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Abstract 26 

Why do the equally spaced dots in Figure 1 appear regularly spaced? The 27 

answer ‘because they are’ is naïve and ignores the existence of sensory 28 

noise, which is known to limit the accuracy of positional localization 29 

(Barlow, 1977; Levi & Klein, 1982; Levi & Klein, 1986; Morgan, 1990; 30 

Morgan, Hole, & Ward, 1990; Watt & Hess, 1987; Westheimer, 1981). 31 

Actually, all the dots in Figure 1 have been physically perturbed, but in 32 

the case of the apparently regular patterns to an extent that is below 33 

threshold for reliable detection. Only when retinal pathology causes 34 

severe distortions do regular grids appear perturbed. Here we present 35 

evidence that low-level sensory noise does indeed corrupt the encoding of 36 

relative spatial position, and limits the accuracy with which observers can 37 

detect real distortions. The noise is equivalent to a Gaussian random 38 

variable with a standard deviation of ~5% of the inter-element spacing. 39 

The just-noticeable difference in positional distortion between two 40 

patterns is smallest when neither of them is perfectly regular. The 41 

computation of variance is statistically inefficient, typically using only 5 42 

or 6 of the available dots.  43 

 44 

 45 

 Introduction 46 

The idea that perceptual systems are tuned to look for regularities and 47 

structures in the environment  was proposed by the Gestalt Psychologists 48 

(Koffka, 1935), but we know little about the mechanisms for perceiving 49 

regularities, or their limits. Patterns such as those in Fig. 1 are perceived 50 

by normal observers as more-or-less regular, but we do not know what 51 

mechanisms they use to decide whether the patterns are completely 52 

regular or not. In particular, it is not clear how the observer treats sensory 53 

noise in the representation of regularity. The existence of this noise can 54 

be demonstrated using dots similar to the individual texture elements in 55 
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Fig. 1. When observers are shown 3 dots in a row and have to decide 56 

whether the centre one is ‘up’ or ‘down’ relative to the position of the 57 

flankers, they do not always give the same answer at a given physical 58 

displacement of the centre dot. Sensory noise is responsible for this 59 

variability (Green & Swets, 1966).  60 

It is conventional to represent performance with a ‘Psychometric 61 

function’ that relates response probabilities to the physical stimulus.  An 62 

example for the alignment of 3 dots is shown in Fig. 2. Good fits to 63 

Psychometric functions for such alignment tasks are usually obtained by 64 

assuming the sensory noise is Gaussian, with a standard deviation equal 65 

to a size difference of ~5% (Westheimer, 1981; Morgan, 1990) 66 

If this sensory noise were included in the perceptual representation of a 67 

pattern with regularly-spaced elements, we would expect to see local 68 

irregularities throughout the pattern, even when none are physically 69 

present. The alignments between elements would all seem different. 70 

Some of the differences, by chance, would be larger than the standard 71 

deviation of the noise, and should thus be conspicuous.  However, this is 72 

not what happens. Instead, a regular pattern appears regular. We now 73 

consider two alternative hypotheses to account for this finding. 74 

(1) The Undersampling Model. Observers are unable to measure the 75 

spatial relationships between all the elements during a brief 76 

glimpse of the pattern. Instead, they take a restricted sample of 77 

elements, and use only these elements to calculate the positional 78 

variance.  They can use the computed variance to decide whether 79 

one pattern is more regular than another. However, the variance 80 

is only represented in perception if it exceeds the amount 81 

expected from sensory noise.  Thus all patterns with physical 82 

variances smaller than the sensory noise will appear completely 83 

regular, even if they can be discriminated. It may seem 84 

paradoxical that an observer could discriminate differences in 85 

patterns that ‘look’ the same but there are many examples of this 86 

in the ‘discrimination without awareness’ literature (He, 87 
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Cavanagh, & Intriligator, 1996; Parkes, Lund, Angelluci, 88 

