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Abstract

Unbiased estimation is an efficient alternative to optimal estimation when the noise statistics are not fully known
and/or the model undergoes temporary uncertainties. In this paper, we investigate the effect of embedded
unbiasedness (EU) on optimal finite impulse response (OFIR) filtering estimates of linear discrete time-invariant state-
space models. A new OFIR-EU filter is derived by minimizing the mean square error (MSE) subject to the unbiasedness
constraint. We show that the OFIR-UE filter is equivalent to the minimum variance unbiased FIR (UFIR) filter. Unlike the
OFIR filter, the OFIR-EU filter does not require the initial conditions. In terms of accuracy, the OFIR-EU filter occupies an
intermediate place between the UFIR and OFIR filters. Contrary to the UFIR filter which MSE is minimized by the
optimal horizon of Nopt points, the MSEs in the OFIR-EU and OFIR filters diminish with N and these filters are thus
full-horizon. Based upon several examples, we show that the OFIR-UE filter has higher immunity against errors in the
noise statistics and better robustness against temporary model uncertainties than the OFIR and Kalman filters.

Keywords: State estimation; Unbiased FIR filter; Optimal FIR filter; Kalman filter

1 Introduction
Beginning with the works byGauss [1], unbiasedness plays
a role of the necessary condition that is used to derive
linear and nonlinear estimators [2]. In statistics and sig-
nal processing, the ordinary least squares (OLS) estimator
proposed by Gauss in 1795 is an unbiased estimator. By
the Gauss-Markov theorem [3], this estimator is also the
best linear unbiased estimator (BLUE) [4] if noise is white
and if it has the same variance at each time step [5]. The
unbiasedness is obeyed by a condition E{x̂k} = E{xk}
which means that the average of estimate x̂k is equal to
that of the model xk . It leads to the unbiased finite impulse
response (UFIR) estimator [6]. Of practical importance
is that neither OLS nor UFIR require the noise statis-
tics which are not always known to the engineers [7].
The unbiasedness condition, however, does not guarantee
“good estimate” [8]. Therefore, the sufficient condition—
minimized noise variance—is often applied along to pro-
duce different kinds of estimators which are optimal in
the minimum mean square error (MSE) sense or subop-
timal: Bayesian, maximum likelihood (MLE), minimum
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variance unbiased (MVU), etc. In recent decades, a new
class of estimators having FIR (filters, smoothers, and pre-
dictors) was developed to have optimal or suboptimal
properties.
The FIR filter utilizes finite measurements over the

most recent time interval (horizon) of N discrete points.
Compared to the filters with infinite impulse response
(IIR), such as the Kalman filter (KF) [9], the FIR fil-
ter exhibits some useful engineering features such as
the bounded input/bounded output (BIBO) stability [10],
robustness against temporary model uncertainties and
round-off errors [11], and lower sensitivity to noise [12].
The most noticeable early works on optimal FIR (OFIR)
filtering are [13–15]. At that time, FIR filters were not the
ones commonly used for state estimation due to the ana-
lytical complexity and large computational burden. Nowa-
days, the interest to FIR estimators has grown owing to
the tremendous progress in the computational resources.
Accordingly, we find a number of new solutions on
FIR filtering [16–21], smoothing [22–24], and prediction
[25–27] as well as efficient applications [28–30].
Basically, the unbiasedness can be satisfied in two dif-

ferent strategies: (1) one may test an estimator by the
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unbiasedness condition or (2) one may embed the unbi-
asedness constraint into the design. We therefore recog-
nize below the checked (tested) unbiasedness (CU) and
the embedded unbiasedness (EU). Accordingly, we denote
the FIR filter with CU as FIR-CU and the FIR filter with
EU as FIR-EU.
In state estimation, signal processing, tracking, and con-

trol, two different state-space models are commonly used.
The prediction model which is basic in control is xk+1 =
Axk + Bwk and yk = Cxk + Dvk , in which wk and vk are
noise vectors, and A, B, C and D are relevant matrices.
Employing this model, the receding horizon FIR estima-
tors were proposed for different types of unbiasedness.
In [16], the receding horizon FIR-CU filter was derived
from KF with no requirements for the initial state. Soon
after, a receding horizon FIR-EU filter was proposed by
Kwon, Kim, and Han in [17], where the unbiasedness
condition was considered as a constraint to the optimiza-
tion problem. Later, the receding horizon FIR smoothers
were found in [22] for CU by employing the maximum
likelihood and in [24] for EU by minimizing the error
variance.
The real-time state model xk = Axk−1 + Bwk is used

in signal processing when the prediction is not required
(different time index) [31, 32]. Employing this model, the
FIR-CU filter and smoother were proposed by Shmaliy in
[23, 33] for polynomial systems. In [12], a p-shift unbi-
ased FIR filter (UFIR) was derived as a special case of the
OFIR filter. Here, the unbiasedness was checked a pos-
teriori, and the solution thus belongs to CU. Soon after,
the UFIR filter [12] was extended to time-variant systems
[18, 34]. For nonlinear models, an extended UFIR filter
was proposed in [35] and unified forms for FIR filter-
ing and smoothing were discussed in [36]. An important
advantage of the UFIR filter against OFIR filter is that the
noise statistics are not required. Because noise reduction
in FIR structures is provided by averaging, N � 1 makes
the UFIR filter as successful in accuracy as the OFIR filter.
It has to be remarked now that all of the aforemen-

