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Abstract

This paper studies the asymptotic validity of sieve bootstrap for nonstationary

panel factor series. Two main results are shown. Firstly, a bootstrap Invariance Prin-

ciple is derived pointwise in i, obtaining an upper bound for the order of truncation of

the AR polynomial that depends on n and T . Consistent estimation of the long run

variances is also studied for (n; T )!1. Secondly, joint bootstrap asymptotics is also

studied, investigating the conditions under which the bootstrap is valid. In particu-

lar, the extent of cross sectional dependence which can be allowed for is investigated.

Whilst we show that, for general forms of cross dependence, consistent estimation of

the long run variance (and therefore validity of the bootstrap) is fraught with di¢ cul-

ties, however we show that �one-cross-sectional-unit-at-a-time� resampling schemes

yield valid bootstrap based inference under weak forms of cross-sectional dependence.

JEL codes: C23.

Keywords: bootstrap, invariance principle, factor series, Vector AutoRegression,

joint asymptotics.
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1 Introduction

In recent years, factor models have achieved great popularity in applied econometrics and

statistics - see e.g. Lee and Carter (1992), Forni and Reichlin (1998), Bai (2004), Bai and

Ng (2006a, 2006b, 2010), and the references therein. Nonstationary panel factor series have

also been paid noticeable attention in applied statistics, where Lee and Carter�s (1992)

model for mortality forecasting has generated a huge body of literature. The literature has

produced signi�cant developments in the inferential theory. Joint asymptotic theory for

(n; T )!1 has been studied for the case of stationary and nonstationary data, allowing

for serial and cross sectional dependence and heterogeneity - see, inter alia, Bai (2003,

2004) and Bai and Ng (2002, 2004).

The main focus of this paper is to study the bootstrap for nonstationary panel factor

series de�ned as

xit = �
0
iFt + uit; (1)

with i = 1; :::; n and t = 1; :::; T and

Ft = Ft�1 + "t: (2)

Model (1) is a standard nonstationary panel factor model - see Bai (2004). Bootstrapping

(1) could prove useful for at least three reasons. Firstly, as the theory developed in Bai

(2004) and Kao, Trapani and Urga (2011) shows, the asymptotics heavily depends on

nuisance parameters. Moreover, limiting distributions are often complicated and depend

on somewhat arbitrary assumptions on the relative speed of divergence of n and T . Finally,

the common factors Ft are often not observable and need to be estimated, thereby adding a

further component to the error term uit in (1). In light of this, and in order to accommodate

for serial dependence, this article proposes a sieve bootstrap algorithm (Bühlmann, 1997),

building on the theory developed by Park (2002, 2003) and Chang, Park and Song (2006).

Whilst this paper moves from a similar research question, namely to show an Invariance

Principle (IP) for the bootstrap counterpart to xit, proving an IP for nonstationary factor

models is a di¤erent type of exercise to the pure time series case studied by Park (2002)

and, in a cointegration framework, by Chang, Park and Song (2006). This is due to
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two distinctive features of model (1): (a) the presence of the latent variables Ft, which

are replaced by generated regressors, thereby a¤ecting the asymptotics and the bootstrap

asymptotics, and (b) the fact that the asymptotics, in this framework, depends jointly on

two indices, n and T .

This article makes two main contributions. In the �rst part of the paper (Sections 3

and 4), a bootstrap IP is derived and applied to the estimation of loadings, common factors

and common components. We propose a �one cross sectional unit at a time�resampling

algorithm, based on extracting the common factors from (1) by using the Principal Com-

ponents estimator (PC) and thereafter �tting a Vector AutoRegression (VAR) of order

q to the estimated common factors and to the residuals. In Section 4, we report valid-

ity results for bootstrap estimates of loadings, common factors and common components

based on applying the PC estimator to the bootstrap sample. In the second part of the

paper (Section 5), we discuss how to deal with the issue of cross dependence. In Section 5,

we develop joint bootstrap asymptotics as (n; T ) ! 1, to accommodate for the possible

presence of cross dependence in the uits by �tting an n-dimensional VAR to the vector

containing the residuals ûit. We show that the estimation of the long run variance matrix

of the uits is fraught with di¢ culties, due to its high dimension. Section 5 contains an

inconsistency result, highlighting that consistent estimation of long run covariance matri-

ces is not possible in this context, unless there is very little cross dependence. Theoretical

�ndings are evaluated through a Monte Carlo simulation (Section 6). Section 7 concludes.

Proofs are in Appendix.

For the sake of a concise discussion, this version of the paper only reports the main

results and proofs. In an extended version (henceforth referred to as Trapani, 2012), the

full set of results is reported. This includes: validity results for results for bootstrap

estimates of loadings, common factors and common components based on applying the

OLS estimator to the bootstrap sample; some initial results concerning the extension of

the bootstrap theory to the case of (1) containing also I (0) common factors and drift

terms in the I (1) factors; and preliminary, technical Lemmas as well as all the proofs

omitted from here.1

NOTATION Throughout the paper, kAkp denotes the Lp-norm of a matrix A, i.e.

1The extended version is available for download at SSRN: http://ssrn.com/abstract=2062183
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maxx kAxkp = kxkp (the Euclidean norm being de�ned simply as kAk), �im� indicates a

unit column vector of dimension m, �!�the ordinary limit, � d!�weak convergence, � p!�

convergence in probability, �a.s.�stands for �almost surely�; generic �nite constants that

do not depend on n or T are referred to as M . Stochastic processes such as W (s) on [0; 1]

are usually written asW , integrals such as
R 1
0 W (s) ds as

R
W and stochastic integrals such

as
R 1
0 W (s) dW (s) as

R
WdW . The integer part of a number x is denoted as bxc. Also,

we extensively use the following notation: �nT = min
np
n;
p
T
o
, CnT = min f

p
n; Tg,

'FnT = min
n
n;
p
T= log T

o
and 'unT = min

np
n;
p
T= log T

o
.

2 Model, assumptions and preliminary asymptotics

Consider model (1) and the data generating process of Ft

xit = �0iFt + uit;

Ft = Ft�1 + "t;

where we assume that the (unobservable) factors Ft are a k-dimensional process. We refer

to Bai (2004) for the estimation of k.

Consider the following assumptions:

Assumption 1: (time series and cross sectional properties of uit) let ut = [u1t; :::; unt]
0;

then ut admits the invertible MA (1) representation ut = � (L) eut =
P1
j=0 �je

u
t�j , where

(i) eut is i.i.d. across t with E [e
u
t ] = 0, E [e

u
t e
u0
t ] = �u; also, letting e

u
it be the i-th element

of eut , maxi;tE jeuitj
8+� < 1 for some � > 0; (ii)

P1
j=0 �jL

j 6= 0 for all jLj � 1 and,

letting �i;j be the i-th row of �j , maxi
P1
j=0 j

s k�i;jk < 1 for some s � 1; (iii) (cross

sectional dependence) (a) k� (1)k1 �M ,
��1 (1)

1
�M ,

��1 (1)1 �M and k�uk1 �

M ; (b) E
��n�1=2Pn

i=1 [uisuit � E (uisuit)]
��4 � M for every (t; s); (c) E j

Pn
i=1 uitj

2+� �

ME
��Pn

i=1 u
2
it

�� 2+�2 for all t and � > 0; (iv) (initial conditions) E jui0j4 �M for all i.

Assumption 2: (time series properties of "t) "t is a k-dimensional vector random

process (with �nite k) and it admits an invertible MA (1) representation where "t =

� (L) eFt =
P1
j=0 �je

F
t�j with (i) e

F
t is i.i.d. with E

�
eFt
�
= 0, E

�
eFt e

F 0
t

�
= �e and

E
eFt 8+� < 1 for � > 0; (ii)

P1
j=0 �jL

j 6= 0 for all jLj � 1 and
P1
j=0 j

s k�jk < 1
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for some s � 1; (iii) the matrix ��F =
P1
j=0 �j�e�

0
j is positive de�nite; (iv) (initial

conditions) E kF0k4 �M .

Assumption 3: (identi�ability) the loadings �i are (i) either nonrandom quanti-

ties such that k�ik � M , or random quantities such that E k�ik4 < 1; (ii) either

n�1
Pn
i=1 �i�

0
i = �� if n is �nite, or limn!1 n�1

Pn
i=1 �i�

0
i = ��, if n ! 1 with ��

positive de�nite; (iii) the eigenvalues of �1=2� ��F�
1=2
� are distinct, and the eigenvalues of

the stochastic matrix �1=2�
�
T�2

PT
t=1 FtF

0
t

�
�
1=2
� are a.s. distinct as T !1.

Assumption 4: (i) f"tg, fuitg and f�ig are three mutually independent groups; (ii)

F0 is independent of fuitg and f"tg.

Parts (i) and (ii) of Assumption 1 allow to establish an IP for the of the bootstrap value

from the general linear process uit. Part (i) is slightly more stringent than Assumption

3.1 in Park (2002, p. 474), where the existence of the fourth moment su¢ ces. In this

context, assuming r > 4 is needed for the validity of inferential theory for factor models;

see e.g. Assumption C in Bai (2004). Part (ii) is needed in order to approximate the

AR (1) polynomial with a �nite autoregressive representation - see e.g. Hannan and

Kavalieris (1986). Letting E (uitujt) = � ij , part (iii) entails that
Pn
i=1 j� ij j � M for

all j, since E (utu0t) = � (1)�u�
0 (1) and kE (utu0t)k1 � k� (1)k21 k�uk1. Finiteness of��1 (1)

1
could be derived from more primitive assumptions on � (1) - see e.g. Kolotilina

(2009). Part (iii) allows for some cross sectional dependence in the error term uit; part

(iii)(b) is the same as part (4) of Assumption C in Bai (2004). Parts (i)-(iii) entail that

T�1
PT
s=1

PT
t=1

��s�t�� � M , where s�t = n�1Pn
i=1 i;s�t and i;s�t= E (uituis), which

is part (2) of Assumption C in Bai (2004, p. 141). Finally, part (iii)(c) is a Burkholder-

type inequality. This could be proved under more primitive conditions, e.g. if the uits

were independent across i, and it is useful to derive joint asymptotics; see, in particular,

Proposition 1 below.

Assumption 2 is required in order for the dimension of the factor space to be estimated

consistently, and also to derive the asymptotic theory for the estimated factors. Part (i)

is enough for both purposes, and it is equivalent to Assumption 3.1(a) in Park (2002, p.

474). It is required that the 8-th moment of eFt should exist. This is in order for the

bootstrap sample to satisfy the equivalent of Assumption 1(iii), which in turn is needed

5



when applying PC to the bootstrap sample (see Lemma A.4 in Appendix A). Part (ii)

plays the same role as Assumption 1(ii). Note that part (iii) rules out cointegration among

the Fts, which is the same as part (2) of Assumption A in Bai (2004). Also, Assumption 2

entails a Law of the Iterated Logarithm for Ft (see Phillips and Solo, 1992, Theorem 3.3)

to hold, whence lim infT!1 (log log T ) T�2
PT
t=1 FtF

0
t = D with D a nonrandom positive

de�nite matrix. This corresponds to part (3) of Assumption 2 in Bai (2004).

2.1 Inferential theory

Inference is based on standard PC. The common factors Ft are estimated by F̂t under

the restrictions that T�2
PT
t=1 F̂tF̂

0
t = Ik and n

�1Pn
i=1 �̂i�̂

0
i is diagonal. The estimated

common factor F̂t is T times the eigenvectors corresponding to the k largest eigenvalues

of XX 0 where X = [x1; :::; xn]
0 with xi = [xi1; :::; xiT ]

0. Then �i can be estimated applying

OLS to

xit = �
0
iF̂t + vit; (3)

whence �̂i =
hPT

t=1 F̂tF̂
0
t

i�1 hPT
t=1 F̂txit

i
. It is well known that �i and Ft are identi�able

only up to a transformation. Therefore, PC estimates the space spanned by the factors

Ft (and the loadings �i), �nding H 0Ft instead of Ft and H�1�i instead of �i. The k � k

matrix H is invertible and given by

H =

 
1

n

nX
i=1

�i�
0
i

! 
1

T 2

TX
t=1

FtF̂
0
t

!
V �1nT ; (4)

with VnT a k � k diagonal matrix containing the eigenvalues of 1
nT 2

XX 0 in descending

order. The e¤ect of replacing the true, unobservable factors Ft with their estimates F̂t is

to in�ate the error term uit in (1):

vit = uit + �
0
i

�
H 0��1 �H 0Ft � F̂t

�
: (5)

Consider the following notation, which is henceforth used throughout the paper. We

let W" be a k-dimensional Brownian motion with covariance matrix ��F ; Wu;i is a scalar

Brownian motion independent of W" with variance �2u;i = �i (1)�u�
0
i (1), and �i (1) =P1

j=0 �i is the i-th row of � (1). Also, we de�ne Wu and Wv as standard Brownian
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motions independent of W"; �2u = limn!1 n�1 i0n� (1)�u�
0 (1) in and �2v = limn;T!1

E
h
n�1=2T�1

PT
t=1

Pn
i=1

�
1 + ��

0
��1� �i

�
uit

i2
, with �� = limn!1 �i.

