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A texture-processing model of the ‘visual
sense of number’

M. J. Morgan1, S. Raphael1, M. S. Tibber2 and Steven C. Dakin2

1Max Planck Institute for Neurological Research, PO Box 41 06 29, Cologne 50866, Germany
2Institute of Ophthalmology, University College London, Bath St., London EC1V 9EL, UK

It has been suggested that numerosity is an elementary quality of perception,

similar to colour. If so (and despite considerable investigation), its mechanism

remains unknown. Here, we show that observers require on average a massive

difference of approximately 40% to detect a change in the number of objects that

vary irrelevantly in blur, contrast and spatial separation, and that some naive

observers require even more than this. We suggest that relative numerosity is

a type of texture discrimination and that a simple model computing the contrast

energy at fine spatial scales in the image can perform at least as well as human

observers. Like some human observers, this mechanism finds it harder to dis-

criminate relative numerosity in two patterns with different degrees of blur,

but it still outpaces the human. We propose energy discrimination as a bench-

mark model against which more complex models and new data can be tested.
1. Introduction
If the dots in figure 1 were fruits on a tree, there would be obvious advantages to

a foraging animal in perceiving at a glance which tree had the most fruits. Not

surprisingly, then, there are many demonstrations of relative numerosity dis-

crimination in animals and humans. Relative numerosity discrimination has

been studied experimentally in adults [1–4], infants [5,6] and non-human species

[7–9], using psychophysics, fMRI [10,11] and single unit physiology [12]. The

mechanism for relative numerosity discrimination has proved elusive [13], in

part because of the inevitable correlations between number and ‘irrelevant’

stimulus parameters such as overall pattern size, density and size of the elements.

An ideal numerosity mechanism would not care about the shape and spatial dis-

tribution of objects in the scene. However, it is known that perceived numerosity

can be influenced by many properties of the objects, such as their size, density

and spatial arrangement [13–15]. The problem we face at present is that there

is no simple standard model of numerosity computation against which to test

these empirical findings. We suggest that debates and Gedankenexperimente on

this issue are pointless in the absence of a computable model of relative numer-

osity discrimination against which data can be tested. Even an incomplete model

would be better than none at all. Here, we describe such a model, based on con-

trast energy [16], and compare its performance with that of the human observer.

The intuition behind the model is easy to grasp. As we add more objects to an

image we add more contour. The amount of contour can be estimated from the

combined output of ‘edge detectors’ that respond to local changes in luminance.

To make these detectors sensitive to the difference between one object and two

occupying the same area, and to be insensitive to their spacing, we want the

detectors to be as small as possible. In physiological terms, this means using

small ‘receptive fields’; in Fourier-optical terms, it means measuring the energy

at high spatial frequencies. We therefore measure the energy in our images at

high spatial frequencies and use this as a proxy for numerosity. We expect this

model to make mistakes if we vary object attributes such as their size, density

and spatial-frequency content. For example, randomly blurring the objects will

decrease their high-spatial-frequency content without necessarily affecting their

number. However, rather than dismissing the model a priori on these grounds

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2014.1137&domain=pdf&date_stamp=2014-07-16
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test 48 dots

(a)

(b)

test 80 dotsstandard 64 dots

Figure 1. Examples of stimuli used in the experiments to measure the accuracy of relative numerosity discrimination. (a) Dots blurred with s ¼ 2 pixels. (b) The
case of s ¼ 6 pixels. In the equal-blur condition, both the test and standard had s ¼ 2 pixels. In the unequal-blur condition, the blur for the test was chosen
randomly on each trial in the range 2 – 6 pixels, as was that of the standard.
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we ask: ‘How much does blur degrade the performance on the

model, and how does this compare with the performance of a

real human observer?’ Only if we find that the human observer

is better than the model do we consider adding further com-

plexity to the model such as multiple frequency channels [13].

We measured observers’ ability to distinguish patterns

differing in numerosity (figure 1) using a temporal two-

alternative forced choice (2AFC) design in which a standard

stimulus containing 64 dots occupying a constant area but

with irregular shape was presented on each trial along with

a test stimulus containing either fewer or more dots. Each

of the dots was blurred with a two-dimensional Gaussian

filter (see Material and methods).

