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Abstract

We propose a numerical approach based on the Lattice-Boltzmann (LBM)

and Immersed Boundary (IB) methods to tackle the problem of the interaction

of solids with an incompressible fluid flow. We explain in detail the paralleliza-

tion of the complete method on two different heterogeneous platforms based on

massively parallel hardware accelerators: NVIDIA Kepler GPU and Intel Xeon

Phi. we describe a number of software optimizations, mainly focusing on mem-

ory management and host-accelerator communication. Based on a thorough

perforrmance evaluation, we demonstrate that the baseline LBM implementa-

tion achieves satisfactory results on hardware accelerators. Unfortunately, when

coupling LBM and IB methods on the heterogeneous platforms, the overheads

of IB degrade the overall performance. As an alternative, we explore different

heterogeneous implementations that effectively hide such overheads and allow

us to exploit both the multi-core and the hardware accelerator in a co-operative

way.
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1. Introduction

The dynamics of a solid in a flow field is a research topic currently with a

growing interest in many scientific communities. It is intrinsically interdisci-

plinary (structural mechanics, fluid mechanics, applied mathematics, . . . ) and

covers a broad range of applications (e.g. aeronautics, civil engineering, biologi-

cal flows, etc.) The number of works in this field reflects the growing importance

of the study of the dynamics in the solid-fluid interaction [14, 15, 16, 17]. The use

of accelerated, heterogeneous architectures to compute the fluid field is widely

used within the Computational Fluid Dynamics (CFD) community due to the

computational requirements of such applications, with significant performance

results [11, 12, 13]. In contrast, the solid-fluid interaction has only recently

gained wider interest.

The main objective of this work is the reduction the overhead caused by the

simulation of solid-fluid interaction on heterogeneous platforms. In particular,

we propose a number of hybrid strategies that distribute parts of the computa-

tion either to the hardware accelerator or the general-purpose CPU, depending

on how they adapt to each part of the solver. We also give notes on specific

optimizations to tune each one of the parts of the computation, adapting them

to the characteristics of each architecture.

Classical fluid solvers based on the unsteady incompressible Navier Stokes

equations may turn out to be inefficient or difficult to tune to achieve maxi-

mum performance on new massively-parallel platforms [18, 19]. A choice that

better meets their characteristics is based on modeling the fluid flow through

the Lattice Boltzmann method (LBM). Several recent works have shown that

the combination of hardware accelerators and methods based on the LBM algo-

rithm can achieve impressive performances due to the intrinsic characteristics

of the algorithm. Certainly, the computing stages of LBM are amenable to fine

grain paralelization in an almost straightforward way (see, for example, [11, 12]

and references therein). Nevertheless, few works extend the parallel efficiency of

LBM to cases involving geometries bounded by complex, moving or deformable
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boundaries. A very recent work that covers a subject closely related with the

present contribution is the one by [13] where a new efficient 2D implementation

of LBM method for fluids flowing in geometries with curved boundary using

GPUs platforms is proposed. Curved boundaries are taken into account via a

non equilibrium extrapolation scheme developed by [21]. S. K. Laytona et al. [31]

propose a GPU implementation based on the IB projection method [32], which

computes the influence of one rigid solid into Navier-Stokes solver through the

use of sparse linear algebra routines, using the open-source Cusp library to carry

out these routines. This approach requires a higher computational compared

with ours, attaining similar accuracy.

We consider a different approach for computing the influence of a solid im-

mersed in a incompressible flow, which is based on different forcing approach [6]

able to deal with complex, moving or deformable boundaries. It has been used

on Lattice-Boltzmann [29] and Navier-Stokes [7] based solvers. In [20], authors

proposed the use of heterogeneous CPU-GPU platforms to minimize the over-

head that the computing of the solid presence exhibits. This paper extends

the aforementioned contribution in different ways. Our numerical framework is

based on LBM coupled with an Immersed Boundary (IB) method able to deal

with complex, moving or deformable boundaries [1, 2, 3, 4, 5, 6, 7, 29]. Special

emphasis is given to the algorithmic and implementation techniques adopted to

keep the solver highly efficient on heterogeneous host-accelerator platforms with

independent memory spaces, based both on GPUs or the recently introduced

Intel Xeon Phi accelerator.

This paper is structured as follows. Section 2 introduces the physical prob-

lem at hand and the general numerical framework that has been selected to cope

with it: Lattice-Boltzmann method (LBM) coupled with Immersed-Boundary

(IB) technique based on the use of a set of Lagrangian nodes distributes along

the solid boundaries. In Section 3, the specific potential parallel features of

IB method over multicore and massively parallel architectures are presented.

Different LBM approaches for dealing with the particular features of the ar-

chitectures considered are discussed in Section 4. In Section 5, we detail the
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parallel strategies envisaged to optimally enhance the performance of the global

LBM-IB algorithm on CPU-GPU heterogeneous platforms. Finally, Section 6

details the performance analysis of the proposed techniques and in Section 7

some conclusions are outlined.

2. The Lattice Boltzmann and Immersed Boundary methods

The Lattice Boltzmann method combined with an Immersed Boundary tech-

nique is highly attractive when dealing with bodies for two main reasons: the

shape of the boundary, tracked by a set of Lagrangian nodes is a sufficient

information to impose the boundary values; and the force of the fluid on the

immersed boundary is readily available and thus easily incorporated in the set

of equations that govern the dynamics of the immersed object. In addition,

it is also particularly well suited for massively parallelized simulations, as the

time advancement is explicit and the computational stencil is formed by few

local neighbors of each computational node (support). The fluid is discretized

on the regular Cartesian mesh while the shape of the solids is discretized in a

Lagrange fashion by a set of points which obviously do not necessarily coincide

with mesh points. The Lattice Boltzmann method has been extensively used

in the past decades (see [22] for a complete overview) and it is now regarded

as a powerful and efficient alternative to classical Navier Stokes solvers. In

particular, LBM has been used to simulate high Reynolds turbulent flows both

using Direct Numerical Simulation and Large Eddy Simulation [23]. Another

challenging application where LBM has proved to be quite successful concerns

aeroacoustics problems [24]. In what follows we briefly recall the basic formula-

tion of the method. The LBM is based on an equation that governs the evolution

of a discrete distribution function fi(x, t) describing the probability of finding a

particle at Lattice site x at time t with speed v = ei. In this work, we consider

the BGK formulation [25] that relies upon an unique relaxation time τ toward

the equilibrium distribution f
(eq)
i :

fi (x+ ei∆t, t+∆t)− fi (x, t) = −∆t

τ

(
f (x, t)− f

(eq)
i (x, t)

)
+∆tFi (1)
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Figure 1: The standard two-dimensional 9-speed lattice (D2Q9) used.

