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a b s t r a c t

Differential cell death is a common feature of aging and age-related disease. In the retina, 30% of rod
photoreceptors are lost over life in humans and rodents. However, studies have failed to show age-
related cell death in mouse cone photoreceptors, which is surprising because cone physiological func-
tion declines with age. Moreover in human, differential loss of short wavelength cone function is an
aspect of age-related retinal disease. Here, cones are examined in young (3-month-old) and aged
(12-month-old) C57 mice and also in complement factor H knock out mice (CFH�/�) that have been
proposed as a murine model of age-related macular degeneration. In vivo imaging showed significant
age-related reductions in outer retinal thickness in both groups over this period. Immunostaining for
opsins revealed a specific significant decline of >20% for the medium/long (M/L)-wavelength cones but
only in the periphery. S cones numbers were not significantly affected by age. This differential cell loss
was backed up with quantitative real-time polymerase chain reaction for the 2 opsins, again showing S
opsin was unaffected, but that M/L opsin was reduced particularly in CFH�/� mice. These results
demonstrate aged cone loss, but surprisingly, in both genotypes, it is only significant in the peripheral
ventral retina and focused on the M/L population and not S cones. We speculate that there may be
fundamental differences in differential cone loss between human and mouse that may question the
validity of mouse models of human outer retinal aging and pathology.

� 2014 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Cell loss is a key feature of aging.However, vulnerability in aging is
not spread evenly across cellular populations, as in nearly all cases
thereare subpopulationswhodisplayselective susceptibility to lossof
function and death with age. Cell death is a significant feature of the
aging retina that has beenwell documented in the rod population in
manand rodents,where approximately 30%of these cells are lostover
life, whereas those that remain have significantly shorter outer seg-
ments. In rodents, this loss is present at 2 years of agewhereas inman
it is established around 70 years of age (Cunea and Jeffery, 2007;
Curcio et al., 1993). The high magnitude of cell loss here is probably
linked to the high metabolic demand of the outer retina (Barot et al.,
2011; Liang and Godley, 2003; Winkler, 1981; Winkler et al., 1999).
Surprisingly, data on cone losswith aging is less clear. Although there
is agreement on the decline in the cone driven photopic
BY-NC-ND license (http://
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electroretinogram (ERG) with age in mice, data on changes in the
underlying cone photoreceptor population do not reflect this. Three
studies have combined electrophysiological data and cone counts in
mice. Williams and Jacobs (2007), argue that cone densities in the
mouse do not change with age even when aged 2 years. Gresh et al.
(2003) similarly argue that in normally pigmented mice, there is no
significant change in cone numbers over the age of 17months. These
studies are supported by Li et al. (2001) in 1-year-old animals. Again,
theseauthorsargue that there isnounderlyingcone losswithage. The
missmatchbetween structure and function ispuzzling, particularly in
light of human data showing specific age-related deficits in the
photopic ERG (Neveu et al., 2011) and reduced central cone numbers
(Song et al., 2011), although the latter was based on limited in vivo
imaging. Further, with aging and disease, human S cone functionmay
be particularly impaired, implying that this cone subtype is relatively
vulnerable (Cho et al., 2000; Greenstein et al., 1989; Haegerstrom-
Portnoy, 1988; Heron et al., 1988; Johnson et al., 1988).

Mice have unusual patterns of cone distribution. Like most
mammals they only have 2 cone opsins, a short-wavelength opsin
(S) and a combined medium/long wavelength opsin (M/L). Further,
some cells can express both opsins (Bowmaker, 2008; Rohlich et al.,
1994). However, these have differential distributions with M/L
cones widely distributed or more common dorsally and S cones
predominantly present in the ventral retina (Rohlich et al., 1994),
ts reserved.
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although patterns of distribution may be more complex (Applebury
et al., 2000; Neitz and Neitz, 2001). Hence, if age-related cone cell
death is differential, then examining its impact may critically
depend on the geographic regions selected for analysis. Here, we
address the issue of age-related cone loss using normal C57 mice,
and those that have features of advanced aging and/or pathology in
the form of complement factor H knockouts (CFH�/�), which is
regarded by some as a model of age-related macular degeneration
and experiences elevated outer retinal inflammation with aging
(Coffey et al., 2007; Hoh Kam et al., 2013). We separate cones into
different subtypes based on their opsin expression and into those
from different regions. We reveal significant cone loss in the first
year of life that is focused specifically on the M/L population in the
ventral retina.