Solomon, & Morgan, 2001; Smallman, MacLeod, He, & 89 

Kentridge, 1996.)  The key to this dissociation is that in the 90 

discrimination case the observer is forced to decide which of two 91 

patterns is more regular:  a decision they can make without 92 

adapting any absolute standard of complete regularity.  In the 93 

‘appearance’ case they have to decide whether a given pattern is 94 

completely regular or not. To make this decision they have to 95 

adopt some criterion, and this may well depend upon their own 96 

sensory noise. 97 

(2) The Sensory Threshold model.  The observer calculates a variance 98 

signal from all or some of the pattern elements, but all variances 99 

falling below some arbitrary “sensory threshold” are set to zero. 100 

This is not the same as the threshold implicit in the 101 

Undersampling model because the threshold in the latter case 102 

does not affect the discrimination process, only the conscious 103 

decision whether a pattern is, or is not, regular. 104 

To decide between these two models on a quantitative basis we 105 

measured the ability of observers to discriminate between pairs of 106 

patterns such as those in Figure 1 when they were both irregular, but 107 

to different extents. One of the patterns had a variance σ2 and the 108 

other a variance σ2 + ∆σ2. A key prediction of the Sensory Threshold 109 

Model is that the best performance (the lowest ∆σ
2) will be obtained 110 

when V is non-zero.  In other words, two patterns will be more easily 111 

discriminated when both are slightly irregular than when one of 112 

them is completely regular.  Exactly this effect, referred to as 113 

‘pedestal facilitation’ has been reported for the discrimination of 114 

luminance contrast, and has been conventionally explained by a 115 

sensory threshold (Nachmias & Sansbury, 1974 ; for recent review 116 

see Solomon, 2009).  The Undersampling model does not predict 117 

pedestal facilitation of variance, although as we shall see, this depends on 118 

the exact measure we take of the threshold.  The final decision between 119 
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the two models can only be taken by their goodness-of-fit to the data, 120 

which we assess using the calculation of maximum likelihood.  121 

A second question we addressed in these experiments is how the presence 122 

of task-irrelevant variance in the patterns would affect variance 123 

discrimination along the relevant dimension.  In all cases, the relevant 124 

dimension was the positional variance of the dots.  In one manipulation 125 

we added irrelevant variance of contrast between the elements comprising 126 

the patterns.  In another manipulation we arranged the dots around a 127 

circle and instructed observers to report the variance in either their 128 

angular separation or their distance from the centre, ignoring the other 129 

dimension. These investigations bear on the general theory of 130 

camouflage.  Previous psychophysical investigations of camouflage have 131 

used variance in an irrelevant dimension to mask a pattern defined by its 132 

mean difference from the background (e.g. Callaghan, 1984). Here we see 133 

if this generalizes to the masking of variance by variance.  134 

Methods 135 

Observers. The observers were two of the authors (MM and IM) and a 136 

third (GM) who was unaware of the specific aims of the experiment. 137 

Apparatus. Stimuli were presented on the LCD screen of a Sony Vaio 138 

(PGC-TR5MP) laptop computer using MATLAB and the PsychToolbox 139 

(Brainard, 1997) for Windows. Screen size was 1280 x 768 pixels (230 x 140 

14 mm). Only the Green LCD’s were used, and the mean luminance was 141 

56 cd/m2. The viewing distance was approximately 57 cm so that the 142 

pixel size was approximately 0.018 deg of visual angle.   143 

Stimuli. Different kinds of regular patterns were used in different 144 

experiments.  In square arrays the dots were regularly spaced in an 11 x 145 

11 lattice (Figure 1). In circular patterns 11 dots were equally spaced 146 

around a notional circle. In linear patterns 11 dots were equally spaced 147 

along a notional line. The position of each dot in the array was selected 148 

from a uniform probability density function with mean µ and range ω, 149 

where µ was the position it would have if the pattern were completely 150 

Page 5 of 22

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B



For Review
 O

nly

regular. In the square arrays the spatial perturbation was independently 151 

sampled in dimensions x and y. In the circular patterns the perturbation 152 

was either radial or angular in different experiments. We also included 153 

‘camouflage’ conditions where (a) observers had to ignore irrelevant 154 

variation to the radial position of the dots while responding to variation in 155 

their angle, and (b) observers ignored random contrast polarity (black vs. 156 

white) of the dots in the circular array, while responding to variance in 157 

angular position. All dots had a Gaussian profile with a space constant of 158 

one quarter of the inter-dot separation, making them look slightly fuzzy.   159 

Procedure. On each trial two patterns were shown, each for 200 msec and 160 

with a 200-msec blank interval in between.  Observers had to decide 161 

which of the two had the greater degree of spatial irregularity. The 162 

reference pattern with pedestal range ω was presented randomly either 163 

first or second.  The standard deviation of the range is related to its width 164 

