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Abstract. Language dynamics is a rapidly growing field that focuses on all processes

related to the emergence, evolution, change and extinction of languages. Recently,

the study of self-organization and evolution of language and meaning has led to the

idea that a community of language users can be seen as a complex dynamical system,

which collectively solves the problem of developing a shared communication framework

through the back-and-forth signaling between individuals.

We shall review some of the progress made in the last few years and highlight

potential future directions of research in this area. In particular, the emergence of

a common lexicon and of a shared set of linguistic categories will be discussed, as

examples corresponding to the early stages of a language. The extent to which synthetic

modeling is nowadays contributing to the ongoing debate in cognitive science will be

pointed out. In addition, the burst of growth of the web is providing new experimental

frameworks. It makes available a huge amount of resources both as novel tools and

data to be analized, allowing quantitative and large-scale analysis of the processes

underlying the emergence of a collective information and language dynamics.
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1. Introduction

Understanding the origins and evolution of language and meaning is currently one of

the most promising areas of research in cognitive science.

Unprecedented results in information and communications technologies are

enabling, for the first time, the possibility of mapping the interactions precisely, whether

embodied and/or symbolic, of large numbers of actors, as well as the dynamics and

transmission of information along social ties. At the same time, new theoretical and

computational tools as well as synthetic modeling approaches have now reached sufficient

maturity to contribute significantly to the long lasting debate in cognitive science. The

combination of these two elements is opening terrific new avenues for studying the

emergence and evolution of languages, new communication and semiotic systems. As

was the case with biology, new tools and methods can trigger a significant boost in

the ongoing transition of linguistics into an experimental discipline, where multiple

evolutionary paths, timescales and dependence on the initial conditions can be effectively

controlled and modeled.

Language as a social dynamical system Semiotic dynamics studies how populations

of humans or agents can establish and share semiotic systems, typically driven by

their use in communication. From this perspective, language is seen as an evolving [1]

and self-organizing system, whose components are thus constantly being (re)shaped

by language users in order to maximize communicative success and expressive power

while at the same time minimizing articulatory effort. New words and grammatical

constructions may be invented or acquired, new meanings may arise, the relation

between language and meaning may shift (e.g., if a word adopts a new meaning), as

well as the relation between meanings and the world may shift (e.g. if new perceptually

grounded categories are introduced). All these changes happen at the level of the

individual as well as at the group level. Here we focus on the interactions among

the individuals, communicating both in a vertical (teacher-pupil) and in an horizontal

(peer to peer) fashion. Communication acts are particular cases of language games,

which, as already pointed out in [2], can be used to describe linguistic behavior, even

though they can also include non linguistic behavior, such as pointing. Clark [3] argues

that language and communication are social activities - joint activities - that require

people to coordinate with each other as they speak and listen. Language use is more

than the sum of a speaker speaking and a listener listening. It is the joint action that

emerges when speakers and listeners [4] perform their individual actions in coordination,

as ensembles. Again language is not seen as an individual process, but rather as a social

process where a continuous alignment of mental representations [5] is taking place.

The landscape describing the large set of approaches to the study of language

emergence and dynamics is extremely diversified, due to the flagrant complexity of

a problem that can be addressed from many respects, with different methodologies,

guided by often incompatible conceptual frameworks, and with different goals in mind.
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A useful way to gain insights into such a variegated world is, therefore, that of focusing

on few dimensions that allow for a coarse categorization of the ongoing research [6].

It is in general possible to identify broad paradigms that frame the problem in a

particular way, focusing on specific aspects and addressing precise fundamental questions

through concrete models and experiments [7]. Within each framework, then, the

investigation can proceed through computational models, experiments with embodied

agents, psychological experiments with human subjects and finally exploiting data made

available either by in-house laboratory experiments as well as by large information

systems like the Web.

Mathematical modeling of social phenomena Statistical physics has proven to be a very

effective framework to describe phenomena outside the realm of traditional physics [8].

The last years have witnessed the attempt by physicists to study collective phenomena

emerging from the interactions of individuals as elementary units in social structures [9].

This is the paradigm of the complex systems: an assembly of many interacting (and

simple) units whose collective (i.e., large scale) behavior is not trivially deducible from

the knowledge of the rules that govern their mutual interactions. This scenario is also

true for problems related to the emergence of language.

From this new perspective, complex systems science turns out to be a natural

ally in the quest for general mechanisms driving the collective dynamics whereby

conventions can spread in a population, to understand how conceptual and linguistic

coherence may arise through self-organization or evolution, and how concept formation

and expression may interact to co-ordinate semiotic systems of individuals. One of the

key methodological aspect of the modeling activity in the domains of complex systems

is the tendency to seek simplified models to clearly pin down the assumptions and, in

many cases, to make the models tractable from a mathematical point of view.

A crucial step in the modeling activity is represented by the comparison with

empirical data in order to check whether the trends seen in real data are already

compatible with plausible microscopic modeling of the individuals, or the latter requires

additional ingredients. From this point of view, the Web may be a major source of help,

both as a platform to perform controlled online social experiments, and as a repository of

empirical data on large-scale phenomena. It is in this way that a virtuous cycle involving

data collection, data analysis, modeling and predictions could be triggered, giving rise

to an ever more rigorous and focused research approach to language dynamics.

It is worth stressing that the way the contributions are extended by the physicists,

mathematicians and computer scientists should not be considered as alternatives to more

traditional approaches. We rather posit that it would be crucial to foster the interactions

across the different disciplines by promoting scientific activities with concrete mutual

exchanges among all the interested scientists. This would help both in identifying the

problems and sharpening the focus, as well as in devising the most suitable theoretical

concepts and tools to approach the research.
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Simple models of language dynamics Mathematical and computational modeling

schemes play an essential role in all domains of sciences and they can clearly be

helpful in studies related to the origins and evolution of language. Modeling can

help us to understand what kind of mechanisms are necessary and sufficient for

the origins and evolution of language. This approach makes it possible to examine

through mathematical investigations and computational simulations whether certain

basic assumptions of a theory are viable or not.

Most of the modeling efforts developed in the statistical physics of complex

systems [9] are relatively new to more humanities oriented communities. One of the key

methodological aspect is that of identifying and defining the simplest (minimal) models

(i.e., algorithmic procedures) which could lead to efficient communication systems. It

is important to stress the need in this field of shared and general models to create

a common framework where different disciplines could compare their approaches and

discuss the results. Moreover, the simplicity of the modeling schemes may allow for

discovering underlying universalities, i.e., realizing that, behind the details of each single

model, there could be a level where the mathematical structure is similar. This implies,

on its turn, the possibility to perform mapping with other known models and exploit

the background of the already acquired knowledge for those models. In this respect,

statistical physics brings an important added value.