Proposition 1 Let Assumptions 1-4 hold. As (n; T )!1, it holds that for every i

1p
T

bTscX
t=1

264 �F̂t
uit

375 d!

264 H 0W" (s)

Wu;i (s)

375 ; (6)

also, T�1=2
PbTsc
t=1 vit

d!Wu;i (s), and

1

T 2

TX
t=1

F̂tF̂
0
t
d! H 0

�Z
W"W

0
"

�
H; (7)

1

T

TX
t=1

F̂tuit
d! H 0

Z
W"dWu;i; (8)

also, T�1
PT
t=1 F̂tvit

d! H 0 R W"dWu;i. Further, as (n; T )!1 with n
T ! 0:

1p
nT

bTscX
t=1

nX
i=1

uit
d! �uWu (s) ; (9)

1p
nT

TX
t=1

nX
i=1

F̂tuit
d! �uH

0
Z
W"dWu; (10)

also, n�1=2T�1
PbTsc
t=1

Pn
i=1 vit

d! �vWv (s) and n�1=2T�1
PT
t=1

Pn
i=1 F̂tvit

d! �vH
0 R W"dWv.

Proposition 1 contains two types of results: equations (6)-(8), which are univariate,

pointwise in i; and equations (9) and (10), which are joint limits. These results, used in

conjunction with the Continuous Mapping Theorem (CMT), are the building blocks to

prove the validity of bootstrap approximations. Equations (9)-(10) highlight an important

feature of joint limit theory applied to panel factor series: when deriving results that are

pointwise in i, the same results hold whether uit or vit is present, since the extra term

�0i (H
0)�1

�
H 0Ft � F̂t

�
in (5) is negligible. Conversely, when studying joint asymptotics,

the extra term is not negligible.

In the remainder of the paper, we show bootstrap analogues to (6)-(10) - Sections 3

and 4 - and to (9)-(10) - Section 5.
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3 Univariate sieve bootstrap: algorithm and IP

This section contains the algorithm to generate the bootstrap sample using a �one cross

sectional unit at a time� resampling scheme. Asymptotic theory (pointwise in i) is in

Section 3.2. The main output of this section are bootstrap analogues to (6)-(8). Since (1) is

a cointegrating regression, one may apply the algorithm of Chang, Park and Song (2006) to

its observable counterpart (3). This imposes a unit root in the bootstrap counterpart to F̂t,

which is needed in order for the bootstrap to be consistent - see Park (2003). Henceforth,

we de�ne �it = [�F
0
t ; uit]

0, with �it =
P1
j=1 �ij�it�j + eit, and �i (1) = 1�

P1
j=1 �ij .

3.1 The generation of the bootstrap sample

In order to preserve the autocorrelation structure of �Ft and uit, we propose to approxi-

mate the in�nite AR polynomials � (L) and � (L) by truncating them at lags qF and qu;i

respectively:

�Ft =

qFX
j=1

�q;j�Ft�j + e
F
t;q; (11)

uit =

qu;iX
j=1


(i)
q;juit�j + e

u
it;q: (12)

The values of qF and qu;i depend on n and T , as discussed in the following assumption.

Assumption 5: As (n; T )!1, qF !1 and qu;i !1 for each i, with qF = o
�
'FnT

�
and qu;i = o ('unT ) for each i.

Assumption 5 contains an upper bound on qF and qu;i; both pass to in�nity as (n; T )!

1, with no restrictions needed on the relative speed of divergence of n and T . No lower

bounds are required for qF and qu;i. Using Assumption 5, one could think of selecting qF

and qu;i by using some information criteria such as e.g. AIC or BIC, under the restriction

that the maximum lag allowed for be of order o
�
'FnT

�
and o ('unT ) respectively.

The bootstrapping algorithm is as follows:

Step 1. (PC estimation)

(1.1) Estimate �i and Ft in (1) using PC.

8



(1.2) Generate the residuals ûit = xit � �̂
0
iF̂t and de�ne �̂it =

h
�F̂ 0t ; ûit

i0
.

Step 2. (estimation)

(2.1) Estimate �q;j and 
(i)
q;j (obtaining �̂q;j and ̂

(i)
q;j respectively) by applying OLS (or

some other estimator, e.g. the Yule-Walker estimator) to �F̂t =
PqF
j=1 �q;j �F̂t�j+

eFt;q and ûit =
Pqu;i
j=1 

(i)
q;j ûit�j +e

u
it;q.

(2.2) Compute the residuals êFt;q =�F̂t�
PqF
j=1 �̂q;j �F̂t�j and ê

u
it;q = ûit �

Pqu;i
j=1 ̂

(i)
q;j ûit�j .

De�ne êit;q =
h
êF 0t;q; ê

u
it;q

i0
.

Step 3. (bootstrap) for b = 1; :::;i iterations

(3.1) (resampling)

(3.1.a) Center the residuals êit;q around their mean, as �eit;q = êit;q � T�1
PT
t=1 êit;q:

(3.1.b) Draw (with replacement) T values from f�eit;qgTt=1 to obtain the bootstrap sample

feit;bgTt=1, with eit;b =
h
eF 0t;b; e

u
it;b

i0
.

(3.2) (generation of the bootstrap sample)

(3.2.a) Generate recursively the pseudo sample �it;b =
h
�F 0t;b; uit;b

i0
as�Ft;b =

PqF
j=1 �̂q;j

�Ft�j;b +e
F
t;b and uit;b =

Pqu;i
j=1 ̂

(i)
q;juit�j;b +e

u
it;b, using as initialization

�
�iq;b; :::; �i1;b

	
=�

�iq; :::; �i1
	
.

(3.2.b) Generate Ft;b as Ft;b = F0;b +
Pt
j=1�Fj;b, with initialization is F0;b = F̂0, or

alternatively T�1
PT
t=1 F̂t.

(3.2.c) Generate the pseudo sample fxit;bgTt=1 as xit;b = �̂
0
iFt;b + uit;b.

The algorithm is similar to Chang, Park and Song (2006) for the case of a cointegrating

regression. The output of the algorithm above is the bootstrap sample
�
�it;b

	T
t=1
. In the

next section, an IP for
�
�it;b

	T
t=1

is shown.

3.2 Bootstrap asymptotics

Based on a typical approach to prove the validity of the bootstrap, the main purpose of

this section is to show that T�1=2
PbTsc
t=1 �it;b converges (in probability) to the same limit

as T�1=2
PbTsc
t=1 �it, uniformly in s.

9



De�ne the partial sums of eit =
�
eF 0t ; e

u
it

�0
as WiT (s) = T

�1=2PbTsc
t=1 eit. Assumptions

1 and 2 ensure that an IP holds whereby WiT (s)
d! Wi (s) where Wi (s) is a (k + 1)-

dimensional Brownian motion. This convergence is in the weak form, and it holds in the

space of cadlag functions D [0; 1] endowed with the supremum norm. Weak convergence

can be strengthened by de�ning, on the probability space (
;z; P ), a copy of WiT (s), say

W 0
iT (s), which has the same distribution as WiT (s) and can be chosen such that

P

�
sup
0�s�1

W 0
iT (s)�Wi (s)

 � �� �MT 1�r=2E keitkr ; (13)

where � > 0, r > 2 andM depends only on r. Such results are known as �strong�or �weak�

approximations, according as W 0
iT (s) is shown to converge to Wi (s) a.s. or in probability

(see e.g. Sakhanenko, 1980). In essence, (13) states that, as long as T 1�r=2E keitkr ! 0

either in probability or a.s. for some r > 2, an IP holds (in probability or a.s. respectively).

In our context, r > 8 in view of Assumptions 1 and 2, so (13) holds.

Consider the bootstrap sample feit;bgTt=1. This is an i.i.d. sample conditional on

fêitgTt=1, on the probability space induced by the bootstrap, say
�

b;zb; P b

�
. Henceforth,

we denote convergence in probability and in distribution in the bootstrap space (with

respect to P b) as �
pb!�and �d

b

!�respectively.

We now report three results needed to prove the bootstrap IP. Firstly, we show the

existence of moments for feit;bgTt=1. Secondly, we show the consistency of �̂
(i)

q;j , estimated

in Step 3.2(a). Finally, we show the bootstrap IP for T�1=2
PbTsc
t=1 �it;b. It holds that:

Lemma 1 Let Assumptions 1-5 hold. As (n; T )!1, for all (i; t) and r > 8

Eb
eFt;br = E

eFt r +Op �q�rsF

�
+Op

�
C�rnT

�
+Op

��
qF

'FnT

�r�
(14)

max
i;t
Eb
��euit;b��r = max

i;t
E jeuitj

r +Op

�
q�rsu;i

�
+Op

�
��rnT
�
+Op

��
qu;i
'unT

�r�
: (15)

This result is useful to prove an IP for eit;b using (13). The type of IP that we are

able to prove is in the weak form, since (14) and (15) hold in probability. Having qF

and qu;i !1 with upper bounds given by 'FnT and '
u
nT respectively is necessary for the

moments of the bootstrap sample to converge to the population values. Lemma 1 and

equation (13) yield T�1=2
PbTsc
t=1 eit;b

db!Wi (s) in P .
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Lemma 2 Let Assumptions 1-5 hold. As (n; T )!1, for all i

max
1�j�qF

�̂q;j �H 0�j
�
H 0��1 = Op

 r
log T

T

!
+Op

�
1

n

�
+ op

�
1

qsF

�
; (16)

max
1�j�qu;i

���̂(i)q;j � (i)j ��� = Op

 r
log T

T

!
+Op

�
1p
n

�
+ op

 
1

qsu;i

!
: (17)

Lemma 2 states that �̂
(i)

q;j is a consistent estimator of the space spanned by �ij , which

is a consequence of rotational indeterminacy. Equation (16) su¢ ces for our purposes. The

rate Op
�p

log T=T
�
is a well-known result in time series analysis (see e.g. Theorem 2.1

in Hannan and Kavalieris, 1986). The rates Op (1=n) and Op
�p

1=n
�
are due to the use

of generated regressors, F̂t and �F̂t.

Finally, we show the bootstrap IP for T�1=2
PbTsc
t=1 �it;b. De�ne the partial sums of �it as

W�iT (s) = T
�1=2PbTsc

t=1 �it; by Assumptions 1 and 2, W�iT (s)
d!W�i (s) = �

�1
i (1)Wi (s).

Let W�iT;b (s) = T
�1=2PbTsc

t=1 �it;b. Combining Lemmas 1 and 2:

Lemma 3 Let Assumptions 1-5 hold. As (n; T ) ! 1, it holds that 1p
T

PbTsc
t=1 �it;b

db!

W�i (s) in P , for all i.

Lemma 3 entails that the partial sums of the bootstrap process
�
�it;b

	T
t=1

have the same

limiting distribution as the partial sums of f�itgTt=1. Lemma 3 requires an IP for feit;bg
T
t=1;

this follows from Lemma 1. The Lemma also requires that that �̂
�1
i;q (1)

p! ��1i (1); this

follows from Lemma 2. Lemma 3 is the bootstrap counterpart to (6).