tioned FIR estimators related to real-time state-space
model belong to the CU solutions. Still no optimal FIR
estimator was addresses of the EU type. It is thus unclear
which kind of FIR estimators serves better in particular
applications [37–39]. So, there is still room for discussion
of the best FIR filter.
In this paper, we systematically investigate effect of the

embedded unbiasedness on OFIR estimates. To this end,
we derive a new FIR filter, called OFIR-EU filter, by min-
imizing the MSE subject to the unbiasedness constraint.
We also learn properties of the OFIR-EU filter in a com-
parison with the OFIR and UFIR filters and KF. The
remaining part of the paper is organized as follows. In
Section 2, we describe the model and formulate the prob-
lem. The OFIR-EU filter is derived in Section 3. Here, we

also consider a unified form for different kinds of OFIR
filters. In Section 4, we generalize several FIR filters and
discuss special cases of the OFIR-EU filter. The MSEs are
compared analytically in Section 5. Extensive simulations
are provided in Section 6, and concluding remarks are
drawn in Section 7.
The following notations are used: Rn denotes the n-

dimensional Euclidean space; E{·} denotes the expected
value; diag (e1 · · · em) represents a diagonal matrix with
diagonal elements e1, · · · , em; trM is the trace ofM; and I
is the identity matrix of proper dimensions.

2 Preliminaries and problem formulation
Consider a linear discrete-time model given with the
state-space equations

xk = Axk−1 + Bwk , (1)
yk = Cxk + Dvk , (2)

in which k is the discrete time index, xk ∈ R
n is the state

vector, and yk ∈ R
p is the measurement vector. Matrices

A ∈ R
n×n, B ∈ R

n×u, C ∈ R
p×n and D ∈ R

p×v are time-
invariant and known. We suppose that the process noise
wk ∈ R

u and the measurement noise vk ∈ R
v are zero

mean, E{wk} = 0 and E{vk} = 0, mutually uncorrelated,
and have arbitrary distributions and known covariances
Q(i, j) = E

{
wiwT

j

}
, R(i, j) = E

{
vivTj

}
for all i and j, to

mean that wk and vk are not obligatorily white Gaussian.
Following [12], the state-space model (1) and (2) can

be represented in a batch form on a discrete time inter-
val [l, k] with recursively computed forward-in-time solu-
tions as

Xk,l = Ak−lxl + Bk−lWk,l , (3)
Yk,l = Ck−lxl + Hk−lWk,l + Dk−lVk,l , (4)

where l = k − N + 1 is a start point of the averag-
ing horizon. The time-variant state vector Xk,l ∈ R

Nn×1,
observation vector Yk,l ∈ R

Np×1, process noise vector
Wk,l ∈ R

Nu×1, and observation noise vector Vk,l ∈ R
Nv×1

are specified as, respectively,

Xk,l =
[
xTk xTk−1 · · · xTl

]T
, (5)

Yk,l =
[
yTk yTk−1 · · · yTl

]T
, (6)

Wk,l =
[
wT
k wT

k−1 · · ·wT
l

]T
, (7)

Vk,l =
[
vTk vTk−1 · · · vTl

]T
. (8)

The extended model matrix Ak−l ∈ R
Nn×n, pro-

cess noise matrix Bk−l ∈ R
Nn×Nu, observation matrix

Ck−l ∈ R
Np×n, auxiliary matrix Hk−l ∈ R

Np×Nu, and
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measurement noise matrix Dk−l ∈ R
Np×Nv are all time-

invariant and dependent on the horizon length of N
points. Model (1) and (2) suggests that these matrices can
be written as, respectively,

Ai =
[
(Ai)T (Ai−1)T · · ·AT I

]T
, (9)

Bi =

⎡
⎢⎢⎢⎢⎢⎣

B AB · · · Ai−1B AiB
0 B · · · Ai−2B Ai−1B
...

...
. . .

...
...

0 0 · · · B AB
0 0 · · · 0 B

⎤
⎥⎥⎥⎥⎥⎦ , (10)

Ci = C̄iAi , (11)
Hi = C̄iBi , (12)
Di = diag(DD · · ·D︸ ︷︷ ︸

i+1

) , (13)

C̄i = diag(CC · · ·C︸ ︷︷ ︸
i+1

) . (14)

Note that at the start horizon point we have an equation
xl = xl +Bwl which is satisfied uniquely with zero-valued
wl, provided that B is not zeroth. The initial state xl must
thus be known in advance or estimated optimally.
The FIR filter applied to N past neighboring measure-

ment points on a horizon [l, k] can be specified with

x̂k|k = KkYk,l , (15)
where x̂k|k is the estimate1, and Kk is the FIR filter gain
determined using a given cost criterion. Note that a dis-
tinctive difference between the FIR with IIR filters is that
only one nearest past measurement is used in the recur-
sive IIR (Kalman) filter to provide the estimate, while the
convolution-based batch FIR filter requiresN most recent
measurements.
The estimate (15) will be unbiased if to obey the follow-

ing unbiasedness condition,

E{xk} = E{x̂k|k} , (16)

in which xk can be specified as

xk = AN−1xl + B̄k−lWk,l (17)

if to combine (3) and (4). Here B̄k−l is the first vector row
in Bk−l. By substituting (15) and (17) into (16), replacing
the term Yk,l with (4), and providing the averaging, one
arrives at the unbiasedness constraint

AN−1 = KkCk−l (18)

which is also known as the deadbeat constraint [19]. Pro-
vided x̂k|k , the instantaneous estimation error ek can be
defined as

ek = xk − x̂k|k . (19)

The problem now formulates as follows. Given themod-
els, (1) and (2), we would like to derive an OFIR-EU filter
by minimizing the variance of the estimation error (19) as

KOEU
k = argmin

Kk

E
{
ekeTk

}

subject to (18) . (20)

We also wish to investigate effect of the unbiasedness
constraint (18) on the OFIR-EU estimate, compare errors
in different kinds of FIR filters, and analyze the trade-off
between the OFIR-EU filter derived in this paper, UFIR
filter [33], OFIR filter [34], and KF under the diverse
operation conditions.