With this concept of universality in mind, an important open question concerns

the quest for the best modeling schemes as well as the essential ingredients they

should contain for a quantitative approach to the emergence and evolution of language

structures. From this point of view, a first distinction concerns multi-agent models, in

which one needs to define both the individuals’ architectures and the social interactions,

and macroscopic models in which populations are treated as a whole and one is interested

in the evolution of aggregate quantities. Another dimension allows to discriminate

between different approaches in the realm of multi-agent models according to the

importance they give to cultural transmission (e.g., the Iterated Learning Model [10]),

cognition and communication (Language Games [2, 11, 12, 13]) and biology (genetic

evolution models [14, 15, 16, 17]). Also economic considerations, finally, have been

pointed out [18, 19].

Some of the relevant general open questions include: What are the fundamental

interaction mechanisms that allow for the emergence of consensus on an issue, a shared

culture, a common language? What favors the homogenization process? What hinders

it? Do spontaneous fluctuations slow down or even stop the ordering process? Does

diversity of agents’ properties strongly affect the model behavior? An additional relevant

question concerns the effect of the topology of the social interaction network on the

dynamical features of linguistic phenomena [9].

Language Games are particularly interesting since they provide a clue to describe

and understand how shared conventions may emerge in a social group that constantly

negotiate and reshape them. At present, Language games are investigated both through

experiments involving embodied artificial agents (i.e., robots) and through multi-
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agent models. In particular, in the last few years, the methods and tools developed

in statistical physics and complex systems science have turn out to be extremely

powerful in providing more quantitative insights into the problem. While experiments

have been tackling problems as complex as investigating the emergence of a shared

grammar in a population, complex systems modeling has so far dealt with the most

elementary, yet absolutely not trivial, problems of the emergence of a shared set of names

(Naming Game) and categories (Category Game). The Category Game, in particular, is

presently allowing for comparisons with data retrieved by psychological/anthropological

experiments (e.g the World Color Survey).

The outline of the paper is as follows. We shall discuss problems of increasing

complexity. We shall start with the so-called Naming Game that possibly represents the

simplest example of the complex processes leading progressively to the establishment

of complex human-like languages. Further we shall describe the so-called Category

Game, which simulates the emergence of a shared set of linguistic categories, and we’ll

point out how the synthetic results obtained in this way agree quantitatively with the

experimental ones. We shall conclude by highlighting a few open research challenges.

2. Naming Game

The Naming Game was expressively conceived to explore the role of self-organization

in the evolution of language [11, 12] and it has acquired, since then, a paradigmatic

role in the entire field of Semiotic Dynamics. The original paper [11] mainly focused on

the formation of vocabularies, i.e., a set of mappings between words and meanings (for

instance physical objects). In this context, each agent develops its own vocabulary in a

random and private fashion. Nevertheless, agents are forced to align their vocabularies,

through successive conversation, in order to obtain the benefit of cooperating through

communication. Thus, a globally shared vocabulary emerges, or should emerge, as a

result of local adjustments of individual word-meaning associations. The communication

evolves through successive conversations, i.e., events that involve a certain number of

agents (two, in practical implementations) and meanings. It is worth remarking that

conversations are here particular cases of language games, which, as already pointed out

by Wittgenstein [20, 2], are used to describe linguistic behavior but, if needed, can also

include non-linguistic behavior, such as pointing.

This original seminal idea triggered a series of contributions along the same lines

and many variants have been proposed along the years. It is worthwhile to mention

here the work proposed in [21], who focuses on an imitation model which simulates

how a common vocabulary is formed by agents imitating each other either using a mere

random strategy or a strategy in which imitation follows the majority (which implies

non-local information for the agents). A further contribution of the mentioned paper

is the introduction of an interaction model which uses a probabilistic representation

of the vocabulary. The probabilistic scheme is formally similar to the framework of

evolutionary game theory [17, 22], since a productionmatrix and a comprehensionmatrix
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is associated to each agent. Unlike the approach of Evolutionary Language Games, the

matrices are here dynamically transformed according to the social learning process and

the cultural transmission rule. A similar approach has been proposed in [23].

Here we discuss in details a minimal version of the Naming Game which results

in a drastic simplification of the model definition, while keeping the same overall

phenomenology. This version of the Naming Game is suitable for massive numerical

simulations and analytical approaches. Moreover its extreme simplicity allows for

a direct comparison with other models introduced in other frameworks of statistical

physics as well as in other disciplines.

2.1. The Minimal Naming Game

The simplest version of the Naming Game [13] is played by a population of N agents

trying to bootstrap a common vocabulary for a certain number M of objects present

in their environment. The objects can be people, physical objects, relations, web sites,

pictures, music files, or any other kind of entity for which a population aims at reaching

a consensus as far as their naming is concerned. Each player is characterized by an

inventory of word-object associations he/she knows. All the inventories are initially

empty (t = 0). At each time step (t = 1, 2, ..) two players are picked at random and one

of them plays as speaker and the other as hearer. Their interaction obeys the following

rules (see Figure 1):

• The speaker selects an object from the current context;

• The speaker retrieves a word from its inventory associated with the chosen object,

or, if its inventory is empty, invents a new word;

• The speaker transmits the selected word to the hearer;

• If the hearer has the word named by the speaker in its inventory and that word

is associated to the object chosen by the speaker, the interaction is a success and

both players maintain in their inventories only the winning word, deleting all the

others;

• If the hearer does not have the word named by the speaker in its inventory, or

the word is associated to a different object, the interaction is a failure and the

hearer updates its inventory by adding an association between the new word and

the object.

The game is played on a fully connected network, i.e., each player can, in principle, play

with all the other players, and makes two basic assumptions. One assumes that the

number of possible words is so huge that the probability of a word to be re-invented is

practically negligible (this means that homonymy is not taken into account here, though

the extension is trivially possible). As a consequence, one can reduce, without loss of

generality, the environment as consisting of only one single object (M = 1).

It is interesting to note that the authors in [24], have formally proven, adopting an

evolutionary game theoretic approach, that languages with homonymy are evolutionarily
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Failure

Success
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Figure 1. Naming Game. Examples of the dynamics of the inventories in a failed

(top) and a successful (bottom) game. The speaker selects the word highlighted. If

the hearer does not possess that word he includes it in his inventory (top). Otherwise

both agents erase their inventories only keeping the winning word (bottom).

unstable. On the other hand, it is commonly observed that human languages contain

several homonyms, while true synonyms are extremely rare. In [24] this apparent

paradox is resolved noting that if we think of ”words in a context”, homonymy does

indeed disappear from human languages, while synonymy becomes much more relevant.

In the framework of the Naming game homonymy is not always an unstable feature (see

next section about the Cateogry Game for an example [25]) and its survival depends in

general on the size of the meaning and signal spaces [26].