ω by the expression σ=ω/sqrt(12). The position of each dot in the other 165 

pattern, the test, had a range of ω + ∆ω, where ∆ωwas varied by an 166 

adaptive procedure (QUEST, Watson & Pelli, 1983) to determine the 167 

just-noticeable ∆ω (JND) at which the observer was 82% correct. There 168 

was no feedback to indicate whether the response was correct or not.  The 169 

pedestal range was randomly selected on each trial from a set of preset 170 

values. A block of trials terminated when each of these preset values had 171 

been presented 50 times.  Confidence limits for the JND (95%) were 172 

determined by exactly simulating the experiment 80 times with a 173 

bootstrapping procedure (Efron, 1982). 174 

Modeling. The model assumes that the observer samples elements (dots) 175 

from the grid and compares their positions to those predicted from a 176 

template.  We admit that this version of the model is unrealistic. It is 177 

more likely that the observer has access to sensory signals representing 178 

the alignment between pairs of dots (Fig. 2) or their separations. 179 

However, such a model is difficult to compute, particularly in the two 180 

dimensions of a grid. The model we actually use should be thought of as 181 
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an ideal observer model in which the observer knows the positions of all 182 

the dots in a template. 183 

In the Undersampling model, the observer on each trial samples ν dot 184 

positions from each of the two patterns and selects the pattern having the 185 

greater sample variance of these positions from the template positions. In 186 

the case of the standard pattern, each of the the ν dots is taken from a 187 

distribution with variance ω
2/12+ι

2
, where ι is the standard deviation of 188 

the internal noise, and in the case of the test pattern each is taken from a 189 

distribution with variance (ω+∆ω)
2/12+ι2 Recall that the external 190 

perturbations were taken from a uniform distribution of width ωwhich 191 

has variance ω2/12). The units of ω are the distance between elements in 192 

the unperturbed pattern. When the underlying probability density 193 

functions (pdf) for signal, pedestal and noise are Gaussian it is easy to 194 

compute the probability that var(test)/var(ref) > 1 and thus that the 195 

observer is correct (Morgan, Chubb, & Solomon, 2008). However, 196 

departures from regularity in our stimuli did not form Gaussian 197 

distributions, so we resorted to simulation to produce the fits shown in 198 

Figure 2.  The fits had only two free parameters, the number of dots per 199 

sample (ν) and the range of the internal noise in the same units as ωThe 200 

Sensory Threshold model was the same as the Undersampling model, 201 

except that all internal variances below a threshold value were set to zero 202 

before the two stimuli were compared. This latter model has three 203 

parameters, the internal noise, the number of dots per sample, and the 204 

threshold.  205 

Significance testing. The experimental data for each condition consisted 206 

of a 3xN matrix, where N was the number of trials in the condition to be 207 

analysed. The first row of the matrix contained the pedestal value ω, the 208 

second the value of ∆ω and the third the observer’s response (0 for 209 

wrong, and 1 for correct).  The model used the values of ω and  ∆ω along 210 

with the estimated values for the number of dots per sample and the 211 

internal noise to predict the probability correct, which was then compared 212 
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to the actual observer’s responses to calculate the joint likelihood over all 213 

N trials  214 

The Matlab function fminsearch was the used to find values of internal 215 

noise (ι) and sample size (ν) to maximize the joint likelihood.  In 216 

practice, to avoid non-integral values of ν, we used fixed values of 217 

sample size to find the best fitting internal noise, and repeated this 218 

procedure over a range of sample sizes to find the best overall fit.  219 

The calculation of probability correct for a particular combination of 220 

{ν,ι,ω,∆ω} was calculated from 10,000 simulated trials.  To make 221 

possible an orderly gradient descent we seeded the random number 222 

generator used by the simulator so that each combination of 223 

{ν,ι,ω,∆ω} always produced exactly the same probability correct.  To test 224 

the reliability of the fits we carried out 80 independent fits with different 225 

seeds for the random number generator, and used the resulting 226 

distribution of fits to calculate 95% confidence limits. These were always 227 

well within the confidence limits of the thresholds estimated from the 228 

data by bootstrapping. 229 

 230 

Results 231 

(A) Discrimination Thresholds as function of Pedestal  232 

We present first (Fig. 3) the results for one subject (MM) in one condition 233 

(11 x 11 grid) in order to establish some general points about the data and 234 

modeling.  The figure shows, on the left, the JND’s in the standard 235 

deviation of the added noise, as a function of the standard deviation of the 236 

pedestal.  Recall that the pedestal refers to the noise in the less variable 237 

stimulus, while the discrimination threshold is how much more noise the 238 

other stimulus needs for the two to be discriminable at the 84% correct 239 

level.  An important point to note is that the models are constrained not 240 

just by the points shown in this graph, but by all the points on the 241 

psychometric function (Fig. 1) amounting to several thousands of trials.  242 
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The data points show a clear ‘dipper’ effect with a minimum threshold 243 