3 OFIR-EU filter
In the derivation of the OFIR-EU filter, the following
lemma will be used.

Lemma 1. The trace optimization problem is given by

argmin
K

tr
[
(KF − G)H(KF − G)T

+(KL − M)P(KL − M)T + KSKT ] , (21)
subject to L{KU=Z}|θ

where H = HT > 0, P = PT > 0, S = ST > 0, trM is
the trace ofM, θ denotes the constraint indication param-
eter such that θ = 1 if the constraint exists and θ = 0
otherwise. Here, F, G,H, L,M, P, S, U, and Z are constant
matrices of appropriate dimensions. The solution to (21) is

K =
⎡
⎣ Z

G
M

⎤
⎦
T ⎡
⎣ θ

(
UT�−1U

)−1UT�−1

HFT�−1�
PLT�−1�

⎤
⎦ , (22)

where � = I − θU
(
UT�−1U

)−1UT�−1 and

� =
⎧⎨
⎩

LPLT + S, if F = U, G = Z, and θ = 1
FHFT + S, if L = U, M = Z, and θ = 1

FHFT + LPLT + S, if θ = 0
.

(23)

Proof. The proof is provided in Appendix A.

3.1 The gain for OFIR-EU filter
Using the trace operation, the optimization problem (20)
can be rewritten as

KOEU
k = argmin

Kk

E
{
tr
[
ekeTk

]}

= argmin
Kk

E
{
tr
[(
xk − x̂k|k

)
(· · · )T

]}
(24)
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subject to (18), where (· · · ) denotes the term that is equal
to the relevant preceding term. By substituting xk with
(17) and x̂k|k with (15), the cost function becomes

KOEU
k = argmin

Kk

E
{
tr
[(
AN−1xl + B̄k−lWk,l

− KkYk,l
)
(· · · )T

]}
. (25)

If to take into account constraint (18), provide the aver-
aging, and rearrange the terms, (25) can be transformed
to

KOEU
k = argmin

Kk

E
{
tr
[(
B̄k−lWk,l

−Kk
(
Hk−lWk,l + Dk−lVk,l

))
(· · · )T

]}
= argmin

Kk

E
{
tr
[((

KkHk−l − B̄k−l
)
Wk,l

+KkDk−lVk,l
)
(· · · )T

]}

= argmin
Kk

tr
[(
KkHk−l − B̄k−l

)
�w(· · · )T

+Kk�vKT
k

]
, (26)

where the fact is invoked that the system noise vector
Wk,l and the measurement noise vector Vk,l are pairwise
independent. The auxiliary matrices are

�w = E
{
Wk,lWT

k,l

}
, (27)

�v =Dk−lE
{
Vk,lVT

k,l

}
DT

k−l . (28)

Referring to Lemma 1 with θ = 1, the solution to the
optimization problem (26) can be obtained by neglecting
L,M, and P and using the replacements: F ← Hk−l, G ←
B̄k−l, H ← �w, U ← Ck−l, Z ← AN−1, and S ← �v. We
thus have

KOEU
k = KOEUa

k + KOEUb
k , (29)

where

KOEUa
k =AN−1

(
CT
k−l�

−1
w+vCk−l

)−1
CT
k−l�

−1
w+v , (30)

KOEUb
k = B̄k−l�wHT

k−l�
−1
w+v(I − �k−l) , (31)

in which

�k−l =Ck−l
(
CT
k−l�

−1
w+vCk−l

)−1
CT
k−l�

−1
w+v , (32)

�w+v = �w + �v , (33)
�w =Hk−l�wHT

k−l . (34)

The OFIR-EU filter structure can now be summarized
in the following theorem.

Theorem 1. Given the discrete time-invariant state
space model (1) and (2) with zero mean mutually inde-
pendent and uncorrelated noise vectors wk and vk, the

OFIR-EU filter utilizing measurements from l to k is stated
by

x̂k|k = KOEU
k Yk,l , (35)

where KOEU
k = KOEUa

k + KOEUb
k , Yk,l ∈ R

Np×1 is the mea-
surement vector given by (6), and KOEUa

k and KOEUb
k are

given by (30) and (31) with Ck−l and B̄k−l specified by (11)
and the first row vector of (10), respectively.

Proof. The proof is provided by (24)-(34).

Note that the horizon length N for (35) should be cho-
sen such that the first inverse in (30) exists. In general,
N can be set as N � n, where n is the number of the
model states. Table 1 summarizes the steps in the OFIR-
EU estimation algorithm, in which the noise statistics are
assumed to be known for measurements available from l
to k.
Given N, compute KOEUa

k and KOEUb
k according to (30)

and (31), respectively, then the OFIR-EU estimate can be
obtained at time index k by (35).