2. Methods

2.1. Mice

C57BL/6Jmice (n¼20) andCFH�/�miceonC57background (n¼
20)were used. Theywere of 2 ages: young, 3-month-old and old,12-
month-old. These ages have been selected because at the age of
3 months the mouse eye has reached normal adult size, and
12months because both Li et al. (2001) and Gresh et al. (2003) show
clear cone mediated reductions in ERG function at this stage. Direct
comparisons betweenman andmouse in terms of age are difficult to
assess, as the wild mice only live for 3e4 months and man only for
around 35 years. However, a 12-month-old mouse may be regarded
as aged as they are no longer futile. Few mice will live in the labo-
ratory for >24 months. All animals were used with University Col-
lege London ethics committee approval and under a UKHomeOffice
animal project license. All animal procedures conformed to the
United Kingdom Animals Scientific Procedures Act 1986.

2.2. Optical coherence tomography

Optical coherence tomography (OCT) imaging was used to
determine the overall structure of the retina between the 2 ge-
notypes. One study has suggested that even young CFH�/� have
retinae 25% thicker than wild-type animals (Williams et al., 2013),
implying a potential developmental difference which would un-
dermine the question we address. To provide high-resolution
images of retinae, in vivo mice (n ¼ 5 per group, 4 groups) were
anesthetized with an intraperitoneal injection of 6% Ketamine,
(Fort Dodge, UK), 10% Dormitor (Pfizer, UK), and 84% sterile water.
Pupillary dilatation was not necessary. Methylcellulose lubricant
was placed on the corneas, and the noncontact OCT probe (Bio-
ptigen, Morrisville, NC, USA) was positioned in front of the cornea
placing the optic nerve (ON) at the center of the image. Retinal
OCT was performed using a rectangular volumetric scan with a
B-scan length of 1.50 mm and a width of 3.00 mm at a rate of 1300
scans. Beginning at a distance of 0.4 mm from the ON head, 3
measurements were made along an orthogonal axis of the retina.
Total retinal thickness and that of the outer nuclear layer (ONL)
were made on either side of the ON using Adobe Photoshop CS5
extended. Six measurements were made adjacent to each other at
each location. These 6 values were averaged as one representative
of the location. Subsequently, 1 eye from each mouse was used for
immunostaining and the other for quantitative real-time poly-
merase chain reaction (qPCR).

2.3. Retinal wholemounts

Mice were killed by cervical dislocation. Eyes were immediately
enucleated and placed in 4% paraformaldehyde in phosphate
buffered saline (PBS, pH 7.2) for 1 hour, thenwashed in PBS and the
retinae dissected free from the eye cup. Four to 6 radial cuts were
made to produce wholemounts. They were then placed in a
blocking solution of 5% normal donkey serum, 3% Triton X-100, and
PBS for 2 hours (NDS, Jackson Labs USA). Wholemounts were
labeled with primary antibodies, rabbit polyclonal antibody against
Red/GreenM/L opsin: (1:5000, AB5405, Temecula California 92590)
and goat polyclonal antibody against S opsin protein OPN1SW
(1:1000, sc-14636 L1906, Santa Cruz Biotechnology) and left over-
night at room temperature. Tissues were then washed and incu-
bated for 2 hours in fluorescent secondary antibodies at a dilution
of 1:2000 made up of 2% NDS, 3% Triton X-100, and PBS. In the
negative control tissue, primary antibodies were omitted. All
wholemounts were cover slipped with Vectashield (Vector Labs,
Burlingame, USA).

2.4. Quantitative real-time polymerase chain reaction

As an independent measure for comparison with immuno-
staining, qPCR was additionally used to identify and quantify
photoreceptor subtype specific RNA expression. After performing
OCT, mice were kept overnight in standardized dim lighting con-
dition with only indirect illumination at approximately 5 lux. They
were killed as mentioned previously, their eyes immediately
enucleated, and the retinae dissected free and immediately snap
frozen.