While the number of dots was always different in the test

and standard stimuli, on half the trials the test stimulus dif-

fered in dot density with area held constant, whereas on the

remaining trials area varied while density remained constant

[1]. Because numerosity just-noticeable differences (JNDs)

tend to follow Weber’s law of proportionality, we expressed

discrimination ability as the Weber Fraction (JND � 100/64).
2. Results
(a) Experiment 1
In the equal-blur condition illustrated in the top row of figure 1,

all the dots had the same blur (s ¼ 2 pixels). In the unequal-blur

condition, the dots in the standard and test stimuli were inde-

pendently blurred with s in the range 2–6 pixels. The bottom

row of figure 1 shows stimuli blurred with the maximum blur

of s ¼ 6 pixels. The equal- and unequal-blur conditions were

run in separate blocks of 128 trials to find the JND in numerosity

between test and standard.
Our data showed large individual differences in subjects’

ability to discriminate differences in numerosity (figure 2).

The best subjects in the best condition had Weber fractions

less than 10% and the worst in the same condition as high as

35%. Pairwise correlations between conditions (table 1)

showed that subjects who were good in one condition tended

to be good in all conditions. Performance was also worse in

some conditions than others. The worst performance was

in the density-varying, unequal-blur condition, where the

mean Weber fraction was 27.8%. Pairwise t-tests revealed

significant differences in all three cases involving the density-

varying, unequal-blur condition (size-varying, equal-blur

versus density-varying, unequal-blur, p ¼ 0.0038; density-

varying, equal-blur versus density-varying, unequal-blur,

0.0076, size-varying, unequal-blur versus density-varying,

unequal-blur, p ¼ 0.0005), All these differences are significant

at the Bonferroni-corrected significance level of 0.0083. No

other pairwise differences were significant. The poorer perform-

ance in the unequal-blur case could be due either (i) to

performance being poorer at large blurs, (ii) to unequally

blurred stimuli being difficult to compare for numerosity or

(iii) to the general decrement in acuity when different conditions

are randomly interleaved [17]. To distinguish these possibilities,

we reanalysed the unequal-blur condition separating out those

trials when the test and standard had the same blur from trials

when the blur was the same. There was no significant difference

between these sub-sets. Nor were there any systematic or signifi-

cance differences due to level of blur when the test and standard

had the same blur. The most probable reason for the effect

of unequal blur is thus a general psychophysical decrement

due to the interleaving of different conditions.

To model the data, we consider relative numerosity as a

form of texture processing, and use what Chubb & Landy

http://rspb.royalsocietypublishing.org/
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Figure 2. Each panel shows the JNDs in numerosity for 84% correct discrimination, with different combinations of symbol shape and colour for each subject. The red bullseye
symbol in panel (b) shows the performance in the unequal-blur condition of the model observer described in the text. The error bars represent 95% CIs.

Table 1. Pairwise correlation coefficients (Pearson’s) between the
performances of subjects in the four number discrimination tasks, with size
or density (dens) varying and blur equal (eq) or unequal (uneq).

size-eq dens-eq size-uneq dens-uneq

size-eq 0.29 0.63 0.45

dens-eq 0.81 0.71

size-uneq 0.82
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[18] call a ‘back pocket’ model of texture discrimination.

Images of the stimuli seen by the human observers were

clipped to the stimulus size and filtered, and the energy differ-

ence between standard and test on each trial was used to

generate a decision (see Material and methods). We stress

that the model decisions were made on a trial-by-trial basis,

not on averages. Thus, the model observer had no more and

no less information than the real human observer.

We follow Dakin et al. [13] in measuring the energy of the

patterns in two spatial-frequency passbands, derived from

Laplacian-of-Gaussian filters tuned to high (s ¼ 2 pixels) or

lower (s ¼ 8 pixels) spatial frequencies. The intuition here is

that numerosity is encoded by the amount of ‘detail’ in the

image, which is well captured by its high-spatial-frequency con-

tent. Indeed, the energy captured by the high-spatial-frequency

filter in the case where the test and standard have equal blur dis-

criminates relative numerosity virtually perfectly (JND , 1%),

whereas a low-spatial-frequency filter does so about as well as

the average human observer (JND 15% for size-varying and

20.5% for density-varying conditions, respectively). The reason

why the low-spatial-frequency filter is less reliable is because

the random outline shape of the pattern perturbs it, as was

our specific intention in designing the stimuli.

However, as we had also anticipated, the high-spatial-

frequency filter copes relatively poorly with unequal blur

between the stimuli. The psychometric functions produced

from the model observers are shown in figure 3.

JNDs were 37.98% and 37.62% for size and density con-

ditions, respectively. This is worse than the best human
observers, though better than some. The low-spatial-frequency

filter is even worse (51.5 and 56%).