Combining Lemmas 1-3, it holds that:

Theorem 1 Let Assumptions 1-5 hold. Then, as (n; T )!1 and for all i

1

T 2

TX
t=1

Ft;bF
0
t;b

db! H 0
�Z

W"W
0
"

�
H; (18)

1

T

TX
t=1

Ft;buit;b
db! H 0

Z
W"dWu;i; (19)

in P , with W" and Wu;i de�ned in Proposition 1.
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Theorem 1 is a similar result to Lemma 3.4 in Chang, Park and Song (2006), and it is

the bootstrap counterpart to equations (7) and (8) in Proposition 1. Results are pointwise

in i; no joint limit theory is developed here.

4 Univariate bootstrap

The �one unit at a time�algorithm is valid when cross dependence does not need to be

taken into account. This is the case when certain �time series problems�are considered,

e.g. the estimation of the loadings; in such cases, the bootstrap boils down to a problem

similar to Chang, Park and Song (2006). However, when �cross sectional problems�are

considered (such as the estimation of common factors) results that are pointwise in i are

su¢ cient only in presence of no, or little, cross dependence. In this section we present va-

lidity results for the bootstrap estimates of loadings (Section 4.1), common factors (Section

4.2), and common components Cit = �0iFt (Section 4.3). We also derive square integrability

results, which are required when bootstrap standard errors need to be computed.

We consider the following DGP for xit;b, de�ned in Step (3.2.c) of the algorithm:

xit;b = �̂
0
iFt;b + uit;b; (20)

alternatively, a ��xed regressors� approach could be used, viz. xit;b = �̂
0
iF̂t + uit;b. We

study the application of PC to (20): loadings and factors are extracted from xit;b, without

treating �̂i or F̂t as observed.2 This approach should be less dependent than OLS on the

quality of the �rst step estimates
�
�̂i; F̂t

�
. The same restrictions as for the computation

of
�
�̂i; F̂t

�
can be used at each bootstrap iteration.

The issue of identi�cation a¤ects the bootstrap in two ways. Firstly, it is possible to

provide bootstrap approximations for �̂i �H�1�i and for F̂t �H 0Ft, but the bootstrap is

not able to estimate H. Whilst this is a general limitation of PC, in many applications

knowing
�
H�1�i;H 0Ft

�
is as good as knowing (�i; Ft). Examples include: computing com-

mon components; con�dence intervals for di¤usion index forecast (Bai and Ng, 2006a); IV

estimation (Bai and Ng, 2010); and testing whether observable economic variables overlap

2 In Trapani (2012) we also report results for the case of OLS estimation, whereby loadings are estimated
through a time series regression using F̂t as observable regressors, and factors are estimated through a cross
sectional regression with �̂i treated as observable.
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with estimated latent factors (Bai and Ng, 2006b). In these contexts, the bootstrap can

be useful. Conversely, when using Factor-Augmented regression, rotational indeterminacy

makes it impossible to give a structural interpretation to the slopes of factors (see also

Goncalves and Perron, 2011); the bootstrap is of course unable to ameliorate this. Sec-

ondly, rotational indeterminacy also a¤ects the bootstrap when PC is applied. Considering

the estimation of the loadings as a leading example, these are estimated up to a rotation

matrix H1, given by

H1 =

"
1

n

nX
i=1

�̂i�̂
0
i

#"
1

T 2

TX
t=1

Ft;bF̂
PC0
t;b

# h
V bnT

i�1
; (21)

where F̂PCt;b is the PC estimate of the common factors and V bnT contains the �rst k eigenval-

ues of XbX 0
b in descending order with Xb = [x1;b; :::; xn;b]

0 and xi;b = [xi1;b; :::; xiT;b]
0. Esti-

mation is carried out under the restrictions 1
T 2
PT
t=1 F̂

PC
t;b F̂

PC0
t;b = Ik and 1

n

Pn
i=1 �̂

PC

i;b �̂
PC0
i;b

diagonal. The matrix H1 can be computed, since it is based only on estimated quantities.

Indeed, as shown by Goncalves and Perron (2011) based on Bai and Ng (2011) in the con-

text of Factor-Augmented regression, H1 is asymptotically diagonal, with elements equal

to �1. This result, however, is only asymptotic.

4.1 Loadings

Consider �̂i. Lemmas 4 and B.4 in Bai (2004) entail that �̂i � H�1�i =
hPT

t=1 F̂tF̂
0
t

i�1h
H 0PT

t=1 Ftuit

i
+ op (1). Using (7) and (8), it holds that

T
�
�̂i �H�1�i

�
d! H�1

�Z
W"W

0
"

��1�Z
W"dWu;i

�
; (22)

which is the same as Theorem 3 in Bai (2004). When applying PC, �̂
PC

i;b estimates H
�1
1 �̂i,

with H1 de�ned in (21).

Proposition 2 Let Assumptions 1-5 hold and let � > 0. As (n; T )!1

T �H1
h
�̂
PC

i;b �H�1
1 �̂i

i
db!
"
H�1

�Z
W"W

0
"

��1�Z
W"dWu;i

�#
in P; (23)

Eb
T �H1 h�̂PCi;b �H�1

1 �̂i

i2+� = Op (1) : (24)
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Equation (23) is the bootstrap counterpart to Theorem 3 in Bai (2004): the limiting

distribution of �̂
PC

i;b �H�1
1 �̂i is the same as the limiting distribution of �̂i�H�1�i, except

for the presence of H1, which anyway can be computed using (21). This is a consequence

of rotational indeterminacy. The limiting distribution of �̂i �H�1�i is approximated by

H1

h
�̂
PC

i;b �H�1
1 �̂i

i
. This should be used e.g. when bootstrapping t-statistics. Given (23),

equation (24) ensures that the sequence T
H1 ��̂PCi;b �H�1

1 �̂i

�2 is integrable, which is
useful for the bootstrap computation of the standard error of T �H1

h
�̂
PC

i;b �H�1
1 �̂i

i
.

4.2 Common factors

The building block of the analysis is Theorem 2 in Bai (2004, p. 148): as (n; T ) ! 1

with n
T 3
! 0, it holds that

p
n
h
F̂t �H 0Ft

i
d! H 0��1� �N (0;�t) ; (25)

with �t = limn!1 1
n

Pn
i=1

Pn
j=1E

�
�i�

0
juitujt

�
. Under the �one unit at a time�resampling

scheme it can be expected that the bootstrap provides valid inference on factors only

when E (uitujt) = 0 for i 6= j, which entails �t = limn!1 1
n

Pn
i=1 E

�
�i�

0
iu
2
it

�
. Indeed, as

discussed in Section 5, the �one unit at a time�scheme can provide valid inference when

cross correlation is di¤erent from zero but �negligible�as n!1, viz.

1

n

nX
i=1

nX
j 6=i

E
�
�i�

0
juitujt

�
= o (1) : (26)

In general, consistent estimation of �t is fraught with di¢ culties; as Bai (2003) points out

in a stationary context, HAC-type estimators are not feasible since, in general, the order

of cross correlation is unknown. Bai and Ng (2006b) provide a solution for the case �t = �

for all t.

Similarly to the case of the loadings, PC estimates H 0
1F̂t.

Proposition 3 Let Assumptions 1-5 and (26) hold and let � > 0. As (n; T ) ! 1 with

n
T 3
! 0

p
n
�
H 0
1

��1 h
F̂PCt;b �H 0

1Ft;b

i
db!
�
H 0��1� �N (0;�t)

�
in P: (27)
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As (n; T )!1 with n
T 2
! 0

Eb
pn �H 0

1

��1 h
F̂PCt;b �H 0

1Ft;b

i2+� = Op (1) : (28)

Proposition 3 ensures that
p
n (H 0

1)
�1
h
F̂PCt;b �H 0

1Ft;b

i
is valid in order to approximate

the limiting distribution of
p
n
h
F̂t �H 0Ft

i
, and it is the bootstrap counterpart to Theorem

2 in Bai (2004). Equation (28) provides a uniform integrability result that is similar to

(24); note the stronger restriction n
T 2
! 0.

4.3 Common components

The estimated common components are given by Ĉit = �̂
0
iF̂t, with

Ĉit � Cit =
�
F̂t �H 0Ft

�0
H�1�i + F̂

0
t

�
�̂i �H�1�i

�
= I + II: (29)

Bai (2004, Theorem 4, p. 149) shows that, as (n; T )!1 with n
T ! �, for each (i; t) with

t = bTsc

p
n
�
Ĉit � Cit

�
d! �0i�

�1
� N (0;�t) +

p
�W" (s)

�Z
W"W

0
"

��1 Z
W"dWu;i; (30)

where the �rst term on the right hand side comes from I in (29) and the second one from

II. When considering the bootstrap estimate, we have

ĈPCit;b � Ĉit =
�
F̂PCt;b �H 0

1Ft

�0
H�1
1 �̂i + F̂

PC0
t;b

�
�̂
PC

i;b �H�1
1 �̂i

�
: (31)

Proposition 4 Let Assumptions 1-5 and (26) hold. Then, for all (i; t) such that t = bTsc,

as (n; T )!1 with n
T ! �

p
n
�
ĈPCit;b � Ĉit

�
db! �0i�

�1
� N (0;�t) +

p
�W" (s)

�Z
W"W

0
"

��1 Z
W"dWu;i in P: (32)

Also, for all (i; t) such that t = bTsc, as (n; T )!1 with n
T ! � for some � > 0

Eb
���pn�ĈPCit;b � Ĉit����2+� = Op (1) : (33)
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Results for n
T ! 0 and T

n ! 0 are in Appendix. The case n
T ! � is, as pointed out

in Bai (2004), the most useful one, since � can be replaced by n
T , thereby making the

bootstrap approximation of Ĉit � Cit usable for all combinations of n and T .

5 Multivariate bootstrap

Results in Sections 3 and 4 are pointwise in i, and only consider the time series dimen-

sion. This is su¢ cient e.g. for the bootstrap approximation of loadings, or under certain

restrictions on the degree of cross dependence such as (26). However, in other cases cross

sectional correlation needs to be taken into account. In this section, cross dependence is

taken into account by �tting an n-dimensional VAR to the vector of the residuals ûit. We

report the bootstrap counterpart to equations (9)-(10), showing that the moment exis-

tence conditions granted by Lemma 1 are su¢ cient also for joint bootstrap asymptotics.

However, di¢ culties arise when estimating the long run covariance matrix of ut.

To study multivariate bootstrap, the algorithm in Section 3.1 is modi�ed by resampling

the whole vector êut =
�
êu1t;q; :::; ê

u
nt;q

�0, and estimating an n-dimensional VAR of order q for
ût = [û1t; :::; ûnt]

0. Consider the V AR (1) representation for ut be ut =
P1
j=1Bjut�j+e

u
t ,

truncated at lag q as

ut =

qX
j=1

Bjut�j + e
u
t ; (34)

and let B (1) = 1 �
P1
j=1Bj ; by de�nition, B (1) = ��1 (1). Also, de�ne the bootstrap

counterpart to eut , e
u
t;b, and let B

�
j be some estimator of Bj ; thus, B

� (1) = 1 �
Pq
j=1B

�
j

is an estimator for B (1). The bootstrap sample ut;b can be generated using ut;b =Pq
j=1B

�
jut�j;b + e

u
t;b. No modi�cations are required to the algorithm in Section 3.1 when

generating Ft;b. It holds that:

Theorem 2 Let Assumptions 1-5 hold, and assume further that kB� (1)�B (1)k1 =

op (1). As (n; T )!1 with qn2 < T

1p
nT

nX
i=1

bTscX
t=1

uit;b
db! �vWv (s) ; (35)

1p
nT

nX
i=1

TX
t=1

F̂PCt;b uit;b
db! �vH

0
1H

0
Z
W"dWv; (36)
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in P , where Wv, W" and �v are de�ned in Proposition 1.

Theorem 2 contains joint asymptotics results. The distribution of n�1=2T�1=2
Pn
i=1PT

t=1 uit;b is, asymptotically, the same as the distribution of n
�1=2T�1=2

Pn
i=1

PT
t=1 vit.

However, when using the VAR approach, the number of parameters to be estimated is qn2,

whence the requirement that qn2 < T . This constraint on the relative speed of divergence

of n and T is stronger than the typical requirement that n
T ! 0. Indeed, in this context

'unT =
p
n; choosing (according to Assumption 5) q as n1=!, for some ! > 2, entails that

it must hold n2+1=!

