

City, University of London Institutional Repository

Citation: Bishop, P. G. (1993). The Variation of Software Survival Time for Different

Operational Input Profiles. Fault-Tolerant Computing, 1993. FTCS-23. Digest of Papers.,
The Twenty-Third International Symposium on, 4, pp. 98-107. doi:
10.1109/ftcs.1993.627312

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/14345/

Link to published version: https://doi.org/10.1109/ftcs.1993.627312

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

1

The Variation of Software Survival Time for
Different Operational Input Profiles

(or why you can wait a long time for a big bug to fail)
P. G. Bishop Adelard, Coborn House, London, E3 2DA, England

Abstract—This paper provides experimental and theoretical
evidence for the existence of contiguous failure regions in the
program input space (‘blob’ defects). For real-time systems where
successive input values tend to be similar, blob defects can have
a major impact on the software survival time because the failure
probability is not constant. For example, with a ‘random walk’
input sequence, the probability of failure decreases as the time
from the last failure increases. It is shown that the key factors
affecting the survival time are the input ‘trajectory’, the rate of
change of the input values and the ‘surface area’ of the defect
(rather than its volume).

I. INTRODUCTION

This paper is an extension of earlier experimental studies
on the failure characteristics of some known software defects
[1], [2], [3]. The results of these studies cast doubt on the
general validity of an assumption of constant probability of
failure for software. In conventional reliability theory, it is
often assumed that an item fails with a fixed probability
per unit time (λ), and the mean interval between failure is
1/λ. When this assumption was tested experimentally, it was
found that the failure probability was not constant for some
input distributions. This variability could be explained by an
assumption of defects which occupy contiguous regions of
the input space (‘blobs’). The paper begins by summarizing
some of the relevant reliability theory together with the main
results of the earlier study. The remainder of the paper presents
evidence to back up the assumption of ‘blob’ defects and
presents a more detailed analysis of effect of ‘blobs’ on failure
behaviour.

II. SOME RELEVANT RELIABILITY THEORY

Software reliability theory differs from conventional theory
because it operates in discrete rather than continuous time [4].
Most software operates on an input-process-output cycle, so
failures are only meaningful in terms of software execution
cycles rather than absolute time. In this paper the ‘time unit’
is deemed to be one execution cycle.

In this study we are primarily concerned with embedded
operational software where repair is infeasible in the short term
or where transient failures (‘glitches’) occur which are hard
to diagnose. In these circumstances, software operation is a
sequence of ‘successes’ and ‘failures’ for successive execution
cycles. This sequence can be analysed to derive:

λ the mean probability of failure per exe-
cution

λS(n) the instantaneous probability of failure
after n successful executions

λf (n) the instantaneous probability of failure
after n failed executions

Note that survival intervals are measured from the first suc-
cessful execution cycle, which could be the first execution of
the program, or the first successful execution after a succession
of failure cycles.

The calculation of λ is simply the ratio of failure cycles
to total cycles. λS(n) is calculated by deriving the probability
density function P (NS ≥ n) where NS represents the survival
interval in program execution cycles. The instantaneous failure
probability after n successful cycles is computed as:

λS(n) =
P (NS = n)

P (NS ≥ n)
This hazard function is simply the ratio of periods that

survive exactly n cycles (i.e. fail on cycle n+1) against total
number of periods that reach n cycles. λf is calculated in a
similar way.

The above analysis applies whether the failure rate is
constant or fixed. Of course if the software failure rate is
constant then, for all n > 0:

λ = λS(n) = λf (n)

While direct measurements of λS are feasible, it is often
difficult to get sufficient accuracy. As an alternative, the
distribution P (NS ≥ n) can be compared with the distribution
expected for the constant failure rate assumption. If we assume
that the probability of failure per execution of the program
is a constant, λ0, then survival interval probability follows a
Bernoulli distribution, where the probability of observing a
survival interval of n cycles or more is:

P (NS > n) = (1− λ0)n

and the probability of surviving exactly n cycles is:

P (NS = n) = λ0(1− λ0)n

III. SUMMARY OF EARLIER WORK

The earlier study made use of the known faults detected in
two Fortran programs (TRIPC and TRIPV) produced in the
PODS project, an experiment on software diversity [1]. These
programs implemented a simple, but non-trivial, reactor trip

2

function specified by the UK Atomic Energy Authority. The
failure rate behaviour of the various faults was examined for
two types of random input data.