Poor performance of the high-spatial-frequency filter with

blur mismatch is understandable. Different levels of blur alter

the spatial-frequency content of a stimulus—and the response

of a filter by different amounts—rendering a comparison of

two filter responses unreliable. To enable the high-spatial-

frequency filter to do better, we scaled its output by the

amount of blur in the stimulus. To determine image blur,

the model observer isolated single dots and measured the blur

with the MIRAGE algorithm [19], which encodes blur as the dis-

tance between the zero-bounded regions in the second spatial

derivative. Using MIRAGE and a second-order polynomial fit,

we determined the empirical relationship between blur (s in

arcmin) and contrast energy in the highest-spatial-frequency

channel to be as follows: log(E) ¼ 0.0021s2 2 0.057s þ 13.06.

This relationship was used to normalize the contrast energy

so that it was independent of blur. Figure 3 shows that

http://rspb.royalsocietypublishing.org/
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normalization allowed a more accurate prediction of numeros-

ity, producing JNDs of 7.34% and 7.87%, respectively—better

than any of the human subjects.
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Figure 4. Five observers’ numerosity discrimination performance in the
‘kitchen sink’ experiment where stimuli contained irrelevant perturbations
of element contrast, size and blur. Each bar shows the Weber fraction for
a single subject. The lower of the two horizontal lines shows performance
of a model observer with the same stimuli, when contrast variation was
not included. The higher line shows performance with contrast variation
and logarithmic contrast compression.
(b) Experiment 2
It is known that approximate number discrimination,

measured by the Weber fraction, can be affected by image

properties other than number (e.g. [20]) but it is not known

how high the Weber fraction can be if different sources of

image variation are combined. To determine this, we combined

different sources of variability each of which would be

expected to affect the spatial-frequency content of the stimuli.

In a ‘kitchen sink’ experiment, we varied (i) the blur of each

of the elements independently within each display (rather

than keeping it constant, as in the previous experiment);

(ii) the size of the test and standard, independently in the

range 1 : 2S, where S was the area of the standard in the pre-

vious experiment; and (iii) the contrast of all the elements in

the display, independently for test and standard over a range

from 0.13 to unity (see Material and methods). All the elements

remained visible. We also looked at the case where there was no

contrast variation. The test always contained more dots than

the standard and the method was still 2AFC. The mean

Weber fraction over five subjects (figure 4) was 38.92%. There

was no significant difference between contrast-varying and

contrast-constant thresholds. The same set of images was

shown to the model observer. Without contrast variation,

Weber fractions for the high-frequency channel were less

than 10%, considerably better than the human observers. How-

ever, as we had anticipated, contrast variation made the task

impossible for the model, whereas it had little effect on the

human observer [15]. To rescue the model, we took account

of compression of the transduced signal by contrast gain con-

trol [21]. Specifically, we reduced the range of contrasts in the
range of the experiment logarithmically. This reduced the

Weber fraction for the model observer to 17%, better than

that of the human observers (figure 4).

(c) Experiment 3
When an image containing many closely spaced objects is

blurred, the objects coalesce and their number is reduced.

http://rspb.royalsocietypublishing.org/
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Figure 5. Stimulus pairs used to measure subject’s ability to discriminate differences in either (a,c) blur or (b,d) discrete blob number. The frequency content of the
standard stimulus was either (a,b) high or (c,d) low. The members of each pair were presented sequentially with the test and standard in random order.
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Figure 6. Just-noticeable differences (JNDs) for blur discrimination (vertical
axis) plotted against those for blob number discrimination (horizontal
axis), for four different observers (differently coloured symbols). Circles and
squares show results for relatively low-frequency standard pedestals and rela-
tively high-frequency stimuli, respectively. The two black symbols show
performance of the Watson – Ahumada energy model with the same stimuli
as those seen by the human observers.
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Thus, a change in blur could be alternatively described as a

change in numerosity. It would be interesting to measure

whether thresholds for blur discrimination, measured in

units of a blurring function, are similar to those for number

discrimination when described as a Weber fraction for

number. If this proves to be so, it would strengthen the connec-

tion between discrimination of number and of other visual

properties of the image. To test this idea, we carried out a

further experiment in which subjects attempted to discriminate

between pairs of stimuli illustrated in figure 5. The stimuli were

derived by blurring white pixel noise with a difference-

of-Gaussian filter. Observers carried out two different tasks

in different blocks of trials. In the blur discrimination case,

they decided which of the two stimuli (standard and test, in

random order) was more blurred. In the number discrimi-

nation case, the same stimuli were thresholded (i.e. grey

levels less than 1 s.d. from the mean were set to the mean

grey level) to split them up into discrete blobs (figure 5b,d)