A third assumption of the Naming Game consists ins assuming that the speaker and

the hearer are able to establish whether a game was successful by subsequent actions

performed in a common environment. For example, the speaker may refer to an object

in the environment he wants to obtain and the hearer then hands the right object. If the

game is a failure, the speaker may point (non-verbal communication) or get the object

himself so that it is clear to the hearer which object was intended.
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Figure 2. Naming Game. a) Total number of words present in the system, Nw(t); b)

Number of different words, Nd(t); c) Success rate S(t), i.e., probability of observing

a successful interaction at time t. The inset shows the linear behavior of S(t) at

small times. The system reaches the final absorbing state, described by Nw(t) = N ,

Nd(t) = 1 and S(t) = 1, in which a global agreement has been reached.

2.2. Macroscopic analysis

Three main quantities allow to describe the dynamics of the model: The total number

of words, Nw(t), corresponding to the total memory required to the agents (i.e. to the

sum of the sizes of their inventories); The number of different words, Nd(t), telling us

how many synonyms are present in the system at a given time; And the success rate

S(t), measuring the probability of observing a successful interaction at a given time.

Figure 2 reports the evolution of these observables for the case in which one assumes

that only two agents interact at each time step, but the model is perfectly applicable to

the case where any number of agents interact simultaneously.

We can distinguish three phases in the behavior of the system. Very early, pairs of

agents play almost uncorrelated games and the number of words hence increases over

time as Nw(t) = 2t, while the number of different words increases as Nd(t) = t. In

the second phase the success probability is still very small and agents’ inventories start

correlating, Nw(t) curve presenting a well identified peak. The process evolves with an

abrupt increase in the number of successes and a further reduction in the numbers of

both total and different words. Finally, the dynamics ends when all agents have the same
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Figure 3. Naming Game. (Top) scaling of the peak and convergence time, tmax

and tconv along with their difference, tdiff . All curves scale with the power law N1.5.

(Bottom) the maximum number of words obeys the same power law scaling.

unique word and the system is in the attractive convergence state. It is worth noting

that the developed communication system is not only effective (each agent understands

all the others), but also efficient (no memory is wasted in the final state).

The system undergoes spontaneously a disorder/order transition to an asymptotic

state where global coherence emerges, i.e., every agent has the same word for the same

object. It is remarkable that this happens starting from completely empty inventories

for each agent. The asymptotic state is one where a word invented during the time

evolution took over with respect to the other competing words and imposed itself as the

leading word. In this sense the system spontaneously selects one of the many possible

coherent asymptotic states and the transition can thus be seen as a symmetry breaking

transition.

Figure 3 shows the scaling behavior of the convergence time tconv, and the time

and height of the peak of Nw(t), namely tmax and Nmax
w = Nw(tmax). It turns out that

all these quantities follow power law behaviors: tmax ∼ Nα, tconv ∼ Nβ, Nmax ∼ Nγ

and tdiff = (tconv − tmax) ∼ N δ, with exponents α = β = γ = δ ≃ 1.5 . A further

timescale, namely N5/4, rules the behavior of the success rate curve, whose abrupt jump

appears therefore to be steeper and steeper as the population size grows, even on the

convergence timescale. We do not enter here into more details on this point, but we
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refer the interested reader to [13], where in addition the values of all of these exponents

are derived through simple scaling arguments.

2.3. Symmetry breaking: a controlled case

We concentrate now on a simpler case in which there are only two words at the beginning

of the process, say A and B, so that the population can be divided into three classes:

the fraction of agents with only A, nA, the fraction of those with only the word B, nB,

and finally the fraction of agents with both words, nAB. Describing the time evolution

of the three species is straightforward:

ṅA = − nAnB + n2

AB + nAnAB

ṅB = − nAnB + n2

AB + nBnAB (1)

ṅAB = + 2nAnB − 2n2

AB − (nA + nB)nAB

The system of differential equations (1) is deterministic. It presents three fixed

points in which the system can collapse depending on initial conditions. If nA(t = 0) >

nB(t = 0) [nB(t = 0) > nA(t = 0)] then at the end of the evolution we will have the

stable fixed point nA = 1 [nB = 1] and, obviously, nB = nAB = 0 [nA = nAB = 0].

If, on the other hand, we start from nA(t = 0) = nB(t = 0), then the equations lead

to nA = nB = 2nAB = 0.4. The latter situation is clearly unstable, since any external

perturbation would make the system fall in one of the two stable fixed points. Indeed, it

is never observed in simulations due to stochastic fluctuations that in all cases determine

a symmetry breaking forcing a single word to prevail.

Eq.s 1 however, are not only a useful example to clarify the nature of the symmetry

breaking process. In fact, they also describe the interaction among two different

populations that converged separately on two distinct conventions. In this perspective,

eq.s 1 predict that the population whose size is larger will impose its conventions. In

the absence of fluctuations, this is true even if the difference is very small: B will

dominate if nB(t = 0) = 0.5 + ǫ and nA(t = 0) = 0.5 − ǫ, for any 0 < ǫ ≤ 0.5 and

nAB(t = 0) = 0. Data from simulations shows that the probability of success of the

convention of the minority group nA, decreases as the system size increases, going to

zero in the thermodynamic limit (N → ∞). A similar approach has been proposed to

model the competition between two languages in the seminal paper [27]. It is worth

remarking the formal similarities between modeling the competition between synonyms

in a Naming Game framework and the competition between languages: in both cases a

synonym or a language are represented by a single feature, e.g., the characters A or B, for

instance, in equations (1). The similarity has been made more evident by the subsequent

variants of the model introduced in [27] to include explicitly the possibility of bilingual

individuals. In particular in [28, 29] deterministic models for the competition of two

languages have been proposed which include bilingual individuals. In [30, 31] a modified
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version of the Voter model including bilinguals individuals has been proposed, the so-

called AB-model. In a fully connected network and in the limit of infinite population

size, the AB-model can be described by coupled differential equations for the fractions

of individuals speaking language A, B or AB are, up to a constant normalization factor

in the time-scale, identical to Eq.s 1.

In [32] it has been shown that the Naming Game and the AB-model are equivalent in

the mean field approximation, though the differences at the microscopic level have non-

trivial consequences. In particular the consensus-polarization phase transition taking

place in the Naming Game (see section 2.5) is not observed in the AB-model. As

for the interface motion in regular lattices, qualitatively, both models show the same

behavior: a diffusive interface motion in a one-dimensional lattice, and a curvature

driven dynamics with diffusing stripe-like metastable states in a two-dimensional one.

However, in comparison to the Naming Game, the AB-model dynamics is shown to slow

down the diffusion of such configurations. In general, the close connection of the AB

model with the Naming Game suggests that the the latter can be fruitfully seen also

as a framework to model language contact or, more speculatively, such issues as the

emergence of new languages.

2.4. The role of the interaction topology

Social networks play an important role in determining the dynamics and outcome of

language change [33, 34]. The first investigation of the role of topology was proposed,

to the best of our knowledge, in 2004, at the 5th Conference on Language evolution,

Leipzig [35]. Since then many approaches focused on adapting known models on

topologies of increasing complexity: regular lattices, random graphs, scale-free graphs,

etc.