Total RNA was extracted using the Tri Reagent (Molecular
Research Center, Inc Cincinnati, OH, USA). Complementary DNAwas
prepared (QuantiTect Reverse Transcription Kit, QIAGEN) and po-
lymerase chain reaction (PCR) performed in an ABI 7900HT FAST
Real Time PCR system using Promega qPCR Master Mix, S Opsin
forward: TGTACATGGTCAACAATCGGA, reverse: ACACCATCTCCA-
GAATGCAAG and M/L Opsin forward: CTCTGCTACCTCCAAGTGTGG,
reverse: AAGTATAGGGTCCCCAGCAGA. Raw data were analyzed
using the DART-PCR software, version 1.0 (Peirson et al., 2003).
Relative expression was calculated and normalized to beta actin.
Mann-Whitney U test was performed for statistical analysis.

2.5. Analysis of immune staining patterns

Whole-mounted retinae were divided into 2 different regions,
central and peripheral. The peripheral region was defined as an
annulus with a width of approximately 180 mm starting approx-
imately 260 mm from the borders of the retina. The central region
was defined as an annulus starting approximately 250 mm from
the center of the ON, having a width of approximately 300 mm.
A schematic illustration of the areas in which cells were counted
is given in Fig. 1. The rational was to quantify S, and M/L opsin
expressing cone numbers in regions where their density was
both high and low and also to quantify cells positive for both
opsins. Cells were not analyzed quantitatively in the dorsal aspect
of the central region because within this area there was a sig-
nificant gradient in S cone density, and the region was affected by
the deep cut made dorsally for the purposes of orientation.

2.6. Measurement of the S- and M-cone density in defined regions

Multiple images were captured at �200 within regions of in-
terest at slightly different planes of focus, so as not to miss any
labeled cells. These were exported in a JPEG format at a resolution
of 3840 � 3072 pixels. Analysis was undertaken in Adobe Photo-
shop CS5 extended. Individual cones were clear in all the images
and were commonly spaced without overlapping with one another.
Further, many had a cone like morphology. Counts undertaken at
defined regions in the different young and old mice of both



Fig. 1. Outline drawing of the retina showing central (C) and peripheral (P) ventral and
dorsal regions used for cell counts. The image was taken from a retina that was stained
with primary antibodies for S opsin. A ventral to dorsal gradient of S opsin cells could
be seen. Scale bar ¼ 1 mm.
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genotypes were made with 6 retinae per group and a minimum of
3000 cells counted in defined regions. Hence, counts for the sepa-
rate cone types in old CFH�/� mice at each location were drawn
form 6 retinae. Statistical comparisons throughout were under-
taken using a 1-tailed Mann-Whitney U test.
3. Results

3.1. In vivo analysis

Retinae were imaged in vivo, to determine if there were any
overall significant differences between the genotypes at different
ages and confirm that both groups of young animals were similar.
In vivo imaging resulted in clear retinal images in which cellular
layers could be identified (Fig. 2). Here, measurements were made
of the total retinal thickness and of the thickness of the ONL. Total
retinal thickness was reduced in aged animals of both genotypes
(C57: 5.4%, CFH�/�: 1.8%), but in neither was this statistically sig-
nificant. However, measurements of the thickness of the ONL dis-
played a significant reduction in both groups of mice with age (C57:
14.5%, CFH�/�: 10.3%) (Fig. 3). Although this analysis reveals clear
age-related changes in the outer retina, cones account for only
approximately 3% of the total photoreceptor population (Carter-
Dawson and LaVail, 1979). Hence, the magnitude of this differ-
ence is likely to be caused by rod loss.
3.2. In vitro analysis

The combined cone population was counted in central and
peripheral regions as defined in Fig. 1 in young and old C57 and
CFH�/� mice from tissue immune-stained for both S and M/L
opsin. No statistically significant differences were found for age-
related changes in combined cone numbers except for in the pe-
riphery of C57 mice (p ¼ 0.014). However, there was also a notable
but nonsignificant decline in the same region in CFH�/� mice
(p ¼ 0.069). Differences in central regions were minimal and not
significant (Fig. 4).