The first set of tests used totally arbitrary data; input
values were randomly selected from a uniform distribution
for each program input. The observed survival time distribu-
tion matched an assumption of constant failure rate to 95%
confidence. The failure rate for sequences of failures (λf (n))
were also analysed. For around half the faults, there was a
95% confidence fit to an assumption of constant failure rate.
However the remaining faults exhibited a variable λf (n). This
was explained by the fact that these particular faults damaged
the ‘internal state’ of the program (variables used from one
cycle to the next).

The second set of tests attempted to be more realistic. In
most real-time applications (and certainly for this particular
application) the input values do not change greatly from
execution cycle to the next. We chose to model this by
performing a ‘random walk’ over each set of input values.
On each execution, all the input parameters were altered by
a random ‘step’ which was a small percentage of the input
range. While λ was very similar to the uniform random case,
the survival interval density distribution could no longer be
expressed as a Bernoulli distribution. However the distribution
was found to be a good fit to a power law:

P (NS = n) = A.n−k

where 1.2 < k < 1.8 for the different faults examined.
Translated back in terms of λS(n) this meant that chance
of failure decreased rapidly as n increased. At first this
was extremely puzzling, but thinking back to the idea of a
‘defect’ in the program domain a credible explanation was
obtained. Evidence existed to support the theory that a program
fault creates a ‘blob’-shaped defect in the state space (i.e.
the individual points of the defects are close to each other)
[5], [6], [7]. If this were true for the PODS defects, then
it was clear that the probability of failure would no longer
be constant. Immediately after recovery from a failure, the
program operating point is close to a defect. As the number
of steps without failure increases, the mean distance from the
defect is increased so it is plausible that the probability of
failure for subsequent steps is reduced.

To get a more analytic explanation of this phenomenon
we turned to the theory of coin tossing [8]. Coin tossing is
analogous to a simple linear model of a program state space
where positive and negative steps replace heads and tails, and
the cumulative winnings represent the distance from the defect.
Using this theory, the probability of returning to the defect
after n failure-free steps is:

P (NS = n) = A.n−1.5

which was close to the observed behaviour. However it is clear
that this model is not a complete explanation because it is easy
to show that the mean survival interval will be infinite after an
infinite number of steps. This arises because the simple model
assumes an infinite linear program state space. In practice the
program operating point is constrained to move within a finite
input range. If a program survives long enough to traverse

the complete input range, the mean distance from the defect
should tend to a fixed value. Thus the probability of failure
per execution is likely to become constant. For a random walk,
the mean distance moved from the start point is s

√
n where

n is the number of steps and s is the mean step length. Thus
the complete range r should be traversed when:

n = (r/s)2

As an example, for a mean step length of 10%, the full range
should be traversed in 100 steps. Experiments to check this
hypotheses confirmed the fact λS(n) stabilized after this point.
However it was noted that λS(n) was much less than λ.

It was clear that further work was needed to both to justify
the hypothesis that the software defects were indeed ‘blobs’ in
the input space of these programs, and to investigate the impact
of blobs on failure behaviour in general. The remainder of the
paper describes an investigation into these aspects.

IV. EXPERIMENTAL JUSTIFICATION OF BLOB DEFECTS

The TRIPC and TRIPV test harnesses were both adapted
to plot out the software failure regions in 15 two-dimensional
slices of the input space around a detected failure point. The
experiment showed that all the defects in the TRIPC and
TRIPV programs occupied contiguous regions of the input
space. Some two-dimensional views of typical faults are shown
in figures 1 to 3. It can be seen that the term ‘blob’ is not
particularly appropriate since the shapes are often angular
and elongated. An analysis was made to establish the factors
affecting the shapes of the faults and a number of factors were
identified.