T ! 0, which restricts the applicability of the VAR based approach.

Equation (35) could be generalised to study multiparameter partial sum processes such

as (nT )�1=2
Pbnpc
i=1

PbTsc
t=1 uit;b, with (p; s) 2 [0; 1] � [0; 1]. Having maxi;tE juit;bj2+� <

1 yields (nT )�1=2
Pbnpc
i=1

PbTsc
t=1 uit;b

d! �vW (p; s), where W (�; �) is a standard two-

dimensional Brownian sheet. This is a standard result in the random �elds literature

- see, inter alia, Bulinski and Shashkin (2006), and Rio (1993) for strong approximations.

Therefore, Lemma 1 is su¢ cient to prove a multiparameter IP for the partial sums of the

bootstrap sample uit;b. This could be useful when resampling across i as well as across t

(see e.g. Kapetanios, 2008, and Levina and Bickel, 2006), although this postulates the ex-

istence of some ordering among the units which is not always obvious - see also Goncalves

(2011).

Theorem 2 states that joint asymptotics can be derived for the bootstrap samples under

the same assumptions as univariate results, as long as there exists a consistent (in L1-norm)

estimator for B (1). Since B (1) is n�n (with n!1), Lemma 2 is not su¢ cient for this,

as it only grants element-wise consistency for B� (1). Although the details are in the proof,

here we give a preview of the rationale of the requirement that kB� (1)�B (1)k1 = op (1).

As an illustrative example, consider showing that (nT )�1=2
PbTsc
t=1

Pn
i=1 uit;b has the same

limiting distribution as (nT )�1=2
PbTsc
t=1

Pn
i=1 vit. Writing this in matrix form, a require-

ment for this is that (nT )�1=2
PbTsc
t=1 i0n [B

� (1)]�1 eut;b and (nT )
�1=2PbTsc

t=1 i0n [B (1)]
�1 evt

should have the same distribution, where evt is the idiosyncratic innovation of the vec-

tor [v1t; :::; vnt]
0. An IP holds for the partial sums of eut and e

u
t;b. Thus, following the

same lines as in the proof of Lemma 3, we need (nT )�1=2
PbTsc
t=1

Pn
j=1

Pn
i=1

n
[B� (1)]�1�

[B (1)]�1
o
ij
eujt;b = op (1), where fAgij denotes the element in position (i; j) of matrix A.
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Since eujt;b has �nite variance, it is su¢ cient that supj j
Pn
i=1

n
[B� (1)]�1 � [B (1)]�1

o
ij

����
= op (1), for which it is su¢ cient that

[B� (1)]�1 � [B (1)]�1
1
= op (1). This holds

if kB� (1)�B (1)k1 = op (1), since
[B� (1)]�1 � [B (1)]�1

1
�
��1 (1)

1

��1 (1)1
kB� (1)�B (1)k1 and

��1 (1)
1
and

��1 (1)1 are �nite by Assumption 1(iii).

In order to estimate B (1), consider (34). De�ning uqt =
�
u0t�1; :::; u

0
t�q
�0 and Bq =

[Bq;1j:::jBq;q], we have

ut = Bquqt + e
u
qt; (37)

Bq is estimated by

B̂q =

24 TX
t=q+1

ûtû
0
qt

3524 TX
t=q+1

ûqtû
0
qt

35�1 : (38)

Thus, B (1) can be estimated by \Bq (1) = 1 �
Pq
j=1 B̂q;j . Equation (38) requires the

inversion of an nq � nq matrix. Also, as pointed out above, it is also required that

qn2 < T .

We also consider an alternative estimator of B (1) which does not take into account

the cross sectional correlation among the uits. Consider the ̂q;js estimated from (12),

and let ~Bq;j an n � n diagonal matrix with the ̂(i)q;js on the main diagonal. We de�ne

B̂q (1) = 1�
Pq
j=1

~Bq;j , as an alternative estimator of B (1). In this case, no VAR is �tted

and thus the restriction that qn2 < T is not necessary.

It holds that:

Theorem 3 Let � = (�1; �2; :::; �n)
0, and let Assumptions 1-4 hold with k�k1 = Op (n).

Then

\Bq (1)�B (1)
1
= Op

 
q

r
log T

T

!
+Op

�
nq2C�1nT

�
+ o

�
q�s
�
+ op (1) : (39)

Assuming supj
P
i6=j j� ij j = O

�
n��

�
with � � 0, it holds that

B̂q (1)�B (1)
1
= Op

�
q

'unT

�
+Op

�
qn��

�
+ o

�
q�s
�
: (40)

Theorem 3 states that \Bq (1) is inconsistent in L1-norm. The term that determines

such inconsistency is the one of magnitude Op
�
nq2C�1nT

�
: by the de�nition of CnT =
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min f
p
n; Tg, as (n; T ) ! 1 it holds that nC�1nT ! 1, whence the inconsistency. This

term arises due to the presence of
h
�̂� � (H 0)�1

i
Ft in the ûits. This result, somewhat

constrained by the choice of the matrix norm, can be compared with the analysis in

Fan, Fan and Lv (2008). Theorem 3 is a result of independent interest, even outside the

context of bootstrap. As far as sieve bootstrap is concerned, the inconsistency of \Bq (1)

entails that an IP for uit;b cannot be proved - this can be viewed following the same lines

as in the proof of Lemma 3 (Trapani, 2012). This result holds in spite of Assumption

1(iii)(a), which limits the amount of cross dependence among the uits, and it could be

compared with the results in Chudik and Pesaran (2011), where an assumption similar

to 1(iii) is su¢ cient to ensure consistency of the estimated long run covariance matrix.

Other, residual-based estimators of the long run variance would similarly be a¤ected by

the presence of
h
�̂� � (H 0)�1

i
Ft. Intuitively, this result reinforces the well-known fact

that PC estimation can accommodate for weak cross dependence only.

Turning to B̂q (1), this is consistent when � > 0, as long as Assumption 5 is modi�ed

as q ! 1 with q = o
�
min

nq
T

log T ; n
�
o�
. In this case,

B̂q (1)�B (1)
1
= op (1), as

required by Theorem 2. The �rst term on the right hand side of (40) represents the rate

of convergence of the elements on the main diagonal of B̂q (1), as warranted by Lemma

2. The assumption that supi
P
j 6=i j� ij j = O

�
n��

�
poses a limitation on the amount

of cross dependence among the uits. Although some dependence is allowed for, this is

weaker than in a typical approximate factor model context (see e.g. Assumption C(1)

in Bai, 2004), where it su¢ ces to have n�1
Pn
i=1

Pn
j=1 j� ij j = O (1), which is entailed

by supi
Pn
j=1 j� ij j = O (1). Conversely, the assumption is more general than in classical

Principal Component Analysis, where � ij = 0 for all i 6= j. Thus, in essence (40) states

that neglecting cross dependence is harmless (and, in fact, advantageous over \Bq (1)), as

long as there is �very little� cross dependence. This result illustrates the fact that the

�classical�assumptions of Principal Component Analysis can be relaxed when n is large,

but only up to a certain extent. Note that, as long as supi
P
j 6=i j� ij j = O

�
n��

�
, any

consistent estimation technique (e.g. a nonparametric one) for the long run variances of

the uits would yield a consistent estimator for B (1).

Finally, we point out that, in order to take into account cross dependence, an alter-

native approach is to consider the case in which both I (1) and I (0) common factors are

19



present in the DGP of xit, viz.

xit = �
F 0
i Ft + �

G0
i Gt + uit; (41)

with Ft a k-dimensional nonstationary process, and Gt h-dimensional and stationary. This

approach helps to avoid the issues discussed above, and of course it is valid as long as cross

dependence among the uits genuinely arises from a common factor structure. In Trapani

(2012), some initial routes to the extension of sieve bootstrap to (41) are presented; in

particular, analogous results to Lemmas 1 and 2 are derived, from which results such as

Lemma 3 and Theorem 1 can be extended to this context. Whilst this goes beyond the

scope of this paper, we point out that the theory developed in this paper holds in presence

of stationary common factors such as in (41), and also in presence of deterministics such

as drifts in the DGP of Ft, with only minor modi�cations to the rates of convergence and

to the choice of the truncation lags in (11)-(12).

6 Simulation results

This section contains an investigation of the �nite sample performance of the bootstrap

using synthetic data. The experiments reported here are based on calculating con�dence

intervals for the common factors; in particular, we verify whether bootstrap con�dence

intervals are more accurate than the asymptotic ones.

Data are generated according to the following scheme, largely based on the setup in

Bai (2004, Section 6):

xit = �iFt + uit; (42)

where �i is generated as i.i.d. N (1; 1). Equation (42) is based on a single, nonstationary

factor Ft = Ft�1 + "t with

"t = �
""t�1 + w

F
t + #

"wFt�1;

and �" = f0; 0:5g and #" = f0; 0:5g. Results obtained using �" = f0; 0:5g and #" =

f0; 0:5;�0:5g look very similar for all combinations (�"; #"); thus, to save space we only

report empirical sizes calculated for (�"; #") = (0; 0); the full set of results is in Trapani
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(2012). The error term is generated as

uit = �
uuit�1 + w

u
t + #

uwut�1;

with �u = f0; 0:5g and #u = f0; 0:5;�0:5g; as above, results look similar across all combi-

nations of (�u; #u) and therefore we only report results for (�u; #u) 2 f(0; 0) ; (0:5; 0:5) ; (0;�0:5)g

to save space.3 All idiosyncratic innovations are generated as i.i.d. N (0; 1); when gen-

erating series, the �rst 1; 000 observations were discarded to avoid dependence on initial

conditions. The bandwidths qF and qu;i are been selected as min
�
n1=3; T 1=3

	
.

We evaluate the bootstrap approximation of con�dence intervals for Ft, using a �one

unit at a time�resampling scheme. In view of (25), we expect that, 95% of the times across

the Monte Carlo replications,
���F̂t �H 0Ft

��� � 1:96p
n
Ŝt, where Ŝ2t = V �1nT �̂tV

�1
nT . Indeed, by

calculating how many times
���F̂t �H 0Ft

��� > 1:96p
n
Ŝt, we get the empirical rejection frequency

of a test for the null that Ft is the true factor. We de�ne such empirical size as ERFt.

The bootstrap empirical size is computed as follows. For b = 1; :::;i iterations,

we generate Ft;b and compute F̂PCt;b as de�ned is Section 4.2. We de�ne the vectorh���(H 0
1)
�1
�
F̂PCt;1 �H 0

1Ft;1

���� ; :::; ���(H 0
1)
�1
�
F̂PCt;i �H 0

1Ft;i

����i0, withH1 de�ned in (21), and
calculate the rank of

���F̂t �H 0Ft

���, say r �F̂t�. If 1 � r(F̂t)
i+1 < 0:05, this corresponds to a

rejection of the null that Ft is the true factor. We de�ne the bootstrap empirical rejection

frequency as ERF �t . Ideally, both ERFt and ERF
�
t should be close to 5%, for each t.

We report the averages ERF = T�1
PT
t=1ERFt and ERF

� = T�1
PT
t=1ERF

�
t . All

experiments have been carried out with 1; 000 replications, and i = 199 bootstrap itera-

tions for each replication.

[Insert Table 1 somewhere here]

Table 1 shows that the asymptotic test is oversized, although this improves as (n; T )

- in particular T - increase. The bootstrap based test attains, with few exceptions, the

correct size: results are good even for very small sample sizes, as it can be noted from the

�gures in the panel corresponding to the case (n; T ) = (20; 20): bootstrap tests strongly

3The full set of result for all combinations of (�"; #") and (�u; #u) is reported in Trapani (2012).
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improve the performance of asymptotic tests. Similarly, the bootstrap is robust against

serial correlation in uit: results di¤er marginally across di¤erent combinations of (�u; #u).

This also includes the case of negative MA roots, which is understood to be usually prob-

lematic. The asymptotic test is more variable across combinations of (�u; #u), although

this is attenuated as n and T increase. The impact of serial dependence in "t is stronger,

particularly for small values of n and T : the panel corresponding to (n; T ) = (20; 20)

shows signi�cant di¤erences for all three tests across di¤erent values of (�"; #"). Finally,

we point out that other, unreported experiments were carried out using di¤erent rules to

choose the bandwidths; e.g. when using min
�
n2=5; T 2=5

	
, the results were only marginally

a¤ected by such choice. Similarly, the number of bootstrap repetitions i does not seem

to have an impact on the results either. These considerations provide some guidelines as

to how to implement bootstrap based tests.