The particles can move only along the links of a regular Lattice defined by

the discrete speeds (e0 = c(0, 0); ei = c(±1, 0), c(0,±1), i = 1 · · · 4; ei =

c(±1,±1), c(±1,±1), i = 5 · · · 8 with c = ∆x/∆t) so that the synchronous par-

ticle displacements ∆xi = ei∆t never take the fluid particles away from the

Lattice. For the present study, the standard two-dimensional 9-speed Lattice

D2Q9 (Figure 1) is used [26], but all the techniques that will be presented can

be extended in a straightforward manner to three dimensional lattices.

The equilibrium function f (eq) (x, t) can be obtained by Taylor series expan-

sion of the Maxwell-Boltzmann equilibrium distribution [27]:

f
(eq)
i = ρωi

[
1 +

ei · u
c2s

+
(ei · u)2

2c4s
− u2

2c2s

]
(2)

In Equation 2, cs is the speed of sound (cs = 1/
√
3) and the weight coeffi-

cients ωi are ω0 = 4/9, ωi = 1/9, i = 1 · · · 4 and ω5 = 1/36, i = 5 · · · 8 according

to the current normalization. The macroscopic velocity u in Equation 2 must

satisfy a Mach number requirement | u | /cs ≈ M << 1. This stands as the

equivalent of the CFL number for classical Navier Stokes solvers. Finally, in

Equation 1, Fi represents the contribution of external volume forces at lattice

level that in our case include the effect of the immersed boundary. Given any

external volume force f (ib)(x, t), the contribution on the lattice are computed

according to the formulation proposed by [21] as:

Fi =

(
1− 1

2τ

)
ωi

[
ei − u

c2s
+

ei · u
c4s

ei

]
· fib (3)
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The multi-scale Chapman Enskog expansion of Equation 1, neglecting terms of

O(εM2) and using expression 3, returns the Navier-Stokes equations with body

forces and the kinematic viscosity related to lattice scaling as ν = c2s(τ−1/2)∆t.

Without the contribution of the external volume forces stemming from the

immersed boundary treatment, Equation 1 is typically advanced in time in two

stages: collision and streaming.

Given fi(x, t) compute:

ρ =
∑

fi(x, t) and ρu =
∑

eifi(x, t)

Collision stage:

f∗
i (x, t+∆t) = fi (x, t)− ∆t

τ

(
f (x, t)− f

(eq)
i (x, t)

)
Streaming stage:

fi (x+ ei∆t, t+∆t) = f∗
i (x, t+∆t)

Depending on the ordering of the two stages, two different strategies arise.

The classical approach is known as the push method and performs collision

before streaming. We have adopted instead for pull method [28], which performs

the steps in the opposite order. This can lead to an important performance

enhancement on fine grained parallel machines. A short discussion about the

different implementations and achieved performances using the two orderings

will be detailed later on.

Next, we briefly introduce the Immersed Boundary method that we use both

to enforce boundary values and to recover the fluid force exerted on immersed

objects within the framework of the LBM algorithm [6, 7]. In the taken IB

approach (as in several others), the fluid is discretized on a regular Cartesian

lattice while the immersed objects are discretized and tracked in a Lagrangian

fashion by a set of markers distributed along their boundaries. The general

setup of the present Lattice Boltzmann-Immersed Boundary method can be

recast in the following algorithmic sketch.

Given fi(x, t) compute:

ρ =
∑

fi(x, t) and
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ρu =
∑

eifi(x, t) +
∆t
2 fib

Collision stage:

f̂∗
i (x, t+∆t) = fi (x, t)− ∆t

τ

(
f (x, t)− f

(eq)
i (x, t)

)
Streaming stage:

f̂i (x+ ei∆t, t+∆t) = f̂∗
i (x, t+∆t)

Compute :

ρ̂ =
∑

f̂i(x+ ei∆t, t+∆t) and

ρ̂û =
∑

eif̂i(x+ ei∆t, t+∆t)

Interpolate on Lagrangian markers (volume force):

Û(Xk, t+∆t) = I(û) and

fib(x, t) =
1
∆tS

(
Ud(Xk, t+∆t)− Û(Xk, t+∆t)

)
Repeat collision with body forces (see 3) and Streaming:

f∗
i (x, t+∆t) = fi (x, t)− ∆t

τ

(
f (x, t)− f

(eq)
i (x, t)

)
+∆tFi and

fi (x+ ei∆t, t+∆t) = f∗
i (x, t+∆t)

As outlined above, the basic idea consists in performing each time step twice.

The first one, performed without body forces, allows to predict the velocity val-

ues at the immersed boundary markers and the force distribution that restores

the desired velocity boundary values at their locations. The second one applies

the regularized set of singular forces and repeats the procedure advancing (us-

ing Equation 3) to determine the final values of the distribution function at the

next time step. The key aspects of the algorithm and of its efficient implemen-

tation depend on the way the interpolation I and the S operators (termed as

spread from now on) are applied. Here, following [6] and [7] we perform both

operations (interpolation and spread) through a convolution with a compact

support mollifier meant to mimic the action of a Dirac’s delta. Combining the

two operators we can write in a compact form:

f(ib)(x, t) =
1

∆t

∫
Γ

(
Ud(s, t+∆t)−

∫
Ω

û(y)δ̃(y − s)dy

)
δ̃(x− s)ds (4)
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Figure 2: An immersed curve discretized with Lagrangian points •. Three consecutive points

are considered with the respective supports.

where δ̃ is the mollifier, to be defined later, Γ is the immersed boundary, Ω is

the computational domain, and Ud is the desired value on the boundary at the

next time step. The discrete equivalent of 4 is simply obtained by any standard

composite quadrature rule applied on the union of the supports associated to

each Lagrangian marker. As an example, the quadrature needed to obtain the

force distribution on the lattice nodes is given by:

f l
ib(xi, yj) =

Ne∑
n=1

F l
ib(Xn)δ̃(xi −Xn, yj − Yn)εn (5)

where the superscript l refers to the lth component of the immersed boundary

force, (xi, yj) are the lattice nodes (Cartesian points) falling within the union

of all the supports, Ne is the number of Lagrangian markers and εn is a value to

be determined to enforce consistency between interpolation and the convolution

5. More details about the method and in particular about the determination of

the εn values can be found in [7].