3.3. Distribution of different cone types

These results imply there may be a regional specific decline in
cone numbers. However, these data do not distinguish between
the different cone subtypes. Cone counts were undertaken for
cells with specific opsin label and cells with combined opsin
expression at defined locations (Fig. 1). The distribution of the
different cone types were as described previously, with S opsin
cells displaying a marked differential distribution across the
retina with their density being much greater in the ventral than
the dorsal retina (Fig. 5). In the mice used here, M/L opsin posi-
tive cells were more evenly distributed, but with a bias toward
the dorsal regions.

In peripheral regions, cells were counted between young and old
animals within the ventral half of the central region (Fig. 1). Here,
there were no statistically significant differences between young
and old mice in terms of the number of cells expressing S opsin, M/L
opsin, or S and M/L opsin. Rather numbers hardly differed between
the 2 age groups for each opsin type (Fig. 5).

There were no statistically significant differences between
young and old mice for S opsin in either C57 or CFH�/�,
although in both there was a decline with age of approximately
10%e20%. However, in the periphery, there were statistically
significant differences between young and old mice in these
ventral regions for M/L opsin in C57 mice (p ¼ 0.044) and like-
wise for M/L opsin between young and old CFH�/� mice (p ¼
0.021). The reduction in C57 animals was 27% and in CFH�/� it
was 18%. Statistically significant differences were also present for
the CFH�/� mice in peripheral regions for cells with combined S
and M/L opsin where the decline was >30% (p ¼ 0.004). How-
ever, the difference in C57 mice for these cells fell just below
significance with a decline of 23% (p ¼ 0.051, Fig. 5). Hence, the
identification of significant age-related cell loss depends upon
the region examined, occurring only in the periphery, and is only
present in cells expressing M/L opsin. In cells expressing both
opsin types significant differences were confined to CFH�/�
mice.

S opsins labeled cells were also counted in the dorsal half of the
retina in regions where their density was low. As with these cells in
the ventral retina, there was no significant decline in their number
between young and old animals in either C57 or CFH�/�mice. M/L
opsin cells were also counted in these regions and again there were
no significant differences between young and old mice of either
genotype (Fig. 5).

3.4. qPCR analysis

The qPCR data for changes of expression of opsins with age
reflected the data shown with immune labeling for opsins.
However, the qPCR findings are somewhat undermined due to
the fact that they do not take into account regional differences. It
is not possible to compare directly old and young animals when
base lining using mouse housekeeping genes because of the
differential cell loss with age throughout the retina. Differential
cell loss with age will mean that the proportion of the retinal
messenger RNA extract that is derived from cones would be
different between young and old animals. However, a ratio be-
tween the messenger RNA level expression of S and M/L opsins
can be used as a proxy marker to show a preferential change in
M/L opsin with age. Whereas in young animals the population of
M opsin constitutes approximately 1 in 3 of the total, in old an-
imals M opsin is reduced to only approximately 1 in 4 (S vs. M/L



Fig. 2. In vivo OCT images of retinae from young and old C57 and CFH�/� mice at low (AeD) and high (EeH) magnification. Five animals from each group were imaged, 20 in total.
(AeD) Images centered on the optic nerve head, whereas measurements in EeH are taken at a distance of 0.4 mm from the optic nerve head. Retinal layers can be distinguished.
Scale bars ¼ 100 mm. Abbreviations: INL, inner nuclear layer; OCT, optical coherence tomography; ONL, outer nuclear layer.
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ratio change: C57: 34.4%, CFH�/�: 34.7%), with that change in the
CFH�/� being statistically significant (C57: p ¼ 0.075, CFH�/�:
p ¼ 0.027, Fig. 6). Hence, these data support the notion that M/L
opsin is more vulnerable with age, consistent with the immune
staining.
Fig. 3. Histograms of OCT data showing differences in (A) total retinal thickness and (B) oute
imaged in total, 5 per group. (A) There were no significant differences in total retinal thickne
older than younger animals (C57: 5.4% reduction, CFH�/�: 1.8% reduction). (B) Thickness of
significant differences in thickness between young and old C57 (14.5%, p ¼ 0.0040) and you
coherence tomography; SEM, standard error of the mean. **p > 0.01; ***p > 0.001.
4. Discussion