(best discrimination) at a non-zero value of the pedestal.  Thereafter they 244 

show an increase as a function of pedestal level, approximating a slope of 245 

unity.  This effect is conventionally called ‘masking’ of the added signal 246 

by the pedestal and is related to Weber’s Law, which states that the JND 247 

between two stimuli is proportional to their absolute magnitude (review 248 

by Solomon, 2009 ; Laming, 1985).   249 

The best fit to the data is the solid curve running through all the data 250 

points. This is the fit of the Undersampling Model, which contains two 251 

parameters, the internal noise of the observer and the number of dots per 252 

sample used by the observer to calculate the variance (in this case, 6 out 253 

of the 11 x 11 available).  Note that this model does not include a sensory 254 

threshold. It may seem puzzling, therefore, that it produces a ‘dip’, which 255 

is conventionally explained by a sensory threshold.  The reason for this is 256 

shown in the graph on the right, which plots the same data in terms of the 257 

variance of the noise and the pedestal, rather than its standard deviation.  258 

The ‘dip’ now disappears, both from the data and from the model.  The 259 

reason for the ‘dip’ in the standard deviations (left hand figure) is that in 260 

the model the internal noise of the observer and the external noise added 261 

to the stimulus are assumed to be additive.  In a linear system two 262 

independent noise sources are equivalent to a single noise having the sum 263 

of the two variances.  This squaring means that the larger of the two noise 264 

sources is dominant.  When the two stimuli being compared have no 265 

external noise the internal noise predominates and the observer is 266 

relatively insensitive. When both stimuli have a pedestal equal to the 267 

internal noise the latter is less dominant and discrimination is easier.  For 268 

example, let the internal noise have unit standard deviation, let the 269 

pedestal be zero, and let the other stimulus have a standard deviation that 270 

is one more than the pedestal. The difference in standard deviation 271 

between the two stimuli is sqrt(12 + (0 + 1)2) – sqrt(12 + 02) = .4142.  272 

Now let the pedestal also have unit standard deviation. The same 273 

calculation produces the difference sqrt(12 + (1 + 1)2) – sqrt(12 + 12) = 274 
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.8219.  Therefore, the effect of the signal is greater with a non-zero 275 

pedestal. 276 

The apparent ‘dip’ disappears when variances are plotted instead.  The 277 

‘dip’ on the left-hand side of Fig. 3 is therefore not evidence for a sensory 278 

threshold.  To see what the effect of a sensory threshold would actually 279 

be, we plot the case where there is a sensory threshold equal to the 280 

variance of internal noise. This produces the steeply-dipped function in 281 

Fig. 1 (left).  It also produces a dip in the variance plot (right).  282 

Note that the Undersampling model also predicts the ‘masking’ region of 283 

the dipper function, where thresholds rise with the pedestal value. This is 284 

particularly clear in the variance plot (right hand figure).  The reason for 285 

this is that the sampling variance of the variance rises with the true 286 

variance. On each trial the observer is comparing two sample variances. 287 

The greater the true variance (the pedestal) the more likely the two 288 

samples are to differ by chance, and the larger the signal will have to be 289 

in order to be reliably detected.  All this is as predicted by the model. 290 

Figure 3 also plots functions when the number of samples is equal to the 291 

total number available (11 x 11) or equal to only 2.  These are 292 

significantly poor fits to the data, as verified by a bootstrapping test based 293 

on likelihoods.   294 

 295 

The model fits to the data for all conditions (e.g. 11 dots in a circle; 296 

Single row of 11 dots) are shown in Table 1, and illustrative examples are 297 

shown in Fig. 4.  The Table shows that observers always used fewer than 298 

the number of dots available, typically ~6, and that the Sensory Threshold 299 

model was never a significantly better fit to the data than the simple 300 

Undersampling Model.  In no case was the fitted threshold as high or 301 

higher than the fitted internal noise. 302 

(B) Camouflage 303 
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We collected two kinds of data relevant to camouflage.  In the first, a 304 