In what follows we will give more details on the construction of the support

cages surrounding each Lagrangian marker since it plays a key role in the par-

allel implementation of the IB algorithm. Figure 2 illuastrates an example of

the portion of the lattice units that falls within the union of all supports. As

already mentioned, the embedded boundary curve is discretized into a number

of markers XI , I = 1..Ne. Around each marker XI we define a rectangular

cage ΩI with the following properties: (i) it must contain at least three nodes
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of the underlying Eulerian lattice for each direction; (ii) the number of nodes

of the lattice contained in the cage must be minimized. The modified kernel,

obtained as a cartesian product of the one dimensional function [8]

δ̃(r) =



1
6

(
5− 3|r| −

√
−3(1− |r|)2 + 1

)
0.5 ≤ |r| ≤ 1.5

1
3

(
1 +

√
−3r2 + 1

)
0.5|r| ≤ 0.5

0 otherwise

(6)

will be identically zero outside the square ΩI . We take the edges of the square

to measure slighlty more than three lattice spacings ∆ (i.e., the edge size is

3∆ + η = 3 + η in the actual LBM normalization). With such choice, at least

three nodes of the lattice in each direction fall within the cage. Moreover a value

of η << 1 ensures that the mollifier evaluated at all the nine (in two dimensions)

lattice nodes takes on a non zero value. The interpolation stage is performed

locally on each nine points support: the values of velocity at the nodes withing

the support cage centered about each Lagrangian marker deliver approximate

values (i.e., second order) of velocity at the marker location. The force spreading

step requires information from all the markers, typically spaced ∆ = 1 apart

along the immersed boundary. The collected values are then distributed on the

union of the supports meaning that each support may receive information from

supports centered about neighboring markers, as in 5. The outlined method has

been validated for several test cases including moving rigid immersed objects

and flexible ones [29].

Finally, we close this section presenting several test cases in order to val-

idate the implementation of the code by comparing the numerical results ob-

tained with other studies. One of the classical problems in Computational Fluid

Dynamic is the determination of the two-dimensional incompressible flow field

around a circular cylinder, which is a fundamental problem in engineering ap-

plications. Several Reynolds numbers (20, 40 and 100) have been tested with

the same configuration. The cylinder diameter D is equal to 40. The flow space

is composed by a mesh equal to 40D (1600) × 15D (600). The boundary con-
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Figure 3: Vorticity with Re=100.

Author Re = 20 Re = 40 Re = 100

CD CD CD CL

Calhoun (2002) 2.19 1.62 1.33 0.298

Rusell (2003) 2.22 1.63 1.34 -

Silva (2003) 2.04 1.54 1.39 -

Xu (2006) 2.23 1.66 1.423 0.34

Zhou (2012) 2.3 1.7 1.428 0.315

This work 2.3 1.7 1.39 0.318

Table 1: Experimental results.

ditions are set as: Inlet: u = U,v = 0, Outlet: ∂u
∂x = ∂v

∂x = 0, Upper and lower

boundaries: ∂u
∂y = 0,v = 0, Cylinder surface: u = 0,v = 0, Volume fraction:

0.5236%. When Reynolds number is 20 and 40, there is no vortex structure

formed during the evolution. The flow field is laminar and steady. In contrast,

for the Reynolds number of 100, the symmetrical rectangular zones disappear

and an asymmetric pattern is formed. The vorticity is shed behind the circular

cylinder, and vortex structures are formed downstream. This phenomenon is

graphically illustrated in Figure 3.

Two important dimensionless numbers are studied, the drag (CD = FD

0.5ρU2D )

and lift (CL = FL

0.5ρU2D ) coefficients. FD corresponds to the resistance and FL is

the lifting force of the circular cylinder, ρ is the density of the fluid, and U is the

velocity of inflow. In order to verify the numerical results, the coefficients were
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calculated and compared with the results of previous studies (Table 1). The drag

coefficient for Reynolds number of 20 and 40 is equal to the results presented

by Zhou et al. [13]. The drag coefficient obtained for Reynolds number of 100

is identical to the results obtained by Silva et al. [17], and the lift coefficient is

close to the presented by Zhou et al. [13].

3. Immersed Boundary Method Implementations

This section presents the strategy that we have adopted for the efficient

parallelization of the IB algorithm when executed on CPU-GPU heterogeneous

platforms. The computations related with the Lagrange markers (support) dis-

tributed on the solid/s surface can be parallelized efficiently on both, CPU and

GPU. As already mentioned the whole algorithm can be seen as a two steps

procedure: a first, global LBM update, and a subsequent local correction to im-

pose the boundary values. It is well known that the memory management plays

a crucial role in the performance. To compute the IB method, it is necessary

to store the information about the coordinates, velocities and forces of all the

Lagrangian points and their supports. A set of memory management optimiza-

tions, which depends on the access pattern, have been carried out for the IB

method implementation on both platforms, multicore and GPU, to achieve an

effective memory usage.

3.1. Memory management

Two different memory management approaches are proposed depending on

the use of multicore or GPU, since both architectures exhibit different memory

features and a substantially different hierarchy. The multicore approach stores

the information of a particular lagrangian point and its support in nearby mem-

ory locations, which benefits the exploitation of coarse grain parallelism. In con-

trast, in order to achieve a coalesced access to global memory, the GPU approach

distributes the information of all lagrangian points in a set of one-dimensional

arrays. In this way, contiguous threads access to contiguous memory locations.
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Figure 4: Memory management and mapping on sequential/multicore (left) and GPU (right)

platforms for two consecutive Lagrangian points.

Particular attention was paid to the access pattern to the information of the

supports. It was necessary to store the information of the set of all supports in a

unified array to carry out coalescing memory accesses, achieving that elements

which share the same index on different supports are located in continuous mem-

ory locations. For clarity, Figure 4 shows the memory mapping performed on

both platforms in a simplified example with two consecutive Lagrangian points.