Here, we show clear cone loss with aging in the mouse retina.
This is focused on the M/L cone population in the peripheral retina
and not on the S cones. This is in contrast to the previous studies
r nuclear layer thickness in young and old C57 and CFH�/� mice. Twenty animals were
ss between young and old mice of either genotype. However, the retina was thinner in
the outer nuclear layer in young and old animals of both genotypes. Here, there were
ng and old CFH�/� (10.3%, p ¼ 0.0003). Error bars ¼ SEM. Abbreviations: OCT, optical



Fig. 4. Histograms for total cone density in the center and periphery in retinae labeled for both S and M/L opsin. Data are taken from 6 retinae per group, 4 groups. There are no
significant differences between young and old in either genotype in the center. In the periphery there are differences in both genotypes with fewer cells in old than young (C57:
18.1% reduction, CFH�/�: 18.0% reduction). However, this was only statistically significant in C57 mice (C57: p ¼ 0.0140; CFH�/�: p ¼ 0.0688). Hence, cell loss is a greater feature in
the periphery than in the center in both genotypes and of roughly similar magnitude although more variable in CFH�/�. *p > 0.05.
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that have failed to find any cone loss with age in mice (Gresh et al.,
2003; Li et al., 2001; Williams and Jacobs, 2007). Also, unexpect-
edly, in spite of studies showing advanced aging and/or pathology
in the CFH�/� mouse (Coffey et al., 2007), we do not find over-
whelming evidence for elevated cone loss in this mouse model
compared with the C57 mice. Our results demonstrate significant
cone loss over the first year in peripheral M/L cones, which is in
contrast to data for the rod population that indicate that significant
cell loss here is marked in the second year of life and may be less
significant earlier (Cunea and Jeffery, 2007; Fox and Rubinstein,
1989; Kolesnikov et al., 2010).

4.1. The aging mouse outer retina

Cone topography in the mouse retina is unusual (Bowmaker,
2008; Rohlich et al., 1994). Although there remain some contro-
versy over the exact distribution of the different cone types and the
proportion and location of those expressing both opsins, it does not
undermine our data. Cone distributions in both genotypes were
identical. Even if opsin co-expression was underestimated in our
study, it does not change the nature of the results presented, that
reveals that cells containing S opsin were not subject to the loss
found in those containing M/L opsin in the ventral retina.

Mice are nocturnal and largely photophobic. The M/L cone loss
recorded here was in the ventral periphery, and it may be relevant
that this corresponds toupper visualfields.Mice commonlynavigate
with their nose down to improve ground scent location and engage
their whiskers with the environment. In such a position central and
dorsal retinal regions will be exposed to less ambient light than the
ventral retina, and this may be related to the differential patterns of
cone loss. However, it remains to be demonstrated that normal light
exposure influences cell loss at this location in mice. It also remains
to be determined, if there are specific structural differences between
M/LandS cones inmiceashavebeen found inhumanand/orprimate
retinae as discussed in the following.

Three previous studies in the mouse have demonstrated cone
functional decline with age, but failed to find evidence for cell loss.
This is surprising, particularly as rod loss is a key feature of aging in
mouse and man (Cunea and Jeffery, 2007; Curcio et al., 1993). The
most likely explanation for this discrepancy is sampling. Williams
and Jacobs (2007) sampled 21 sites in whole mounted mouse
retinae, but give no further information. The mice in which they
present data for cone counts were largely from 200- to 800- day-
old, but no loss was found in spite of the extreme age of some. Gresh
et al. (2003) examined retinae at 1 and 17 months of age. They
examined frozen sections and wholemounts, but the wholemounts
were stained with PNA lectin that marks all cones and were
sampled at the central and peripheral locations with the average
taken from the 2 measures. But the number of retinae examined is
unclear. Additionally, specific opsin stainingwas only undertaken in
the sectioned material. Li et al. (2001) examined mice at 2, 6, and
12 months of age, which is probably comparable with 20e70 years
in age span in humans, but all their histology was again in sectioned
retinae. It is highly likely that the sectionedmaterial provides a very
limited window on cell loss because the number of cones identified
in these preparations is small compared with numbers in whole
mounts. Although these studies all examined ERGs comprehen-
sively and even pigmentation phenotype differences (Gresh et al.,
2003), none specifically focused on counts in whole mounted
preparations from defined regions for specific cone subtypes. This is
probably the reason for the discrepancy between our results and
those of others that have gone before.