and observers decided which stimulus contained the more

blobs. In both cases, we determined the JNDs in the space

constant of the blurring filter by the psychophysical method

described earlier. The data show that contrast energy

thresholds for the two tasks were similar, with a general

trend for thresholds to be higher in the number case. Note

that this last difference does not imply different mechanisms

for number and blur, because information has been reduced

from the number stimuli by thresholding. To model the results,

we used the Watson–Ahumada energy model of blur discrimi-

nation [16], which computes the energy in the stimulus after

passing the stimulus through a filter representing the contrast

sensitivity function of human vision (figure 6). Although

much better than the human observer at the task given exactly

the same stimuli, the model captures the similar contrast

energy thresholds for blur and numerosity discriminations,

and the slightly lower threshold for blur than number. More-

over, when JNDs in the number discrimination case were

recalculated as differences in blob number rather than blur,

the mean Weber fraction of 23% fell right in the middle of the

range for traditional numerosity.
(d) Experiment 4
Next, we consider the case of relative numerosity in single

textures. It is known that pigeons [22] and human subjects

[23,24] can decide which of two kinds of element in a

mixed texture is the more numerous, albeit sometimes with

strong biases towards one of the element classes [23,24]. An

example is the ratio of black to white dots (figure 7a). This

ability would demand a multi-channel model rather than

the single-channel model we have used previously. To deter-

mine which channels might be available, we tested a single

http://rspb.royalsocietypublishing.org/
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Figure 7. Various configurations for discriminating relative numerosity of two
classes of element in the same texture. Each panel is labelled with the Weber
fraction of one observer (M.J.M.) along with the (bracketed) prediction of a
filter energy ratio model. The cases are (a) contrast polarity, (b) spatial fre-
quency (�2), (c) contrast (�2), (d ) phase (908), (e) orientation (908) and
( f ) size (�2). In the case of phase, the psychometric function was flat. The
numbers in the bottom left of each panel indicate the observer’s Weber frac-
tion followed by that of the model. The key ‘P’ in panel (e) indicates that
model performance was perfect.
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Figure 8. Results of Experiment 5, in which observers (subjects 1 – 3)
decided whether there are more black than white dots in a display such
as figure 7, with a circular mask in front of the display so that only a central
circular area was actually visible. The size of the aperture was systematically
varied and the observer’s accuracy measured as in previous experiments.
Weber fractions (vertical axis) for the real observers are shown by circles
with 95% confidence intervals (vertical error bars). The continuous curve
shows how we would expect the performance of the ideal observer to
improve (from left to right in the figure) as we increase the proportion of
the 64 dots in the whole pattern actually presented to the observer (horizon-
tal axis). The broken curve shows the performance of a simulated observer
presented with the same images as the real observer. By drawing the hori-
zontal line shown in the figure, we can determine that the real observer
presented with 64 dots does as well as an ideal observer shown approximately
half that number. (Online version in colour.)
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observer (M.J.M.) with the six kinds of mixed texture in figure

7. To prevent a single channel being used, the total number of

dots was varied randomly over trials ((64 þ x), where x was

from the uniform distribution 0–21 dots). Weber fractions

varied from 36% for mixed polarity or orientation to

70% for mixed size. The case of mixed phase was impossible

(as the reader can see in the figure), suggesting a link with

the literature on ‘pop-out’, where phase is not a salient

feature [25].

The values in brackets after the observer performance are

the Weber fractions for a model observer classifying the same

stimuli, using the ratio of energy in two channels on each trial

and comparing to the mean ratio in the set of stimuli seen

before that trial. In the case of dot polarity (figure 7a), the

channels were half-wave rectified [26–28], high-spatial fre-

quency. In figure 7b, the channels were two isotropic spatial

frequency tuned channels two octaves apart (2 and 8 pixels

space constant). In figure 7c, a single channel was used but

thresholded at two different levels to isolate the two kinds

of dot. Modelling of figure 7d was not attempted because

the observer finds the task impossible. Figure 7e was

analysed with two orientation-tuned channels 908 apart and
figure 7f was analysed with the same two channels as

in figure 7b.
(e) Experiment 5
It is well established that normal subjects can make errorless