The Naming Game model, as described above, is not well-defined on general

networks. When the degree distribution is heterogeneous, it does matter if the first

randomly chosen agent is selected as a speaker and one of its the neighbor as the

hearer or viceversa: high-degree nodes are in fact more easily chosen as neighbors than

low-degree vertices. Several variants of the Naming Game on generic networks can

be defined. In the direct Naming Game (reverse Naming Game) a randomly chosen

speaker (hearer) selects (again randomly) a hearer (speaker) among its neighbors. In

a neutral strategy one selects an edge and assigns the role of speaker and hearer with

equal probability to one of the two nodes [36].

Low-dimensional lattice On low-dimensional each agent can rapidly interact two or

more times with its neighbors, favoring the establishment of a local consensus with

a high success rate (Fig. 4, red squares for 1D and blue triangles for 2D), i.e. of

small sets of neighboring agents sharing a common unique word. Later on these

”clusters” of neighboring agents with a common unique word undergo a coarsening

phenomenon [37] with a competition among them driven by the fluctuations of the
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Figure 4. Evolution of the total number of words Nw (top), of the number of different

words Nd (middle), and of the average success rate S(t) (bottom), for a fully connected

graph (mean-field, MF) (black circles) and low dimensional lattices (1D, red squares

and 2D, blue triangles) with N = 1024 agents, averaged over 103 realizations. The

inset in the top graph shows the very slow convergence for low-dimensional systems.

interfaces [38]. The coarsening picture can be extended to higher dimensions and the

scaling of the convergence time has been conjectured as being O(N1+1/d), where d ≤ 4

is the dimensionality of the space. This prediction has been checked numerically. On

the other hand the maximum total number of words in the system (maximal memory

capacity) scales linearly with the system size, i.e., each agent uses only a finite capacity.

In summary, low-dimensional lattice systems require more time to reach the consensus

compared to mean-field, but a lower use of memory. A detailed analysis of the behaviour

of the AB-model (whose mean-field deterministic version is equivalent, as we have seen

above, to the deterministic Naming Game with only two possible words (Eqs 1)) on

low-dimensional lattices has been carried out in [30]. Here the issue of memory is not

important since the total number of words (or languages) is kept equal to two.
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Small-world networks The effect of a small-world topology has been investigated in [39]

in the framework of the Naming Game [13] and in [30] for the AB-model. Two different

regimes are observed. For times shorter than a cross-over time, tcross = O(N/p2),

one observes the usual coarsening phenomena as long as the clusters are typically one-

dimensional, i.e., as long as the typical cluster size is smaller than 1/p. For times much

larger than tcross, the dynamics is dominated by the existence of short-cuts and enters

a mean-field like behavior. The convergence time is thus expected to scale as N3/2 and

not as N3 (as in d = 1). Small-world topology allows thus to combine advantages from

both finite-dimensional lattices and mean-field networks: on the one hand, only a finite

memory per node is needed, in opposition to the O(N1/2) in mean-field; on the other

hand the convergence time is expected to be much shorter than in finite dimensions.

In [30] it has been studied the dynamics of the AB-model on a two-dimensional small

world network. Also in this case a dynamical stage of coarsening is observed followed

by a fast decay to the A or B absorbing states caused by a finite size fluctuation.

Complex networks The Naming Game has been studied also on complex networks.

Here we only report about the global behaviour of the system and we refer to [36, 40]

for an extensive discussion. Fig. 5 shows that the convergence time tconv scales as Nβ

with β ≃ 1.4 ± 0.1, for both Erdös-Renyi (ER) [41, 42] and Barabasi-Albert (BA) [43]

networks. The scaling laws observed for the convergence time is a general robust feature

that is not affected by further topological details, such as the average degree, the

clustering or the particular form of the degree distribution. The value of the exponent β

has been checked for various 〈k〉, clustering, and exponents γ of the degree distribution

P (k) ∼ k−γ for scale-free networks constructed with the uncorrelated configuration

model (UCM) [44, 45, 46]. All these parameters have instead an effect on the other

quantities such as the time and the value of the maximum of memory (see [36] for

details). Finally, the presence of a strong community structure can in principle alter

dramatically the overall dynamics, and we refer the interested reader to [36] (and to

[47] for considerations on general ordering dynamics in this kind of networks).

2.5. Beyond consensus

A variant of the Naming Game has been introduced with the aim of mimicking

the mechanisms leading to opinion and convention formation in a population of

individuals [48]. In particular a new parameter, β (β = 1 corresponding to the

Naming Game), has been added mimicking an irresolute attitude of the agents in making

decisions. β is simply the probability that in a successful interaction both the speaker

and the hearer update their memories erasing all opinions except the one involved in

the interaction (see Figure 1). This negotiation process, as opposed to herding-like

or bounded confidence driven processes, displays a non-equilibrium phase transition

from an absorbing state in which all agents reach a consensus to an active (not-frozen

as in the Axelrod model [49]) stationary state characterized either by polarization or
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Figure 5. Top: scaling behavior with the system size N for the time of the memory

peak (tmax) and the convergence time (tconv) for ER random graphs (left) and BA

scale-free networks (right) with average degree 〈k〉 = 4. In both cases, the maximal

memory is needed after a time proportional to the system size, while the time needed

for convergence grows as Nβ with β ≃ 1.4. Bottom: In both networks the necessary

memory capacity (i.e. the maximal value Nmax
w reached by Nw) scales linearly with

the size of the network.

fragmentation in clusters of agents with different opinions. Figure 6 moreover shows that

the transition at βc is only the first of a series of transitions: when decreasing β < βc, a

system starting from empty initial conditions self-organizes into a fragmented state with

an increasing number of opinions. At least two different universality classes exist, one

for the case with two possible opinions and one for the case with an unlimited number

of opinions. Very interestingly, the model displays the non-equilibrium phase transition

also on heterogeneous networks, in contrast with other opinion-dynamics models, like for

instance the Axelrod model [50], for which the transition disappears for heterogeneous

networks in the thermodynamic limit.

3. Category Game

Categories are fundamental to recognize, differentiate and understand the environment.

From Aristotle onwards, the issue of categorization has been subject to strong
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Figure 6. Time tx required to a population on a fully-connected graph to reach a

(fragmented) active stationary state with x different opinions. For every m > 2, the

time tm diverges at some critical value βc(m) < βc.

controversy in which purely cultural negotization mechanisms [2, 51] competed with

physiological and cognitive features of the categorizing subjects [52]. A recent wave in

cognitive science has induced a shift in viewpoint from the object of categorization to the

categorizing subjects: categories are culture-dependent conventions shared by a given

group. From this perspective, a crucial question is how they come to be accepted at a

global level without any central coordination. Here we present the so-called Category

Game, a scheme where an assembly of individuals with basic communication rules

and without any external supervision may evolve an initially empty set of categories,

achieving a non-trivial communication system.