circular array of dots was used and the elements were perturbed in their 305 

angle from the centre. Either all had the same contrast, or were randomly 306 

black or white.  The observers were MM, GM and IM.  As Table 1 and 307 

Fig. 4 show, the contrast variation caused an increase in thresholds, even 308 

though it was irrelevant to the task.  The effect on the model fits was that 309 

contrast variation was equivalent to an increase in sensory noise.  This is 310 

also true of the second test, where a radial variation in dot position was 311 

camouflaged by an irrelevant perturbation in the angle (observers MM 312 

and GM), except that there was a decrease in the number of samples from 313 

5 to 4 for MM in the camouflage condition. 314 

Discussion 315 

We suggest two related conclusions. The first is that the observer’s 316 

discrimination performance is limited by low-level noise equivalent to 317 

physical perturbation in the position of the dots. This means that a 318 

completely regular pattern is not discriminable from one having a marked 319 

degree of physical perturbation. However, both such patterns appear 320 

completely regular (Figure 1). The low-level noise is not represented in 321 

awareness. We infer from this that the internal noise in individual dot 322 

position is not represented in the conscious perception of a regular 323 

pattern. Rather, what is represented is a regular template for the pattern. If 324 

the computed perturbation from the template does not exceed the internal 325 

noise level, then the pattern is seen as regular. 326 

This conclusion is reinforced by our estimates of the number of dots 327 

(ν) the observer is using in computing variability.  We estimate this 328 

number as ~6, which is strikingly inefficient for a pattern with 11 x 11 329 

elements.  The efficiency is higher (~50%) for the circular patterns but ν 330 

is still ~6, suggesting a fixed sample size rather than a fixed efficiency. 331 

The only exception to the ‘ν=6’ rule is observer IM who manages an 332 

impressive 11 dots for the 11 x 11 pattern.  The conclusion that observers 333 

use only a small amount of the available information to compute 334 

irregularity is further evidence that the perception of a regular pattern is 335 
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the perception of a template, since the actual physical position of most of 336 

the dots are not being represented at all.  In other words, we see a regular 337 

arrangement of dots, even though the noisy position of many of them has 338 

not been sampled. 339 

Our findings also suggest a general theory of pattern camouflage. In its 340 

most general form the principle of camouflage is that irrelevant variation 341 

along one dimension masks detection of variation along another. For 342 

example, a region of high orientation variance if a texture is harder to see 343 

in the texture elements are randomly coloured red and green (Callaghan, 344 

1984; Morgan, Adam, & Mollon, 1992).  This is analogous to what we 345 

find in our experiments for variance.  The ability of observers to detect 346 

perturbations of radial position in circular patterns is compromised by 347 

irrelevant contrast variation or by angular variation. This is what we 348 

would expect if observers were computing variance from a fixed internal 349 

template.  350 
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Table 363 

Condition             ι Thresh ν 
Log 
Likelihood ChiSq 

1 MM Circ Rad 1 0.07 5 -940.10 

2 MM Circ Rad 2 0.07 0.02 5 -940.15 

3 MM Circ Rad Rand Ang 1 0.09 4 -833.71 

4 MM Circ Rad Rand Ang 2 0.09 0.01 -833.00 

5 MM 1 and 3 combined 0.07 4 -1785.60 -23.58 

6 GM Circ Rad 1 0.06 4 -699.59 

7 GM Circ Rad 2 0.06 0.00 5 -699.20 

8 GM Circ Rad Rand Ang 1 0.09 4 -821.34 

9 GM Circ Rad Rand Ang 2 0.09 0.06 6 -821.27 

10 GM 6 and 8 combined 0.08 4 -1534.80 -27.74 

              

11 MM Circ Ang 1 0.11 5 -1371.30 

12 MM Circ Ang 2 0.20 0.38 5 -1371.30 

13 MM Circ Ang Rand B/W 1 0.15 5 -1895.40 

14 MM Circ Ang Rand B/W 2 0.15 0.12 5 -1895.30 

15 MM 11 and 13 combined 0.13 5 -3350.70 -168.00 

16 IM Circ Ang 1 0.11 5 -661.30 

17 IM Circ Ang 2 0.11 0.08 5 -661.28 

18 IM Circ Ang Rand B/W 1 0.13 5 -703.17 

19 IM Circ Ang Rand B/W 2 0.13 0.05 6 -703.17 

20 IM 16 and 18 combined 0.12 6 -1370.70 -12.46 

21 GM Circ Ang 1 0.11   6 -753.02 

22 GM Circ Ang 2 0.11 0.08 6 -753.02 

23 GM Circ  Ang Rand B/W 1 0.12 5 -792.96 

24 GM Circ  Ang Rand B/W 2 0.12 0.11 5 -792.84 

25 GM 21 and 23 combined 0.11 5 -1550.30 -8.64 

              