As shown, the use and the exploitation of each memory hierarchy, main (CPU)

and global (GPU) memory, is totally different. Furthermore, an additional ad-

vantage is found in the use of the memory structures, allowing the transfer

the information of the solid(s) between both memories by carrying out a single

memory transfer.

3.2. Parallelization approaches on multi-core and GPU

The degree of parallelism of the IB method is given by the number of La-

grangian points. The multicore approach carries out a coarse-grain parallelism
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Figure 5: CUDA block-thread distribution for Lagrangian points.

by mapping a set of continuous Lagrangian points on each core which are solved

sequentially. This distribution is well balanced and the use of the memory is

optimized by using the memory structures previously described (Figure 4). The

set of Lagrangian points can be easily parallelized with this approach, annotat-

ing some of its loops with OpenMP pragmas.

On the GPU, the implementation consists of using two basic kernels. The

first one, denoted as Immersed Forces Computation (IFC) kernel, assembles the

velocity field on the supports, undertakes the interpolation at the Lagrangian

markers and determine the Eulerian volume force field on each node of the union

of the supports. The second kernel, denoted as Body Forces Computation (BFC)

kernel, computes the lattice forces and repeat the LBM time update only on

the union of the supports including the IB forces contribution. Both kernels use

the same CUDA block-thread distribution (Figure 5). The first kernel computes

the whole IB method. It consists of computing these major steps:

1. Velocities interpolation. The input parameters of this step are loaded from

global memory to local registers using coalesced memory accesses.

2. Force computation. The parameters are held in both, local and global

memory (coalesced accesses). The computed forces are held in local reg-

isters.

3. Spread the forces. The parameters are used from local and global memory

and the results are stored in global memory by using atomic operations.
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Algorithm 1 IFC kernel.

1: IFC kernel(solid s,Ux,Uy)

2: velx, vely, forcex, forcey

3: for i = 1 → numSupport do

4: velx+ = interpol(Ux[s.Xsupp[i]], s)

5: vely+ = interpol(Uy[s.Y supp[i]], s)

6: end for

7: forcex = computeForce(velx, s)

8: forcey = computeForce(vely, s)

9: for i = 1 → numSupport do

10: AddAtom(s.XForceSupp, spread(forcex, s))

11: AddAtom(s.Y ForceSupp, spread(forcey, s))

12: end for

After the spreading step the forces are stored in the global memory by using

atomic functions. These atomic functions are performed to prevent race con-

ditions. Particularly, we used these operations to avoid incoherent executions,

since the supports of different Lagrangian points can share the same Eulerian

points, as graphically shown in Figure 2. The pseudo-code of the IFC kernel is

graphically illustrated in Algorithm 1.

After the execution of the IB related computations (IFC kernel), the lattice

forces as in equation 3 (Section 2) need to be determined. Before tackling this

next stage it is necessary to introduce a synchronization point that guarantees

that all the IB forces have been actually computed on all the points within

the union of the supports. Nonetheless, the global memory access required to

determine the system of lattice forces is larger than in the previous stage: 9

directions for each lattice node in the support. Also in this case to inhibit race

conditions it has been necessary to resort to atomic functions. As for the case

of the equilibrium distribution, also here the computation of the lattice force

contributions is carried out using registers. The pseudo-code for this final kernel

is given in algorithm 2.
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Algorithm 2 BFC kernel.

1: BFC kernel(solid s,fx,fy)

2: Fbody(Body Force),x, y,velx, vely

3: for i = 1 → numSupport do

4: x = s.Xsupport[i]

5: y = s.Y support[i]

6: velx = s.V elXsupport[i]

7: vely = s.V elY support[i]

8: for j = 1 → 9 do

9: Fbody = (1−0.5· 1
τ
)·w[j]·(3·((cx[j]−velx)·(fx[x][y])+(cy[j]−vely)·fy[x][y]))

10: AddAtom(fn+1[j][x][y], Fbody)

11: end for

12: end for

4. Lattice-Boltzmann Implementations

This section explores different strategies to enhance performance of LBM

according to the architectures used in this work. Special emphasis is put on

memory management and how to implement the different steps of LBM.

4.1. Parallelization approach

Falta!!

4.2. Memory mapping strategies

Being a memory-bound algorithm, it is expected that memory management

has a substantial impact on the attained performance. This is even more rele-

vant for hardware accelerator processors, usually following a many-core archi-

tectural paradigm. As an example, especially on warp-oriented architectures

(e.g. GPUs), it is important that contiguous threads reach contiguous memory

locations in the same cycle, thus diminishing the number of memory accesses

(usually referred as coalesced memory accesses in the literature). Clearly, the in-

formation for each lattice node should be stored in sequential memory locations

that reflect their geometrical ordering to improve coalescing. In contrast, other
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Figure 7: Uncoalesced approach.

approaches can be more efficient on other type of architectures, e.g. shared

memory multi-cores.

Here, we propose a number of memory access strategies adapted to LBM,

namely:

1. Uncoalesced. This strategy does not suppose an elaborate management of

memory. Basically, the set of 9 lattice directions is stored in consecutive

locations of memory. Thus, the lattice level is stored in memory as an

Array of Structures (AoS). To better clarify the problem, Figure 6 (left)

and 7 illustrate this approach. Although it can be efficiently implemented

for those systems which exploit a coarse grain parallelism, this memory

mapping makes it difficult for vector loads to work efficiently, due to the

displacement of memory among the same lattice-direction of consecutive

lattice units.

2. Coalesced. This alternative is given to mitigate the inconveniences found

in the previous approach. It consists of storing in a consecutive

fashion each of the 9 lattice directions. (Creo que la diferencia
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Figure 8: Coalesced approach.

9 Lattice Velocities

Vector Size

Nx*Ny

Figure 9: Hybrid approach for a vector size equal to 4.

entre este y el anterior no queda clara con estas dos frases). This

approach has been widely used on CUDA-based implementations and it

is considered the optimal approach for this kind of architectures [11, 12].

Henceforth, we use a different memory management based on Structure

of Arrays (SoA). Despite this approach is more amenable to vector units,

we find a large space of memory, as big as the size of the fluid domain,

through the different directions (Figure 6 (right) and 8), what might not

be so advantageous in other architectures such as multicore or Intel Xeon

Phi due to the evident loss of locality, and thus the inability of efficiently

use the cache memories.