3.2 Unified form for OFIR and OFIR-EU filters
In order to ascertain a correspondence between the OFIR
filter and its modifications associated with the unbiased-
ness constraint (18), we rewrite the optimization problem
(24) regarding the unified gain KUO

k as

KUO
k = argmin

Kk

tr
[(
KkHk−l − B̄k−l

)
�w(· · · )T

+ (
KkCk−l − AN−1)�x(· · · )T

+Kk�vKT
k

]
(36)

with constraint L{KkCk−l=AN−1}|θ , where �x = E
{
xlxTl

}
is the mean square of initial state xl. Using Lemma 1 and
substituting

F ← Hk−l ,G ← B̄k−l ,H ← �w ,P ← �x , S ← �v ,

M = Z ← AN−1 ,L = U ← Ck−l ,

we find a solution to (36) as

KUO
k = θAN−1�k−l

+AN−1�xCT
k−l�̄

−1
x+w+v

(
I − θCk−l�k−l

)
+Bk−l�wHT

k−l�̄
−1
x+w+v

(
I − θCk−l�k−l

)
, (37)

Table 1 The OFIR-EU filtering Algorithm

Stage

Given: N � n, l = k − N + 1

Find: KOEUa
k by (30) and KOEUb

k by (31)

Compute: x̂k|k = (KOEUa
k + KOEUb

k )Yk,l
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where

�k−l =
(
CT
k−l�̄

−1
x+w+vCk−l

)−1
CT
k−l�̄

−1
x+w+v , (38)

with

�̄x+w+v =
{

�w+v, if θ = 1
�x+w+v, if θ = 0 , (39)

�x+w+v = �x + �w + �v , (40)
�x =Ck−l�xCT

k−l . (41)

In a special case of θ = 1, (37) reduces to

KUO
k =AN−1�k−l

+AN−1�xCT
k−l�

−1
w+v

(
I − Ck−l�k−l

)
+B̄k−l�wHT

k−l�
−1
w+v

(
I − Ck−l�k−l

)
, (42)

where �k−l is given by (38), in which �̄x+w+v is specified
by (39) with θ = 1. Referring to (30) and (31) and taking
into consideration that the second term on the right-hand
side of (42) equals to zero, we come up with a deduction
that

KUO
k = KOEU

k . (43)

In the unconstrained case of θ = 0, (37) transforms to

KUO
k =AN−1�xCT

k−l�
−1
x+w+v

+B̄k−l�wHT
k−l�

−1
x+w+v . (44)

By multiplying �x with identity
(
CT
k−lCk−l

)−1
CT
k−lCk−l

from the left-hand side, (44) turns up as

KUO
k =

(
KU
k �x + B̄k−l�wHT

k−l

)
�−1

x+w+v

=KO
k , (45)

where the unbiased gain KU
k is defined by [6]

KU
k = AN−1

(
CT
k−lCk−l

)−1
CT
k−l . (46)

We thus infer that this case corresponds to the OFIR fil-
ter which gain was found in [34]. At this point, we notice
that (37) is a unified generalized form for the OFIR filter
gain which minimize the MSE in the estimate of discrete
time-invariant state-space model. In this regard, the OFIR
filter gain derived in [34] and OFIR-EU filter gain spec-
ified by Theorem 1 can be considered as special cases
of (37).

4 MVU FIR filter
Owing to its unique properties, the unbiasedness con-
straint (18) has been employed extensively to derive dif-
ferent kinds of FIR filters [6, 15–17, 23]. The UFIR filter
was shown in [12] to be a special case of the OFIR filter
with the unbiased gain specified by (46), where N is cho-
sen as N � n to guarantee the invertibility of CT

k−lCk−l.
The gain (46) can also be obtained by multiplyingAN−1 in

the constrain (18) from the right-hand side with the iden-
tity matrix

(
CT
k−lCk−l

)−1
CT
k−lCk−l and neglecting Ck−l

in both sides. In this sense, the UFIR filter is akin to
Gauss’s OLS. On the other hand, (46) does not guarantee
optimality in the MSE sense. An optimized solution can
be provided by minimizing the error variance that leads
to the minimum variance unbiased (MVU) FIR filter [40].
Since the properties of the MVU FIR filter are in-between
the UFIR and OFIR filters, a unified form for the UFIR fil-
ter can also be assumed. Below, we specify the MVU FIR
filter and show a unified relationship between the UFIR,
MVU FIR, and OFIR-EU filter gains.

4.1 Identity of MVU FIR and OFIR-EU filters
It has been shown in [40] that the variance can be min-
imized in the UFIR filter if to represent the gain of the
MVU FIR filterKMVU

k as a linear combination ofKU
k given

by (46) and an auxiliary term Ka
k of the same class,

KMVU
k = KU

k + Ka
k , (47)

where

Ka
k = ϒ̄k−l(I − �̄k−l) , (48)

ϒ̄k−l =
(
B̄k−l�wHT

k−l − KU
k �w+v

)
�−1

x+w+v , (49)

�̄k−l =Ck−l
(
CT
k−l�

−1
x+w+vCk−l

)−1
CT
k−l�

−1
x+w+v .