7 Concluding remarks

This paper contains results on the validity of sieve bootstrap applied to large, nonstation-

ary panel factor series. Building on a similar research question as in Chang, Park and

Song (2006) in the context of cointegrated, �nite dimensional VARs, an IP is proved for

the bootstrap sample which, together with results on the consistent estimation of long run

variances and on the convergence to stochastic integrals of transformations of the boot-

strap sample, provides a formal justi�cation to the use of the bootstrap in the context

of panel factor series. Whilst the �rst results are only pointwise, in order to extend the

applicability of the sieve bootstrap, joint bootstrap asymptotics is also studied. In this

case, the �ndings are ambiguous: the presence of cross sectional dependence makes boot-

strapping invalid, unless cross dependence is very weak. Although this is a negative result,

it illustrates the pitfalls and limitations of bootstrapping panel factor models and, more

generally, of large panels with cross dependence. As an ancillary result, the paper contains

an investigation on the consistency in L1-norm of the estimated long run variance of panel

factor models, showing that, whilst element-wise consistency holds, matrix-type consis-

tency is in general hampered by the presence and the extent of cross dependence. These

results are of independent interest, and the issue remains as to the consistent estimation
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of large covariance matrices under general forms of cross dependence. A possible solution

is to allow for stationary factors, which may capture cross dependence; some initial results

are in the extended version of this paper (Trapani, 2012).

In addition to the extension of the results to a more general framework, we note that

the focus of this paper is on applying ordinary PC estimation to the bootstrap sample.

More e¢ cient estimation techniques could be employed; see e.g. the GLS-type estimators

proposed by Choi (2011; see also Choi, 2012). Extensions to this context can be directly

based on the theory developed in this paper: for example, the asymptotics of the GLS-type

estimators of Ft in Choi (2011) is based on very similar derivations as in the context of

ordinary PC. In that case, it can be expected that the bootstrap theory developed here

can be readily generalised. This issue is currently under investigation by the author.

Appendix: proofs and derivations

This Appendix contains the proofs of the main results in the paper (proofs or parts

thereof that are omitted can be found in Trapani, 2012). We start by reporting four

preliminary Lemmas:

Lemma A.1 Let Assumptions 1-4 hold. Then: (i) T�1
PT
t=1

�F̂t �H 0�Ft

2 =
Op
�
C�2nT

�
; (ii) T�1

PT
t=1

�
�F̂t �H 0�Ft

�0
�Ft = Op

�
T�1=2C�1nT

�
; (iii) T�1

PT
t=1

�
�F̂t

� H 0�Ft)
0 �F̂t = Op

�
n�1

�
+ Op

�
T�3=2

�
; (iv) T�1=2

PT
t=1

�
�F̂t �H 0�Ft

�
= Op

�
C�1nT

�
;

(v) T�1=2
PT
t=1

�
F̂t �H 0Ft

�
= Op

�
C�1nT

�
.

Lemma A.2 Let Assumptions 1-4 hold. Then, for some r � 2 such that E juitjr <1

and E
eFt r <1: (i) T�1PT

t=1

�F̂t �H 0�Ft

r = Op �C�rnT �; (ii) T�1PT
t=1

�F̂tr =
Op (1); (iii) T�1

PT
t=1 jûit � uitj

r = Op
�
��rnT
�
; (iv) T�1

PT
t=1 jûitj

r = Op (1).

Lemma A.3 Let Assumptions 1-4 hold. Then T�1
PT
t=1 û

2
it = T

�1PT
t=1 u

2
it+Op

�
C�1nT

�
+Op

�
C�2nT

�
.

Lemma A.4 Let Assumptions 1-5 hold. Then, for some r � 2 such that E juitjr <1

and E
eFt r <1: (i) T�1PT

t=1

F̂t;b �H 0
1Ft;b

r =Op �C�rnT �; (ii) T�1PT
t=1

�
F̂t;b �H 0

1Ft;b

�
F 0t;b

=Op
�
C�1nT

�
; (iii) T�1

PT
t=1

�
F̂t;b �H 0

1Ft;b

�
F̂ 0t;b =Op

�
C�1nT

�
; (iv) F̂t;b�H 0

1Ft;b =Op
�
n�1=2

�
+ Op

�
T�3=2

�
; (v) T�1

PT
t=1

�F̂t;b �H 0
1Ft;b

�
F̂ 0t;b

r = op (1).
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Proof of Proposition 1. Consider (6). It holds that

1p
T

bTscX
t=1

264 �F̂t
uit

375 = 1p
T

bTscX
t=1

264 H 0�Ft

uit

375+ 1p
T

bTscX
t=1

264 �F̂t �H 0�Ft

0

375 = I + II:
Term I converges weakly to a Brownian motion - see Phillips and Solo (1992). As regards

II, it is op (1) by Lemma A.4(iv), which proves (6). The limit of T�1=2
PbTsc
t=1 vit follows

from T�1=2
PbTsc
t=1 vit = T�1=2

PbTsc
t=1 uit + �0i (H

0)�1 T�1=2
PbTsc
t=1

�
H 0Ft � F̂t

�
; applying

Lemma A.1(iv) yields the desired result.

We now turn to proving equation (7). We have T�2
PT
t=1 F̂tF̂

0
t =H

0
�
T�2

PT
t=1 FtF

0
t

�
H

+H 0
�
T�2

PT
t=1 Ft

�
F̂t �H 0Ft

�0�
+
h
T�2

PT
t=1

�
F̂t �H 0Ft

�
F 0t

i
H+ T�2

PT
t=1

�
F̂t �H 0Ft

�
�
F̂t �H 0Ft

�0
= I + II + III + IV . Term I converges to H 0 �R W"W

0
"

�
H by Assumption

2. As regards II and III, using Lemma B.4 in Bai (2004, p. 171), II = Op
�
T�1C�1nT

�
and similarly III. Lemma in B.1 Bai (2004, p. 167) also entails that IV = Op

�
T�1C�2nT

�
.

Turning to the proof of equation (8), T�1
PT
t=1 F̂tuit =H

0
�
T�1

PT
t=1 Ftuit

�
+ T�1

PT
t=1�

F̂t �H 0Ft
�
uit = I + II. Convergence of I to H 0 R W"dWu;i is a standard result in the

theory of convergence to stochastic integrals (see e.g. Phillips, 1988). As regards II,

II �
�
T�1

PT
t=1

F̂t �H 0Ft

2�1=2 hT�1PT
t=1 u

2
it

i1=2
= Op

�
C�1nT

�
Op (1), which is negligi-

ble. This proves (8). The limit of T�1
PT
t=1 F̂tvit follows from noting that T�1

PT
t=1 F̂tvit

= T�1
PT
t=1 F̂tuit + �

0
i (H

0)�1 T�1
PT
t=1 F̂t

�
H 0Ft � F̂t

�
, where the last term is Op

�
C�1nT

�
from Lemma B.4 in Bai (2004).

We now prove (9). Let the martingale approximation of uit (derived from the Beveridge-

Nelson decomposition, BN henceforth) be u�it. This is a martingale di¤erence sequence

(MDS) with variance �2u;i; it holds that

1p
nT

nX
i=1

TX
t=1

uit =
1p
nT

nX
i=1

TX
t=1

u�it +
1p
nT

nX
i=1

TX
t=1

Ru;it = I + II;

where Ru;it is de�ned as u�it � uit. Standard panel asymptotics (Phillips and Moon,

1999) yields II = Op
�p

n
T

�
. As regards I, de�ne �nt = n�1=2

Pn
i=1 u

�
it; this is an MDS

for all n. Also, consider E j�ntj2+�. By virtue of Assumption 1(iii)(c), E j�ntj2+� �
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Mn�
2+�
2 E

���Pn
i=1 ju�itj

2
��� 2+�2 . Thus

E j�ntj2+� �M 0n�
2+�
2 E

������
 

nX
i=1

ju�itj
2+�

! 2
2+�

n1�
2

2+�

������
2+�
2

�M 00 1

n

nX
i=1

E ju�itj
2+� ; (43)

where the �rst passage is based on Holder�s inequality and the second one follows by

the Cr-inequality and convexity. Given that maxiE ju�itj
2+� < 1 in view of Lemma 1,

E j�ntj2+� <1 uniformly in n. This entails that an IP for MDS (see e.g. Theorem 4.1 in

Hall and Heyde, 1980) can be applied: T�1=2
PbTsc
t=1 �nt converges to a Brownian motion

with variance

lim
(n;T )!1

E
�
�2nt
�
= lim
(n;T )!1

1

nT

nX
i=1

nX
j=1

TX
t=1

E
�
u�itu

�
jt

�
= lim
n!1

i0n� (1)�u�
0 (1) in

n
= �2u;

where the last equality holds by de�nition of �2u; Assumption 1(iii)(a) ensures that �
2
u <

1. The limit of 1p
nT

Pn
i=1

PT
t=1 vit follows from similar passages - see Trapani (2012).

Finally, we report the proof of (10). We have 1p
nT

Pn
i=1

PT
t=1 F̂tuit =

1p
nT

Pn
i=1

PT
t=1H

0Ftuit

+ 1
T

PT
t=1

�
F̂t �H 0Ft

� �
1p
n

Pn
i=1 uit

�
= I + II. Using the Cauchy-Schwartz inequality,

II �
�
1
T

PT
t=1

F̂t �H 0Ft

2�1=2 � 1T PT
t=1

�
1p
n

Pn
i=1 uit

�2�1=2
, which is Op

�
C�1nT

�
in view

of Lemma B.1 in Bai (2004). As regards I, let the martingale approximation to Ft be F �t .

Then

1p
nT

nX
i=1

TX
t=1

Ftuit =
1

T

TX
t=1

F �t

 
1p
n

nX
i=1

u�it

!
+

1p
nT

nX
i=1

TX
t=1

Rit

=
1

T

TX
t=1

F �t �nt +
1p
nT

nX
i=1

TX
t=1

Rit = Ia + Ib;

where Rit = F �t u
�
it � Ftuit. As shown above, an IP holds for T�1=2

PbTsc
t=1 �nt and for

T�1=2F �t ; also, �nt and F
�
t are independent for all n in light of Assumption 4(i). Thus Ia

d! �u
R
W"dWu - see Phillips (1988). Finally, from Phillips and Moon (1999), it can be

proved that Ib = Op
�p

n
T

�
. Putting all together, (10) follows as (n; T )!1 with n

T ! 0.

The proof of the limit of 1p
nT

Pn
i=1

PT
t=1 F̂tvit follows from similar arguments.