estimates of number in the ‘subitizing’ region of one to six

dots [29], so a possible mechanism for relative numerosity

is to take an equivalent area of the two patterns sufficiently

small to include a number in the subitizing region and

count the dots therein. To examine this possibility, we used

the task illustrated in figure 7a of deciding whether there

are more black than white dots, and placed a circular mask

in front of the display so that only a central circular area

was actually visible. In order not to disadvantage the real

observer relative to the ideal and to simplify calculation of

ideal performance, dot overlap was prevented by placing an

exclusion zone around each dot, and the total number of dots

was kept constant at 64. The size of the aperture was systema-

tically varied and the observers’ accuracy measured as in

previous experiments. Three observers were used. The obser-

vers’ performance was compared with that of an ideal

observer that could count the number of dots within the view-

ing aperture without error. Of course, this observer necessarily

makes an increasing number of errors as the aperture size is

reduced, because the actual number of black and white dots

has random (binomial) sampling error. The red curve in

http://rspb.royalsocietypublishing.org/
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figure 8 shows how we would expect the performance of the

ideal observer to improve (from left to right in the figure) as

we increase the proportion of the 64 dots in the whole pattern

actually presented to the observer (horizontal axis). The real

observer (circles) also benefits from increasing sample size,

but never gets be as good as the ideal. By drawing the horizon-

tal line shown in the figure, we can determine that the real

observer presented with 64 dots does as well as an ideal obser-

ver shown about half that number. Therefore, we can conclude

that whatever the mechanism used by the real observer for rela-

tive numerosity, it is no worse or better than if it randomly

selected 50% of the dots and counted them accurately. As this

number in the present case is 32, we can decisively rule out

the ‘subitizing’ explanation of relative numerosity accuracy.
oc.B
281:20141137
4. Discussion
These experiments were not designed to rule out the existence of

a mechanism for discrete numerosity discrimination, nor indeed

could any finite set of experiments prove a negative. On the con-

trary, our experiments demonstrate that human observers are

able to make estimates of numerosity despite large changes in

image properties such as blur and contrast. On the positive

side, we have shown that human performance can be matched,

or exceeded, by a mechanism for contrast energy discrimination

that incorporates scaling for changes due to contrast and blur,

and which can flexibly take into account energy in different

passbands of orientation and frequency. Whether we call this

a ‘special’ mechanism for numerosity or another example of

flexible pattern recognition is not addressed by our findings.

We suggest that further computational investigations are more

important than semantic issues.

It is sometimes said that human subjects have ‘no difficulty’

with relative numerosity tasks [30], but this statement has little

meaning unless a metric for comparison is defined. One such

metric is the Weber fraction, which is the proportional

change in stimulus magnitude that can be detected at a cri-

terion level such as 80% correct. For luminance, and for

vernier acuity based on the light distribution, the Weber frac-

tion is approximately 2% [31]. For size, distance and area of

regular shape, it is 5–10% [32,33]. Against these standards

numerosity is rather poor. Fractions as low as 10% are found

only when other cues such as area are available [14]. We

have shown here that values of 30% are more typical when

the use of alternative cues is prevented and that some observers

can have values as high as 50%. Another way of measuring the

accuracy of relative numerosity discrimination is to quantify its

statistical efficiency, and we have shown (experiment 5) that

this is no higher than if the observer sampled only 50% of

the dots in a 64-dot display. As it is unlikely that the observer

literally sub-samples before counting, we should consider

other mechanisms from counting to explain performance.

There are abundant demonstrations that numerosity estimation

is affected by low-level image properties [2,3,13,15,20,34–36].

In these circumstances, it seems to make sense to look for a var-

iety of heuristics that the observer can use, rather than some

specialized ‘number sense’. ‘Back pocket’ models of texture

discrimination [18] are the obvious resource.

We do not claim that contrast energy is the only mechanism

available to human observers for numerosity computation

[13–15]. It seems likely that there are many strategies available

to the human observer for such a complex task as visual
numerosity. However, our proposed model can usefully

serve as a benchmark when a particular manipulation affects

numerosity discrimination and we want to know whether

the effect can be accounted for by changes in contrast energy.