The Category Game is a minimal model for linguistic categorization [53, 54, 55, 56,

57, 25, 58, 59, 60, 61], which is a more complex activity than naming a single object.

In the spirit of reducing the rich spectrum of linguistic phenomena to essential aspects,

prone to mathematical or numerical modeling, here we consider linguistic categorization

as the elaboration of a map between a large set of perceptions or concepts and a small

set of linguistic labels, typically nouns or attributes [62]. The paradigmatic case is

offered by color naming: the potentially very large set of perceivable colors is mapped

into a list of 5 − 10 “basic color terms”. The aim of the Category Game is not only

reproducing in a realistic fashion the static (i.e., final) categorization pattern [63, 64],
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which is composed of a partition of the perceptual space and the dictionary connecting

each category to a label, but to conjecture a plausible dynamics which brings to the

light this final pattern in a large population of interacting individuals, all starting from

an empty linguistic knowledge. A few simple rules for the interaction between pairs

of individuals and samples of the external world amazingly generate, from scratch, a

highly complex linguistic landscape, shared almost perfectly by all individuals, where

the large set of perceptions is catalogued into a small set of linguistic categories [25].

The Category Game, originally conceived in [53], through a complex set of rules

and detailed mechanisms, with the purpose of demonstrating the ability of numerical

models to reproduce categorization patterns, posed from its birth a non-trivial problem:

if the aim is the emergence of a pattern from scratch in a population, a discrimination

activity where categories are refined with the purpose of separating different stimuli must

be included in the rules of the game; this discrimination activity will continue until very

close stimuli appear, requiring the introduction of a minimal distance between stimuli to

set an endpoint for discrimination. This minimal distance is a quite natural parameter

of any perceiving mechanism (being human or artificial), equivalent to a maximum

resolution, often called “just noticeable difference” (JND) in the theories of perception.

Such a parameter, anyway, trivially constrains the typical extension of categories, so

that for very small JND one will end with a very large number of very small categories

in the final categorization pattern. This problem was overcome in [25], where a minimal

version of the Category Game was proposed, containing the essential ingredients to

achieve the purpose: in particular, the solution to the problem consists in letting the

model coagulate adjacent (small) perceptual categories through a linguistic contagion

phenomenon: many neighboring categories with the same label will be considered as

a unique linguistic category. The number of these large linguistic categories, quite

surprisingly, remains much smaller than the number of tiny perceptual categories.

The other important step in demonstrating the relevance of simplified agent models

for linguistic categorization was to make contact with experimental data. The perfect

case study is offered by color categorization, where scientists in the past decades have

collected a rich catalogue of data from tenths of different languages, building a very

useful statistics of categorization patterns. The collection of these data is known as the

World Colour Survey [65], which is freely available, and allowed some of us to test the

similitude of patterns produced by the Category Game model with those observed in

the human population, obtaining a remarkable agreement, as explained in details in the

following [61].

3.1. Simple rules for the Category Game

Here we sketch the simplest rules for the Category Game, introduced in [25], using as an

explanatory instance the case of color categorization. The Game involves a population

of N artificial agents. Starting from scratch and without pre-defined color categories,

the model dynamically generates, through a sequence of “games”, a “categorization
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pattern” highly shared in the whole population of linguistic categories for the visible

light spectrum. The model has the advantage of involving an extremely low number of

parameters, basically the number of agents N and the JND curve dmin(x), compared

with its rich and realistic output.

For the sake of simplicity and not loosing the generality, color perception is reduced

to a single analogical continuous perceptual channel, each light stimulus being a real

number in the interval [0, 1), which represents its normalized, rescaled wavelength.

A categorization pattern is identified with a partition of the interval [0, 1) in sub-

intervals, or perceptual categories. Individuals have dynamical inventories of form-

meaning associations linking perceptual categories with their linguistic counterparts,

basic color terms, and these inventories evolve through elementary language games [2].

At each time step, two players (a speaker and a hearer) are randomly selected from the

population and a scene of M ≥ 2 stimuli is presented. Two stimuli cannot appear at a

distance smaller than dmin(x) where x is the value of one of the two. In this way, the

JND is implemented in the model. On the basis of the presented stimuli, the speaker

discriminates the scene, if necessary refining its perceptual categorization, and utters

the color term associated to one of the stimuli. The hearer tries to guess the named

stimulus, and based on their success or failure, both individuals rearrange their form-

meaning inventories. New color terms are invented every time a new category is created

for the purpose of discrimination, and are spread through the population in successive

games.

To be more specific, we give a slightly more detailed insight into the rules for

evolution of the agents. One of the objects, known only to the speaker, is the topic. The

speaker checks if the topic is the unique stimulus in one of its perceptual categories. If

both stimuli lie in one perceptual category, that category is divided into new categories,

which inherit the words associated to the original category and are assigned a new word

each; this process is called “discrimination” [53]. As a following step, the speaker utters

the most relevant name of the category containing the topic (the most relevant name is

the last name used in a winning game or the new name if the category has just been

created). If the hearer does not have a category with that name, the game is a failure. If

the hearer recognizes the name and there are many categories associated with the name,

the hearer picks randomly one of these candidates (in the stable phase of the simulation

and when M is not large, the hearer typically has a single candidate). Similarly, if

the hearer recognizes the name and there are two or more objects in the corresponding

category, it selects randomly one of them. If the picked candidate is the topic, the game

is a success; otherwise, it is a failure. In case of failure, the hearer learns the name

used by the speaker for the topic’s category. In case of success, that name becomes the

most relevant for that category and all other competing names are removed from both

players’ inventories.
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Figure 7. Rules of the category game. A pair of examples representing a failure (game

1) and a success (game 2), respectively. In a game, two players are randomly selected

from the population. Two objects are presented to both players. The speaker selects

the topic. In game 1 the speaker has to discriminate the chosen topic (“a” in this

case) by creating a new boundary in his rightmost perceptual category at the position

(a+ b)/2. The two new categories inherit the words-inventory of the parent perceptual

category (here the words “green” and “olive”) along with a different brand new word

each (“brown” and “blue”). Then the speaker browses the list of words associated to

the perceptual category containing the topic. There are two possibilities: if a previous

successful communication has occurred with this category, the last winning word is

chosen; otherwise the last created word is selected. In the present example the speaker

chooses the word “brown”, and transmits it to the hearer. The outcome of the game

is a failure since the hearer does not have the word “brown” in his inventory. The

speaker unveils the topic, in a non-linguistic way (e.g. pointing at it), and the hearer

adds the new word to the word inventory of the corresponding category. In game 2

the speaker chooses the topic ”a”, finds the topic already discriminated and verbalizes

it using the word ”green” (which, for example, may be the winning word in the last

successful communication concerning that category). The hearer knows this word and

therefore points correctly to the topic. This is a successful game: both the speaker and

the hearer eliminate all competing words for the perceptual category containing the

topic, leaving “green” only. In general when ambiguities are present (e.g. the hearer

finds the verbalized word associated to more than one category containing an object),

these are solved making an unbiased random choice.
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Figure 8. Results of simulations of the Category Game model with N = 100 and

a flat (constant) dmin(x) ≡ dmin curve with different values of dmin: a) Synonymy,

i.e., average number of words per category; b) Success rate measured as the fraction

of successful games in a sliding time windows games long; c) Average number of

perceptual (dashed lines) and linguistic (solid lines) categories per individual; d)

Averaged overlap, i.e., alignment among players, for perceptual (dashed curves) and

linguistic (solid curves) categories.