3. Hybrid. This approach arises to take advantage of the main features of

the aforementioned strategies. It consists of joining both features, a small

distance among the 9 lattice-direction and a efficient exploitation of vec-

tor units. In this sense, groups of the same lattice-direction are located

in memory consecutively (Figure 9). The vector size usually imposes the

maximum number of elements to be grouped. Faltan las ventajas es-

pecficas de este approach con respecto a lo anterior).

To exploit the high data parallelism presented in LBM, we will keep in

memory two copies of the lattice (f1 f2) in all implementations. Each time step

alternatively takes one of the copies as the input, and writes the result to the

second.
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4.3. Push and pull implementations

Depending on the ordering of the collision and streaming stages two different

strategies arise. The classical approach is known as push method and performs

collide before streaming. Otherwise, the pull approach performs the steps in

the opposite order.

4.3.1. The pull approach

The pull computational scheduling of LBM was introduced by [28] and has

been recently consider by [12]. This is an efficient approach based on a single-

loop strategy. Each lattice node can be independently computed by performing

one complete time step of LBM. In general, the pull method reorganizes the

memory pattern access by changing the ordering of the LBM steps:

1. Move distribution functions fi(x+ ci∆t, t+∆t) values from main/global

memory to local memory and perform streaming.

2. Compute the macroscopic averages ρ, u (local memory).

3. Calculate the collision step f
(eq)
i (local memory).

4. Copy the new values fi into main/global memory.

A schematical sketch of the LBM implementation is given in Algorithm 3.

Basically, this strategy does not need any synchronization among steps, being

very profitable for parallel architectures. Furthermore, the top regions of the

memory hierarchy can be efficiently exploited, as the macroscopic level can be

completely computed without transfers to/from main memory, better exploiting

cache re-use.

4.3.2. The push approach

Next, we introduce the main characteristics of the LBM implementation

based on push approach (collide-stream strategy). This computational schedul-

ing of LBM has been used in numerous previous works [13, 30, 11]. In general,

the push method divides the LBM steps into two routines: the first one com-

putes the collide and stream steps; the second one computes the macroscopic
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Algorithm 3 LBM pull.

1: Pull (f1,f2,$,cx,cy)

2: x, y

3: xstream, ystream

4: localux ,localuy ,localρ

5: localf [9], feq

6: for i = 1 → 9 do

7: xstream = x− cx[i]

8: ystream = y − cy[i]

9: localf [i] = f1[x][y][i]

10: end for

11: for i = 1 → 9 do

12: localρ+ = localf [i]

13: localux+ = cx[i]× localf [i]

14: localuy+ = cy[i]× localf [i]

15: end for

16: localux = localux/localρ

17: localuy = localuy/localρ

18: for i = 1 → 9 do

19: feq = $[i] · ρ · (1 + 3 · (cx[i] · localux + cy[i] · localuy ) + (cx[i] · localux + cy[i] ·

localuy )
2 − 1.5× ((localux)

2 + (localuy )
2))

20: f2[x][y][i] = localf [i] · (1− 1
τ
) + feq · 1

τ

21: end for
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variables (velocities and density). Two routines are necessary to prevent race

conditions. No entiendo la anterior frase. Hay que argumentarlo mejor.

A schematical sketch of the LBM implementation is given in Algorithm 4.

Algorithm 4 LBM push.

1: Collide Stream (ux,uy,ρ,f1,f2,$,cx,cy)

2: x, y

3: xstream, ystream

4: feq

5: for i = 1 → 9 do

6: feq = $[i] · ρ · (1 + 3 · (cx[i] · ux[x][y] + cy[i] · uy[x][y]) + (cx[i] · ux[x][y] + cy[i] ·

uy[x][y])
2 − 1.5× ((ux[x][y])

2 + (uy[x][y])
2))

7: f1[x][y][i] = f1[x][y][i] · (1− 1
τ
) + feq · 1

τ

8: xstream = x+ cx[i]

9: ystream = y + cy[i]

10: f2[xstream][ystream][i] = f1[x][y][i]

11: end for

1: Macroscopic (ux,uy,ρ,f2,cx,cy)

2: x, y

3: localux ,localuy ,localρ

4: for i = 1 → 9 do

5: localρ+ = f2[x][y][i]

6: localux+ = cx[i]× f2[x][y][i]

7: localuy+ = cy[i]× f2[x][y][i]

8: end for

9: ρ[x][y] = localρ

10: ux[x][y] = localux/localρ

11: uy[x][y] = localuy/localρ

Two different push approaches arise regarding the position of the macro-

scopic level computing, macro-collide-stream and collide-stream-macro. Basi-

cally, the position of this step can be carried out at the beginning or at the end

of the whole process. As we will see later, this fact has important consequences
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Figure 10: GPU (top) and heterogeneous CPU-GPU (bottom) implementations.

on the performance when implemented on our target architectures.

5. Coupled LBM-IB on Heterogeneous Platforms

After describing different implementation and strategies for LBM and IB as

isolated entities, we describe next two different approaches towards the integra-

tion of both techniques on heterogeneous architectures.

5.1. Coupled LBM-IB on hybrid CPU-GPU platforms

Our first parallel implementation of the LBM-IB method performs all the

major steps on the GPU. The host CPU is used exclusively for a pre-processing

stage that sets up the initial configuration and uploads those initial data to the

GPU memory and a monitoring stage that downloads the information of each

lattice node (i.e., velocity components and density) back to the CPU mem-

ory when required. As shown in Figure 10 (top), this implementation consists

of three CUDA kernels denoted as LBM, IFC and BFC respectively, that are

launched consecutively for every time step. The first kernel implements the

LBM method while the other two perform the IB correction. The overhead

of the preprocessing stage performed on the CPU is negligible and the data

transfer of the monitoring stage are mostly overlapped with the execution of

the LBM kernel.