Proof of Lemma 1. We suppress the subscripts in qF and qu;i when no ambiguity
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arises, and we let �r�denote �8 + ��for short. Consider (14); recall (11) and

�F̂t =

qX
j=1

�̂q;j�F̂t�j + ê
F
t;q; (44)

�Ft =
1X
j=1

�j�Ft�j + e
F
t : (45)

Using the de�nition of
n
eFt;b

oT
t=1
,

Eb
eFt;br =

1

T

TX
t=1

"
êFt;q �

1

T

TX
t=1

êFt;q

#r

� kHkr 1
T

TX
t=1

eFt r + kHkr 1T
TX
t=1

eFt;q � eFt r + 1

T

TX
t=1

êFt;q �H 0eFt;q
r +  1T

TX
t=1

êFt;q


r

= I + II + III + IV:

Assumptions 2 and 3 entail that kHkr = Op (1). Consider I; Assumption 2(i) and the Law

of Large Numbers (LLN) ensure that 1
T

PT
t=1

eFt r p! E
eFt r < 1. As regardsII, it

holds that eFt;q� eFt =
P1
j=q+1 �j�Ft�j ; thus, Minkowski�s inequality and the stationarity

of �Ft yield T�1
PT
t=1

eFt;q � eFt r = T�1PT
t=1

P1
j=q+1 �j�Ft�j

r � T�1PT
t=1 k�Ftk

r�P1
j=q+1 k�jk

�r
. Assumption 1(ii) entails that

P1
j=q+1 k�jk = o (q�s); by Assumption

2(i), T�1
PT
t=1 k�Ftk

r = Op (1). Thus, II = op (q
�rs). As regards III, êFt;q � H 0eFt;q =Pq

j=0H
0�q;j (H 0)�1

�
�F̂t�j � H 0�Ft�j) �

Pq
j=1

h
�̂q;j �H 0�q;j (H 0)�1

i
�F̂t�j , where

�q;0 = �1. Hence

III � 1

T

TX
t=1

8<:

qX
j=0

H 0�q;j
�
H 0��1 ��F̂t�j �H 0�Ft�j

�
r

+


qX
j=1

h
�̂q;j �H 0�q;j

�
H 0��1i�F̂t�j


r9=; :

Using Minkowski�s inequality, the former term is bounded byMT�1
PT
t=1

�F̂t ��Ftr �Pq
j=0 k�q;jk

�r
,

with
Pq
j=0 k�q;jk �

P1
j=0 k�jk = O (1). Also, T�1

PT
t=1

�F̂t �H 0�Ft

r = Op
�
C�rnT

�
according to Lemma A.2(i). Thus, the former term is of magnitude Op

�
C�rnT

�
. As re-

gards the latter, it is bounded by T�1
PT
t=1

�F̂tr �Pq
j=0

�̂q;j �H 0�q;j (H 0)�1
�r.

Lemma A.2 ensures T�1
PT
t=1

�F̂tr = Op (1). Also,
Pq
j=0

�̂q;j �H 0�q;j (H 0)�1
 �

qmax1�j�q

�̂q;j �H 0�q;j (H 0)�1
, and Lemma 2 yields hqmax1�j�q �̂q;j �H 0�q;j (H 0)�1

ir
= Op

h
qrT�r=2 (log T )r=2 +qrn�r]+op (1). Thus, III = Op

�
C�rnT

�
+ Op

h�
q
'FnT

�ri
. Finally,
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consider IV ; we have êFt;q = �
Pq
j=0 �̂q;j�F̂t�j with �̂q;0 = �1. Thus

� 1
T

TX
t=1

êFt;q =

qX
j=0

H 0�q;j
�
H 0��1 1

T

TX
t=1

�F̂t�j

!
+

qX
j=0

h
�̂q;j �H 0�q;j

�
H 0��1i 1

T

TX
t=1

�F̂t�j

!
= IVa+IVb:

Since T�1
PT
t=1�F̂t�j = T

�1H 0PT
t=1�Ft�j+T

�1PT
t=1

�
�F̂t�j �H 0�Ft�j

�
= Op

�
T�1=2

�
+

op
�
T�1=2

�
for all js

IVa �M

0@ qX
j=0

k�q;jk2
1A1=20@ qX

j=0

 1T
TX
t=1

�F̂t�j


2
1A1=2 � O (1)

24q max
1�j�q

 1T
TX
t=1

�F̂t�j


2
351=2 = Op�r q

T

�
;

also, IVb �
�Pq

j=0

�̂q;j �H 0�q;j (H 0)�1
2�1=2 �Pq

j=0

 1T PT
t=1�F̂t�j

2�1=2 � (qmax1�j�q�̂q;j �H 0�q;j (H 0)�1
2�1=2 Op �q q

T

�
, and thus it is dominated. By Lemma 2,max1�j�q k�̂q;j

� H 0�q;j (H 0)�1
2 = Op � 1

'FnT

�
+ Op

�
n�3=2T�1=2

�
. Hence, IV = Op

�
qr=2T�r=2

�
. Com-

bining all these results

Eb
eFt;br = E eFt r+Op �q�rs�+Op �C�rnT �+Op �� q

'FnT

�r�
+op (1) = E

eFt r+op (1) ;
thus Assumption 5 ensures Eb

eFt;br = E eFt r + op (1). Also
T 1�

1
2
rEb

eFt;br = Op

�
T 1�

1
2
r
�
+Op

�
T 1�

1
2
rq�rs

�
+Op

�
T 1�

1
2
r

�
q

'FnT

�r�
+

Op

�
T 1�

1
2
rC�rnT

�
+Op

�
T 1�rq

1
2
r
�
+ op (1) :

This proves (14). The proof of (15) is in Trapani (2012).

Proof of Lemma 2. For the sake of simplicity, the proof is reported for k = 1, and

suppressing the subscripts in qF and qu;i whenever possible. Passages are similar to the

proof of Lemma A.1 in Chang, Park and Song (2006). Consider (16). Recall (11), (44)

and (45), and let

�Ft =

qX
j=1

~�q;j�Ft�j + ~e
F
t;q;

which is the �tted version of (11). It holds thatmax1�j�q
����̂q;j �H 0�j (H 0)�1

��� �max1�j�q����̂q;j �H 0~�q;j (H 0)�1
���+max1�j�q ���H 0 (~�q;j � �q;j) (H 0)�1

���+max1�j�q ���H 0 (�q;j � �j) (H 0)�1
���
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= I + II + III. As regards II, Assumptions 1(ii) and 2(ii) yield max1�j�q j�q;j � �j j �Pq
j=1 j�q;j � �j j = o (q�s) - see e.g. Theorem 2.1 in Hannan and Kavalieris (1986). Turn-

ing to III, Theorem 2.1 in Hannan and Kavalieris (1986) yields III = Op
�p

log T=T
�
.

We now show that I = Op
�
T�1=2C�1nT

�
+Op

�
C�2nT

�
. This is based on adapting the proof

of Lemma A.1 in Chang, Park and Song (2006): it su¢ ces to show that max1�i;j�q���T�1PT
t=maxfi;jg�F̂t�i�F̂

0
t�j � T�1

PT
t=maxfi;jgH

0�Ft�i�F 0t�jH
���=Op �T�1=2C�1nT �+Op �C�2nT �.

Since

1

T

TX
t=maxfi;jg

�F̂t�i�F̂
0
t�j �

1

T

TX
t=maxfi;jg

H 0�Ft�i�F
0
t�jH

=
1

T

TX
t=maxfi;jg

�
�F̂t�i �H 0�Ft�i

�
�F 0t�jH +

1

T

TX
t=maxfi;jg

H 0�Ft�i
�
�F̂t�j �H 0�Ft�j

�0
+
1

T

TX
t=maxfi;jg

�
�F̂t�i �H 0�Ft�i

��
�F̂t�j �H 0�Ft�j

�0
= Ia + Ib + Ic:

Using Lemma A.1(ii), Ia and Ib are of magnitude Op
�
T�1=2C�1nT

�
; Lemma A.1(iii) entails

that Ic = Op
�
C�2nT

�
. Putting all together,max1�j�q

����̂q;j �H 0�j (H 0)�1
��� =Op �plog T=T�

+Op
�
T�1=2C�1nT

�
+ Op

�
T�3=2

�
+ o (q�s). The proof of (17) follows similar lines, and it is

in Trapani (2012).

Proof of Theorem 1. The proof is similar to the proof of Lemma 3.4 in Chang,

Park and Song (2006); thus, some passages are omitted. Consider (18), and assume, for

simplicity, that F0;b = 0. Letting W (b)
";nT (s) = T�1=2

PbTsc
t=1 �Ft;b, Lemma 3 states that,

as (n; T ) ! 1, W (b)
";nT (s)

d�! W" (s). Thence, T�2
PT
t=1 Ft;bF

0
t;b =

db

R
W
(b)
";nT (s)W

(b)
";nT (s)

0

+ T�2
PT
t=1 FT;bF

0
T;b, and T

�1=2FT;b = op (1), which proves (18). As regards (19), de�ne

the martingale approximations to Ft;b and uit;b as F �t;b and u
�
it;b; also, let �F t;b and �uit;b

be the �rst k and the last element of ��it;b respectively. Then

1

T

TX
t=1

Ft;buit;b =
1

T

TX
t=1

F �t;bu
�
it;b +

1

T

TX
t=1

�Ft;b�uit;b �
1

T
FT;b�uiT;b (46)

+
1

T
�F 0;b

TX
t=1

u�it;b �
1

T

TX
t=1

�F t�1;bu
�
it;b = I + II + III + IV + V:

It holds straightforwardly that III+IV+V = Op
�
T�1=2

�
; also, II �

h
T�1

PT
t=1 k�Ft;bk

2
i1=2
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h
T�1

PT
t=1 k�uit;bk

2
i1=2

= Op (1) op
�
T�1=2

�
, using the strong approximation for the boot-

strap sample in Lemma 3 for r > 3. Thus, T�1
PT
t=1 Ft;buit;b = T�1

PT
t=1 F

�
t;bu

�
it;b +

op (1). The convergence of T�1
PT
t=1 F

�
t;bu

�
it;b to

R
W"dWu;i follows from Lemma 3 (see e.g.

Phillips, 1988).

Proof of Proposition 2. The proof of equation (23) is similar to the proof of

Theorem 3 in Bai (2004); thus, we report only the main passages. We have

T
h
�̂
PC

i;b �H�1
1 �̂i

i
=

"
1

T 2

TX
t=1

F̂PCt;b F̂
PC0
t;b

#�1
�
"
1

T

TX
t=1

F̂PCt;b uit;b (47)

+
1

T

TX
t=1

F̂PCt;b

�
F̂PCt;b �H 0

1Ft;b

�0
H�1
1 �̂i

#
:

Consider the denominator. Using Lemma A.4, T�2
PT
t=1 F̂

PC
t;b F̂

PC0
t;b = H 0

1
1
T 2
PT
t=1 Ft;bF

0
t;b

H1 +Op
�
C�1nT

�
. In view of (18), we have T�2

PT
t=1

PT
t=1 F̂

PC
t;b F̂

PC0
t;b

db!H 0
1

�
H 0 �R W"W

0
"

�
H
�
H1

in P . Turning to the numerator, Lemma A.4(iii) yields T�1
PT
t=1 F̂

PC
t;b

�
F̂PCt;b �H 0

1Ft;b

�0
H�1
1 �̂i =Op

�
C�1nT

�
. Also, T�1

PT
t=1 F̂

PC
t;b uit;b =H

0
1T

�1PT
t=1 Ft;buit;b + T

�1PT
t=1

�
F̂PCt;b �H 0

1Ft;b

�
uit;b = I+II. As regards II, it is bounded by

�
T�1

PT
t=1

F̂PCt;b �H 0
1Ft;b

2�1=2 hT�1PT
t=1 u

2
it;b

i1=2
;

using Lemma A.4(i), and by virtue of Lemma 1, II = Op
�
C�1nT

�
. Equation (19) entails I

db! H 0
1H

0 R W"dWu;i in P . Equation (23) follows by the CMT.

Turning to (24), from (47)

T h�̂PCi;b �H�1
1 �̂i

i2+� �
p
k


"
1

T 2

TX
t=1

F̂PCt;b F̂
PC0
t;b

#�1
2+�

1

�

24 1T
TX
t=1

F̂PCt;b uit;b


2+�

+

 1T
TX
t=1

F̂PCt;b

�
F̂PCt;b �H 0

1Ft;b

�0
H�1
1 �̂i


2+�
35 :

Consider the denominator. By symmetry,

�T�2PT
t=1 F̂

PC
t;b F̂

PC0
t;b

��1
1

= `�1min

�
T�2

PT
t=1 F̂

PC
t;b F̂

PC0
t;b

�
,

where `min (�) denotes the smallest eigenvalue. Equation (27) and Theorem 1 ensure that,

for su¢ ciently large n and T , T�2
PT
t=1 F̂

PC
t;b F̂

PC0
t;b = H 0

1

�
T�2

PT
t=1 F̂tF̂

0
t

�
H1 + op (1).

