of different words Nd invented by the
agents grows, rapidly reaching a maximum that scales as
O(N). Then Nd saturates, displaying a plateau, during
which no new word is invented anymore (since every in-
ventory contains at least one word). The total number
Nw of words stored in the system has a similar behavior,
but it keeps growing after Nd has saturated, since the
words continue to propagate throughout the system even
if no new one is introduced. The peak of Nw has been
shown to scale as O(N1.5) [30], meaning that each agent

stores O(N0.5) words. This peak occurs after the system
has evolved for a time tmax ∼ O(N1.5). In the subsequent
dynamics, strong correlations between words and agents
develop, driving the system to a final rather fast conver-
gence to the absorbing state in a time tconv ∼ O(N1.5).
The S-shaped curve of the success rate in Fig. 2 summa-
rizes the dynamics: initially, agents hardly understand
each others (S(t) is very low); then the inventories start
to present significant overlaps, so that S(t) increases until
it reaches 1, and the communication system is completely
set in.

IV. COARSENING PHENOMENON ON
LATTICES

A first study of the effects of topological embedding
on the Naming Game dynamics is reported in Ref. [19].
When the interacting agents sit on the nodes of low-
dimensional lattices, the long-time behavior is still char-
acterized by the convergence to a homogeneous consensus
state, but the evolution of the system changes consid-
erably. In particular, the time required by the system
to reach the global consensus displays a different scaling
with the size N , and the effective size of the inventories is
considerably diminished. Actually, the existence of dif-
ferent dynamical patterns are clearly visible in Fig. 2.
Since each agent can interact only with a limited num-
ber of neighbors (2d in a d-dimensional lattice), at the
local scale the dynamics is very fast: agents can rapidly
interact two or more times with their neighbors, favoring
the establishment of a local consensus with a high suc-
cess rate, i.e. of small sets of neighboring agents sharing
a common unique word. These ”clusters” of neighbor-
ing agents with a common unique word are separated by
individuals having a larger inventory with two or more
words, playing the role of ”interfaces”. These interfaces
then start a diffusion process, and the clusters of unique
words grow in time with a law that is typical of coarsen-
ing phenomena [19]: the competition among the clusters
is driven by the fluctuations of the interfaces. The eas-
ily reached local consensus thus leads to a slow dynamics,
and the global consensus takes much longer to be reached
than in mean-field: for example, O(N 3) in dimension 1
vs. O(N1.5) in mean-field. However, another important
aspect of the problem concerns the memory used by the
agents. In mean-field indeed, each agent needs a mem-
ory capacity scaling as O(N 1/2), i.e. diverging with the
system size. In contrast, the consequence of the embed-
ding in a finite-dimensional lattice (with finite number
of neighbors), and of the subsequent coarsening like phe-
nomena, with rapid local consensus, is that each agent
uses only a finite capacity: the maximum total number
of words in the system (maximal memory capacity) scales
linearly with the system size N (as for the number of dif-
ferent words). In summary, low-dimensional lattice sys-
tems require more time to reach the consensus compared
to mean-field, but a lower use of memory.
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V. FAST CONVERGENCE IN SMALL-WORLD
NETWORKS

The precise knowledge of the dynamical behavior of the
Naming Game model on low-dimensional lattices, and in
particular on the one-dimensional ring, makes possible to
understand, by means of simple arguments and numerical
simulations, the effect of the small-world property, that
is a relevant feature of real complex networks.