(50)

On the other hand, Lemma 1 suggests that KMVU
k does

not depend on the initial state matrix �x. Any �x can
thus be supposed in (50), provided that the inverse in (50)
exists. This fundamental property was postulated in many
papers [11, 17, 23, 33] and, based upon, KMVU

k can be
rewritten equivalently as

KMVU
k = KU

k + Kb
k , (51)

where

Kb
k = ϒk−l

(
I − �k−l

)
, (52)

ϒk−l =
(
B̄k−l�wHT

k−l − KU
k �w+v

)
�−1

w+v , (53)

and �k−l is given by (32). Referring to (31) and making
some rearrangements, we arrive at an aquality

KMVU
k =KU

k − KU
k
(
I − �k−l

)
+B̄k−l�wHT

k−l�
−1
w+v

(
I − �k−l

)
=KU

k Ck−l
(
CT
k−l�

−1
w+vCk−l

)−1
CT
k−l�

−1
w+v

+KOEUb
k

=KOEU
k (54)

which is formalized below with a theorem.
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Theorem 2. The MVU FIR filter specified by (47) is
identical to the OFIR-EU filter specified by Theorem 1,

KMVU
k = KOEU

k .

Proof. The proof is given in Section 4.1.

It follows from Theorem 2 that the gain KMVU
k is not

unique. Onemay suppose any initial statematrix�x, com-
pute it by solving the discrete algebraic Riccati equation
(DARE) as in [12], or even neglect �x as we have done
above. Although each of these cases require particular
algorithms, Lemma 1 suggests that the estimation accu-
racy will not be affected by �x. We notice that this
property of MVU FIR filter was unknown so far. We use
it below while comparing different kinds of unbiased FIR
filters.

4.2 Unified form for UFIR andMVU FIR filters
The basic UFIR filter gain found in [12] is given by (46).
There can be found other forms of this gain if to multi-
ply AN−1 in the constraint (18) from the right-hand side
with an appropriate identity matrix and removeCk−l from
the both sides. The unbiased gain KUU

k produced in such
a way depends on an auxiliary matrix Zk−l, provided that
its inverse exists. However, a class of UFIR filters asso-
ciated with Zk−l must have some reasonable formulation
which can be the following. Let us combine KUU

k with two
additive components of the same class as

KUU
k = KUUa

k + κKUUb
k , (55)

where κ can be either 0 or 1,

KUUa
k =AN−1

(
CT
k−l�k−lCk−l

)−1
CT
k−l�k−l , (56)

KUUb
k = B̄k−l�wHT

k−l�k−l(I − �̃k−l) , (57)

and

�̃k−l = Ck−l
(
CT
k−l�k−lCk−l

)−1
CT
k−l�k−l . (58)

Depending on values of κ and �k−l, the following spe-
cial cases can be recognized:

– If κ = 0 and �k−l = λI with λ constant, then
KUU
k = KU

k .
– If κ = 1 and �k−l = �−1

w+v, then KUU
k = KOEU

k .

Several other generalizations can also be made regard-
ing the types of systems:

4.2.1 Deterministic statemodel
If the state model (1) is noiseless, then the term containing
�w should be omitted in (30) and (31), and (29) reduces to
the gain

KOEU
k = AN−1

(
CT
k−l�

−1
v Ck−l

)−1
CT
k−l�

−1
v (59)

which becomes equals to KUU
k with κ = 0 and �k−l =

�−1
v . This gain corresponds to the traditional BLUE and

MLE for Gaussian models [5]. The batch form (59) was
also shown in [11] for the receding horizon FIR filter with
embedded unbiasedness and minimized variance.

4.2.2 Deterministic measurementmodel
If the observation model (2) is noise-free, one has

KOEU
k =AN−1

(
CT
k−l�

−1
w Ck−l

)−1
CT
k−l�

−1
w

+B̄k−l�wHT
k−l�

−1
w
(
I − Ck−l

×
(
CT
k−l�

−1
w Ck−l

)−1
CT
k−l�

−1
w

)
(60)

which is a special case of (55) by κ = 1 and �k−l = �−1
w .

4.2.3 Deterministic state-spacemodel
Having no noise in (1) and (2), the cost function in (25)
becomes

KOEU
k = argmin

Kk

E
{
tr
[(
AN−1xl − KkCk−lxl

)
(· · · )T

]}
.

(61)

By the constraint (18), the terms in the parentheses of
(61) become identically zero. Hence, the solution to (61) is
the unbiased gain Kk given by (46). It then follows that
The UFIR filter is a deadbeat filter for deterministic

systems.
If (18) is not applied, then the solution to (61) becomes

KO
k = AN−1�xCT

k−l�
−1
x . (62)

Multiplying �x with
(
CT
k−lCk−l

)−1
CT
k−lCk−l from the

left-hand side in (62) yields

KO
k = KU

k = AN−1
(
CT
k−lCk−l

)−1
CT
k−l (63)

which can also be obtained by setting the terms �w and
�v in (45) to zero. We thus infer that
The OFIR filter is a deadbeat filter for deterministic

systems.
Table 2 summarizes the gains for the UFIR, OFIR-EU

(MVU FIR), and OFIR filters. Note that all these filter
gains are given in the batch form, where the computa-
tional complexity is large when the estimation horizon
is long. Therefore, corresponding iterative realization is
required for a fast computation.

Table 2 Different FIR filter gains

Filter Gain

UFIR KU
k = AN−1

(
CTk−lCk−l

)−1
CTk−l

OFIR-EU KOEU
k = KOEUa

k + KOEUb
k

OFIR KO
k = (

KU
k �x + B̄k−l�wHT

k−l

)
�−1

x+w+v



Zhao et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:83 Page 7 of 13

5 Estimation errors
Provided a correspondence between the OFIR, OFIR-EU
(MVU FIR), and UFIR filter gains (Table 2), in this section,
we proceed with an analysis of the estimation errors. We
compare the MSEs of these filters and point out their
common features and differences.