3.2. From confusion to consensus

At the beginning all individuals have only the perceptual category [0, 1) with no

associated name. During a first phase of the evolution, the pressure of discrimination

makes the number of perceptual categories increase, see dashed lines in Fig. 8c: at the

same time, many different words are used by different agents for some similar categories.

This kind of synonymy reaches a peak and then dries out (as displayed in Fig. 8a), in a

similar way as in the Naming Game described before: when on average only one word is

recognized by the whole population for each perceptual category, a second phase of the

evolution intervenes. During this phase, words expand their dominion across adjacent

perceptual categories, joining these categories to form new “linguistic categories”. This

is revealed by counting the number of these linguistic categories (solid lines in Fig. 8c),

which decreases after some time. The coarsening of these categories becomes slower and
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slower, with a dynamical arrest analogous to the physical process in which supercooled

liquids approach the glass transition [66]. In this long-lived almost stable phase, usually

after 104 games per player, the linguistic categorization pattern has a degree of sharing

between 90% and 100%; success is measured by counting in a small time window the

rate of successful games (Fig. 8b), while the degree of sharing of categories is measured

by an overlap function, which measure the alignment of category boundaries (both

for perceptual or linguistic ones), displayed in Fig. 8d: for a mathematical definition

of this function see [25]. The success rate and the overlap both remain stable for

105 ∼ 106 games per player [25]: we consider this pattern as the “final categorization

pattern” generated by the model, which is most relevant for comparison with human

color categories (see below). If one waits for a much longer time, the number of linguistic

categories is observed to drop down: this non-realistic effect is due to the slow diffusion

of category boundaries. Note that, at the level of the Category Game, categories can be

equivalently described in terms of boundaries or prototypes, without any difference [25].

Slow diffusion of boundaries ultimately takes place due to small size effects. Recent

investigations have demonstrated that this phase can occur on very long time-scale,

with autocorrelation properties typical of an aging material, such as a glass.

The shared pattern in the long stable phase between 104 and 106 games per player is

the main subject of the experiment described in the following section. It is remarkable,

as already observed in [25] that the number of linguistic color categories achieved in this

phase is of the order of 20 ± 10, even if the number of possible perceptual categories

ranges between 100 and 104 and the number of agents ranges between 10 and 1000. For

this reason it is plausible that the mechanism of spontaneous emergence of linguistic

categories portrayed by this model is relevant for the problem of linguistic categorization

in continuous spaces (such as color space) where no objective boundaries are present.

3.3. The role of parameters and the external world

As discussed above, the only parameters of the model are the size of the population N ,

the JND curve dmin(x) and, eventually, the distribution function of the stimuli presented

to the individuals. For the numerical results shown in the previous discussion we have

considered a flat distribution where all stimuli between 0 and 1 were equally likely.

In principle, one can model the role of environmental pressure through shaping this

distribution function. It is interesting to discover that, while the general features of

the dynamics are preserved, the final categorization pattern has a slight but observable

sensitiveness to the distribution of stimuli. An example is offered by Figure 9, where

stimuli distributions are sampled from different still pictures and where the final

categorization pattern is portrayed for a few randomly selected individuals from a large

population.

The role of N , as already discussed, is important in the stabilization of the plateau

where the categorization pattern remains constant: this plateau, in time, is larger and

larger as N increases [25]. On the other side, the role of dmin(x) is crucial to obtain a
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Figure 9. Categories and the pressure of environment. Inventories of 10 individuals

randomly picked up in a population of N = 100 players, with dmin = 0.01, after

107 games. For each player the configuration of perceptual (small vertical lines)

and linguistic (long vertical lines) category boundaries is superimposed to a colored

histogram indicating the relative frequency of stimuli. The labels indicate the unique

word associated to all perceptual categories forming each linguistic category. Two cases

are presented with stimuli randomly extracted from the hue distribution of natural

pictures. One can appreciate the perfect agreement of category names, as well as the

good alignment of linguistic category boundaries. Moreover, linguistic categories tend

to be more refined in regions where stimuli are more frequent: an example of how the

environment may influence the categorization process.

close comparison with real data, as detailed in the next section.

4. Comparison with real-world data

A large amount of data on color categorization was gathered in the World Color Survey

[67, 68], in which individuals belonging to different cultures had to name a set of colors.

The results of the analysis of the categorization patterns obtained in this way have

had a huge impact not only on such areas as Cognitive Science and Linguistics, but

also Psychology, Philosophy and Anthropology (see for example, [62, 69, 70]). The

main finding is that color systems across language are not random, but rather exhibit



Statistical physics of language dynamics 22

certain statistical regularities, thus implying that the classical theory of categorization,

dating back to the work of Aristotle and claiming the arbitrariness of categorization,

had to be reconsidered [69]. In this section, we describe how the Category Game model

described above can be used to run a Numerical World Color Survey and point out

that, remarkably, the synthetic results obtained in this way agree quantitatively with

the experimental ones [61].

4.0.1. The World Color Survey P. Kay and B. Berlin [67] ran a first survey on 20

languages in 1969. From 1976 to 1980, the enlarged World Color Survey was conducted

by the same researchers along with W. Merrifield and the data are public since 2003

on the website http://www.icsi.berkeley.edu/wcs. These data concern the basic

color categories in 110 languages without written forms and spoken in small-scale,

non-industrialized societies. On average, 24 native speakers of each language were

interviewed. Each informant had to name each of 330 color chips produced by the

Munsell Color Company that represent 40 gradations of hue and maximal saturation,

plus 10 neutral color chips (black-gray-white) at 10 levels of value. The chips were

presented in a predefined, fixed random order, to the informant who had to tag each

of them with a “basic color term” is her language (in English, basic color terms would

correspond to these would be “yellow”,“green”, “red”, etc. for more details see [67]).