In the following, indeed, we investigate the effect of in-
troducing long-range connections which link agents that
are far from each other on the regular lattice. In other
words, we study the Naming Game on the small-world
model proposed by Watts and Strogatz [33]. Starting
from a quasi-one-dimensional banded network in which
each node has 2m neighbors, the edges are rewired with
probability p, i.e. p represents the density of long-range
connections introduced in the network. For p = 0 the
network retains a one-dimensional topology, while the
random network structure is approached as p goes to 1.
At small but finite p (1/N � p � 1), a small-world
structure with short distances between nodes, together
with a large clustering, is obtained. When p = 0, the
system is one-dimensional and the dynamics proceeds by
slow coarsening. At small p, the typical distance be-
tween shortcuts is O(1/p), so that the early dynamics
is not affected and proceeds as in one-dimensional sys-
tems. In particular, at very short times many new words
are invented since the success rate is small. The maxi-
mum number of different words scales as O(N), as in the
other cases, while the average used memory per agent
remains finite, since the number of neighbors of each site
is bounded (the degree distribution decreases exponen-
tially [34]).

The typical cluster dynamics on a small-world net-
work is graphically represented in Fig. 3. As long as
the typical cluster size is smaller than 1/p, the clusters
are typically one-dimensional, and the system evolves by
means of the usual coarsening dynamics. However, as
the average cluster size reaches the typical distance be-
tween two shortcuts ∼ 1/p, a crossover phenomena to-
ward an accelerated dynamics takes place. Since the clus-
ter size grows as

√
t/N , this corresponds to a crossover

time tcross = O(N/p2). For times much larger than this
crossover, one expects that the dynamics is dominated
by the existence of shortcuts, entering a mean-field like
behavior. The convergence time is thus expected to scale
as N3/2 and not as N3. The condition in order for this
picture to be possible is exactly the small-world condi-
tion; indeed, the crossover time N/p2 has to be much
larger than 1, and much smaller than the consensus time
for the one-dimensional case N3, that together imply
p � 1/N . In summary, the small-world topology allows
to combine advantages from both finite dimensional lat-
tices and mean-field networks: on the one hand, only a
finite memory per node is needed, in opposition to the
O(N1/2) in mean-field; on the other hand the conver-
gence time is expected to be much shorter than in finite

FIG. 3: A naive representation of clusters growth in the small-
world model of Watts and Strogatz. A cluster (in red) starts
to expand locally by coarsening dynamics like in dimension
one. When the size of the cluster is of the order of the aver-
age distance between shortcuts, long-range interactions take
place. The effect of these long-range interactions is that of
boosting up the dynamics.
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100
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w
 /N

 -1
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FIG. 4: Average number of words per agent in the system,
Nw/N as a function of the rescaled time t/N , for small-world
networks with 〈k〉 = 8 and N = 103 nodes, for various values
of p. The curve for p = 0 is shown for reference, as well as
p = 5.10−3, p = 10−2, p = 2.10−2 , p = 4.10−2, p = 8.10−2,
from bottom to top on the left part of the curves.

dimensions.
Figure 4 displays the evolution of the average number

of words per agent as a function of time, for a small-
world network with average degree 〈k〉 = 8, and various
values of the rewiring probability p. While Nw(t) in all
cases decays to N , after an initial peak whose height is
proportional to N , the way in which this convergence is
obtained depends on the parameters. At fixed N , for
p = 0 a power-law behavior Nw/N − 1 ∝ 1/

√
t is ob-

served due to the one-dimensional coarsening process. As
soon as p� 1/N however, we observe deviations getting
stronger as p is increased: the decrease of Nw is first
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slowed down after the peak, but leads in the end to a
very fast convergence.

As previously mentioned, a crossover phenomenon is
expected when the one-dimensional clusters reach sizes
of order 1/p, i.e. at a time of order N/p2. Since the
agents with more than one word in memory are local-
ized at the interfaces between clusters, their number is
O(Np). The average excess memory per site (with re-
spect to global consensus) is thus of order p, so that one
expects Nw/N − 1 = pG(tp2/N). Detailed numerical in-
vestigations confirm this picture [21], and allow to show
that the convergence towards consensus is reached on a
timescale of order NβSW , with βSW ≈ 1.4± 0.1, close to
the mean-field case N3/2 and in strong contrast with the
N3 behavior of purely one-dimensional systems. Note
that the time to converge scales as p−1.4±.1, that is con-
sistent with the fact that for p of order 1/N one should
recover an essentially one-dimensional behavior with con-
vergence times of order N3.