4.2. CFH�/� model

There are other key discrepancies between our results and those
undertaken previously. The CFH�/� mouse has been proposed as
an experimental system in which to study age-related macular
degeneration relevant pathways. These mice appear to suffer from
higher levels of outer retinal inflammation when aging compared
with normal mice (Coffey et al., 2007; Lundh von Leithner et al.,
2009), but this does not seem to impact differentially on cone
numbers. In fact, the CFH�/� retina is remarkably normal even in
very old mice, and the deficits are far from extreme in 2-year-old
animals, which are close to the end of what mouse life span can be
extended to and certainly comparablewith very old humans (Coffey
et al., 2007). This is inconsistent with human data that shows cone
photoreceptors are vulnerable to inflammatory damage. In fact,
cone function in terms of their ability to follow flickering stimuli in
ERG recordings is regarded as a key clinical metric of retinal
inflammation in a diverse series of retinal diseases (Crawford and
Igboeli, 2013; Holder et al., 2005; Noma et al., 2012). It is possible
that chronic outer retinal inflammation reduces cone function
without inflicting cell loss and this could explain such discrep-
ancies. However, it is equally likely that there are fundamental
differences between mice and human that are not only reflected in
the highly unusual cone photoreceptor distributions found in mice
and their photophobic life styles, but also in the differential
vulnerability of their cone populations. If this is the case, it raises
serious questions regarding the suitability of the mouse model for
human retinal aging and disease.

4.3. Are cones lost before rods?

It has been argued that rod loss precedes cone loss in human
aging and disease (Curcio, 2001; Curcio et al., 1993; Jackson et al.,



Fig. 5. The relative changes in cone subtype with age, genotype, and retinal region. All counts are from 6 retinae per group for each of the metrics shown. Left column: low power
image of a retina stained for S opsin showing that most S opsin containing cells are located in the ventral retina. Scale bar ¼ 1 mm. Above and below are higher magnification images
reflecting relative cell densities for S and M/L cones in every region. Below are higher magnification images from the ventral high density and above of the dorsal low density
regions. Right column: cone densities in different retinal regions for S, M/L, and double labeled S and M/L cones. In central and ventral regions S cones dominated, however, there
were also many M/L and combined opsin cells. However, in central regions there were no differences with age in these populations. In ventral peripheral regions, there were
significant differences in the number of M/L opsin cells in both genotypes in young and old animals (C57: 27.4% reduction, p ¼ 0.0438, CFH�/�: 17.6% reduction, p ¼ 0.0210). Fewer S
opsin cells were also found with age (C57: 11.7% reduction, CFH�/�: 7.9% reduction), but this was not significant in either genotype. There were reductions in cells expressing both
opsins, with numbers reduced in old animals compared with young in both genotypes. This was statistically significant in CFH�/� mice but just failed to reach statistical sig-
nificance in C57 mice (C57: 22.7% reduction, p ¼ 0.051, CFH�/�: 30.6% reduction, p ¼ 0.0046). In the dorsal peripheral retina, there were more M/L cones than in other retinal
regions and very few S cones, reflecting the clearly visible ventro-dorsal S cone gradient. There were no age-related differences in these cells in either genotype with age. There was
a nonsignificant reduction in CFH�/� mice (20%, p ¼ 0.0657). Cells containing both opsins were present in the dorsal periphery, but their numbers were so low, they cannot be
shown on this axis. Hence, age related cell loss is mainly confined for M/L cells in the ventral periphery.
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2002; Panda-Jonas et al., 1995), but our data do not support this
as a general principal. In rats, there is an approximate 25% rod loss
over 24 months of age (Cunea and Jeffery, 2007). Kolesnikov et al.
(2010) appear to show a similar proportional decline in the ONL
thickness in mice at 30 months. Further, at 12 months Fox and
Rubinstein (1989) found only an 8% age-related decline in rat
rhodopsin. Our data for ONL thickness decline at 12 months is
approximately 12%. However, our loss of M/L cones at 12 months
in C57 mice is 27% and for S cones it is 12%. In CFH�/� M/L cone
loss is 18% and for S cones it is 8% at 12 months. Taken together, it
is clear that there is no evidence to argue that rod loss precedes
cone loss in the mouse in the first 12 months. Rather, it appears
that cone loss is actually greater over this period than the loss in
rods.
4.4. Selective cone vulnerability in human aging and disease