After two decades of intense debate on this unique repository of data [69], Kay and

Regier [68] performed a quantitative statistical analysis proving that the color naming

systems obtained in different cultures and language are in fact not random. Through

a suitable transformation they identified the most representative chip for each color

name in each language and projected it into a suitable metric color space (namely, the

CIEL*a*b color space). To investigate whether these points are more clustered across

languages than would be expected by chance, they defined a dispersion measure on this

set of languages S0

DS0
=

∑

l,l∗∈S0

∑

c∈l

minc∗∈l∗distance(c, c
∗), (2)

where l and l∗ are two different languages, c and c∗ are two basic color terms respectively

from these two languages, and distance(c, c∗) is the distance between the points in color

space in which the colors are represented. To give a meaning to the measured dispersion

DS0
, Kay and Regier created “new” datasets Si (i = 1, 2, .., 1000) by random rotation

of the original set S0, and measured the dispersion of each new set DSi
.

The human dispersion appears to be distinct from the histogram of the “random”

dispersions with a probability larger than 99.9%. As shown in Figure 3a of [68],

the average dispersion of the random datasets, Dneutral, is 1.14 times larger than the

dispersion of human languages. Thus, human languages are more clustered, i.e., less

dispersed, than their random counterparts and universality does exist [68].

4.0.2. The Numerical World Color Survey The key aspect of the statistical analysis

described above is the comparison of the clustering properties of a set of true human
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languages against the ones exhibited by a certain number of randomized sets. In

replicating the experiment it is therefore necessary to obtain two sets of synthetic

data, one of which must have some human ingredient in its generation. The idea put

forth in [61] is to act on the dmin parameter of the Category Game, describing, as

discussed in the previous section, the discrimination power of the individuals to stimuli

of a given wave-length. In fact, it turns out that human beings are endowed with a

dmin, the “Just Noticeable difference” or JND, that is not continuous, but rather is a

function of the frequency of the incident light (see the inset in Fig. 10) ‡. Technically,

psychophysiologists define the JND as a function of wavelength to describe the minimum

distance at which two stimuli from the same scene can be discriminated [71, 72]. The

equivalence with the dmin parameter is therefore clear and different artificial sets can be

created:

• ”Human” categorization patterns are obtained from populations whose individuals

are endowed with the rescaled human JND (i.e., dmin);

• Neutral categorization patterns are obtained from populations in which the

individuals have constant JND dmin = 0.0143, which is the average value of the

human JND (as it is projected on the [0, 1) interval, Fig. 10 (inset)).

In analogy to the WCS experiment, the randomness hypothesis in the NWCS for the

neutral test-cases is supported by symmetry arguments: in neutral simulations there

is no breakdown of translational symmetry, which is the main bias in the“human”

simulations.

Thus, the difference between ”human” and neutral data originates from the

perceptive architecture of the individuals of the corresponding populations. A collection

of ”human” individuals form a ”human” population, and will produce a corresponding

”human” categorization pattern. In a hierarchical fashion, finally, a collection of

populations is called a world, which in [61] is formed either by all ”human” or by all non-

”human” populations. To each world it corresponds a value of the dispersion D defined

in Eq. (2), measuring the amount of dispersion of the languages (or categorization

patterns) belonging to it. In the actual WCS there is of course only one human World

(i.e., the collection of 110 experimental languages), while in [61] several worlds have

been generated to gather statistics both for the ”human” and non-”human” cases.

The main results of the NWCS are presented in Figure 10. Since the dispersion D

defined in Eq. (2) [68] depends on the number of languages, the number of colors, and

the space units used, every measure ofD in the NWCS is normalized by the average value

obtained in the “human” simulations, and every measure ofD from the WCS experiment

is divided by the value obtained in the original (non-randomized) WCS analysis (as in

[68]). Thus, both the average of the “human worlds” and the value based on the WCS

data are represented by 1 in Figure 3. In the same plot, the probability density of

observing a value of D in the “neutral world” simulations is also shown by the red

‡ The attention is here on the human Just Noticeable Difference for the hue, see [61].
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histogram bars. Finally, the Figure contains also the data reported in the histogram of

the randomized datasets in Figure 3a of [68], whose abscissa is normalized by the value

of the non-randomized dataset and frequencies are rescaled by the width of the bins.

Figure 10 illustrates the main results. The Category Game Model informed with the

human dmin(x) (JND) curve produces a class of “worlds” that has a dispersion lower than

and well distinct from that of the class of “worlds” endowed with a non-human, uniform

dmin(x). Strikingly, moreover, the ratio observed in the NWCS between the average

dispersion of the “neutral worlds” and the average dispersion of the “human worlds”

is Dneutral/Dhuman ∼ 1.14, very similar to the one observed between the randomized

datasets and the original experimental dataset in the WCS. In the Supplementary

information of [61], finally, it is shown that these findings are robust against changes in

such parameters as the population size N , the distribution of the stimuli, the number

of object is a scene M , the time of measurement (as long as a measure is taken in the

temporal region in which a categorization pattern exists) etc.

These findings are important for a series of reasons. First of all, it is the first

case in which the outcome of a numerical experiments in this field is comparable at

any level with true experimental data. Second, as discussed above, the results of the

NWCS are not only in qualitative, but also in quantitative agreement with the results

of the WCS. Third, the very design of the model suggests a possible mechanisms lying

at the roots of the observed universality. Human beings share certain perceptual bias

that, even though are not strong enough to deterministically influence the outcome of a

categorization, are on the other hand capable of influencing category patterns in a way

that becomes evident only through a statistical analysis performed over a large number

of languages. This explanation for the observed universality had already been put forth

based on theoretical analysis (see, for instance [70, 73]), but the NWCS represents the

first numerical evidence supporting it.

5. Conclusions and open problems

All the efforts outlined in the previous sections indicate that a complex cognitive

phenomena as human language can be understood through a purely cultural route.

In particular, human language is related to a community of individuals that interact

with each other by means of a set of simple rules. Two important problems, Naming

and Categorization, already provide us with enough evidence on how languages can

evolve and change over time within different linguistic societies resulting, without any

centralized control, into emergent regularized patterns. Most strikingly, the numerical

findings of particular models show excellent quantitative agreement with real data.

Of course, these results are far from setting an endpoint in the research in cognitive

science. Quite the reverse, this area is rich with many more and equally (or in fact

more) challenging problems. In this spirit, we conclude by listing a few directions where

the research in language dynamics is already moving or could possibly head to.
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Figure 10. “Neutral worlds”, Dneutral, (histogram) are significantly more dispersed

than “human worlds”, Dhuman, (black arrow), as also observed in the WCS data (the

filled circles extracted from [68] and the black arrow). The abscissa is rescaled so

that the human D (WCS) and the average “human worlds” D both equal 1. The

histogram has been generated from 1500 neutral worlds, each made of 50 populations

of 50 individuals, and M = 2 objects per scene. Categorization patterns have been

considered after the population had evolved for a time of106 games per agents. The

inset figure is the human JND function (adapted from [72]). On the vertical axis:

the probability density ρ(xi) equals the percentage f(xi) of the observed measure in

a given range [xi − ∆/2, xi + ∆/2] centering around xi, divided by the width of the

bin ∆, i.e., ρ(xi) = f(xi)/∆. This procedure allows for a comparison between the

histogram coming from the NWCS [61] and that obtained in the study on the WCS

[68], where the bins have a different width.
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5.1. Category formation

Again sticking on colors, the categorization problem is not a closed challenge, despite

highly significative steps have been done in this direction. For instance, the emergence

in a population of complex color terms has still to be explained: how fine-grained color

terms like “crimson”, “magenta” etc. do emerge and coexist with basic color terms like

“red”, “blue”, etc.? Are these the outcome of a special society of individuals for whom

the set of basic terms is not sufficient for explaining the whole spectrum (e.g., painters)

or there is a hierarchy of category structures to which people resort depending of the

difficulty of their specific linguistic task? The two answers are not mutually esclusive,

since a finer categorization could be driven by an uneven distribution of the stimuli.