For example, it has been shown that decisions about number

are disrupted when the area occupied by the dots is also

varied, a result that Nys & Content describe in terms of a cog-

nitive interference between two different quantities [37]. They

did not consider the possibility that the two quantities inter-

fered at a basic sensory level (for example, in effects on

contrast energy). A simple benchmark model would be

useful in such cases for determining whether a resort to

higher cognitive mechanisms is necessary. It may be objected

that our model requires scaling of energy by blur, and thus a

degree of a priori knowledge by the observer. However, numer-

osity in this respect may be no different from many (perhaps

all) other perceptual computations, such as size, where retinal

size is scaled by distance [38]. It would be unusual if the com-

putation of number did not depend on multiple sources of

information [13–15].
5. Material and methods
(a) Stimuli and apparatus
Except for those in figure 5, stimuli were presented on the LCD

display of a MacBookPro laptop computer with screen dimen-

sions 33 � 20.7 cm (1440 � 900 pixels) viewed at 0.57 m so that

1 pixel subtended 1.25 arcmin visual angle. The background

screen luminance was 50 cd m22. Stimulus presentation was con-

trolled by MATLAB and the PTB3 version of the PSYCHTOOLBOX

[39,40]. Stimuli were viewed binocularly through natural pupils

with appropriate corrective lenses for each subject (if normally

worn for reading). The stimuli in figure 4 were monocularly

viewed through a 1 mm artificial pupil and presented at

150 cm viewing distance on a Viewsonic PF817 CRT display,

with pixel resolution 1024 � 768, refresh rate 140 Hz and mean

luminance 33.5 cd m22, controlled by a Cambridge Research

Systems Visage box and software.

(b) Subjects
The 14 subjects in the main experiment (six female) all had science

degrees and varied in age from 18 to 70. Five subjects, including

the four authors, had previous experience in number psycho-

physics; the others were naive, although they all had previous

experience in other psychophysical experiments. The subjects in

experiment 2 (variable blur, shape and contrast) were four from

experiment 1 and one additional naive observer (O).

(c) Stimuli and tasks
Examples of stimuli are shown in figure 1. The dots were black

(0.4 cd m22) or white (300 cd m22) with equal probability.

These dots were randomly scattered within a notional polygon

generated by an algorithm that randomly varied the position

and number of vertices in the polygon in each trial, and which

minimized overlap between the dots. The standard stimulus con-

tained 64 dots in area 50 000 pixels. The test stimulus contained

64+ 64 W dots, where W is a fraction between 0 and 100% in

steps of 5%. W was determined by an adaptive procedure (see

below). The stimuli were presented for 0.5 s each in random

order. The area of the test was either the same as the standard

(density-varies condition) or was adjusted so that test and

standard had the same density (area-varies condition).

To blur the stimulus, the dots were convolved, using the

MATLAB Image Processing Toolbox, with a two-dimensional

http://rspb.royalsocietypublishing.org/
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Gaussian blurring function

f (x, y) ¼ A
sqrt(2p � s)

: exp � (x� m)2

2s2
þ (y� m)2

2s2

 !
,

where A was the amplitude, set to give a contrast of 0.4 when s ¼ 2;

x and y were the positions relative to the centre m, and s was the

standard deviation of the blurring function. As the formula

shows, the contrast energy of the dots was independent of blur,

but peak amplitude scaled downwards with blur. This meant

that in the experiment where contrast varied randomly, the avail-

able range was 0.4–1.0 for the least blurred dots and 0.13–0.66 for

the most blurred.

There was a 0.75 s blank period before each stimulus, during

which only a fixation point was presented at the centre of the

screen. The test and reference positions were separately offset

from the fixation point to avoid interference by afterimages

and to prevent the observer from using landmarks on the

screen for size judgements. The offset was randomly selected

in both x and y direction from a uniform distribution with a

width equal to +0.75 of the circle radius.

For five subjects, thresholds and mean values of the psycho-

metric function for discrimination were determined by an

adaptive procedure [41] designed to obtain the two parameters
m and s (which are the 50% point and standard deviation,

respectively) of the psychometric function efficiently by concen-

trating values of the test at +s of the psychometric function

based on the data collected in previous trials. For the remaining

subjects, the sequence of stimuli was identical to that generated

by one of the five subjects, and their responses had no influence

on the stimulus sequence. The same stimulus sequence was used

to test the model.

Confidence limits (95%) for the individual points on the

psychometric functions were calculated from the binomial distri-

bution. Those for the fitted parameters of the psychometric

functions were obtained by a bootstrapping procedure. The

maximum-likelihood values were used to generate 160 new psy-

chometric functions by simulation of the exact experimental

procedure, and the central 95% of the fitted values were taken

to define the confidence limits.
All Psychophysical experiments with human observers were
approved by the local ethics committee of the School of Health

Sciences at City University London and were in conformity with
the ethical principles of the Declaration of Helsinki.
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