Although this approach achieves satisfactory results, its speedups are sub-

stantially lower than those achieved by pure LBM solvers [12]. The obvious
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reason behind this behavior is the ratio between the characteristic volume frac-

tion and the fluid field, which is typically very small. Therefore, the amount

of data parallelism in the LBM kernel is substantially higher than in the other

two kernels. In fact, for the target problems investigated, millions of threads

compute the LBM kernel, while the IFC and BFC kernels only need thousands

of them. But in addition, those kernels also require atomic functions due to the

intrinsic characteristics of the IB method, and those operations usually degrade

performance.

As an alternative to mitigate those problems, we have explored a heteroge-

neous implementation graphically illustrated in Figure 10 (bottom). The LBM

kernel is computed on the GPU as in the previous approach but the whole

IB method and an additional local correction to LBM on the supports of the

Lagrangian points are performed on the CPU in a coordinated way using a

pipeline. This way, we are able to overlap the prediction of the fluid field for the

t+ 1 iteration with the correction of the IB method on the previous iteration t

at the expense of a local LBM computation of the“t+ 1” iteration on the CPU

and additional transfers of the supports between the GPU and the CPU at each

simulation step.

5.2. Coupled LBM-IB on hybrid CPU-Intel Xeon Phi platforms

We present next an alternative hybrid implementation targeting heteroge-

neous CPU-Intel Xeon Phi platforms, which favors the particular features of this

type of systems. Unlike the previous platform, this approach is more suitable for

a proper integration among both architectures, multi-core and Intel Xeon Phi.

This approach attempts to take advantages of the transparency that this sys-

tem offers in terms of programmability, being the communication among both

architectures simpler. One of the main claims of Intel with respect to these plat-

forms consists of intending that the sections to be executed on multi-core and

the Intel Xeon Phi are as similar as possible. In order to follow these guidelines,

a higher importance is given to multicore architecture, as it shows a profitable

performance computing LBM, instead of computing only IB.
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Figure 11: Hybrid approach.

This new strategy basically consists of breaking the data dependency among

LBM and IB method by dividing the whole domain into two sub-domains, where

the LBM and IB method are solved in one of these domains, while the rest of

the fluid domain is solved in the another one. According to the features of both

algorithms, LB and IB, and architectures, Intel Xeon and Intel Xeon Phi, we

have proposed the approach illustrated in Figure 11.

Next, it is detailed the main features of this approach focusing on the dis-

tribution of the computational load, as well as the inter-architectures communi-

cation. As known, the performance in term of GFLOPs shown by Phi is higher

(around 3× higher) with respect to multicore architectures. Furthermore, the

IB method presents some drawbacks to be efficiently managed on massively

parallel architectures.

For the purpose of favoring the overlapping space, taking into account the

performance of both architectures, the influence of the solid and a piece of fluid

domain (around 25% in relation to the entire one domain) is computed on mul-

ticore, while the rest of the domain is solved on Phi. Obviously, the hybrid

approach requires an additional cost with respect the homogeneous strategies

in terms of memory transfers. In particular, the boundary regions among both

domains are in need to be communicated each other from (to) both memories

spaces. No additional communications are needed since each architecture works

on its own space of memory (domain). The communication is based on trans-

ferring a common space composed by two columns, one for reading and one for

computing. These two columns are shared by both architectures. However, the
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column to be computed on multicore (gray column in Figure 11) is read by Phi,

and vice-versa (white column). These transfers involve a very small portion of

the domain, and so they are very fast. In addition, as depending on the memory

layout selected, the elements of the shared columns could not be contiguous in

memory, they are packed/unpacked prior to/after each data transfer between

memory spaces.

As described previously, we make use of 2 lattices (f1 and f2 ) in order to be

able to compute in only single-loop function all the LBM steps, where each time

step read from one copy and write results to the other. The communication

is carried out at the end of each time step. It consists of overwriting those

boundary regions which are in need to be communicated, that is the gray column

in the Xeon domain and the white column in the Phi domain. In particular, it

is overwritten the lattice updated in the current time step (f2/f1 for even/odd

time steps).

6. Performance Evaluation

6.1. Experimental setup

To critically evaluate the performance of the developed LBM-IB solvers,

next we consider a number of tests executed on two different heterogeneous

architectures, CPU-GPU (i.e., Xeon-Kepler) and CPU-Phi system. More details

about the specific architectures that have been used for performance evaluation

are given in Table 2. According to the memory requirements of the kernels, the

memory hierarchy of the GPU has been configured as 16KB shared memory and

48KB L1, since our codes do not benefit from a higher amount of shared memory

on the investigated tests. All the simulations have been performed using double

precision and as a performance metric we have used the conventional MFLUPS

metric (millions of fluid lattice updates per second) used in most LBM studies.

6.2. Immerse boundary performance evaluation

The first tests (Figure 12) focus exclusively on the IB method using a syn-

thetic simulation without considering the LBM method and analyze its acceler-
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Platform Intel Xeon NVIDIA GPU Intel Xeon Phi

Model E5520/E5-2670 Kepler K20c 5510P

Frequency 2.26/2.6 GHz XX 1.053 Ghz

Cores 8/16 2496 60

On-chip Mem. L1 32KB (per core) SM 16/48KB (per MP) L1 32KB (per core)

L2 512KB (unified) L1 48/16KB (per MP) L2 256KB (per core)

L3 20MB (unified) L2 768KB (unified) L2 30MB (coherent)

Memory 64/32GB DDR3 5GB GDDR5 8GB GDDR5

Bandwidth 51.2 GB/s 208 GB/s 320 GB/s

Table 2: Summary of the main features of the platforms used in our experimental evaluation.

(TODO: check data!!)

ation on both multicore and GPUs. Even for a moderate number of Lagrangian

nodes, we achieve substantial speedups over the sequential implementation on

both platforms. Despite the overheads mentioned above, our GPU implemen-

tation is able to outperform the multicore counterpart (8 cores) from 2500 La-

grangian markers on.