A. Input Variable Dependency

One factor which emerged clearly from this analysis was
that a bug which has a quite low overall failure rate can look
quite large when viewed as a series of two-dimensional slices
through the input space. For example TRIPV fault 9 (figure 1)
has a failure rate of 10−4 per cycle under uniform random
test conditions, but occupies a significant fraction of the input
range in some dimensions. This occurs when the fault is only
dependent on one or two of the input variables. The values
of the remaining variables do not contribute to the failure.
Since the one or two key variables are kept constant at the
point of failure when plotting the remaining two-dimensional
slices, these plots are completely black (i.e. a faulty result
is returned whatever input values are selected). Hence it is
actually the plots containing the smallest defect regions which
tend to contain the variables most likely to activate the bug.

Where the faulty computed output values only depend on
a single input variable, the two dimensional slice is either
completely filled or forms rectangular shapes spanning the
complete input range of the other (non-contributing) variable.
TRIPV Fault 9 contains examples of such rectangular and
totally filled slices.

3

B. Dependency on Combined Input Variables

For other faults, the faulty computed output variable(s)
depend on a higher proportion of the input variables combined
according to some equation. For these faults, the failure
regions tended to be more similar in size and skewed with
respect to the axes. TRIPC Fault 10 is an example of this (see
figure 2).

This particular fault is readily explained since the main
analogue input variables are combined using linear and non-
linear equations to compute a reactor power (see figure 4). If
contour lines of constant reactor power are drawn through the
input space, they are skewed with respect to all the axes which
affect the calculation. Any faults within or ‘downstream’ of
this calculation tend to have edges aligned with these contours.

C. Effect of Error Masking

One notable feature of the analysis was the effect of error
masking. This effect has been noted in earlier studies [3].
In essence, quite large internal errors can result in much
smaller external failures because some downstream program
logic corrects the error. Simple examples of this are:
• the OR of several binary values – where a correct ‘1’

value overrides any number of faulty inputs.
• Range-clipping – where an analogue value is clipped

within a maximum and minimum range. Faulty internal
values can be clipped to the correct external value.

Both of these error-masking functions are present within the
PODS reactor trip example (see figure 4).

One example of error-masking can be seen in TRIPC Fault
19 (figure 3). This causes a failure in the out-of-range signal
(RE) . The RE signal is formed from the OR of several
out-of-range indications. Whenever any correct out-of-range
indication is generated, it masks the faulty input to the OR
logic. This causes straight portions to be sliced off the failure
region close to the upper and lower boundaries of the input
dimensions.

V. THEORETICAL JUSTIFICATION FOR BLOB DEFECTS

All 30 defects analysed in the two diverse programs were
‘blobs’; similar faults have also been observed by other re-
searchers [5], [6], [7], so there is strong experimental evidence
on the existence of blob defects. Admittedly, the PODS
application is fairly simple and many of the defects are quite
large faults which were detected during development and are
therefore atypical the faults remaining in operational software.
This section presents a supporting theoretical justification for
the existence of blob defects. Furthermore I will argue that the
general shape of such defects should be predictable.

Any computation can be regarded as the composition of
a set of functions. The data flow diagram for the PODS
application (figure 4) illustrates this. For a function computing
analogue values, it is probable that failures occur over contigu-
ous ranges of input values. Typical reasons for this might be:
• Incorrect positioning of the boundary between two types

of calculation.
• Missing boundaries.

• Incorrect table values.
• Inadequate calculation precision (e.g. for small values).
• Algorithm approximations.