The combination of the results concerning average used
memory and convergence time shows that the small-
world topology in fact combines of both finite dimen-
sional and mean-field topologies, while corresponding to
more realistic interaction networks.

VI. THE NAMING GAME ON GENERAL
COMPLEX NETWORKS

A. Pair selection strategies

Before describing the behaviour of the Naming Game
dynamics on general networks, it is worth noting that the
definition of the model itself has in fact to be precised. In-
deed, the two neighboring agents chosen to interact have
different roles: one (the speaker) transmits a word and
is thus more ”active” than the other (the hearer). One
should therefore specify whether, when choosing a pair,
one chooses first a speaker and then a hearer among the
speaker’s neighbors, or the reverse order. If the agents sit
on a fully connected graph or on a regular lattice, or even
on a random graph with homogeneous degree distribu-
tion, they have an equivalent neighborhood so the order
is not important. In the case of heterogeneous networks
however, the degrees of the first and the second chosen
nodes can have very different distributions (respectively
P (k) and kP (k)/〈k〉). The asymmetry between speaker
and hearer can couple to the asymmetry between a ran-
domly chosen node and its randomly chosen neighbor,
leading to different dynamical properties (this is the case
for example in the Voter model, as studied by Castel-
lano [35]). We therefore distinguish more possibilities for
the definition of the Naming Game on generic networks.

• (i) A randomly chosen speaker selects (again ran-
domly) a hearer among its neighbors. This is prob-
ably the most natural generalization of the original
rule. We call this strategy direct Naming Game. In

this case, larger degree nodes will preferentially act
as hearers.

• (ii) The opposite strategy, here called reverse Nam-
ing Game, can also be carried out: we choose
the hearer at random and one of its neighbors as
speaker. In this case the hubs are preferentially
selected as speakers.

• (iii) A neutral strategy to pick up pairs of nodes
is that of considering the extremities of an edge
taken uniformly at random. The role of speaker
and hearer are then assigned randomly with equal
probability among the two nodes.

As shown in [36], a larger memory is used for the re-
verse rule, although the number of different words created
is smaller, and a faster convergence is obtained. This cor-
responds to the fact that the hubs, playing principally as
speakers, can spread their words to a larger fraction of
the agents, and remain more stable than when playing
as hearers, enhancing the possibility of convergence. De-
pending on the network under study, and similarly to the
Voter model case [35], the scaling laws of the convergence
time can even be modified. From the point of view of a re-
alistic interaction among individuals or computer-based
agents, the direct Naming Game in which the speaker
chooses a hearer among its neighbors seems somehow
more natural than the other ones. In the remainder of
this section therefore, we will focus on the direct Naming
Game.

B. Global quantities

Figure 5 reports, for homogeneous Erdös-Renyi net-
works (left) and heterogeneous Barabási-Albert networks
(right), the temporal evolution of the three main global
quantities: the total number Nw(t) of words in the sys-
tem, the number of different words Nd(t), and the rate
of success S(t). The curves for the average use of mem-
ory Nw(t) show a rapid growth at short times, a peak
and then a plateau whose length increases as the size
of the system is increased. The time and the height of
the peak, and the height of the plateau, are proportional
to N . A systematic study of the scaling behavior shows
that the convergence time tconv scales asNβ with β ' 1.4
for both ER and BA. The apparent plateau of Nw does
however not correspond to a steady state, as revealed by
the continuous decrease of the number of different words
Nd in the system: in this re-organization phase, the sys-
tem keeps evolving by elimination of words, although the
total used memory does not change significantly.