6.3. Lattice-Boltzmann performance evaluation

The aforementioned alternatives for implementing the LBM are evaluated

for the next architectures: Intel Xeon, NVIDIA Kepler and Intel Xeon Phi. In

particular, we start implementing several approaches for NVIDIA Kepler archi-

tecture, as it is the hardware platform on which most LBM approaches have

been implemented. Also, we evaluate a new open-source tool called sailfish [34],

which includes a LBM code based on the push-LBM (macro-collide-stream)

scheduler. NVIDIA GPUs require CUDA for exposing and exploiting parallel-

lism for general-purpose computations, and usually requires a deep knowledge

of the underlying architecture. On the other hand, the codes implemented on

Intel Xeon architecture can be easily adapted on the Intel Xeon Phi to meet

the particularities of this many-core architecture. Vectorization is the main

recommendation from Intel for boosting the performance. Basically, the main

difference from programmer point of view is the size of the vector units, 256-bit
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Figure 12: Speedups of the IB method on multicore and GPU for increasing number of

Lagrangian nodes.

for Intel Xeon and 512-bit for Intel Xeon Phi. Although many approaches exist

to achieve and efficient vectorization (e.g. Cilk Plus, Array Notation, SIMD

directives or Auto-vectorization), we have mainly explored Auto-vectorization

as a way to maintain a common code baseline among Intel architectures, guid-

ing the compiler towards an efficient SIMD exploitation. In the following, we

explore and illustrate some of the tuning approaches to adapt the LBM to our

platforms.

6.3.1. LBM on the NVIDIA Kepler GPU

Based on insights extracted from a number of previous works [9, 10, 11,

12, 13], we have focused on analyzing the performance of LBM on GPU by

exploiting the coalesced memory mapping presented in the previous section,

and a thread mapping consisting of one thread per lattice unit, leaving proved

the efficiency of this approach. In the following, we will analyze both LBM

approaches: push and pull. In particular, two alternative push approaches,

macro-collide-stream and collide-stream-macro, are evaluated. Although the

pull approach offers several advantages over the push approaches, the latter are
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on NVIDIA Kepler GPU.

commonly required numerically for some alternative implementations, such as

multi-domain refinement [33], so they are also worth a special attention.

Obviously, a strong point of synchronism among the collide-stream and

macroscopic steps of LBM and a higher number of accesses to global memory

degrade the performance of the push approaches over the pull strategy. More

specifically, the macro-collide-stream push scheme achieves better performance

with respect to the collide-stream-macro push one. This is mainly due to the

position of the macroscopic level computation. No entiendo lo anterior!!!. . .

In both schemes, it becomes mandatory to add a synchornization point among

macroscopic and mesoscopic (collide and stream) levels; however, computing the

macroscopic level at the beginning allows us to use just one kernel instead of two

as in the collide-stream-macro scheme. This is translated into a lower number

of CPU-GPU communications and reduces the overhead of kernel invocations,

and thus the impact on performance. Figure 13 graphically illustrates the per-

formance achieved by both schedulers on our NVIDIA Kepler GPU. The pull

implementation outperforms the best push implementation with a gain around
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Figure 14: Impact of different memory storage approaches on the Intel Xeon architecture.

Left: using 1 thread. Right: using 32 threads.

1.5× in terms of MFLUPS.

6.3.2. LBM on the Intel Xeon

After verifying the superiority of the pull LBM approach over its main alter-

natives in terms of performance, we will also focus on the use of this approach

for the rest of the architectures targeted in the paper. Deberiamos hablar

de la estrategia de paralelizacion sobre multi/manycore. Besides the

chosen parallelization scheme, we will mainly focus on the difference between

each memory access strategies presented in previous sections. Here, we evalu-

ate the three memory strategies (uncoalesced, coalesced and bleded/hybrid) and

their impact on performance. To show the scalability of each approach and the

influence on the parallelism, we have run two tests which make use a sequential

and a parallelized implementation of the pull approach on a dual-socket CPU

with 8 cores per chip.

Figure 14 graphically illustrates the performance achieved by each strategy.

The coalesced approach turns to be the most efficient strategy, using one single

hardware thread. In contrast, the hybrid and coalesced approaches are the best

choices when executing multiple threads. Both versions, sequential and paral-

lel, present the lowest performance for the uncoalesced memory mapping, which

invalidates it as a feasible solution on this type of architectures. Our parallel

implementations achieved a speedup around 6× and 8× by implementing the
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coalesced and hybrid approaches with respect to the sequential counterpart re-

spectively. For both approaches, the memory has been adapted for the size of

vector units. No entiendo lo anterior

Focusing on scalability, Figure 15 illustrates the trend in performance by

increasing the number of threads for the coalesced memory mapping. In par-

ticular, a constant trend is shown by increasing the number of thread up to

achieve 32 threads, with small differences in performance when varying the grid

size. However, from 16 hardware threads on, only those problems which present

a sufficient workload (that is, grid size) are amenable to continue increasing the

performance.

6.3.3. LBM on the Intel Xeon Phi

As for the Intel Xeon, we first evaluate the different memory mappings on

Intel Xeon Phi. Figure 16 shows the efficiency obtained by each strategy. Con-

trary to what has been achieved in multicore CPU, the hybrid approach achieves

here a slight gain over the coalesced one.

One of the common tuning options that Intel Xeon Phi exposes is the selec-
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Figure 16: Impact of different memory storage approaches on the Intel Xeon Phi architecture.

Left: using 1 thread. Right: using 240 threads.

tion of the thread-core affinity. In our case, three different pre-defined affinity

strategies have been studied: scatter, balanced and compact (see [? ] for details

on the rationale of each strategy). Taking into account that the best choice for

our problem, that is the hybrid approach, the three thread-core distributions

are evaluated for it. Figure 17 shows the performance achieved by the different

strategies, being the most efficient the compact one; differences between them

(in terms of performance) are reduced and not significant.

After verification of the best strategy for memory mapping and core affinity,

we carry out a study about the scalability over the same test bed previously eval-

uated by the multicore CPU architecture (Figure 18). Except for the smallest

grid sizes, a common trend is shown for the most scenarios, a higher number of

threads achieves a better performance. In general, comparing the Xeon Phi im-

plementation with its counterpart on the general-purpose multi-core CPU, our

approach achieves a gain around 25× and 4× with comparing with the sequen-

tial and multi-threaded (32 threads) codes respectively, in terms of MFLUPS.

6.4. Coupled LBM-IB on heterogeneous platforms

After evaluating the performance of both methods (LBM and IB) in an

isolated way, we present the strategies carried out for the implementation of

the whole fluid-solid solver, adapted to hybrid architectures based on multi-core
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CPUs, the first accelerated by a Nvidia Kepler GPU, and the second by an Intel

Xeon Phi.