26 MM 11 x 11 1 0.08 6 -1321.80 

27 MM 11 x 11 2 0.13 0.07 6 -736.40 

28 IM 11 x 11 1 0.13 11 -736.41 

29 IM 11 x 11 2 0.13 0.11 11 -736.37 

30 MM 1 x 11 1 0.07 5 -671.97 

31 MM 1 x 11 2 0.07 0.00 5 -671.96 

32 IM 1 x 11 1 0.07 5 1327.10 

33 IM 1 x 11 2 0.07 0.00 5 1327.10 

 364 

The Table shows best-fitting values for internal noise, sample size 365 

(ν) and threshold (t) to the data for different observers and 366 

conditions (key in second column) along with the log likelihoods of 367 

these fits (column 6).  The unit for ι  is the proportion of nearest-368 

neighbour spacings in each array. The final column (χ2) shows the 369 

values for twice the difference in log likelihoods of two fits. Fits with 370 

a threshold such as Row 2 are compared to fits without in the row 371 

above.  Fits that combine two conditions, such as Row 5, which 372 

combines 1 and 3, are compared to the summed likelihoods of the 373 

two separate fits.   374 

 375 

376 
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Figure Legends 433 

Fig. 1 legend. All 3 patterns contain 11 x 11 dots spaced on a regular grid 434 

with individual dot positions independently perturbed by addition of a 435 

random positional shift.  In the leftmost pattern the random perturbation 436 

is so small as to be invisible. In the middle pattern it is twice as great and 437 

just visible. In the right-hand panel it is twice that of the middle panel and 438 

is clearly visible.  439 

 440 

Fig. 2 legend.  The figure shows an example of a psychometric function 441 

for discrimination with the best-fitting cumulative Gaussian fit (solid 442 

curve) to the data points.  The observer decided whether the centre dot in 443 

a row of three dots was displaced ‘up’ or ‘down’ relative to the flanking 444 

dots. Each data point shows the probability of responding ‘up’ (ordinate) 445 

as a function of the actual physical displacement (abscissa). The vertical 446 

bars represent 95% confidence limits from the binomial distribution.   447 

Fig. 3 legend:  The figure shows the results (filled circles) for observer 448 

MM in the 11 x 11 grid condition, and the fits of various models 449 

described more fully in the text.  The panel on the left plots the data as a 450 

function of the standard deviation of the uniform distribution from which 451 

the dot positions were sampled, in units of the canonical dot spacing.  The 452 

panel on the right plots threshold ∆(σ
2) as a function of σ2. The red curve 453 

passing through all the data points is the best fit of the Undersampling 454 

model, with 6 dots per sample. The green curve is a fit of the Sensory 455 

Threshold model with the threshold constrained to be the same as the 456 

variance of the internal noise.  The blue curve with the sharp dip in the 457 

centre is the best fit of the Undersampling model with the number of 458 

samples constrained to be the total number of dots (11 x 11).  The black 459 

curve with no ‘dip’ is the fit of the Undersampling model with ν=2.  In 460 

the right hand panel only the best fits of the Undersampling model and 461 

the Sensory Threshold model are plotted.    462 
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 463 

Fig. 4 legend.  The top 4 panels (Fig 4a) show results for two observers 464 

(MM left and IM right) with two kinds of stimulus array:  11 x 11 dot 465 

matrices (top) and a single line of 11 dots (bottom).  The solid line is the 466 

best fit of the sampling model.  The bottom four panels (Fig 4b) show 467 

results for two observers (MM left, GM right) with arrays of 11 dots 468 

arranged in a circle. In the top two panels the signal the observer was 469 

instructed to compare between the two patterns in the 2AFC design was 470 

the difference in variance of the radial distance of the dots. In the bottom 471 

two panels, observers detected differences in angular separation of the 472 

dots.  In the condition indicated by square symbols, only the relevant 473 

dimension was varied. In the condition indicated by circles, an additional 474 

source of variation (camouflage) was introduced.  In the top two panels 475 

this was variation in angular position; in the bottom two panels it was 476 

random variation in contrast polarity (white/black).  477 

 478 

 479 

 480 
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