The observed scaling law for the convergence time is a
general robust feature that is not affected by other topo-
logical details (average degree, clustering, etc), and more
surprisingly it seems to be independent of the partic-
ular form of the degree distribution. We have indeed
checked the value of the exponent β ' 1.4±0.1 for various
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FIG. 5: ER random graph (left) and BA scale-free network
(right) with 〈k〉 = 4 and sizes N = 103, 104, 5.104. Top: evo-
lution of the average memory per agent Nw/N versus rescaled
time t/N . For increasing sizes a plateau develops in the re-
organization phase preceding the convergence. The height of
the peak and of the plateau collapse in this plot, showing that
the total memory used scales with N . Bottom: evolution of
the number of different words Nd in the system. (Nd − 1)/N
is plotted in order to emphasize the convergence to the con-
sensus with Nd = 1. A steady decrease is observed even if the
memory Nw displays a plateau. The mean-field (MF) case is
also shown (for N = 103) for comparison.

〈k〉, clustering, and exponents γ of the degree distribu-
tion P (k) ∼ k−γ for scale-free networks constructed with
the uncorrelated configuration model. These parameters
have instead an effect on other quantities such as the time
and the value of the maximum of memory, as shown in
Fig. 6, which displays the effects of increasing the aver-
age degree on the behavior of the main global quantities.
In both ER (left) and BA (right) models, increasing the
average degree provokes an increase in the memory used,
while the global convergence time is decreased: there is a
trade-off between memory and rapidity. We have also in-
vestigated the effect of increasing the clustering at fixed
average degree and degree distributions: the number of
different words is not changed, but the average mem-
ory used is smaller and the convergence takes more time:
it is more probable for a node to speak to 2 neighbors
that share common words because they are themselves
connected and have already interacted, so that it is less
probable to learn new words. At fixed average degree,
i.e. global number of links, less connections are available
to transmit words from one part of the network to the
other since many links are used in “local” triangles. The
local cohesiveness is therefore in the long run an obstacle
to the global convergence. This effect is similar to the
observation of an increase in the percolation threshold in
clustered networks, due to the fact that many links are
“wasted” in redundant local connections [37].

1

2

3

4

5

N
w
(t)

/N

<k> = 4 
<k> = 8
<k> = 16

1

1,5

2

2,5

3

<k> = 4
<k> = 8
<k> = 12

100 101 102 103

t/N
10-4

10-3

10-2

10-1

100

N
d(t)

/N

100 101 102 103

t/N
10-4

10-3

10-2

10-1

100

ER

ER

BA

BA

FIG. 6: ER networks (left) and BA networks (right) with
N = 104 agents and average degree 〈k〉 = 4, 8, 16. The
increase of average degree leads to a larger memory used (Nw,
top) but a faster convergence. The maximum in the number
of different words is not affected by the change in the average
degree (bottom).

C. Cluster statistics

Further insights into the convergence mechanisms is
obtained by the investigation of the behavior of clus-
ters of words (recall that a cluster is any set of neigh-
boring agents sharing a common unique word). In low-
dimensional lattices indeed, the dynamics of the Naming
Game proceeds by formation of such clusters, that grow
through a coarsening phenomenon. As shown instead in
Fig. 7 for ER networks (a similar behaviour is observed in
the BA case), the normalized average cluster size remains
very close to zero (in fact, of order 1/N) during the re-
organization phase that follows the peak in the number
of words, and converges to one with a sudden transi-
tion. The same behavior is shown also by the number of
clusters Ncl(t), that decreases to one very sharply. The
emerging picture is not that of a coarsening or growth
of clusters, but that of a slow process of correlations be-
tween inventories, followed by a multiplicative process of
cluster growth triggered by a sort of symmetry breaking
event in the success probability of the words (in favor of
the word that will ultimately survive).

VII. STRATEGIES FOR FASTER
CONVERGENCE

In all the investigated cases, the time to convergence
grows quite fast as a function of the system size. A
natural and important question is therefore whether it
is possible to improve the performance of the system.
More precisely, a major challenge would be to improve
the population-scale performances of the process without
loosing the simplicity of the microscopic rules, which is
the precious ingredient that allows for in-depth investiga-
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tions of global-scale dynamics. To investigate this issue,
we come back for simplicity to the framework of mean-
field dynamics, in which all agents can interact with all
others.