Provided the functions ‘upstream’ and ‘downstream’ of the
faulty function are smooth continuous functions, the observed
failure regions will also be contiguous. More generally, each
function is a mapping between a domain and a range, for
example the ‘program’ f maps the input domains A and B to
the output domain P , i.e:
(A×B)

f→ P

This might be implemented as the following composition
of functions, shown schematically below:

A
f1→ X

× f3→ Z
f4→ P

B
f2→ Y

If we replace f1 by a faulty function f ′1 there will be a
failure subset Af ⊂ A for which incorrect values in X will
be generated. It might be assumed that the observed failure
region F in the program input space will be:

F = Af ×B

However this presupposes that all the values in Af × B
will generate incorrect final values. This can be the case
when the downstream functions all have one-to-one mappings.
However most practical programs condense information rather
than expand it, and this implies that many-to-one mapping
functions are more likely to be used. In this case ‘error
masking’ can occur which has the of cutting off portions of the
original failure region. A simple example of this is where f3
implements the MAX function. Whenever the y value exceeds
the x value, the correct value of z is computed. More formally,
the other functions in the program constitute a ‘failure mask’
MAB ⊂ A×B and the observable failure region is:

Fobs = (Af ×B) ∩MAB

A many-to-one mapping function ‘upstream’ of an error
region has a different effect. For example, if there was an
erroneous single point in Z, this would ‘project back’ through
the inverse mapping function f−13 to many points in the do-
main X×Y . If the function is continuous, the ‘projected back’
single point becomes a contour in the domain X × Y . Take
the simple example where f3 implements the ‘+’ function,
the back-projected contour satisfies the equation x + y = z0
where z0 is the erroneous value. Shifting the single point to an
adjacent value shifts the contour in a direction at right-angles
to the contour. So a contiguous range of error values in Z
projects to a solid diagonal band in X × Y . In general, if the
back-projection space has a large number of extra dimensions
compared to the error, the contour becomes a hypersurface.
A contiguous range of values in the error domain generates a
hypersurface of finite thickness which is probably skewed with
respect to dimensions of the input space. Any non-linearity
in the upstream functions, f1 and f2, will further distort the
hypersurface when it is projected back to the input space
A × B. The region is also likely to be sliced up by error

4

masking in downstream computations (e.g. f4). So the overall
failure region Zf when observed at the input space would be:

Fobs = (f1 × f2)−1 f−13 (Zf ∩MZ)

To some extent therefore, it should be possible to predict the
shape of a defect (if not the thickness normal to the surface).
The shape should align with contours of equal value for the
function upstream from the fault. In addition we should be able
to predict the boundaries of any masking functions which can
truncate this error region.

The difficulty of predicting the actual defect shape increases
with the complexity of the application. Complex functions
feeding into further complex functions can lead to very
distorted contours of equal output value. If the upstream
mapping functions are many-to-one and discontinuous or non-
monotonic, a contiguous error range for a faulty internal func-
tion may map backwards into multiple and entirely distinct
regions in the input space (i.e. there can be many ‘blobs’ for
one software defect). Thus a simple internal error region can
be distorted and replicated when its image is projected back
on to the input space (like viewing a simple object through a
multi-faceted distorting lens).

The overall conclusion is that the shape of the fault depends
more on where the fault is located (in a functional sense)
within the program. Thus the likely defect shape at a particular
program point might also be deduced by ‘seeding’ an artificial
defect at that point. In addition it is reasonable to expect a
failure region to:
• be a hypersurface of finite thickness with some edges

aligned with contours of equal output value for the
function upstream of the error.

• exhibit sharp angles where the failure regions have been
truncated by down-stream masking functions.

VI. IMPACT OF BLOBS ON SOFTWARE FAILURE

Having demonstrated that ‘blob’ defects are likely to occur
in software, the impact of this observation was explored
in greater detail. It is clear that key factors in the failure
behaviour of the software will be:
• the input distribution
• the ‘trajectory’ through the input space
• the actual shape of the blobs.

A. Effect of the Input Distribution

It is well-known that mean failure rate λ will be affected
by the distribution of input values. Specific input values are
either faulty or correct, so altering the activation probability
for an input value will clearly change the overall failure rate.
However the existence of ‘blobs’ may well result in a greater
sensitivity to changes in the input distribution. The distribution
of operational input values will cover a subset of the input
space which may or may not coincide with the blobs in the
input failure region. If the operational distribution is close
to blob, even a small shift in the distribution could alter the
proportion of the failure region that is covered hence changing
λ very significantly.