In this area many questions remain open: how the number of emerging categories

depend on factors like the population size, the dimension and structure of the semantic

space, the network of acquaintances, the environment where the population live, genetic-

driven perceptual endowments, specific cognitive abilities, etc. It would be important

to investigate each of these elements to make the general modeling scheme closer to a

larger set of realistic situations where categories emerge in a non-trivial way, so that

specific predictions can be compared with real data.

For instance, a fundamental open question about the emergence of linguistic

categories, and more generally of shared linguistic structures, concerns the role of

timescales. How to reconcile the apparent static character of most of the linguistic

structures we learned with the evidences of a fluid character of modern communication

systems? Very preliminary studies suggest that well established linguistic structures

can undergo aging [74, 75]: at relatively early stages changes are very frequent but

they become progressively more rare as the system ages; a phenomenon whose intensity

increases with the population size. From this point of view, shared linguistic conventions

would not emerge as attractors of a language dynamics, but rather as metastable states.

Categorization is of course a far larger problem than partitioning a possibly

continuous space of perceptions. It concerns the formation of a common lexicon and

the emergence of labels and tags as well as the bootstrapping of syntactic/semantic

categories for grammar. Yet, little is known about the collective dimensions of

categorization. Understanding and capturing the interactive aspects of categorization

process is a central challenge both for basic research and for future technologies.

Furthermore, communication about complex information requires sophisticated

conceptualizations, i.e., ways to encode knowledge at a conceptual level (for instance

the notion of perspective reversal as right of you). Despite many studies concerning the

topology of the space to be categorized and its impact on the categorization process [76],

a satisfactory mathematical and computational scheme is still lacking.

5.2. Emergence of complex linguistic structures

Languages are extraordinarily complex because they are multi-layered distributed

systems (sound, words, morphology, syntax, grammar) and large parts are not visible
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to direct observation. Despite many interesting attempts (e.g., generative grammar,

unification based grammar, fluid construction grammar, etc.), we are still far from

having a full picture and a flexible theoretical and computational framework for the

emergence and the evolution of grammar systems. For instance, a very interesting

direction concerns the emergence of compositionality: which are the mechanisms

that bring us to associate different “features” to an object instead of using a finer

categorization of just one preferred feature? In other words, how terms like “red

square” or “big blue circle” emerge in a linguistic society? This will be a founding stone

in explaining how human beings acquired the remarkable capacity of compositional

semantics.

The experience of complex systems brings us to face this set of problems with

a step-by-step approach, by starting with relatively simple cases while progressively

aiming at more complex situations. In this perspective, one of the first natural question

concerns the notion of complexity for a linguistic system. Here the word complexity

is intended, in the spirit of the Algorithmic Complexity and Information Theory [77],

as the minimal amount of information needed to specify a body of knowledge. Is it

possible to introduce a suitable definition of complexity for a linguistic system? Is this

notion of complexity related to the intuitive functional efficiency of the system? Can this

complexity be interpreted as a sort of fitness function driving the evolution of linguistic

structures? A natural starting point for studies in this direction is represented by the

numeral systems [78, 79].

From a general perspective it is tempting to face the problem of simple grammars

by exploiting their potential mapping to complex graphs and applying notions and tools

of data and graph compression [80]. An interesting line of research concerns how much

the hierarchy of patterns and motifs found by a data compression approach are related

to specific grammatical or syntactic rules.

It is worth mentioning how the association between entropic properties and

language structures has a long tradition. In evolutionary language games [17] the notion

of linguistic error limit [22, 81] is introduced as the number of distinguishable signals in

a protolanguage and therefore the number of objects that can be accurately described

by this language. Increasing the number of signals would not increase the capacity of

information transfer. An interesting parallel has been drawn between the formalism of

evolutionary language game with that of information theory [82]. A possible way out

is that of combining signals into words [83], opening the way to a potentially unlimited

number of objects to refer to. More recently it has been conjectured that compression

could aid in generalization as well as to make languages evolve towards smooth string

spaces and that more complex language evolve more rapidly [84]. Recent approaches

have exploited the notion of algorithmic complexity for the reconstruction of language

trees [85] and that of Shannon entropy to investigate the presence of linguistic structures

in Indus script [86] and Pictish symbols [87].
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5.3. New tools for experimental semiotics

While the research field of semiotics may traditionally be considered a conceptual

discipline, the cognitive turn has recently brought central semiotic questions and insights

into the laboratories and a new discipline, dubbed experimental semiotics [88], is about

to be born. A few important examples have already shown the viability of this approach:

from coordination game with interconnected computers [89, 90] to experimental tests

for Iterated Learning Models [91].

Though only a few years old, the growth of the World Wide Web and its effect on the

society have been astonishing, spreading from the research in high-energy physics into

other scientific disciplines, academe in general, commerce, entertainment, politics and

almost anywhere where communication serves a purpose. Innovation has widened the

possibilities for communication. Social media like blogs, wikis and social bookmarking

tools allow the immediacy of conversation, with unprecedented levels of communication

speed and community size. Millions of users now participate in managing their

personal collection of online resources by enriching them with semantically meaningful

information in the form of freely chosen tags and by coordinating the categories they

imply. Wikipedia, Yahoo Answers and the ESP Game [92] are systems where users

volunteer their human computation because they value helping others, participating in

a community, or playing a game. These new types of communities are showing a very

vital new form of semiotic dynamics. From a scientific point of view, these developments

are very exciting because they can be tracked in real time and the tools of complex

systems science and cognitive science can be used to study them.

From this perspective the web is acquiring the status of a platform for social

computing, able to coordinate and exploit the cognitive abilities of the users for a given

task and it is likely that the new social platforms appearing on the web, could rapidly

become a very interesting laboratory for social sciences in general [93], and for studies

on language emergence and evolution in particular. These recent advances are enabling

for the first time the possibility of precisely mapping the interactions of large numbers

of people at the same time as observing their behavior and in a reproducible way. In

particular the dynamics and transmission of information along social ties can nowadays

be the object of a quantitative investigation of the processes underlying the emergence

of a collective information and language dynamics.
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