Up to this point agents, when playing as speakers, ex-
tract randomly a word in their inventories. This feature,
along with the drastic deletion rule that follows a success-
ful game, is the distinctive trait of the model. Other pre-
viously proposed models use the possibility of associating
a weight to each word in each inventory [32]: weights are
updated at each interaction, with rewards for winning
words and penalties for the others. While such sophis-
ticated structures could in principle lead to faster con-
vergence, they also make the models more complicated,
compromising the possibility of a clear global picture of
the convergence process. We follow here a different route
which maintains the simplicity of the dynamical rules.
Among the words of a given agent, two words can be
easily distinguished: the last recorded one and the last
one that gave rise to a successful game, i.e. the first that
was recorded in the new inventory generated after the
successful interaction. Natural strategies to investigate
consist therefore in choosing systematically one of these
particular words. We shall refer to these strategies as
”play-last” and ”play-first” respectively.

A. ”Play-last” strategy

When the ”play-last” strategy is adopted, the peak
time and height scale respectively as tmax ∼ Nα with
α ≈ 1.3 and Nmax

w ∼ Nγ with γ ≈ 1.3, i.e. the used
memory is reduced, while the convergence time scales as
tconv ∼ Nβ with β ≈ 2.0. At the beginning of the pro-
cess, playing the last registered word creates a positive
feedback that enhances the probability of a success. In
particular a circulating word has more probabilities of
being played than with the usual stochastic rule, thus

creating a scenario in which less circulating words are
known by more agents. On the other hand the ”last
in first out” approach is highly ineffective when agents
start to win, i.e. after the peak. In fact, the scaling
tconv ∼ Nβ can be explained through simple analytical
arguments. Let us denote by Na the number of agents
having the word ”a” as last recorded one. This number
can increase by one unit if one of these agents is chosen as
speaker, and one of the other agents is chosen as hearer,
i.e. with probability Na/N× (1−Na/N); the probability
to decrease Na of one unit is equal to the probability that
one of these agents is a hearer and one of the others is
a speaker, i.e. (1 − Na/N)Na/N . These two probabili-
ties are perfectly balanced so that the resulting process
for the density ρa = Na/N can be written as an unbi-
ased random walk (with actually a diffusion coefficient
ρa(1− ρa)/N2); it is then possible to show that the time
necessary for one of the ρa to reach 1 is of order N2. In
summary, in this framework it is much more difficult to
bring to convergence all the agents, since each residual
competing word has a good probability of propagating to
other individuals.

B. ”Play-first” strategy

The ”play-first” strategy, on the other hand, leads to a
faster convergence. Due to a sort of arbitrariness in the
strategy before the first success of the speaker, the peak
related quantities keep scaling as in the usual model, so
that tmax ∼ Nα and Nmax

w ∼ Nγ with α ≈ γ ≈ 1.5. This
seems natural, since playing the first recorded word is es-
sentially the same as extracting it randomly when most
agents have only few words. In fact, in both cases no vir-
tuous correlations or feedbacks are introduced between
circulating and played words. However, playing the last
word which gave rise to a successful interaction strongly
improves the system-scale performances once the agents
start to win. In particular it turns out that for the differ-
ence between the peak and convergence time we obtain
(tconv−tmax) ∼ N δ with δ ≈ 1.15, so that the behavior of
the convergence time is the result of the combination of
two different power law regimes, i.e. tconv ∼ aNα + bN δ.
On the other hand, the usual stochastic rule leads to
(tconv − tmax) ∼ N1.5. This means that the ”play-first”
strategy is able to reduce the time that the system has
to wait before reaching the convergence, after the peak
region. This seems the natural consequence of the fact
that successful words increase their chances to be played
while suppressing the spreading of other competitors.