5.1 Mean square errors
The MSE Jk at the estimator output can be defined as

Jk = E {ekek} = E
{(
xk − x̂k|k

) (
xk − x̂k|k

)T}

= E
{
xkxTk

}
+ E

{
x̂k|k x̂Tk|k

}
− 2E

{
xk x̂Tk|k

}
, (64)

where each of the mean square values can be decom-
posed via the squared bias and variance. Assuming that
the actual xk is inherently unbiased, we write E{xkxTk } =
Var(xk) and E

{
x̂k|k x̂Tk|k

}
= Bias2(x̂k|k) + Var(x̂k|k). We

further decompose the estimate x̂k|k as x̂k|k = Bias(x̂k|k)+
x̃k|k , where x̃k|k is a random part of x̂k|k , find

E
{
xk x̂Tk|k

}
= E

{
xk
[
Bias(x̂k|k) + x̃k|k

]T}

= E{xk}BiasT (x̂k|k) + E
{
xk x̃Tk|k

}

=Cov
(
xk x̂Tk|k

)
and finally transforme (64) to

Jk = Bias2
(
x̂k|k

)+ Var (xk) + Var
(
x̂k|k

)
−2Cov

(
xk , x̂k|k

)
, (65)

where the state variance Var (xk) is specified by

Var (xk) = B̄k−l�wB̄T
k−l (66)

and, for unbiased estimate, we have

Bias
(
x̂k|k

) = 0 . (67)

Based upon (65), below we specify the MSEs for the
above considered FIR filters.

5.1.1 MSE in the UFIR estimate
For the UFIR filter, the third term Var(x̂k|k) on the right-
hand side of (65) can be transformed to

Var(x̂k|k) = E
{(
x̂k|k − E{x̂k|k}

)
(· · · )T

}
=KU

k �w+v
(
KU
k
)T . (68)

Taking into account that Wk,l and Vk,l are mutually
independent, the covariance Cov(xk , x̂k|k) can be obtained
as

Cov(xk , x̂k|k) = B̄k−l�wHT
k−l

(
KU
k
)T , (69)

Accordingly, the MSE in the UFIR filter becomes

JUk = B̄k−l�wB̄T
k−l + KU

k �w+v
(
KU
k
)T

−2B̄k−l�wHT
k−l

(
KU
k
)T , (70)

where KU
k is given by (46). The MSE (70) was first studied

in [18].

5.1.2 MSE in the OFIR-EU estimate
For the OFIR-EU filter, Var(x̂k|k) and Cov(xk , x̂k|k) are
given by, respectively,

Var(x̂k|k) =KOEU
k �w+v

(
KOEU
k

)T
, (71)

Cov(xk , x̂k|k) = B̄k−l�wHT
k−l

(
KOEU
k

)T
. (72)

From (54) we have KOEU
k = KU

k + Kb
k and arrive at

Var(x̂k|k) =KU
k �w+v

(
KU
k
)T + 2KU

k �w+v
(
Kb
k

)T
+Kb

k�w+v
(
Kb
k

)T
, (73)

Cov(xk , x̂k|k) = B̄k−l�wHT
k−l

(
KU
k
)T

+B̄k−l�wHT
k−l

(
Kb
k

)T
. (74)

Next, substituting (66), (73) and (74) into (65) and rear-
ranging the terms yield

JOEU
k = JUk + Kb

k�w+v
(
Kb
k

)T
−2

(
B̄k−l�wHT

k−l − KU
k �w+v

) (
Kb
k

)T
. (75)

Finally, by invoking ϒk−l given by (53), we transform
(75) to

JOEU
k = JUk + Kb

k�w+v
(
Kb
k

)T − 2ϒk−l�w+v
(
Kb
k

)T
,

(76)

in which JUk is provided by (70).

5.1.3 MSE in the OFIR estimate
We first notice that the OFIR filter gain KO

k given by (45)
can equivalently be rewritten as

KO
k =KU

k (�x+w+v − �w+v)�−1
x+w+v

+B̄k−l�wHT
k−l�

−1
x+w+v

=KU
k + ϒ̄k−l . (77)

For this filter, the bias-dependent term becomes

Bias2
(
x̂k|k

) = ϒ̄k−l�xϒ̄
T
k−l . (78)

Now, by combining (65), (68), and (69), the MSE of the
OFIR filter can be found to be

JOk = ϒ̄k−l�xϒ̄
T
k−l + B̄k−l�wB̄T

k−l

+KO
k �w+v

(
KO
k

)T−2B̄k−l�wHT
k−l

(
KO
k

)T
. (79)

The MSE (79) was first studied in [12, 34]. If we further
substitute KO

k with (77), refer to (70), and rearrange the
terms, we arrive at the final form
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JOk = JUk − ϒ̄k−l�x+w+vϒ̄
T
k−l . (80)

The above-provided relations (70), (76), and (80) allow
analyzing effect of the unbiasedness constraint on the
OFIR-filtering estimates that we provide below.

5.2 Correspondence between the MSEs
A general relationship between the MSEs associated
with different FIR filters is ascertained by the following
theorem.

Theorem 3. Given the MSEs JUk , J
OEU
k and JOk , defined by

(70), (76) and (80), respectively, then the following inequal-
ity holds,

JOk � JOEU
k � JUk , (81)

and it becomes an equality when the state-space model is
deterministic.