The matrix H1 is invertible; also,
�
T�2

PT
t=1 F̂tF̂

0
t

�
is invertible and (conditionally on the

sample) non stochastic. Hence,

�T�2PT
t=1 F̂

PC
t;b F̂

PC0
t;b

��12+�
1

is bounded with probabil-

29



ity 1. Thus T h�̂PCi;b � �̂ii2+� �M

 
T�1

TX
t=1

F̂PCt;b uit;b

!
2+�

(48)

+M

T�1
TX
t=1

F̂PCt;b

�
F̂PCt;b �H 0

1Ft;b

�0
H�1
1 �̂i


2+�

= I + II:

Consider I. We have
T�1PT

t=1 F̂
PC
t;b uit;b

2+� � kH 0
1k
T�1PT

t=1 Ft;buit;b

2+� + T�1PT
t=1�

F̂PCt;b �H 0
1Ft;b

�
uit;bk2+� = Ia + Ib. We now show that the expectation of Ia is Op (1);

denote the martingale approximations of Ft;b and uit;b as F �t;b and u
�
it;b. The integrability of

F �t;bu
�
it;b � Ft;buit;b follows from Lemma 1. Thus, it su¢ ces to show T�(2+�)Eb

PT
t=1 F

�
t;bu

�
it;b

2+� <
1. Since F �t;bu

�
it;b is an MDS, Burkholder�s inequality yields E

b
PT

t=1 F
�
t;bu

�
it;b

2+� �
Eb
����PT

t=1

F �t;bu�it;b2���� 2+�2 . By Holder�s inequality, Eb ����PT
t=1

F �t;bu�it;b2���� 2+�2 � Eb
����PT

t=1F �t;bu�it;b2+�� 2
2+�

T 1�
2

2+�

��� 2+�2 . Finally, by the Cr and Jensen�s inequalities, T�(2+�) EbPT
t=1 F

�
t;bu

�
it;b

2+� � T�1�
2+�
2
PT
t=1 E

b
F �t;bu�it;b2+�. Using the Cauchy-Schwartz in-

equality, this is bounded by T�
2+�
2
PT
t=1

�
Eb
F �t;b4+2��1=2 �Eb ���u�it;b���4+2��1=2, which

is bounded by T�1�
2+�
2
PT
t=1

�
Eb
F �t;b4+2��1=2 in view of (15) in Lemma 1. Consider

now Ib; it holds that Ib �
h
T�1

PT
t=1

F̂PCt;b �H 0
1Ft;b

2�(2+�)=2 hT�1PT
t=1 u

2
it;b

i(2+�)=2
.

By the Cauchy-Schwartz inequality, the expected value of Ib is bounded by the square root

of Eb
h
T�1

PT
t=1

F̂PCt;b �H 0
1Ft;b

2�(2+�) Eb �T�1 PT
t=1 u

2
it;b

i(2+�)
. By convexity, this is

bounded by T�1
PT
t=1 E

b
F̂PCt;b �H 0

1Ft;b

4+2� � T�1 PT
t=1 E

b juit;bj4+2�. Lemmas A.4(i)

and 1 entail that this is op (1). Finally, consider II in (48); this is bounded by
H�1

1

2+��̂i2+� T�1PT
t=1

F̂PCt;b �F̂PCt;b �H 0
1Ft;b

�2+�. Both H1 and �̂i are non stochastic condi-
tional on the sample; further, H1 is invertible. Thus, the expectation of II is bounded by

Eb
F̂PCt;b �F̂PCt;b �H 0

1Ft;b

�2+�; this is op (1) by Lemma A.4(v). Putting all together, (24)
follows.

Proof of Proposition 3. The proof of (27) is very similar to the proof of Theorem

2 in Bai (2004, p. 171) and therefore only the main passages are reported. In light of

Lemma A.4(iv), under n
T 3
! 0,

p
n
h
F̂PCt;b �H 0

1Ft;b

i
= 1p

nT 2

�
V bnT

��1 PT
s=1 F̂s;bF

0
s;b�̂

0ut;b
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+op (1). It holds that

1p
nT 2

�
V bnT

��1 TX
s=1

F̂s;bF
0
s;b�̂

0ut;b =
�
V bnT

��1 1

T 2

TX
s=1

F̂s;bF
0
s;b

!
1p
n

nX
i=1

�̂iuit;b

=
�
V bnT

��1 1

T 2

TX
s=1

F̂s;bF
0
s;b

! 
1

n

nX
i=1

�̂i�̂
0
i

! 
1

n

nX
i=1

�̂i�̂
0
i

!�1
1p
n

nX
i=1

�̂iuit;b

= H 0
1

h
H�1��

�
H 0��1i�1H�1N [0;�t] + op (1) ;

Turning to (28), based on Bai (2004, p. 167), we have

pn hF̂PCt;b �H 0
1Ft;b

i2+� �
 1p
nT 2

�
V bnT

��1 TX
s=1

F̂s;bF
0
s;b�̂

0ut;b


2+�
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p
n

T 2

TX
s=1

F̂s;bs�t;b


2+�

(49)

+


p
n

T 2

TX
s=1

F̂s;b

 
u0s;but;b

n
� s�t;b

!
2+�

+


p
n

T 2

TX
s=1

F̂s;bF
0
t;b�̂

0us;b


2+�

= I + II + III + IV;

where s�t;b = E
�
n�1u0s;but;b

�
. Consider I; by de�nition ofH1, 1p

nT 2

�
V bnT

��1PT
s=1 F̂s;bF

0
s;b�̂

0ut;b

= H 0
1

�
n�1

Pn
i=1 �̂i�̂

0
i

� �
n�1=2

Pn
i=1 �̂iuit;b

�
. By construction, n�1

Pn
i=1 �̂i�̂

0
i is diagonal,

invertible, and non stochastic conditional on the sample. Thus,

h 1nPn
i=1 �̂i�̂

0
i

i�12+�
1

is bounded and it su¢ ces to study Eb
 1p

n

Pn
i=1 �̂iuit;b

2+�. By applying: Burkholder�s,
Holder�s, Cr, and Jensen�s inequalities, Eb

 1p
n

Pn
i=1 �̂iuit;b

2+� � 1
n

Pn
i=1E

b
�̂iuit;b2+�

� maxi

�̂i2+� maxiEb juit;bj2+�, since �̂i is non stochastic with respect to the boot-
strap sample. Thus, by Lemma 1, Eb

 1p
n

Pn
i=1 �̂iuit;b

2+� = Op (1). Turning to II in

(49), II �
pnT 2 PT

s=1H
0
1Fs;bs�t;b

2+� + pnT 2 PT
s=1

�
F̂s;b �H 0

1Fs;b

�
s�t;b

2+� = IIa+IIb.
Consider IIa (we omit H1). We have Eb (IIa) � n1+�=2

T 3+�
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s=1E

b
�
kFs;bk2+�

��s�t;b��2+��
� n1+�=2

T 3+�
maxsE

b kFs;bk2+�
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s=1

��s�t;b��2+�. Since the s�t;bs are summable, and since
maxsE

b kFs;bk2+� = Op
�
T 1+�=2

�
, we have Eb (IIa) = Op

�
n1+�=2

T 2+�=2

�
. Turning to IIb, after

some passages we have Eb (IIb)� n1+�=2

T 5=2+�

�
1
T

PT
s=1E

b
F̂s;b �H 0

1Fs;b

4+2��1=2 hPT
s=1

��s�t;b��4+2�i1=2,
which is op (1) by Lemma A.4(i) and the summability of the s�t;bs. Consider III in (49);

letting �st;b =
u0s;but;b
n � s�t;b, III �

T�2PT
s=1 H 0

1Fs;b
�p
n�st;b

�2+� + T�2PT
s=1�

F̂s;b �H 0
1Fs;b

� �p
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�2+� = IIIa + IIIb. As regards IIIa, note that (omitting

H1) IIIa � T�(3+�)
PT
s=1 kFs;bk

2+�
��pn�st;b��2+�. Its expectation is bounded by T�(3+�)

31



maxsE
b kFs;bk2+�
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b
��pn�st;b��2+�. We have maxsEb kFs;bk2+� = Op �T 1+�=2�; also,

similar passages as above, yield Eb
��pn�st;b��2+� = Op (1). Thus, Eb (IIIa) = op (1). As re-

gards IIIb, by the Cauchy-Schwartz inequality IIIb � T�(3+�)
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s=1

�
Eb
F̂s;b �H 0

1Fs;b

4+2��1=2h
Eb
��pn�st;b��4+2�i1=2. Again, similar passages as above yield Eb ��pn�st;b��4+2� = Op (1);

by Lemma A.4(i), Eb (IIIa) = op (1). Finally, we turn to IV in (49). We have IV �T�2PT
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0
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n
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0
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h
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0
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2+�,
with maxsEb kFs;bk2+� = Op

�
T 1+�=2

�
. Also, Eb
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0
iuis;b

2+� �
T�(3+�)

PT
s=1

h
Eb kFs;bk4+2�
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0
iuis;b

���4+2��1=2. This is Op �T�1��=2� be-
cause Eb

��� 1pnPn
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0
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���4+2� is bounded as shown above, and hEb kFs;bk4+2�i1=2 =
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�
s1+�=2

�
. Thus, Eb (IVa) = Op (1). That Eb (IVb) = op (1) can be shown from the

same passages as above and Lemma A.4(i). Putting all together, (28) follows.

Proof of Proposition 4. Consider the case n
T ! 0. We have

p
n
�
ĈPCit;b � Ĉit

�
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0
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�
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= I + II + III:

Using Propositions 2 and 3, II = Op
�
T�1

�
. Also, F̂PCt;b = Op

�p
T
�
by construction,

whence III = Op

�p
T
� p

nOp
�
T�1

�
= op (1). Turning to I, Proposition 3 entails that

I
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0�� �N (0;�t) in P . As Tn ! 0, it holds that
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0
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�
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�
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�
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�
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1 �̂i

�i
= I + II + III + IV:

Proposition 3 entails that I = op (1); also, in view of Propositions 2 and 3, III and IV

are both op (1). The asymptotics is driven by II; the IP entails T�1=2Ft = Op (1) and
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T�1=2Ft
d!W" (s). By Proposition 2, II

db!W 0
" (s)HH1H

�1
1

h
H�1 �R W"W

0
"

��1 �R
W"dWu;i

�i
in P . Hence, equation (32) follows; (33) follows from (24) and (28).

Proof of Theorem 2. Consider (35). The term (nT )�1=2
Pn
i=1

PbTsc
t=1 uit;b can be

decomposed as

1p
nT

bTscX
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Rub;it = I+II+III;

where ��� denotes the martingale approximation, �� (1) = [B� (1)]�1 and Rub;it is the

remainder in the BN decomposition. Consider I, and de�ne �nt;b = n
�1=2 i0n� (1) e

�u
t;b. By

construction, �nt;b is an MDS. We now show that a Lyapunov condition holds; unlike in

the proof of (9), where it follows from high-level assumptions, we show this directly. We

have Eb
���nt;b��2+� � k� (1)k2+�1 Eb

���n�1=2i0ne�ut;b���2+�, and in view of Assumption 1(iii)(a),
Eb
���nt;b��2+� � M Eb
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Eb
���n�1=2i0ne�ut;b���2+� � 1

T

TX
t=1

E

����� 1pn
nX
i=1

e�uit

�����
2+�

+
1

T

TX
t=1

E

����� 1pn
nX
i=1

�
e�uit;q � e�uit

������
2+�

+
1

T

TX
t=1

E
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In Trapani (2012), it is shown that Ia = Op (1) and Ib = op (q�rs). Consider Ic
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It holds that Ic;1 � T�1
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the passages thereafter. Thus, Ic;3 = op (1). Putting all together, Ic is bounded. The proof

for Id follows from similar passages as above, and is therefore omitted. Thus, E
���nt;b��2+�

is bounded uniformly in n. Therefore, an IP for MDS holds: I db! W�;b (s). Prior to

calculating the variance of W�;b (s), we show that II and III are negligible. Consider II.
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n

Pn
i=1

Pn
j=1 E

�
~�ibTsc~�jbTsc

�
= op (1) as (n; T )!1. Since

lim
n;T!1

1

n

nX
i=1

nX
j=1

E
�
~�ibTsc~�jbTsc

�
(50)