C. ”Play-smart”, an adaptive strategy

Compared to the usual random extraction of the played
word, the ”play-last” strategy is more performing at the
beginning of the process, while the ”play-first” one al-
lows to fasten the convergence of the process, even if it
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FIG. 9: Success rate curves S(t) for the various strategies:
stochastic, ”play-last”, ”play-first” and ”play-smart”. At the
beginning of the process the stochastic and ”play-first” strate-
gies yield similar succe ss rates, but then the deterministic rule
speeds up convergence. On the other hand also the ”play-
smart” and the ”play last” evolve similarly at the beginning,
but the latter reaches the final state much earlier through a
steep jump. It is worth noting that for three strategies the
S(t) curves present a characteristic S−shaped behavior, while
in the ”play-last” one the disorder-order transition is more
continuous (see inset in the top figure). All curves, both for
N = 103 and N = 104, have been generated averaging over
3× 103 simulation runs.

is effective only after the peak of the total number of
words. We therefore define a third alternative strategy
which results from the combination of the two. The new
prescription, called ”play-smart”, is the following:

• If the speaker has never took part in a successful
game, it plays the last word recorded;

0.0 2.5×104 5.0×104 7.5×104t
0

5×103

1×104

2×104

N
w

(t
)

stochastic
play-last
play-first
play-smart

0.0 1.0×106 2.0×106

t

0

1×105

2×105

3×105

4×105

N
w

(t
)

N=103

N=104

FIG. 10: Total number of words Nw(t) for the various strate-
gies: stochastic, ”play-last”, ”play-first” and ”play-smart”.
Due to different scaling behaviors of the process, differences
become more and more relevant for larger N (top figure:
N = 103; bottom figure: N = 104). The ”play-smart”
approach combines the advantages of ”play-last” and ”play-
first” strategies.

• Else, if the speaker has won at least once, it plays
the last word it had a communicative success with.

The first rule will thus be applied mostly at the begin-
ning, and as the system evolves, the second rule will be
progressively adopted by more and more agents. Since
the change in strategy is not imposed at a given time, but
takes place gradually, in a way depending of the evolu-
tion of the system, such a strategy has also the interest of
being in some sense self-adapting to the system’s actual
state. In Figure 8, the scaling behaviors relative to the
”play-smart” strategy are reported. Both the height and
time of the maximum follow the scaling of the ”play-last”
strategy: tmax ∼ Nα and Nmax

w ∼ Nγ with α ≈ γ ≈ 1.3.
The convergence time, on the other hand, scales as a su-
perposition of two power laws: tconv ∼ aNα + bN δ with
α ≈ 1.3, δ ≈ 1.0. Thus, the global behavior determined
by the ”play-smart” modification is indeed less demand-
ing in terms of both memory and time. In particular,
while the lowering of the peak height yields in fact a
slower convergence for the ”play-last” strategy, the pro-
gressive self-driven change in strategy allows to fasten the
convergence further than for the ”play-first” strategy.

Finally, in order to have an immediate feeling of what
different playing word selection strategies imply, we re-
port in Figures 9 and 10 the success rate S(t) and the
total number of words, Nw(t) relative to the four strate-
gies described previously, for two different sizes. The
”play-first” and ”play-smart” curves exhibit the same ”S-
shaped” behavior for S(t) as in the case of the stochastic
model, while the ”play-last” rule affects qualitatively the
way in which the final state is reached. Indeed, in this
case the transition between the initial disordered state
and the final ordered one is more continuous (see the in-
set in the top figure). Moreover, Figure 10 illustrates
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that the choice of the strategy has substantial quantita-
tive consequences for both necessary memory and time
needed to reach convergence, even if the changes in scal-
ing behavior could at first appear rather limited (from
N1.5 to N1.3). In particular, the ”play-smart” strategy,
which adapts itself to the state of the system, leads to a
drastic reduction of the memory and time costs and thus
to a dramatic increase in efficiency.

VIII. CONCLUSIONS
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