B. Effect of Trajectories

For a given input distribution, it is possible to have many
different types of trajectory, from totally random to entirely
deterministic. For a trajectory that proceeds in small ‘steps’
through the input space, the software survival time can be
regarded as the ‘transit time’ between the blobs. For a given
trajectory of length d, executed in steps of mean length s, the
mean transit time (or mean time of continuous success) will
be

tS = d/s

Note that d can be very large since it is possible to traverse
the input range many times before hitting the fault. In practice
there will be a distribution of different trajectories of different
lengths, but for a fixed distribution of trajectory lengths, it is
clear that:

tS ∝ 1/s

A similar argument can be applied to the times of continuous
failure, tF , i.e.

tF ∝ 1/s

This implies that the mean time for continuous success,
tS , is actually proportional to the rate of change of the
input variables. Thus if the ‘external world’ conditions change
more rapidly, the interval between failures will decrease. One
possible interpretation of this phenomenon is that software is
more likely to fail just when you need it, i.e. when the external
conditions are changing rapidly.

Note that this apparently counter-intuitive behaviour is
consistent with the idea of a mean rate of failure per execution
cycle, λ, that stays the same. From the definitions of tS and
tF it is clear that:

λ = tF /(tS + tF)

because this represents the ratio of the failure time to the
total time. Since tS and tF maintain a fixed ratio, λ remains
unchanged as s is varied.

C. Effect of Defect Shape

For a deterministic or semi-deterministic trajectory, the
volume of a defect does not have such a dominant effect on the
survival time; it is actually the effective cross-sectional area of
the defect that is most important. The effective cross-sectional
area can vary depending the direction of the trajectory. For
example, a pencil-shaped defect has very different cross-
section when viewed end-on or sideways. The distribution of
trajectories across the surface also affects the effective cross-
section. For a random walk motion, the whole surface area
of the defect contributes to the effective cross-sectional area,
since the trajectories are even distributed in all directions.
With such evenly distributed trajectories, the effective cross-
sectional area is directly related to the surface area of the de-
fect. However for any given set of trajectories, some effective
mean cross-sectional area, A′ should exist, so:

tS ∝ 1/A′s

Since a trajectory is traversed by series of steps through the
input space, it is possible to ‘step over’ a blob provided the

5

step is large enough. This will occur if the width of the blob,
wi, is smaller than the step, si in any dimension of the input
space i. The relationship derived above has to be qualified:

tS ∝ 1/A′s, si < wi for all i

If the mean step length si becomes greater than wi, the blob
becomes ‘semi-transparent’. In the limit, the mean transit time
(tF) through the defect will be one execution cycle. Hence
from the earlier equation:

tS ≈ (1− λ)/λ, si >> wi for any i

D. Survival Interval Distribution

The previous analysis applies regardless of the specific
trajectories employed. Furthermore, only the mean success
interval (tS) has been examined. Now the impact of trajectories
and blobs on the distribution of survival intervals (P (NS ≥
n)) will be examined. The key item of interest is whether the
very fact of survival can provide any further information about
the chance of further survival. We have chosen the measure
MTCS(n), which is the mean time for continued survival.
This measure takes the mean of all survival periods for which
NS ≥ n and subtracts the prior survival time (n − 1). This
definition implies that tS =MTCS(1).

For uniform random input data, the prior survival time is
irrelevant. The probability of failure remains constant, so for
all n:

MTCS(n) = tS =
1− λ
λ

For a deterministic trajectory, the probability of failure in-
creases as the number of steps increases, so assuming an
exponentially distributed set of trajectory lengths, one would
expect a relationship of the form:

MTCS(n) = tSe
−K0(n−1)

Finally in the ‘random walk’ case, the fact of survival after
a failure increases the chance of being further away from a
defect, so the probability of failure decreases with the number
of cycles. However, when the number of cycles is sufficient
to span the complete input range (i.e. nmax > 1/s2i) in all
dimensions, there is no possibility of moving further from the
defect, so the distribution of any surviving operating points
in input space becomes stationary, resulting in a constant
probability of failure.