� sup
j

"
nX
i=1

f�� (1)� � (1)gij

#2 24 lim
n;T!1

1

nT

bTscX
t=1

nX
i=1

nX
j=1

E
�
e�uit;be

�u
jt;b

�35
� M sup

j

"
nX
i=1

���f�� (1)� � (1)gij���
#2
;

where the last inequality comes from Assumption 1 - note that this holds uniformly

in s. Thus, a su¢ cient condition for limn;T!1 1
n

Pn
i=1

Pn
j=1 E

�
~�ibTsc~�jbTsc

�
= op (1)

is that supj
Pn
i=1 jf�� (1) �� (1)gij

��� = op (1), which, by de�nition, is equivalent to

k�� (1)� � (1)k1 = op (1). Recall � (1) = [B (1)]
�1 and �� (1) = [B� (1)]�1; using Taylor�s

expansion

[B� (1)]�1 � [B (1)]�1
1
=

��1 (1) [B� (1)�B (1)] ��0 (1)��1
1

�
��1 (1)

1

��1 (1)1 k[B� (1)�B (1)]k1
= Op (1)Op (1) op (1) = op (1) ;

by Assumption 1(iii) and from assuming k[B� (1)�B (1)]k1 = op (1). Thus, II is negligi-

ble. Finally, III = Op
�p

n
T

�
, which is negligible (Phillips and Moon, 1999). Finally, we

calculate the variance of W�;b (s), showing that it is equal to �2v. The variance is given

by Eb
h
n�1=2i0nu

�
it;b

i2
= T�1

PT
t=1E

�
n�1=2i0nû

�
it

�2
. Writing û�it = u�it + �0iF

�
t � �̂

0
iF̂
�
t =

v�it �
�
�̂i �H�1�i

�0
F̂ �t + Op

�p
n
T 3

�
, where the superscript ���denotes the martingale
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approximation and the term Op
�p

n
T 3

�
comes from Theorem 2 in Bai (2004), we have

Eb
h
n�1=2i0nu

�
it;b

i2
=

1

nT

nX
i=1

nX
j=1

TX
t=1

E
�
v�itv

�
jt

�
+ E

24 1
n

nX
i=1

nX
j=1

�
�̂i �H�1�i

�0 1
T

TX
t=1

F̂ �t F̂
�0
t

!�
�̂j �H�1�j

�35
�2 1
n

nX
i=1

nX
j=1

E

"�
�̂i �H�1�i

�0 1
T

TX
t=1

F̂ �t v
�
jt

!#
+ op (1) =

1

nT

nX
i=1

nX
j=1

TX
t=1

E
�
v�itv

�
jt

�
+ I + II + op (1) ;

where the op (1) term represents the contribution from the Op
�p

n
T 3

�
in the expansion of

û�it. As regards I, it is bounded by nT maxi

�
E
�̂i �H�1�i

4�1=2 �E  1
T 2
PT
t=1 F

�
t F

�0
t

2�1=2;
recalling that �̂i � H�1�i = Op

�
T�1

�
and that

PT
t=1 F

�
t F

�0
t = Op

�
T 2
�
, this is of or-

der O
�
n
T

�
. Turning to II, 1

T

PT
t=1 F̂

�
t v
�
jt is Op (1) for each j due to standard argu-

ments in the theory of convergence to stochastic integrals. Given that II � n maxi�
E
�̂i �H�1�i

2�1=2 �E  1T PT
t=1 F̂

�
t v
�
jt

2�1=2, which is again O � nT �; this is not the
sharpest bound, but it su¢ ces for our purposes. Putting all together, Eb

h
n�1=2i0nu

�
it;b

i2
=

�2v, whence (35) follows. The proof of (36) is in Trapani (2012).

Proof of Theorem 3. Consider equation (39); note that
\Bq (1)�B (1)

1
=Pq

j=1

�
B̂q;j �Bq;j

�
1
+
P1

j=q+1Bj


1
= I + II. Assumption 1(ii) implies II = o (q�s).

As regards I, note
Pq
j=1

�
B̂q;j �Bq;j

�
=
�
B̂q �Bq

�
(iq 
 In). Thus, I �

B̂q �Bq
1
kiq 
 Ink1 =

q
B̂q �Bq

1
. To study the magnitude of

B̂q �Bq
1
, recall B̂q =

hPT
t=q+1 ûtû

0
qt

i hPT
t=q+1 ûqtû

0
qt

i�1
.

Let dq = T�1
PT
t=q+1 uqtu

0
qt and d̂q = T

�1PT
t=q+1 ûqtû

0
qt Then we can write

B̂q =

24Bqdq + 1

T

TX
t=q+1

ûtû
0
qt �

1

T

TX
t=q+1

utu
0
qt +

1

T

TX
t=q+1

e
(u)
t u0qt

35 (51)

�
h
d�1q + d�1q

�
d̂q � dq

�
d�1q + op

�d̂q � dq�i :
Let k = 1 for simplicity; in this case, H is a scalar, but we employ the matrix nota-

tion for consistency. By de�nition ûqt = uqt+
h
F̂q;t � (H 
 Iq)Fq;t

i

 � (H 0)�1 +F̂q;t 
h

�̂� � (H 0)�1
i
, where Fq;t = [Ft�1; :::; Ft�q]

0, and similarly F̂q;t. Assumption 1(ii) yields
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d�1q 1 = Op (1); also, note
1

T

0@ TX
t=q+1

ûqtû
0
qt �

TX
t=q+1

uqtu
0
qt

1A

=

8<: 1T
TX

t=q+1

h
F̂q;t � (H 
 Iq)Fq;t

i h
F̂q;t � (H 
 Iq)Fq;t

i09=;
 � �H 0H
��1

�0

+

0@ 1
T

TX
t=q+1

F̂q;tF̂
0
q;t

1A
 h�̂� � �H 0��1i h�̂� � �H 0��1i0

+

8<: 1T
TX

t=q+1

h
F̂q;t � (H 
 Iq)Fq;t

i
F̂ 0q;t

9=;
 � �H 0��1 h�̂� � �H 0��1i0

+

8<: 1T
TX

t=q+1

h
F̂q;t � (H 
 Iq)Fq;t

i
u0qt

9=;
 � �H 0��1

+

0@ 1
T

TX
t=q+1

F̂q;tu
0
qt

1A
 h�̂� � �H 0��1i+A+B = I + II + III + IV + V +A+B;
where A and B are the transposes of IV and V respectively. It holds that kIk1 �� (H 0H)�1 �0


1

T�1PT
t=q+1

h
F̂q;t � (H 
 Iq)Fq;t

i h
F̂q;t � (H 
 Iq)Fq;t

i0
1

= Op (n)Op
�
qC�2nT

�
,

using Lemma B.1 in Bai (2004). Recalling that �̂ � � (H 0)�1 = Op
�
T�1

�
element-

wise, it holds that kIIk1 �
h�̂� � (H 0)�1

i h
�̂� � (H 0)�1

i0
1

T�1PT
t=q+1 F̂q;tF̂

0
q;t


1

= Op
�
nT�2

�
Op (qT ) = Op

�
qnT�1

�
; similarly, kIIIk1 �

� (H 0)�1
h
�̂� � (H 0)�1

i0
1T�1PT

t=q+1

h
F̂q;t � (H 
 Iq)Fq;t

i
F̂ 0q;t


1
=Op

�
nT�1

�
Op
�
qC�1nT

�
. Considering IV , kIV k1 �� (H 0)�1


1

T�1PT
t=q+1

h
F̂q;t � (H 
 Iq)Fq;t

i
u0q;t


1
= Op (n)Op

�
qC�1nT

�
; similar calcu-

lations yield that kAk1 has the same order. Finally, kV k1 �
�̂� � (H 0)�1


1

T�1PT
t=q+1 F̂q;tu

0
qt


1

= Op
�
nT�1

�
Op (q). Thus, the terms that dominate are of magnitude Op

�
nqC�1nT

�
. Con-

sidering the numerator of (51), recall
T�1PT

t=q+1 e
(u)
t u0qt


1
= Op

�q
log T
T

�
. Also

1

T

0@ TX
t=q+1

ûtû
0
qt �

TX
t=q+1

utu
0
qt

1A
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=

8<: 1T
TX

t=q+1

�
F̂t �H 0Ft

� h
F̂q;t � (H 
 Iq)Fq;t

i09=;
 � �H 0H
��1

�0

+

0@ 1
T
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t=q+1

F̂tF̂
0
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+
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T

TX
t=q+1

�
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 � �H 0��1 +
0@ 1
T

TX
t=q+1

F̂tu
0
qt

1A
 h�̂� � �H 0��1i+ C +D
= I + II + III + IV + V + C +D;

with C and D being the transposes of IV and V . Similar results as for the denominator

hold. We have kIk1 = Op
�
nC�2nT

�
, kIIk1 = Op

�
nqT�1

�
, kIIIk1 = Op

�
nqT�1C�1nT

�
,

kIV k1 = Op
�
nqC�1nT

�
and kV k1 = Op

�
nqT�1

�
. Putting all together, it holds that\Bq (1)�B (1)

1
= o (q�s) + qOp

�
nqC�1nT

�
+ qOp

�q
log T
T

�
. Turning to (40), let Bq �

Bdq + B
od
q , where B

d
q =

�
Bdq;1j:::jBdq;q

�
with Bdq;j = diag

n

(i)
q;j

o
and Bodq =

�
Bodq;1j:::jBodq;q

�
de�ned so that Bodq;j contains the o¤-diagonal elements of Bq;j . As before, B̂q (1)�B (1) =�fBq �Bq� (iq 
 In) + P1

j=q+1Bj . Since fBq � Bq = fBq � Bdq � Bodq , fBq �Bq
1
�fBq �Bdq

1
+
Bodq 1. By construction, Bodq 1 = supjPi6=j j� ij j = Op

�
n��

�
where the

last equality holds by assumption. Also,
fBq �Bdq

1
= supi;j

���̂(i)q;j � (i)q;j��� = Op ('unT ) in
light of Lemma 2. Thus, putting everything together

�fBq �Bq� (iq 
 In)
1
� q

fBq �Bq
1

� qOp ('unT ) + qOp
�
n��

�
; this proves (40).
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T 20 50 100

n

20

�
�u; #u

�

(0; 0)
0:187

0:045

(0:5; 0:5)
0:354

0:048

(0;�0:5)
0:140

0:037

�
�u; #u

�

(0; 0)
0:139

0:048

(0:5; 0:5)
0:195

0:053

(0;�0:5)
0:109

0:040

�
�u; #u

�

(0; 0)
0:125

0:047

(0:5; 0:5)
0:155

0:052

(0;�0:5)
0:102

0:041

50

�
�u; #u

�

(0; 0)
0:148

0:054

(0:5; 0:5)
0:354

0:055

(0;�0:5)
0:107

0:038

�
�u; #u

�

(0; 0)
0:094

0:046

(0:5; 0:5)
0:160

0:054

(0;�0:5)
0:077

0:042

�
�u; #u

�

(0; 0)
0:083

0:046

(0:5; 0:5)
0:108

0:053

(0;�0:5)
0:072

0:043

100

�
�u; #u

�

(0; 0)
0:129

0:057

(0:5; 0:5)
0:391

0:068

(0;�0:5)
0:099

0:038

�
�u; #u

�

(0; 0)
0:084

0:048

(0:5; 0:5)
0:155

0:062

(0;�0:5)
0:067

0:042

�
�u; #u

�

(0; 0)
0:070

0:046

(0:5; 0:5)
0:096

0:056

(0;�0:5)
0:061

0:043

Tab le 1 . Em p ir ic a l r e je c t io n freq u en c ie s u n d e r d a ta g en e ra t in g sch em e (4 2 ) , fo r th e nu ll th a t e s t im a ted fa c to r s t ra ck th e t ru e

o n e s . T h e n om in a l s ig n i�c an c e le ve l is , fo r a l l e x p e r im ent s , 5% . E a ch p a ir o f num b e rs in th e Tab le - u n d e r a ny com b in a t io n s o f�
�u; #u

�
,
 
�F ; #F

!
an d (n; T ) - r ep re sen t s th e em p ir ic a l r e je c t io n fr eq u en cy o f : th e a sym p to t ic t e s t ( i .e . ERF ; th e se a re th e

en t r ie s a t th e to p p o s it io n o f e a ch p a ir ) ; a n d o f th e b o o t s t ra p te s t ( i .e . ERF� ; th e se a re th e en t r ie s a t th e b o t tom p o s it io n o f

e a ch p a ir ) . A ll th e re le va n t p a ram e te r s a re d e�n ed in S e c t io n 6 .
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