Proof. The proof is given in [40] and we support it with
a simple analysis. The UFIR filter is designed to obtain
zero bias. Although the noise variance is reduced here as
∝ 1

N , the optimality is not guaranteed. Therefore, theMSE
in UFIR filter generally exceeds those in two other filters.
TheMSE in the OFIR filter is minimal among other filters.
The OFIR-EU filter minimizes MSE with the embedded
unbiasedness. Its error is thus in between the UFIR and
OFIR filters.

6 Applications
Theorem 3 states that the OFIR-EU and MVU FIR fil-
ters produce intermediate estimates between the OFIR
and UFIR filters. In order to learn the effect of the
embedded unbiasedness in more detail, we test the UFIR,
OFIR-EU, and OFIR filters in line with the KF in differ-
ent noise environments by a two-state polynomial model
specified with

A =
[

1 0.05
0 1

]
.

The reader can also find some other comparisons of the
KF and FIR filters in [16, 18, 34, 41].

6.0.1 Accuratemodel—ideal case
In an ideal case, one may think that the model represents
a process accurately and the noise statistics are known
exactly. The goal then is to learn the effect of the horizon
length N on the FIR estimates. We set the measurement
noise variance as σ 2

v = 10, and the initial states as x10 = 1
and x20 = 0.01 / s.
We then compute the root MSE (RMSE) of the estimate

by tr Jk as a function of N. The results are illustrated in
Fig. 1 for σ 2

w = 1 and in Fig. 2 for σ 2
w = 0.1. What we

can see here is that the MSE function of the UFIR filter is
traditionally concave on N with a minimum at Nopt [42]:
with N < Nopt, noise reduction is inefficient and, if N >

Nopt, the bias error dominates. On the other hand, the KF
isN-invariant and its MSE is thus constant. The following
generalizations can also be made:

– The embedded unbiasedness puts the OFIR-EU filter
error in between the UFIR and OFIR filters: the
OFIR-EU filter becomes essentially the UFIR filter
when N < Nopt and the OFIR filter if N > Nopt.

– The OFIR and OFIR-EU estimates converge to the
KF estimate by increasing the averaging horizon N.
The estimates become practically indistinguishable
when N � Nopt.

– An increase in Nopt diminishes the error difference
between the OFIR and UFIR filters (compare Fig. 1
with Nopt = 33 and Fig. 2 with Nopt = 47).

– Because the MSEs in the OFIR and OFIR-EU filters
diminish with N, these filters are full-horizon [18].

6.0.2 Filteringwith errors in the noise statistics
The noise statistics required by the KF are commonly not
completely know to the engineer. In order to investigate
the effect of the imprecisely defined noise covariances in
the worst case, we introduce a correction coefficient p as
p2Q and R / p2, vary p from 0.1 to 10, and plot the RMSE√
tr Jk as shown in Fig. 3.
Note that theMSE functions of optimal filters are inher-

ently concave on p with a minimum at p = 1 and the MSE
of the UFIR filter is p-invariant.
As expected, p = 1 makes the OFIR filter, OFIR-EU fil-

ter, and KF a bit more accurate than the UFIR filter. But,
that is only within a narrow range of p (0.6 < p < 1.5
in Fig. 3) that the KF slightly outperforms the UFIR filter.
Otherwise, the UFIR filter demonstrates smaller errors.
Referring to practical difficulties in the determination of
noise statistics [7], the latter can be considered as an
important engineering advantage of the UFIR filter. Some
other generalizations also emerge from Fig. 3:

– The embedded unbiasedness makes the OFIR-EU
filter p-invariant with p < 1. In this sense, the
OFIR-EU is equal here to the UFIR filter, and this can
be considered as a particular meaningful property of
the approach proposed.

– With p < 1, the KF is more sensitive to errors in the
noise statistics than the FIR filters.

– By p > 1, the MSEs in the KF, OFIR filter, and
OFIR-EU filter grow and converge.

Overall, we conclude that the OFIR-EU filter inherits
the robustness of the UFIR filte against the noise statistics
and has better performance than the OFIR filter and KF.
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Fig. 1 Typical RMSEs as functions of N for different filters with σ 2
w = 1

6.0.3 Filtering withmodel uncertainties
To learn effect of the temporary model uncertainties on
the filtering accuracy, in this section we set τ = 0.1 s when
160 � k � 180 and τ = 0.05 s otherwise. The noise vari-
ances are allowed to be σ 2

w1 = 1, σ 2
w2 = 1/s2, and σ 2

v = 10.
The process is simulated at 400 subsequent points.

Typical filtering estimates are sketched in Fig. 4. As
can be seen, the OFIR-EU filter (case p = 0.2) and the
UFIR filter produce almost equal errors and demonstrate
good robustness against the uncertainties. Just on the con-
trary, the KF demonstrates much worse robustness for any
p � 1.