The very fact of survival tells us that the program operating
point is outside the blob. After a sequence of successes, failure
is only possible when the program operating point lies within
a small ‘skin’ with a thickness of one step si around the
blob. Assuming that the defect lies in an unit input space,
the instantaneous failure probability is:

λS(nmax) ∝
∑
i=1,k

ρiAisi, nmax >> 1/s2i

where ρ is the probability of the program operating point lying
within the ‘skin’, k is the number of dimensions, and Ai is
the surface area of the defect normal to dimension i.

With a stationary input value distribution, ρ is constant.
However the actual value of ρ varies with the step size. A

simulation to derive the stationary distribution for different
step lengths showed there was an approximate relationship of:

ρ ∝ s

for the density of program operating points within the ‘skin’.
Assuming the step length is identical in all dimensions, we
obtain the approximate relationship:

λS(nmax) ∝ As2

where A is the total surface area of the defect. It follows that,
approximately:

MTCS(nmax) ∝
1

As2

VII. SIMULATION STUDY

The results of the above analysis are quite a surprising; for
uniform random input sequences, it is volume of the defect
that matters, but for other types of input trajectory the surface
area that affects the survival time. In addition the rate of
change of input data affects the survival time. So very long
survival periods are possible even with very large faults. This
is consistent with the experimental observations made in the
earlier random walk study.

To check the predictions made by this analysis, a series
of random walk simulations were made using n-dimensional
defects for different values of n. The input space was of
unit length in each dimension, and the defect was located
at the centre of the unit space with an identical length in
each dimension. The program operating point started at the
defect boundary, and the failure sequences were recorded and
analysed to obtain MTCS(n) and MTCF (n).

Figure 5 shows the distribution of MTCS(n) of a 0.1 vol-
ume linear defect for different step lengths. The very large 0.3
length step approximates to a uniform random distribution and
MTCS(n) remains virtually constant. For steps smaller than
0.1 (the width of the defect), it can be seen that MTCS(1)
increases as 1/s with the step length and MTCS(n) rises
asymptotically to a value which is approximately proportional
to 1/s2.

Figure 6 plots the distribution of MTCS(n) at a fixed
step length, for defects with the same volume but different
dimensions (and hence surface area). It can be seen that
MTCS(1) can differ by an order of magnitude for differently
shaped defects. This ratio remains roughly the same for all
values of n, which would be expected if MTCS(n) was
proportional to the surface area.

Figure 7 plots MTCS(nmax) against surface area for
differently shaped defects. It can be seen that MTCS(nmax)
for differently shaped defects with the same surface area is
roughly the same. The relationship is probably not exact be-
cause higher order defects have quite large linear dimensions.
For example, a four-dimensional defect with a volume of 10−2,
has linear dimensions of 0.31. This ‘squeezes’ the available
space (making the effective step size bigger). This ‘squeeze
effect’ is less significant for smaller surface areas and better
agreement can be seen. It can also be seen that MTCS(nmax)
is approximately inversely related to the surface area of the

6

defect. Again the ‘squeeze effect’ for large surfaces, together
with different stationary distributions at the ‘corners’ of higher
order defects are likely to cause deviations from the simple
inverse relationship.

VIII. DISCUSSION

It is clear from the analysis and simulation results that
‘blobs’, combined with correlated input sequences, can have a
dramatic effect on the survival characteristics of software. As
an example, in one simulation run using a maximum step of
3% per cycle and a defect occupying 10% of the input space,
that the mean time for continued survival at first successful
execution, MTCS(1), was over 100 execution cycles. After
a survival period of 100 cycles (i.e. n=100) MTCS(n) rose
to more than 1000 execution cycles, and the asymptotic value
of MTCS(n) was over 5000 execution cycles. The results
would be even more pronounced with smaller step sizes.

Assuming the overall results are valid there are a number
of practical implications to what, to date, has just been a
theoretical exercise. With the blob model, failures are likely
to come in ‘bursts’ interspersed by long periods without
failure. During a failure, restarting the software will have little
effect if the input conditions are similar, the system could be
unavailable for far longer periods than might be expected.

