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Unimodal late fusion for NIST i-vector
challenge on speaker detection

Hazrat Ali, Artur S. d’Avila Garcez, Son N. Tran,
Xianwei Zhou and Khalid Iqbal
ELECT
Speaker detection is a very interesting machine learning task for which the
latest i-vector challenge has been coordinated by the National Institute of
Standards and Technology (NIST). A simple late fusion approach for the
speaker detection task on the i-vector challenge is presented. The approach
is based on the late fusion of scores from the cosine distance method (the
baseline) and the scores obtained from linear discriminant analysis. The
results show that by adapting the simple late fusion approach, the frame-
work can outperform the baseline score for the decision cost function on
the NIST i-vector machine learning challenge.
Introduction: Researchers continue to strive for improvement of
speaker evaluation systems. The latest i-vector challenge organised by
the National Institute of Standards and Technology (NIST) [1] provided
an excellent platform for researchers to submit systems with an improve-
ment in the speaker recognition performance. The NIST i-vector chal-
lenge coordinated by the NIST is a continuation of the NIST speaker
recognition evaluations. The challenge is based on i-vectors [2] which
are considered to be state-of-the-art features for speaker recognition
systems. The i-vector (each i-vector in the challenge is a 600 dimension
vector) is a name assigned to the representation of speech utterance
using total factors. The challenge dataset provides a set of target speak-
ers where each target speaker is modelled by five i-vectors [1]. The
speakers in the test set are defined by single i-vectors. The target speak-
ers set consists of 1306 speakers and the test data consists of 9634
i-vectors. Each trial is composed of a target speaker model and a test
i-vector, thus leading to a total of 12 582 004 trials. The decision algor-
ithm has to decide whether a particular test speaker exists in the target
data and reflect the level of confidence in its belief.

The baseline system for the challenge is based on a variant of cosine
scoring, where i-vectors are projected into a unit sphere. The five
i-vectors for each training example are averaged to obtain a mean
i-vector. Following this, the dot product of the averaged i-vectors and
the test data i-vectors provide the corresponding score for each trial.
The cosine distance scoring uses the value of the cosine kernel
between the target speaker i-vector wtarget and the test i-vector wtest as
a decision score [2, 3].

A cosine kernel can be defined by the equation

k w1, w2( ) = kw1, w2l
w1‖ ‖ w2‖ ‖ (1)

where w1 and w2 are the two i-vectors. Following this definition, the
cosine distance scoring between the target i-vector wtarget and the test
i-vector wtest is given below

score1 wtarget, wtest

( ) = kwtarget, wtestl
‖wtarget‖‖wtest‖ (2)

Method: Linear discriminant analysis (LDA) [4] is considered to be a
simple and robust method for classification. It maximises the ratio of
inter-class variance to the intra-class variance to achieve maximum
separability. The LDA transforms the data into the new space and
then the Euclidean distance is calculated over each test example.
Generally, for n classes, n Euclidean distances are calculated for each
test example. The smallest distance then determines the class for the
test example. For the speaker recognition task, discriminant analysis
maximises the variance between the speakers, which is a key for
speaker identification.

Performance metric: The performance metric for the NIST i-vector
challenge is the decision cosine function (DCF), which is defined by
the following expression:

DCF = number of misses (threshold = t)

number of target trials

(

+ number of false alarms (threshold = t)

number of non-target trials

)
× 100 (3)
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where ‘misses’ denotes the incorrect rejection (false negative) and ‘false
alarm’ is the incorrect acceptance (false positive). The cost function can
be evaluated at the threshold defined by t. The challenge evaluates the
system on the basis of the DCF score (calculated by the challenge
website after the system is submitted to it). Put simply, the lower the
DCF, the better the system is at the speaker detection task.

Late fusion approach: In our approach, we combine the scores from the
cosine distance and LDA by a linear relationship as defined by

score = a× score1+ b× score2 (4)

where score1 represents the cosine distance scoring and score2
represents the LDA scoring. See Fig. 1.
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Fig. 1 Unimodal late fusion
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Fig. 2 DCF against parameter ‘α’ (β= 1− α)

This approach is based on a concept of late fusion or fusion at the
decision level. The counterpart of late fusion is early fusion which is
fusion at the features level [5–7]. As presented in the literature, late
and/or early fusion are widely popular for use in multimodal systems
such as combining audio data with visual scores and/or features for
speech recognition, multimodal biometric systems etc. [8, 9].
Generally speaking, the multimodal fusion can be categorised as
feature level fusion, score level fusion and decision-level fusion.
Feature level fusion is achieved by the concatenation of features from
different modalities. Score level fusion is the linear combination of
the scores for different modalities, e.g. taking the mean of the scores.
The decision-level fusion is the logical decision fusion of the decision
output for different modalities, e.g. by taking logical AND or logical
OR of the decision from two systems. In this Letter, we are using the
score level fusion for decision making on unimodal data. The motivation
behind late fusion is the objective of taking advantage of the comp-
lementary information of the two techniques. To the best of our knowl-
edge, this has not been reported previously for the i-vector paradigm.
The i-vector challenge does not accommodate features other than
i-vectors and thus early fusion is not applicable for this task.

Results: The i-vector challenge dataset is based on the previous data as
used in NIST speaker recognition evaluations. Our approach presented
in this Letter achieves a DCF of 0.370 better than the baseline 0.386
on the progress set. On the evaluation set (the challenge website
showed the performance for the progress set of the test data, thus
Fig. 2 is shown for the progress set of the test data; only the best
score is shown for the evaluation set of the test data), our approach
achieves a DCF of 0.363, again outperforming the baseline which is
0.378 (the best value for the DCF reported for the i-vector challenge
at the time of writing this Letter is 0.240.). Empirical results show
that the best results are obtained for α= 0.95 as shown in Fig 2. β is
equal to 1− α.

Conclusion: In this Letter, we have presented a simple late fusion
approach for the i-vector speaker recognition challenge. We have
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shown that the linear combination of scores from the cosine distance and
the LDA results in outperforming the state-of-the-art baseline. The
results are convincing and will motivate researchers to explore similar
approaches for further improvements in the DCF. We also tested
support vector machines (SVMs) with the Gaussian RBF kernel and
submitted the score both in the stand-alone mode and fused with the
baseline; however, the best DCF value achieved was 0.379, failing to
outperform the LDA on this particular dataset. This leaves out LDA
to be an optimal choice given that the LDA is much simpler than
SVMs. Although these initial findings are very useful, there can be
further improvements by combining the i-vector domain with an unsu-
pervised features learning.
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