The other issue raised by our data relates to what is commonly
supposed to be the selective vulnerability of S cones in human aging
and disease, which we fail to find here in mice. It has been
consistently argued that human S cones are selectively lost with age
(Beirne, 2013; Beirne et al., 2008; Eisner et al., 1987; Haegerstrom-
Portnoy, 1988; Johnson et al., 1988; Werner et al., 2000; Zlatkova
et al., 2003). Further, that they are more vulnerable in a range of
diseases including diabetes (Cho et al., 2000; Greenstein et al.,
1989), retinal detachment (Nork et al., 1995) and retinitis pigmen-
tosa, and glaucoma (Greenstein et al., 1989; Heron et al., 1988). It
has also been suggested that S conesmay show vulnerability in age-
related macular degeneration (Beirne et al., 2006; Frennesson et al.,



Fig. 6. qPCR data. Ratio bars for each genotype showing the relative proportion of M/L
cone opsin against S cone opsin. There was a preferential decrease of M/L opsin with
age (S vs. M/L ratio change: C57: 34.4%, CFH�/�: 34.7%). Although in young animals the
population of M opsin constitutes approximately to 1 in 3 of the total, in old animals. M
opsin is reduced to only approximately 1 in 4. This was significant in CFH�/�mice (p ¼
0.0278), but not in C57 (p ¼ 0.0754). Hence, age related cell loss is preferential for M/L
opsin. Abbreviation: qPCR, quantitative real-time polymerase chain reaction.
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1995; Remky and Elsner, 2005), where inflammation is likely to be
an early feature (Johnson et al., 2002). Elevated inflammation is also
a key feature in the CFH�/�mice (Coffey et al., 2007). However, it is
important to moderate such finding. Studies from Werner’s labo-
ratory have emphasized the impact that age-related changes in the
lens will have on S cone sensitivity, because as the lens browns with
age it will absorb a greater proportion of the shorter wavelengths
(Hardy et al., 2005). In spite of this, Shinomori and Werner (2012)
have reported age related slowing in the S cone pathway,
although other temporal properties of this pathway remain un-
changed. Taken together, these results imply that changes with age
in the S cone pathway may be more complex than thought when
earlier studies were undertaken and may need to be re-addressed
in more tightly controlled psychophysical paradigms.

If human S cones are vulnerable it may be related to structural
differences as they have longer and wider inner segments than
other human cone types. There is also evidence that their synaptic
terminals distinguish them from other cone types. Also in human
retinae they form only a small proportion of the total cone popu-
lation being around 5%e10% and have a distinct pattern of distri-
butionwith none at the fovea (Calkins, 2001). Further, there may be
something distinct in their membrane characteristics as it is
possible to stain them selectively with fluorescent dyes
(DeMonasterio et al., 1981), potentially implying that their mem-
branes are relatively permeable.

S cones in mice are different from those in humans, in terms of
their relative number, retinal distribution, and the wavelength
sensitivity of their opsin (Bowmaker, 2008; Neitz and Neitz, 2001;
Szel et al., 1992). Hence, it is likely that there are other funda-
mental differences in their structure and/or organization that may
mean that they do not possess the same patterns of vulnerability as
their human homologs. If this is correct, it raises a fundamental
issue regarding how far mice can be used as animal models of outer
retinal aging and pathology. It also raises the issue of why in mice
M/L cones show selective vulnerability, the reason for which is
unclear.
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