If the input conditions change more rapidly, the intervals
of continuous success or failure shorten. This could have
unfortunate consequences. Given that the software is working
successfully (which should be the norm) the time to failure
will be long when conditions are stable (e.g. flying straight
and level), and shorten just when you need them (e.g. aborting
a landing, etc).

On the other hand, the same property could be useful for
final system and reliability testing. For some real-time systems
a few execution failures are sufficient to cause a failure of the
entire system (e.g. a dynamically unstable aircraft). In this
case the actual length of the failure ‘burst’ is irrelevant, but
the length of the survival time is of great relevance (especially
to the pilot). In these circumstances, it may be legitimate to
argue that system testing using input data with far larger steps
than normal (up the credible limit for blob size) is a form
of accelerated testing. Time has effectively been speeded up
by the use of larger steps. Thus the survival time estimate
obtained in accelerated testing can be ‘scaled up’ in inverse
proportion to the step size to gain an estimate for the mean
survival time under the expected operational conditions.

Some reliability estimation methods [9], [10], [11] assume a
constant failure rate over time for any given set of faults and
input distribution, This study indicates the failure rate will
vary, so current reliability estimation methods may need to be
modified to take account of the effect of ‘blob’s.

The shape of blobs may be relevant to software diversity.
Previous theoretical work [12], [13] has shown that diverse
programs will exhibit correlated failures if some input values
are more ‘error prone’ than others. The analysis of blobs shows
that that similar internal ranges of error may back-project
to cover very different amounts of the input space, so some
portions of input space are more error-prone. Thus a priori

predictions of ‘error proneness’ and failure correlation should
be possible.

IX. SUMMARY AND CONCLUSIONS

This study has shown that:
• The hypothesized ‘blob’ defects were present in the

PODS application programs.
• On theoretical grounds, such blobs are likely to exist in

any program and, to some extent, the general shape of
the fault can be predicted from the program function and
the location of the fault within the program.

• The existence of ‘blob’ defects implies that a constant
failure rate assumption is not justifiable, especially for
when successive input values are strongly correlated (as
they are in many real-time systems).

• By definition, the mean times for continuous success and
failure (tS and tF) maintain a fixed ratio for a given
mean failure rate. However the existence of ‘blob’ defects
combined with correlated input sequences (trajectories)
can lead to some surprising results:

– For small enough trajectory steps, tS is inversely
related to the cross-sectional area of the ‘blob’ and
the step length.

– For random walk sequences, if a program sur-
vives n cycles, the mean continued survival time,
MTCS(n), increases as n increases. In the limit,
for large n, MTCS(n) tends to an asymptotic value
which is inversely proportional to the blob surface
area and the square of the step length.

– For deterministic trajectories MTCS(n) decreases
with increased survival periods.

If these results are generally valid, it has some interesting
implications for the likely failure behaviour of software-based
systems. In particular:

1) Failures are likely to come in ‘bursts’ interspersed by
long periods without failure.

2) Given that the software is operating successfully, the
chance of continued operation is greatly improved if
there are only small changes in input conditions (e.g.
flying straight and level in an aircraft).

3) Conversely failures become more likely if there are
major changes in the external conditions (e.g. take-off,
landing, evasive action).

4) It may be possible to justify ‘accelerated testing’ using
large rates of change, where the measured survival time
can be scaled in proportion to the maximum rate of
change expected in normal operation.

5) Software reliability theory may need to be modified to
take account of the effects of ‘blobs’.

Acknowledgements
This work was undertaken at Adelard as part of the SHIP

project (EV5V 103, the Assessment of the Safety of Hazardous
Industrial Processes in the Presence of Design Faults) which
has financial support from the CEC in the framework of Major
Industrial Hazards.

I would like to thank Don Gill of the GEC Marconi
Research Centre for his helpful comments on the paper.

7

REFERENCES

[1] P.G. Bishop, et al, PODS – A Project on Diverse Software, IEEE Trans.
Software Engineering, Vol SE-12, No 9, 1986.