Fig. 2 Typical RMSEs as functions of N for different filters with σ 2
w = 0.1
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Fig. 3 Typical RMSE
√
tr Jk as a function of p for KF and FIR filters

7 Conclusions
Summarizing, we notice that the unbiasedness imbedded
to the OFIR filter instills into it several useful prop-
erties. Unlike the OFIR filter, the OFIR-EU filter com-
pletely ignores the initial conditions. The OFIR-EU filter

is equivalent to the MVU FIR filter. In terms of accuracy,
the OFIR-EU filter is in between the UFIR and OFIR fil-
ters. Unlike in the UFIR filter which MSE is minimized
by Nopt, MSEs in the OFIR-EU and OFIR filters dimin-
ish with N and these filters are thus full-horizon. The

Fig. 4 Instantaneous estimation errors caused by the temporary model uncertainties with p < 1 for the KF, UFIR filter, and OFIR-EU filter
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performance of OFIR-EU filter is developed by varying
the horizon N around Nopt or ranging the correction
coefficient p around p = 1. Accordingly, the OFIR-EU
filter in general demonstrates higher immunity against
errors in the noise statistics and better robustness against
temporary model uncertainties than the OFIR filter
and KF.
Referring to the fact that optimal FIR filters are essen-

tially the full-horizon filters but their batch forms are
computationally inefficient, we now focus our attention
on the fast iterative form for OFIR-EU filter and plan to
report the results in near future.

Endnote
1x̂k|k means the estimate at k via measurements from

the past to k.

Appendix A: Proof of Lemma 1
Represent the performance criterion in (21) as

φ = tr
[
(KF − G)H(KF − G)T + (KL − M)P

×(KL − M)T + KSKT
]
. (82)

By partitioning K as KT = [k1k2 · · · km], where m is the
dimension of K, rewrite φ as

φ =
m∑
i=1

φi , (83)

in which

φi =
(
kTi F − gTi

)
H(· · · )T +

(
kTi L − mT

i

)
P(· · · )T

+kTi Ski , (84)

where gi and mi are the ith column vector of G and M,
respectively, and i = 1, 2, . . . ,m. Reasoning along similar
lines, the ith constraint can be specified by

Li{UTki=zi}|θ =
{
UTki = zi, if θ = 1
0, if θ = 0 . (85)

Now note that φi and Li{UTki=zi}|θ are independent on
kj, j �= i, and the optimization problem (21) can be
reduced tom independent optimization problems as

min
ki

φi subject to Li{UTki=zi}|θ , (86)

where i = 1, 2, . . . ,m. Now, define an auxiliary function
ϕi|θ as

ϕi|θ = φi + θλTi

(
UTki − zi

)
, (87)

where λi denotes the ith vector of the Lagrange multiplier.
Note that ϕi|θ depends on θ which governs the existing of
constraint. Setting θ = 1, first consider a general case of
F �= U, L �= U, G �= Z and M �= Z which is denoted as

case (a). Taking the derivative of ϕi|a with respect to ki and
λi respectively and making them equal to zero lead to

∂ϕi|a
∂ki|a

= 2�aki|a − 2 (FHgi + LPmi) + Uλi = 0 , (88)

which can further be rewritten as

ki|a = �−1
a
(
FHgi + LPmi − 0.5Uλi

)
. (89)

where �a
�= FHFT + LPLT + S,H > 0, P > 0, and S > 0.

By multiplying the both sides of (89) with UT from the
left-hand side, using the constraint (85), and arranging the
terms, arrive at

λi = 2
(
UT�−1

a U
)−1 (

UT�−1
a FHgi + UT�−1

a LPmi − zi
)
.

(90)

Substituting (90) into (89) and taking into account that
H = HT , P = PT , S = ST and�a = �T

a , transforms kTi to

kTi|a =
(
gTi HFT + mT

i PLT
)

�−1
a

+
[
zTi −

(
gTi HFT + mT

i PLT
)

×�−1
a U

] (
UT�−1

a U
)−1

UT�−1
a . (91)

At this point, reconstruct Ka as

Ka =
(
GHFT�−1

a + MPLT�−1
a

)

×
(
I − U

(
UT�−1

a U
)−1

UT�−1
a

)

+Z
(
UT�−1

a U
)−1

UT�−1
a . (92)

In the case of θ = 1, F = U andH = Zwhich is denoted
as case (b) or θ = 1, G = U andM = Z which is denoted
as case (c), the solutions can be obtained similarly to case
(a), respectively,

Kb =MPLT�−1
b

(
I − U

(
UT�−1

b U
)−1

UT�−1
b

)

+Z
(
UT�−1

b U
)−1

UT�−1
b , (93)

Kc =GHFT�−1
c

(
I − U

(
UT�−1

c U
)−1

UT�−1
c

)

+Z
(
UT�−1

c U
)−1

UT�−1
c , (94)

with

�b = LPLT + S , (95)
�c = FHFT + S . (96)

Note that (93) and (94) are equal to the results found in
[11] for the receding horizon FIR filtering via prediction
state model.
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In the case of θ = 0 which is denoted as case (d), the
derivative of ϕi|d with respect to ki|d becomes

∂ϕi|d
∂ki|d

= 2�dki|d − 2 (FHgi + LPmi) = 0 , (97)

where �d = �a, and yields

kTi|d =
(
gTi HFT + mT

i PLT
)

�−1
d . (98)

Then Kd can be found to be

Kd =
(
GHFT + MPLT

)
�−1

d . (99)

Finally, by observing that

GHFT�−1
(
I − U

(
UT�−1U

)−1
UT�−1

)
= 0 ,

MPLT�−1
(
I − U

(
UT�−1U

)−1
UT�−1

)
= 0 ,

when F = U and L = U, and using θ as an indicating
parameter of the constraint, matrices Ka, Kb, Kc, and Kd
can be unified with

K=
(
GHFT�−1 + MPLT�−1

)

×
(
I − θU

(
UT�−1U

)−1
UT�−1

)

+Zθ
(
UT�−1U

)−1
UT�−1 , (100)

where � is specified by (23). An equivalent form of (100)
is (22) and the proof is complete.
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