6.4.1. LBM-IB on hybrid CPU-GPU architectures

The performance of the complete LBM-IB solver is analyzed in Figure 19.

We have used the same physical setting as in Section 2 for an increasing number

of lattice nodes to analyze the scalability of the method. We have investigated

two realistic scenarios with characteristic volume fractions of 0.5% and 1% re-

spectively (i.e. the amount of embedded Lagrangian markers also grows with

the number of lattice nodes).

The performance of the homogeneous GPU implementation of the LBM-IB

method drops substantially over the pure LBM-pull implementation (Figure 19).

The slowdown is around 15% for a solid volume fraction of 0.5%, growing to

25% for the 1% case. In contrast, for these fractions our heterogeneous approach

is able to hide the overheads of the IB method, reaching similar performance to

the pure LBM-pull implementation.

Figure 20 illustrates the overhead of the IFC and BFC kernel in the GPU ho-

mogeneous approach (left) and the execution time consumed by the IB method

and the local LBM corrections (right) over the pure LBM implementation in

the heterogeneous approach for a solid volume fraction of 1%. As shown, the

consumed time by the steps computed on multi-core (i.e. IB method and local
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Figure 20: Execution time consumed by the LBM and IB method on both, the GPU homo-

geneous (left) and multicore-GPU heterogeneous (right) platforms.
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Figure 21: LBM with Immerse Boundary using the Intel Xeon and Intel Xeon Phi, without

overlapping (left) and with overlapping (right).

LBM corrections) for the heterogeneous approach does not suppose an addi-

tional cost over the pure LBM solver, representing around 65% of the total time

consumed by the LBM kernel.

6.4.2. LBM-IB on hybrid CPU-Xeon Phi architectures

Similarly, the performance of the proposed strategy over the CPU-Xeon Phi

heterogeneous platform is analyzed. In particular, we have focused on the same

numerical scenario with a volume fraction equal to 1%. We exploit the pull-

coalesced memory mapping on the multi-core and the pull-hybrid approach on

the Intel Xeon Phi.

In general, a substantial gain in performance is achieved by the heterogeneous-

overlapped approach (Figure 21-right) with respect to the heterogeneous-non
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overlapped one (Figure 21-left); as an example, for the largest grid tested, the

non-overlapped approach attains a peak of roughly 300 MFLUPS, while the

counterpart operlapped implementation improves this number up to roughly

450 MFLUPS. As in the CPU-GPU approach, the performance achieved by this

CPU-Xeon Phi heterogeneous implementation roughly matches the performance

achieved by the pure-LBM implementation (Figure 18), and thus, the impact of

the introduction of the solid interaction is mainly hidden.

In this approach, an approapriate work distribution between both platforms

is mandatory; in order to find the best load balancing among the portion of the

domain executed on the multicore and the portion executed on the Intel Xeon

Phi, we have visualized the trend of performance by increasing the size of the

domain executed on multi-core (and thus, equivalently, decreasing the amount

of work delivered to the Intel Xeon Phi).

If a non-overlapping approach is to be taken (left plot in Figure 21), the weak

performance of the multi-core compared with the Intel Xeon Phi, together with

the penalty introduced by the PCI-e bus for data transfers between memory

spaces, makes it unfeasible to introduce the multi-core as a processor for part

of the computation; see, also, that this effect is even more evident as the size

of the (sub-)grid processed by the multi-core increases. The conclusions for the

overlapped implementation (right plot in Figure 21) are dramatically different.

In this case, both platforms can co-operate to solve the problem, and data trans-

fers penalty is hidden if conveniently orchestrated. In fact, the only necessity

is for the workload to be correctly balanced. Thus, the percentage of the grid

assigned to the multi-core and to the Intel Xeon Phi should be approximately

constant, and depends on the grid size. See, for example, how the peak perfor-

mance for the largest grid tested, where Lx = 5120, Ly = 1400 is attained when

the portion of the grid assigned to the multi-core is around L′
x = 620, Ly = 1400

(that is, around 12% of the complete grid); for the smallest grid tested, where

L′
x = 2560, Ly = 800, the peak is attained when L′

x = 250, Ly = 800, which

roughly means a 10% of the complete grid.
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7. Conclusions

In this paper, we have investigated the performance of a coupled Lattice-

Boltzmann and Immersed Boundary method that simulates the contribution of

solid behavior within an incompressible fluid.

We have presented different strategies to enhance LBM performance over

three current parallel architectures, Intel Xeon, NVIDIA Kepler GPU and Intel

Xeon Phi. Special emphasis has been put on memory management within the

many-core platforms, hiding of the impact of data transfers, and on the intro-

duction of different numerical approaches. A more detailed study is carried out

on Intel Xeon Phi, as few current works focus on LBM implementations, and

even less on coupled LBM/IB approaches. On the other hand, it is possible to

find a number of LBM solvers based on NVIDIA GPU architectures. In this

sense, our multicore approach achieves a reasonable performance by considering

a coalesced-pull approach. It obtains a peak performance around 120 MFLUPS

by using a dual socket multi-core CPU. Although the Intel Xeon Phi shows

a much higher performance by using a hybrid-pull scheme with respect to the

coalesced-pull approach on multicore, being around 3.75× faster, the strategy

based on coalesced-pull implemented on GPU outperforms these results with a

extra benefit around 17%.

In addition, we have focused on the design and analysis of a hybrid imple-

mentation that takes advantage of both the accelerator (GPU/Xeon Phi) and

multicore in a co-operative way. For realistic physical scenarios with realistic

solid volume fractions, our heterogeneous solvers are able to hide the overheads

introduced by the IB method and match the performance (in terms of MFLUPS)

of state-of-the-art pure LBM solvers.

Our target problem exhibits a dynamic behavior (i.e. its computational

cost varies through the time). However, we could take advantage from this

characteristic by distributing those stages with a low computational cost (mainly

the IB computation) over the general-purpose multi-core, and those with a high

computational cost (LBM) over the accelerator, overlapping both computations
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in time. In particular, we have proposed two different strategies, one for CPU-

GPU architectures and the second for CPU-Xeon Phi, promoting the particular

features that each platform presents.

As a future research topic we plan to investigate more complex physical

scenarios that require higher amount of memory, making mandatory the use of

distributed memory architectures equipped with multi-GPU/Phi platforms.
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