[2] P.G. Bishop and F.D. Pullen Probabilistic Modelling of Software Failure
Characteristics, IFAC SAFECOMP 88, Fulda, Germany, Nov 1988.

[3] P.G. Bishop and F.D. Pullen, Failure Masking: A Source of Dependency
in Multi-version Programs, Paper in: Dependable Computing and Fault
Tolerant Systems, Vol 4. ”Dependable Computing for Critical Applica-
tions”, (ed. A. Avizienis and J.C. Laprie), Springer Verlag, Wien-New
York, 3-211-822249-6, 1991.

[4] A.A. Salvia and R.C. Bollinger, On Discrete Hazard Functions, IEEE
Trans. Reliability, Vol 31, No 5, 1982.

[5] J.C. Knight and S. Brilliant Graphs of Failure Regions in the Input Space,
private communication, 1986.

[6] P.E. Amman and J.C. Knight, Data Diversity: An Approach to Software
Fault Tolerance, IEEE Trans. Computers, Vol 37, No 4, April 1988.

[7] G. Finelli, NASA Software Failure Characterisation Experiments Relia-
bility Engineering and System Safety, Vol 32, 1991.

[8] W. Feller An Introduction to Probability Theory and its Applications John
Wiley and Sons, New York, 1957.

[9] W. Ehrenberger and K. Plögert, Statistical Verification of Reactor Pro-
tection Software, International Symposium on Nuclear Plant Control,
Cannes, April 1978.

[10] D.L. Parnas, A.J. van Schouen and Shu Po Kwan, Evaluation of Safety
Critical Software Comm. ACM, Vol 33, No 6, June 1990.

[11] C.W. Ramamoorthy and F.B. Bastani, Software Reliability - Status and
Perspectives, IEEE Trans. Software Engineering, Vol SE-8, No 6, 1981.

[12] D.E. Eckhardt and L.D. Lee, A Theoretical Basis for the Analysis
of Multi-version Software Subject to Coincident Failures, IEEE Trans.
Software Engineering, Vol SE-11, No 12, 1985.

[13] B. Littlewood and D. Miller, A Conceptual Model of the Effect of
Diverse Software Methodologies on Coincident Failures in Multi-Version
Software, Proc. Third Int. Conference on Fault-Tolerant Computing Sys-
tems, Bremerhaven, 1987, Informatik-Fachberichte 147, Springer Verlag,
Berlin, 1987.

8

GT

CT

GF

VT

HT

FX

VT FX HT

HT

FX CT

HT VT

FX

CT GF

Fig. 1 TRIPV Defect 9 (2-d Slices through the Failure Region)

Fig. 2 TRIPC Defect 10 (2-d Slices through the Failure Region)

Fig. 3 TRIPC Defect 19 (2-d Slices through the Failure Region)

9

Operator Inputs Plant Inputs

Staticise Input

Power

Calculation

Range

Clip

Trip

Logic

Trip Outputs

Conversion
OR

OR

OR

Diagnostics

(Linear Defect, volume 0.100)

1

10

100

1,000

10,000

100,000

1,000,000

Observed successes (N)

MTCS(N)

0.003

0.01

0.03

0.1

0.3

Step

1

10

100

1,000

10,000

100,000

1,000,000

Step

Step

Step

Step

 Fig 4. PODS Trip Example Fig. 5 MTCS(N) for Di fferent Step Sizes

Volume 0.003, Random Step (max 0.003)

1

10

100

1,000

10,000

100,000

1,000,000
1

10

100

1,000

10,000

100,000

1,000,000

Observed successes (N)

MTCS(N)

Cubic

Square

Linear

Random Step (max 0.003)

0.02 0.05 0.1 0.2 0.5 1 2 5
20,000

50,000

100,000

200,000

500,000

1,000,000

2,000,000

Defect `Surface Area'

MTCS(Nmax)

Linear

Square

Cubic

4-dim

 Fig. 6 MTCS(N): Different Defect Shapes Fig. 7 MTCS(Nmax) vs 'Surface Area'

